Inhaltszusammenfassung:
Die mikroskopischen Ursachen des niederfrequenten 1/f-Rauschens in YBCO dc SQUIDs sind bislang kaum erforscht. Deren ortsaufgelöste Untersuchung war das Ziel dieser Arbeit.
Hierfür wurde auf der Grundlage der an der Universität Tübingen etablierten TTREM-Meßmethode ein neues Verfahren entwickelt, das insbesondere die Möglichkeit bietet, Rauschquellen lokal zu untersuchen. Dabei wurden die für solche Untersuchungen nützlichen Eigenschaften des TTREMs als lokale Meßmethode mit der extrem hohen Flußempfindlichkeit von SQUIDs in geschickter Weise kombiniert und genutzt.
Spezielle für TTREM-Messungen geeignete dc SQUIDs wurden entworfen und präpariert. Ein eigens für die rasche Vorcharakterisierung vieler Proben ausgelegter Probenhalter wurde geplant und aufgebaut. Messungen an dc SQUIDs ergaben, daß durch die außerordentlich wirksame magnetische Abschirmung des verwendeten Stickstoff gekühlten Probenhalters nicht nur deren Betrieb innerhalb des REMs möglich ist; vielmehr unterscheiden sich die innerhalb und außerhalb des TTREM aufgenommenen Rauschniveaus kaum voneinander.
Systematisch qualitativ und quantitativ verifizierte Modelle erklären die Mehrzahl der mit der neuen TTREM-Abbildungsmethode beobachteten SQUID-Signale. Es konnte gezeigt werden, daß diese Signale alle entweder durch den auf die Proben aufgebrachten Strahlstrom oder eine lokale Temperaturerhöhung hervorgerufen werden, die am Bestrahlungsort zur Vergrößerung von lambda_L und damit zu einer Änderung des magnetischen Flusses im SQUID führt. Dabei wird der dem 1/f-Rauschen zugrundeliegende Mechanismus der Flußbewegung direkt imitiert, so daß die Kopplungsstärke einzelner Flußquanten in Abhängigkeit ihres Pinningorts unmittelbar vermessen werden kann. Dies ist bislang mit keiner anderen Untersuchungsmethode möglich. Auch der Widerstandsasymmetrieparameter rho kann aus den TTREM-Signalen ermittelt werden.