Monodisperse Heteroatom-Doped Carbon Nanostructured Composites: Preparation, Characterization, and Applications in Electrocatalysis and Energy Storage

DSpace Repositorium (Manakin basiert)


Dateien:

Zitierfähiger Link (URI): http://hdl.handle.net/10900/172602
http://nbn-resolving.org/urn:nbn:de:bsz:21-dspace-1726027
http://nbn-resolving.org/urn:nbn:de:bsz:21-dspace-1726027
http://dx.doi.org/10.15496/publikation-113927
Dokumentart: Dissertation
Erscheinungsdatum: 2026-11-30
Sprache: Englisch
Fakultät: 7 Mathematisch-Naturwissenschaftliche Fakultät
Fachbereich: Chemie
Gutachter: Anwander, Reiner (Prof. Dr.)
Tag der mündl. Prüfung: 2025-11-06
DDC-Klassifikation: 540 - Chemie
Schlagworte: Kohlenstoffwerkstoff , Nanosphäre , Zinn , Nickel , Elektrokatalyse , Energiespeicher
Freie Schlagwörter: Zinn Materialien
Nickel
Batterieanoden
elektrochemische CO2-Reduktion
Monodisperse Kohlenstoffsphären
Battery anodes
Sn-based compounds
Electrochemical CO2 reducton
Nickel
Monodisperse carbon spheres
Lizenz: http://tobias-lib.uni-tuebingen.de/doku/lic_ohne_pod.php?la=de http://tobias-lib.uni-tuebingen.de/doku/lic_ohne_pod.php?la=en
Zur Langanzeige

Inhaltszusammenfassung:

Die Dissertation ist gesperrt bis zum 30. November 2026 !

Abstract:

Heteroatom- or compound-incorporated monodisperse carbon nanocomposites (MCNs) hold great promise for applications in catalysis and energy storage. However, their development remains hindered by several challenges, including the lack of efficient and scalable synthesis routes, limited morphological control after heteroatom or component incorporation, and poor spatial regulation of dopant distribution within carbon matrix. To address these limitations, this thesis presents new synthetic strategies for preparing heteroatom-/component-incorporated MCNs with well-controlled morphology, microstructure, and compositional uniformity. Four distinct classes of Ni-, Sn-, SnS-, and SnOx- (x = 1, 2) incorporated carbon nanocomposites were successfully synthesized via newly developed approaches. Their electrochemical performances were systematically evaluated, revealing that Ni-doped MCNs exhibit excellent activity toward electrochemical CO₂ reduction (eCO₂RR), while Sn- and SnS-embedded MCNs serve as effective anodes for lithium-/sodium-ion batteries. These findings provide valuable insights into the rational design of multifunctional MCNs and applications in energy conversion and storage.

Das Dokument erscheint in: