| dc.contributor.advisor |
Rammensee, Hans-Georg (Prof. Dr.) |
|
| dc.contributor.author |
Pagallies, Felix Christian |
|
| dc.date.accessioned |
2025-11-26T11:29:10Z |
|
| dc.date.available |
2025-11-26T11:29:10Z |
|
| dc.date.issued |
2027-07-11 |
|
| dc.identifier.uri |
http://hdl.handle.net/10900/172667 |
|
| dc.identifier.uri |
http://nbn-resolving.org/urn:nbn:de:bsz:21-dspace-1726675 |
de_DE |
| dc.identifier.uri |
http://dx.doi.org/10.15496/publikation-113992 |
|
| dc.description.abstract |
The Orf virus (ORFV) has emerged as a promising platform for developing viral vector
vaccines and immunotherapeutic approaches, owing to its high transgene capacity, potent
immunomodulatory properties, the option for repeated booster vaccinations due to the
low anti-vector immunity, and an overall favorable safety profile. However, until now
there has been no systematically established, scalable process for reliably producing
ORFV-based vaccines under GMP conditions. The aim of this work was therefore to
develop an end-to-end manufacturing process for ORFV-based vaccines that ensures high
yields, reproducibility, and GMP compliance.
Using HEK293 cells in suspension culture, the upstream process was initially
implemented in controlled bioreactors. By employing a systematic Design of Experiments
(DoE) approach, critical process parameters - such as cell density at infection, MOI, pH,
temperature, and dissolved oxygen - were precisely identified and optimized and
successfully scaled up to a 50 L bioreactor. This enabled a more than one-hundredfold
increase in virus titers (>10⁸ IU/mL) compared to the original Vero cell-based method.
For the downstream process, a scalable clarification strategy was established, comprising
nuclease treatment for targeted DNA reduction and a two-stage filtration with
polypropylene-based depth filters. Subsequent chromatographic steps (ion exchange,
hydrophobic, multimodal, and size-exclusion chromatography) achieved effective
removal of host cell DNA and proteins at high yields. The purified virus batches met
defined quality criteria for particle integrity, infectivity, and purity, thereby
demonstrating suitability for clinical applications.
To ensure final product stability, an extensive formulation screening was carried out.
More than 30 excipients - among them disaccharides, recombinant albumin, and amino
acids - were evaluated under various stress conditions. A formulation consisting of 1 %
recombinant human serum albumin and 5 % sucrose in Tris buffer proved especially
stable at 4 °C and under multiple freeze-thaw cycles. In addition, arginine-containing
formulations enhanced stability at temperatures up to 37 °C, expanding the platform’s
potential application range.
Based on this developed manufacturing process, preclinical and clinical studies were
conducted using multivalent ORFV-based SARS-CoV-2 vaccine candidates. The results
demonstrate not only that the process development led to a robust production method
but also that it lays the groundwork for future clinical and industrial applications of ORFV
as a viral vector. Consequently, this dissertation lays a robust foundation for a scalable
manufacturing platform that can be further leveraged for diverse ORFV-based vaccines
and therapeutic applications. |
en |
| dc.description.abstract |
Die Dissertation ist gesperrt bis zum 11. Juli 2027 ! |
de_DE |
| dc.language.iso |
en |
de_DE |
| dc.publisher |
Universität Tübingen |
de_DE |
| dc.rights |
ubt-podno |
de_DE |
| dc.rights.uri |
http://tobias-lib.uni-tuebingen.de/doku/lic_ohne_pod.php?la=de |
de_DE |
| dc.rights.uri |
http://tobias-lib.uni-tuebingen.de/doku/lic_ohne_pod.php?la=en |
en |
| dc.subject.ddc |
000 |
de_DE |
| dc.subject.other |
cGMP-konformer Herstellungsprozess |
de_DE |
| dc.subject.other |
Orf virus (ORFV) vector platform |
en |
| dc.subject.other |
cGMP-compliant manufacturing |
en |
| dc.subject.other |
HEK293-Suspensionskultur |
de_DE |
| dc.subject.other |
HEK293 suspension production |
en |
| dc.subject.other |
Virusproduktion & Prozessoptimierung |
de_DE |
| dc.subject.other |
Viral vector |
en |
| dc.subject.other |
Klärfiltration & Nukleasebehandlung |
de_DE |
| dc.subject.other |
Steric Exclusion Chromatography (SXC) |
de_DE |
| dc.subject.other |
upstream optimization |
en |
| dc.subject.other |
CaptoCore 700 |
de_DE |
| dc.subject.other |
Clarification & DNase digestion |
en |
| dc.subject.other |
Aufreinigung |
de_DE |
| dc.subject.other |
Clarification |
en |
| dc.subject.other |
Formulierungsentwicklung & Stabilität |
de_DE |
| dc.subject.other |
DNase digestion |
en |
| dc.subject.other |
SARS-CoV-2 |
de_DE |
| dc.subject.other |
Chromatographic purification of ORFV |
en |
| dc.subject.other |
ORFV-Vektorkandidaten |
de_DE |
| dc.subject.other |
Steric Exclusion Chromatography (SXC) |
en |
| dc.subject.other |
CaptoCore 700 |
en |
| dc.subject.other |
Parapoxvirus |
de_DE |
| dc.subject.other |
CaptoCore 700 purification |
en |
| dc.subject.other |
Rekombinanter Vektor |
de_DE |
| dc.subject.other |
Multivalente Impfstoffe |
de_DE |
| dc.subject.other |
Formulation development & stability |
en |
| dc.subject.other |
ORFV D1701-VrV Plattform |
de_DE |
| dc.subject.other |
ORFV-based |
en |
| dc.subject.other |
Bioreaktor-Kultivierung |
de_DE |
| dc.subject.other |
ORFV-based SARS-CoV-2 |
en |
| dc.subject.other |
Infektionsparameter (MOI, CDAI) |
de_DE |
| dc.subject.other |
SARS-CoV-2 vaccine candidates |
en |
| dc.subject.other |
Prozessintensivierung |
de_DE |
| dc.subject.other |
Parapoxvirus |
en |
| dc.subject.other |
Virusreinigung |
de_DE |
| dc.subject.other |
Recombinant Orf virus |
en |
| dc.subject.other |
Immunomodulatory viral vectors |
en |
| dc.subject.other |
Tiefenfiltration |
de_DE |
| dc.subject.other |
D1701-VrV attenuated vector |
en |
| dc.subject.other |
Membranadsorber-Chromatographie |
de_DE |
| dc.subject.other |
Ionenaustauschchromatographie |
de_DE |
| dc.subject.other |
Bioreactor cultivation |
en |
| dc.subject.other |
Host-Cell-DNA-Reduktion |
de_DE |
| dc.subject.other |
Infection kinetics |
en |
| dc.subject.other |
MOI optimization |
en |
| dc.subject.other |
Host-Cell-Protein-Reduktion |
de_DE |
| dc.subject.other |
High-density cell culture |
en |
| dc.subject.other |
Exzipientenscreening |
de_DE |
| dc.subject.other |
Virusstabilisierung |
de_DE |
| dc.subject.other |
Process intensification |
en |
| dc.subject.other |
Viral purification |
en |
| dc.subject.other |
Klinische Herstellung |
de_DE |
| dc.subject.other |
Präklinische Studien |
de_DE |
| dc.subject.other |
Depth filtration |
en |
| dc.subject.other |
Host cell DNA reduction |
en |
| dc.subject.other |
SARS-CoV-2 Impfstoffentwicklung |
de_DE |
| dc.subject.other |
ORFV-basierte Impfstoffe |
de_DE |
| dc.subject.other |
Orf virus (ORFV) |
en |
| dc.subject.other |
Host cell protein clearance |
en |
| dc.subject.other |
Nuclease treatment |
en |
| dc.subject.other |
Membrane adsorber chromatography |
en |
| dc.subject.other |
Ion exchange chromatography (IEX) |
en |
| dc.subject.other |
Multimodal chromatography |
en |
| dc.subject.other |
Excipients screening |
en |
| dc.subject.other |
Lyophilization feasibility |
en |
| dc.subject.other |
Thermostable vaccine formulations |
en |
| dc.subject.other |
Viral stability enhancement |
en |
| dc.subject.other |
Freeze-thaw resistance |
en |
| dc.subject.other |
GMP-compliant vaccine manufacturing |
en |
| dc.subject.other |
Process development & validation |
en |
| dc.subject.other |
Preclinical vaccine assessment |
en |
| dc.subject.other |
Clinical translation of viral vectors |
en |
| dc.subject.other |
Chromatographic purification of viral vectors |
en |
| dc.subject.other |
Viral formulation development |
en |
| dc.subject.other |
Viral vector vaccine development |
en |
| dc.title |
Bench to Bedside: Development of a cGMP Process for ORFV Viral Vector Based Vaccines |
en |
| dc.type |
PhDThesis |
de_DE |
| dcterms.dateAccepted |
2025-07-11 |
|
| utue.publikation.fachbereich |
Pharmazie |
de_DE |
| utue.publikation.fakultaet |
7 Mathematisch-Naturwissenschaftliche Fakultät |
de_DE |
| utue.publikation.noppn |
yes |
de_DE |