Using Supervised Machine Learning for Modelling Early Neolithic Survival Probability: a Bayesian Networks approach

DSpace Repositorium (Manakin basiert)

Zitierfähiger Link (URI): http://hdl.handle.net/10900/174131
http://nbn-resolving.org/urn:nbn:de:bsz:21-dspace-1741310
http://nbn-resolving.org/urn:nbn:de:bsz:21-dspace-1741310
http://dx.doi.org/10.15496/publikation-115456
Dokumentart: Konferenzpaper
Erscheinungsdatum: 2026-03
Sprache: Englisch
Fakultät: 9 Sonstige / Externe
Fachbereich: Sonstige/Externe
DDC-Klassifikation: 930 - Alte Geschichte, Archäologie
Schlagworte: Archäologie , Maschinelles Lernen
Freie Schlagwörter:
Supervised Machine Learning
Survival Probability
Lizenz: https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
Zur Langanzeige

Abstract:

The present study explores the application of the supervised machine learning approach to archaeological studies. The goal is to develop a supervised machine learning model based on Bayesian networks with a dual purpose: on the one hand, it will be a predictive model to assess the probability of survival (equivalently, the risk of disappearance) of an early agropastoral community. On the other, the model will allow us to understand the importance of and the relationships between factors affecting a subsistence model of early farming (ca. 7500/7000 - 5100 cal. BP approximately) in the northeast Iberian Peninsula. Our work embodies multiple factors relevant to understanding social and economic decision-making in prehistoric communities, associating archaeological observations with theoretical parameters with the goal of offering new insights into socioeconomic and technological systems of early Neolithic societies.

Das Dokument erscheint in:

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en Solange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en