Find ’em all: Large-scale automation to detect complex archaeological objects with Deep Learning – A case study on English hillforts

DSpace Repositorium (Manakin basiert)

Zitierfähiger Link (URI): http://hdl.handle.net/10900/173614
http://nbn-resolving.org/urn:nbn:de:bsz:21-dspace-1736149
http://nbn-resolving.org/urn:nbn:de:bsz:21-dspace-1736149
http://dx.doi.org/10.15496/publikation-114939
Dokumentart: Konferenzpaper
Erscheinungsdatum: 2026-03
Sprache: Englisch
Fakultät: 9 Sonstige / Externe
9 Sonstige / Externe
Fachbereich: Sonstige/Externe
DDC-Klassifikation: 930 - Alte Geschichte, Archäologie
Schlagworte: Archäologie , Maschinelles Lernen
Freie Schlagwörter:
Landscape Archaeology
Automated detection
Hillforts
LiDAR
CNN
Machine Learning
Lizenz: https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
Zur Langanzeige

Abstract:

Nowadays, archaeologists have vast amounts of Light Detection and Ranging (LiDAR) and other remote sensing data at their disposal, to search for previously undiscovered archaeological objects, often at a national scale. This leads to a Big Data problem in archaeology: some degree of automation is needed, as humans alone cannot cope with these ever-growing data sources. In this research, we have developed a novel workflow based on the Artificial Intelligence (AI) technology of Convolutional Neural Networks (CNNs), to automate the detection of unknown, complex archaeological objects. Our hypothesis is that a high-quality remote sensing data source such as LiDAR and a curated list of known objects, is sufficient to find a large number — or ideally all — additional undiscovered objects within a landscape. In a case study presented here, we use Prehistoric hillforts in England as an example for this workflow and present a three-step approach to demonstrate its efficiency.

Das Dokument erscheint in:

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en Solange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en