Flexible and cost-effective deep learning for accelerated multi-parametric relaxometry using phase-cycled bSSFP

DSpace Repositorium (Manakin basiert)

Flexible and cost-effective deep learning for accelerated multi-parametric relaxometry using phase-cycled bSSFP

Autor(en): Birk, Florian; Mahler, Lucas; Steiglechner, Julius; Wang, Qi; Scheffler, Klaus; Heule, Rahel
Tübinger Autor(en):
Birk, Florian
Mahler, Lucas
Steiglechner, Julius
Wang, Qi
Scheffler, Klaus
Heule, Rahel
Erschienen in: Scientific Reports (2025), Bd. 15 (1), Article 4825
Verlagsangabe: Berlin : Nature Portfolio
Sprache: Englisch
Referenz zum Volltext: http://dx.doi.org/10.1038/s41598-025-88579-z
ISSN: 2045-2322
DDC-Klassifikation: 500 - Naturwissenschaften
Dokumentart: Wissenschaftlicher Artikel
Zur Langanzeige

Das Dokument erscheint in: