Bench to Bedside: Development of a cGMP Process for ORFV Viral Vector Based Vaccines

DSpace Repositorium (Manakin basiert)

Zur Kurzanzeige

dc.contributor.advisor Rammensee, Hans-Georg (Prof. Dr.)
dc.contributor.author Pagallies, Felix Christian
dc.date.accessioned 2025-11-26T11:29:10Z
dc.date.available 2025-11-26T11:29:10Z
dc.date.issued 2027-07-11
dc.identifier.uri http://hdl.handle.net/10900/172667
dc.identifier.uri http://nbn-resolving.org/urn:nbn:de:bsz:21-dspace-1726675 de_DE
dc.identifier.uri http://dx.doi.org/10.15496/publikation-113992
dc.description.abstract The Orf virus (ORFV) has emerged as a promising platform for developing viral vector vaccines and immunotherapeutic approaches, owing to its high transgene capacity, potent immunomodulatory properties, the option for repeated booster vaccinations due to the low anti-vector immunity, and an overall favorable safety profile. However, until now there has been no systematically established, scalable process for reliably producing ORFV-based vaccines under GMP conditions. The aim of this work was therefore to develop an end-to-end manufacturing process for ORFV-based vaccines that ensures high yields, reproducibility, and GMP compliance. Using HEK293 cells in suspension culture, the upstream process was initially implemented in controlled bioreactors. By employing a systematic Design of Experiments (DoE) approach, critical process parameters - such as cell density at infection, MOI, pH, temperature, and dissolved oxygen - were precisely identified and optimized and successfully scaled up to a 50 L bioreactor. This enabled a more than one-hundredfold increase in virus titers (>10⁸ IU/mL) compared to the original Vero cell-based method. For the downstream process, a scalable clarification strategy was established, comprising nuclease treatment for targeted DNA reduction and a two-stage filtration with polypropylene-based depth filters. Subsequent chromatographic steps (ion exchange, hydrophobic, multimodal, and size-exclusion chromatography) achieved effective removal of host cell DNA and proteins at high yields. The purified virus batches met defined quality criteria for particle integrity, infectivity, and purity, thereby demonstrating suitability for clinical applications. To ensure final product stability, an extensive formulation screening was carried out. More than 30 excipients - among them disaccharides, recombinant albumin, and amino acids - were evaluated under various stress conditions. A formulation consisting of 1 % recombinant human serum albumin and 5 % sucrose in Tris buffer proved especially stable at 4 °C and under multiple freeze-thaw cycles. In addition, arginine-containing formulations enhanced stability at temperatures up to 37 °C, expanding the platform’s potential application range. Based on this developed manufacturing process, preclinical and clinical studies were conducted using multivalent ORFV-based SARS-CoV-2 vaccine candidates. The results demonstrate not only that the process development led to a robust production method but also that it lays the groundwork for future clinical and industrial applications of ORFV as a viral vector. Consequently, this dissertation lays a robust foundation for a scalable manufacturing platform that can be further leveraged for diverse ORFV-based vaccines and therapeutic applications. en
dc.description.abstract Die Dissertation ist gesperrt bis zum 11. Juli 2027 ! de_DE
dc.language.iso en de_DE
dc.publisher Universität Tübingen de_DE
dc.rights ubt-podno de_DE
dc.rights.uri http://tobias-lib.uni-tuebingen.de/doku/lic_ohne_pod.php?la=de de_DE
dc.rights.uri http://tobias-lib.uni-tuebingen.de/doku/lic_ohne_pod.php?la=en en
dc.subject.ddc 000 de_DE
dc.subject.other cGMP-konformer Herstellungsprozess de_DE
