Abstract:
1. The mouse has a number of advantages over other animal models to study myopia, including the availability of knock-out models, the extensive knowledge on its genome, transcriptome and proteom, and its physiology. However, no data are published on the development of its ocular biometry and optical properties. Therefore, a paraxial schematic model of the growing eye for the most common laboratory mouse strain, the C57BL/6 mouse, for the age range between 22 and 100 days, was developed (Schmucker & Schaeffel, 2004a).
2. Until now, a major drawback of the mouse was that its ocular dimensions cannot be measured in vivo, and that the current techniques post-mortem suffer from limited resolution. Therefore, the potential of a new technique, optical low coherence interferometry, adapted for short measurement distances by Meditec, Carl Zeiss, Jena, Germany, was tested. Using this technique, ocular biometry was performed in mice with normal vision and after deprivation of form vision (Schmucker & Schaeffel, 2004b).
3. Despite the evidence that mice have some spatial vision, it is not known at present at which illuminances it is important. Therefore, spatial acuity of wild-type C57BL6/J mice was measured in a newly developed automated optomotor paradigm at different illuminances. Furthermore, mutant mice lacking either rods or cones, or both, were studied to determine the rod and cone contribution to spatial vision (Schmucker, Seeliger, Humphries, Biel, & Schaeffel, 2005).
4. To determine how diffusers, spectacle lenses and atropine affect spatial vision in the mouse, the contrast thresholds at different spatial frequencies with lenses or diffusers, or after topical application of eye drops with atropine were determined. These information are necessary to find out which treatments could effectively induce refractive errors in young animals. Measurements were performed under both photopic conditions and in dim light, using an optomotor paradigm that was developed in the course of the study (see 3.) (Schmucker & Schaeffel, 2005).
Referenzen:
1. Schmucker, C., & Schaeffel, F. (2004a). A paraxial schematic eye model for the growing C57BL/6 mouse. Vision Research, 44(16), 1857-1867.
2. Schmucker, C., & Schaeffel, F. (2004b). In vivo biometry in the mouse eye with low coherence interferometry. Vision Research, 44(21), 2445-2456.
3. Schmucker, C., Seeliger, M., Humphries, P., Biel, M., & Schaeffel, F. (2005). Grating acuity at different luminances in wild-type mice and in mice lacking cone or rod function. Investigative Ophthalmology & Visual Science, 46(1), 398-407.
4. Schmucker, C., & Schaeffel, F. (2005). Contrast sensitivity of wild-type mice wearing diffusers or spectacle lenses, and the effect of atropine. Vision Research, in press (online publication 1st July 2005).