Formale Begriffsrahmen für zirkuläre Phänomene. Möglichkeiten der Modellierung pathologischer Ausdrücke in formalen und natürlichen Sprachen

DSpace Repositorium (Manakin basiert)


Dateien:

Zitierfähiger Link (URI): http://nbn-resolving.de/urn:nbn:de:bsz:21-opus-4778
http://hdl.handle.net/10900/46174
Dokumentart: Dissertation
Erscheinungsdatum: 2001
Sprache: Deutsch
Fakultät: 5 Philosophische Fakultät
Fachbereich: Sonstige - Neuphilologie
Gutachter: Mönnich, Uwe
Tag der mündl. Prüfung: 2001-07-20
DDC-Klassifikation: 400 - Sprache, Linguistik
Schlagworte: Wahrheitstheorie , Fixpunkt-Logik , Wissensrepräsentation , Situationstheorie
Freie Schlagwörter: Zirkularität
Circularity , truth theory , knowledge representation , fixed point logic
Lizenz: http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=de http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=en
Gedruckte Kopie bestellen: Print-on-Demand
Zur Langanzeige

Inhaltszusammenfassung:

This dissertation has four parts. The first one is a general introduction into the topic of the work separated in a chapter that explains the used notation, a chapter that discusses typical examples, and a chapter that gives an overview of the three main parts. An important aspect of this first part is the attempt of a conceptual clarification of circularity, in particular in relation to the non-well-foundedness of a phenomenon. This clarification represents the philosophical core of the primarily formal dissertation. In the second part, Kripke's fixed point approach concerning partially defined truth predicates is examined: the algebraic foundations are introduced and problems of the construction are discussed. The main results of this second part are three characterization theorems of subclasses of interlaced bilattices and their applications. In the third part, revision theories are introduced. Their adequacy for the representation of circularity is discussed. Additionally, the complexity of these theories, the relation of revision theories to a wider thematic context, and their empirical properties are examined. In the last part of this dissertation, circularity is introduced on the level of set theory. The crucial idea is the concept of a coalgebraic modeling. In particular, the modeling of truth and the representation of the difference between private and common knowledge is emphasized. A comparison of the different accounts is provided in the last chapter.

Abstract:

This dissertation has four parts. The first one is a general introduction into the topic of the work separated in a chapter that explains the used notation, a chapter that discusses typical examples, and a chapter that gives an overview of the three main parts. An important aspect of this first part is the attempt of a conceptual clarification of circularity, in particular in relation to the non-well-foundedness of a phenomenon. This clarification represents the philosophical core of the primarily formal dissertation. In the second part, Kripke's fixed point approach concerning partially defined truth predicates is examined: the algebraic foundations are introduced and problems of the construction are discussed. The main results of this second part are three characterization theorems of subclasses of interlaced bilattices and their applications. In the third part, revision theories are introduced. Their adequacy for the representation of circularity is discussed. Additionally, the complexity of these theories, the relation of revision theories to a wider thematic context, and their empirical properties are examined. In the last part of this dissertation, circularity is introduced on the level of set theory. The crucial idea is the concept of a coalgebraic modeling. In particular, the modeling of truth and the representation of the difference between private and common knowledge is emphasized. A comparison of the different accounts is provided in the last chapter.

Das Dokument erscheint in: