Inhaltszusammenfassung:
Ziel der Arbeit war es, die an der duodenalen Bikarbonatsekretion beteiligten zellulären Ionentransportmechanismen funktionell näher zu charakterisieren und Aspekte ihrer Regulation zu klären. Die Messungen wurden an proximalem Duodenalepithel des Kaninchens in einem Ussingkammeraufbau durchgeführt, wobei die Messung der Bikarbonatsekretion simultan mit dem Kurzschlussstromexperiment stattfand.
Der erste Teil der Arbeit widmete sich der Klärung der Rolle der am apikalen Zellpol lokalisierten Transportproteine in der Bikarbonatsekretion unter basalen und stimulierten Bedingungen. Die Experimente zeigten, dass ein apikaler Cl-/HCO3--Austauscher einen deutlichen Anteil an der basalen aktiven Bikarbonatsekretion ins Darmlumen besitzt, die HCO3--Ionen nach Stimulation durch cAMP-Analoga jedoch hauptsächlich über eine Leitfähigkeit sezerniert werden. Aufgrund der allgemeinen Erkenntnisse über das CFTR-Protein muss dieses entweder in die cAMP-gesteuerte Regulation einer solchen Leitfähigkeit involviert sein oder sogar selber als cAMP-regulierter Cl-- und HCO3--Kanal fungieren.
Der zweite Teil der Arbeit befasste sich mit den Mechanismen der duodenalen Bikarbonatbereitstellung, die wahrscheinlich einen limitierenden Faktor für die Bikarbonatsekretion darstellt. Die Experimente zeigten, dass im Duodenalepithel des Kaninchens unter nichtstimulierten Bedingungen sowohl basolateral lokalisierter Na+/HCO3--Kotransport als auch intrazelluläre HCO3--Generierung (die über die Karboanhydrasereaktion gekoppelt mit Na+/H+-Austausch zustande kommt), für die Bereitstellung von HCO3--Ionen, die ins Darmlumen sezerniert werden, verantwortlich sind. Die Anwesenheit von CO2/HCO3- im serosalen Perfusat ist dabei unbedingt erforderlich. Diese beiden Wege der Bikarbonatbereitstellung können während einer Stimulation durch cAMP-Analoga unter Hemmung des jeweils einen Weges so wirksam hochreguliert werden, dass die Sekretionsantwort nicht beeinträchtigt ist.