dc.subject.other Orf virus (ORFV) vector platform en
dc.subject.other cGMP-compliant manufacturing en
dc.subject.other HEK293-Suspensionskultur de_DE
dc.subject.other HEK293 suspension production en
dc.subject.other Virusproduktion & Prozessoptimierung de_DE
dc.subject.other Viral vector en
dc.subject.other Klärfiltration & Nukleasebehandlung de_DE
dc.subject.other Steric Exclusion Chromatography (SXC) de_DE
dc.subject.other upstream optimization en
dc.subject.other CaptoCore 700 de_DE
dc.subject.other Clarification & DNase digestion en
dc.subject.other Aufreinigung de_DE
dc.subject.other Clarification en
dc.subject.other Formulierungsentwicklung & Stabilität de_DE
dc.subject.other DNase digestion en
dc.subject.other SARS-CoV-2 de_DE
dc.subject.other Chromatographic purification of ORFV en
dc.subject.other ORFV-Vektorkandidaten de_DE
dc.subject.other Steric Exclusion Chromatography (SXC) en
dc.subject.other CaptoCore 700 en
dc.subject.other Parapoxvirus de_DE
dc.subject.other CaptoCore 700 purification en
dc.subject.other Rekombinanter Vektor de_DE
dc.subject.other Multivalente Impfstoffe de_DE
dc.subject.other Formulation development & stability en
dc.subject.other ORFV D1701-VrV Plattform de_DE
dc.subject.other ORFV-based en
dc.subject.other Bioreaktor-Kultivierung de_DE
dc.subject.other ORFV-based SARS-CoV-2 en
dc.subject.other Infektionsparameter (MOI, CDAI) de_DE
dc.subject.other SARS-CoV-2 vaccine candidates en
dc.subject.other Prozessintensivierung de_DE
dc.subject.other Parapoxvirus en
dc.subject.other Virusreinigung de_DE
dc.subject.other Recombinant Orf virus en
dc.subject.other Immunomodulatory viral vectors en
dc.subject.other Tiefenfiltration de_DE
dc.subject.other D1701-VrV attenuated vector en
dc.subject.other Membranadsorber-Chromatographie de_DE
dc.subject.other Ionenaustauschchromatographie de_DE
dc.subject.other Bioreactor cultivation en
dc.subject.other Host-Cell-DNA-Reduktion de_DE
dc.subject.other Infection kinetics en
dc.subject.other MOI optimization en
dc.subject.other Host-Cell-Protein-Reduktion de_DE
dc.subject.other High-density cell culture en
dc.subject.other Exzipientenscreening de_DE
dc.subject.other Virusstabilisierung de_DE
dc.subject.other Process intensification en
dc.subject.other Viral purification en
dc.subject.other Klinische Herstellung de_DE
dc.subject.other Präklinische Studien de_DE
dc.subject.other Depth filtration en
dc.subject.other Host cell DNA reduction en
dc.subject.other SARS-CoV-2 Impfstoffentwicklung de_DE
dc.subject.other ORFV-basierte Impfstoffe de_DE
dc.subject.other Orf virus (ORFV) en
dc.subject.other Host cell protein clearance en
dc.subject.other Nuclease treatment en
dc.subject.other Membrane adsorber chromatography en
dc.subject.other Ion exchange chromatography (IEX) en
dc.subject.other Multimodal chromatography en
dc.subject.other Excipients screening en
dc.subject.other Lyophilization feasibility en
dc.subject.other Thermostable vaccine formulations en
dc.subject.other Viral stability enhancement en
dc.subject.other Freeze-thaw resistance en
dc.subject.other GMP-compliant vaccine manufacturing en
dc.subject.other Process development & validation en
dc.subject.other Preclinical vaccine assessment en
dc.subject.other Clinical translation of viral vectors en
dc.subject.other Chromatographic purification of viral vectors en
dc.subject.other Viral formulation development en
dc.subject.other Viral vector vaccine development en
dc.title Bench to Bedside: Development of a cGMP Process for ORFV Viral Vector Based Vaccines en
dc.type PhDThesis de_DE
dcterms.dateAccepted 2025-07-11
utue.publikation.fachbereich Pharmazie de_DE
utue.publikation.fakultaet 7 Mathematisch-Naturwissenschaftliche Fakultät de_DE
utue.publikation.noppn yes de_DE

Dateien:

Das Dokument erscheint in:

Zur Kurzanzeige