Bi-stetige Halbgruppen auf Raeumen mit zwei Topologien: Theorie und Anwendungen

DSpace Repositorium (Manakin basiert)

Zur Kurzanzeige

dc.contributor.advisor Nagel, Rainer de_DE
dc.contributor.author Kuehnemund, Franziska de_DE
dc.date.accessioned 2001-03-30 de_DE
dc.date.accessioned 2014-03-18T10:08:46Z
dc.date.available 2001-03-30 de_DE
dc.date.available 2014-03-18T10:08:46Z
dc.date.issued 2001 de_DE
dc.identifier.other 091939089 de_DE
dc.identifier.uri http://nbn-resolving.de/urn:nbn:de:bsz:21-opus-2366 de_DE
dc.identifier.uri http://hdl.handle.net/10900/48156
dc.description.abstract In order to deal with semigroups on Banach spaces which are not strongly continuous we introduce the concept of bi-continuous semigroups on spaces with two topologies. To that purpose we consider Banach spaces with an aditional locally convex topology tau which is coarser than the norm topology and such that the topological dual (X, tau)' is norming for X endowed with its norm. On such spaces we define bi-continuous semigroups as semigroups consisting of bounded linear operators which are locally bi-equicontinuous tau and such that the orbit maps are tau-continuous. We show that these semigroups allow, as in the theory of strongly continuous semigroups, a systematic theory including Hille-Yosida and Trotter-Kato type theorems. A long series of applications including semigroups induced by flows, the Ornstein-Uhlenbeck semigroup on C_b(H), adjoint semigroups, and implemented semigroups, shows the flexibility and strength of our theory. de_DE
dc.description.abstract In order to deal with semigroups on Banach spaces which are not strongly continuous we introduce the concept of bi-continuous semigroups on spaces with two topologies. To that purpose we consider Banach spaces with an aditional locally convex topology tau which is coarser than the norm topology and such that the topological dual (X, tau)' is norming for X endowed with its norm. On such spaces we define bi-continuous semigroups as semigroups consisting of bounded linear operators which are locally bi-equicontinuous tau and such that the orbit maps are tau-continuous. We show that these semigroups allow, as in the theory of strongly continuous semigroups, a systematic theory including Hille-Yosida and Trotter-Kato type theorems. A long series of applications including semigroups induced by flows, the Ornstein-Uhlenbeck semigroup on C_b(H), adjoint semigroups, and implemented semigroups, shows the flexibility and strength of our theory. en
dc.language.iso de de_DE
dc.publisher Universität Tübingen de_DE
dc.rights ubt-podok de_DE
dc.rights.uri http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=de de_DE
dc.rights.uri http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=en en
dc.subject.classification Stark Stetige Halbgruppen , Funktionalanalysis de_DE
dc.subject.ddc 510 de_DE
dc.subject.other Trotter-Kato Approximationstheoreme , Trotter Produktformel , Bi-stetige Halbgruppe , Ornstein-Uhlenbeck Halbgruppe de_DE
dc.subject.other Hille-Yosida Theorem , Trotter-Kato Approximation , Bi-continuous semigroup , Ornstein-Uhlenbeck semigroup en
dc.title Bi-stetige Halbgruppen auf Raeumen mit zwei Topologien: Theorie und Anwendungen de_DE
dc.title Bi-Continuous Semigroups on Spaces with Two Topologies: Theory and Applications en
dc.type PhDThesis de_DE
dc.date.updated 1970-01-01 de_DE
dcterms.dateAccepted 2001-02-14 de_DE
utue.publikation.fachbereich Sonstige - Mathematik und Physik de_DE
utue.publikation.fakultaet 7 Mathematisch-Naturwissenschaftliche Fakultät de_DE
dcterms.DCMIType Text de_DE
utue.publikation.typ doctoralThesis de_DE
utue.opus.id 236 de_DE
thesis.grantor 12/13 Fakultät für Mathematik und Physik de_DE

Dateien:

Das Dokument erscheint in:

Zur Kurzanzeige