dc.contributor.author |
Bettouche, Zineddine |
|
dc.contributor.author |
Ali, Khalid |
|
dc.contributor.author |
Fischer, Andreas |
|
dc.contributor.author |
Kassler, Andreas |
|
dc.date.accessioned |
2025-04-03T05:07:38Z |
|
dc.date.available |
2025-04-03T05:07:38Z |
|
dc.date.issued |
2025-04-03 |
|
dc.identifier.uri |
http://hdl.handle.net/10900/163769 |
|
dc.identifier.uri |
http://nbn-resolving.org/urn:nbn:de:bsz:21-dspace-1637693 |
de_DE |
dc.identifier.uri |
http://dx.doi.org/10.15496/publikation-105099 |
|
dc.description.abstract |
Accurate spatiotemporal traffic forecasting is vital
for optimizing 5G networks. Traditional LSTM models struggle
with capturing complex spatiotemporal dependencies, limiting
predictive performance. To address this, we propose an enhanced
Spatiotemporal Network (STN) integrating Scalar LSTM
(sLSTM), a more efficient variant designed to improve temporal
modeling while reducing computational complexity. Our dualpath
STN processes the input through an sLSTM for sequential
feature extraction and a three-layer Conv3D path for spatial feature
learning, with both outputs fused in a dedicated fusion layer
for enhanced spatiotemporal representation. By incorporating
sLSTM, our model stabilizes gradients, accelerates convergence,
and enhances accuracy. Experiments on real-world mobile traffic
datasets show a 23% MAE reduction over ConvLSTM, with
a 30% improvement on unseen data, demonstrating superior
generalization for 5G traffic prediction. |
en |
dc.language.iso |
en |
de_DE |
dc.publisher |
Universität Tübingen |
de_DE |
dc.subject.ddc |
004 |
de_DE |
dc.title |
Enhancing Spatiotemporal Networks with xLSTM: A Scalar LSTM Approach for 5G Traffic Forecasting |
en |
dc.type |
Article |
de_DE |
utue.publikation.fachbereich |
Informatik |
de_DE |
utue.publikation.fakultaet |
7 Mathematisch-Naturwissenschaftliche Fakultät |
de_DE |
utue.publikation.noppn |
yes |
de_DE |