Discrete time and continuous time dynamic mean-variance analysis

DSpace Repositorium (Manakin basiert)


Dateien:

Zitierfähiger Link (URI): http://nbn-resolving.de/urn:nbn:de:bsz:21-opus-21121
http://hdl.handle.net/10900/47443
Dokumentart: Arbeitspapier
Erscheinungsdatum: 1999
Originalveröffentlichung: Tübinger Diskussionsbeiträge der Wirtschaftswissenschaftlichen Fakultät ; 168
Sprache: Englisch
Fakultät: 6 Wirtschafts- und Sozialwissenschaftliche Fakultät
Fachbereich: Wirtschaftswissenschaften
DDC-Klassifikation: 330 - Wirtschaft
Schlagworte: Portfolio Selection
Freie Schlagwörter:
Dynamic Optimization , Growth Optimum Portfolio , Mean-Variance-Efficiency , Minimum Deviation , Portfolio Selection , Two-Fund Theorem
Lizenz: http://tobias-lib.uni-tuebingen.de/doku/lic_ohne_pod.php?la=de http://tobias-lib.uni-tuebingen.de/doku/lic_ohne_pod.php?la=en
Zur Langanzeige

Abstract:

Contrary to static mean-variance analysis, very few papers have dealt with dynamic mean-variance analysis. Here, the mean-variance efficient self-financing portfolio strategy is derived for n risky assets in discrete and continuous time. In the discrete setting, the resulting portfolio is mean-variance efficient in a dynamic sense. It is shown that the optimal strategy for n risky assets may be dominated if the expected terminal wealth is constrained to exactly attain a certain goal instead of exceeding the goal. The optimal strategy for n risky assets can be decomposed into a locally mean-variance efficient strategy and a strategy that ensures optimum diversification across time. In continuous time, a dynamically mean-variance efficient portfolio is infeasible due to the constraint on the expected level of terminal wealth. A modified problem where mean and variance are determined at t=0 was solved by Richardson (1989). The solution is discussed and generalized for a market with n risky assets. Moreover, a dynamically optimal strategy is presented for the objective of minimizing the expected quadratic deviation from a certain target level subject to a given mean. This strategy equals that of the first objective. The strategy can be reinterpreted as a two-fund strategy in the growth optimum portfolio and the risk-free asset.

Das Dokument erscheint in: