Enhancing Spatiotemporal Networks with xLSTM: A Scalar LSTM Approach for 5G Traffic Forecasting

DSpace Repositorium (Manakin basiert)

Zur Kurzanzeige

dc.contributor.author Bettouche, Zineddine
dc.contributor.author Ali, Khalid
dc.contributor.author Fischer, Andreas
dc.contributor.author Kassler, Andreas
dc.date.accessioned 2025-04-03T05:07:38Z
dc.date.available 2025-04-03T05:07:38Z
dc.date.issued 2025-04-03
dc.identifier.uri http://hdl.handle.net/10900/163769
dc.identifier.uri http://nbn-resolving.org/urn:nbn:de:bsz:21-dspace-1637693 de_DE
dc.identifier.uri http://dx.doi.org/10.15496/publikation-105099
dc.description.abstract Accurate spatiotemporal traffic forecasting is vital for optimizing 5G networks. Traditional LSTM models struggle with capturing complex spatiotemporal dependencies, limiting predictive performance. To address this, we propose an enhanced Spatiotemporal Network (STN) integrating Scalar LSTM (sLSTM), a more efficient variant designed to improve temporal modeling while reducing computational complexity. Our dualpath STN processes the input through an sLSTM for sequential feature extraction and a three-layer Conv3D path for spatial feature learning, with both outputs fused in a dedicated fusion layer for enhanced spatiotemporal representation. By incorporating sLSTM, our model stabilizes gradients, accelerates convergence, and enhances accuracy. Experiments on real-world mobile traffic datasets show a 23% MAE reduction over ConvLSTM, with a 30% improvement on unseen data, demonstrating superior generalization for 5G traffic prediction. en
dc.language.iso en de_DE
dc.publisher Universität Tübingen de_DE
dc.subject.ddc 004 de_DE
dc.title Enhancing Spatiotemporal Networks with xLSTM: A Scalar LSTM Approach for 5G Traffic Forecasting en
dc.type Article de_DE
utue.publikation.fachbereich Informatik de_DE
utue.publikation.fakultaet 7 Mathematisch-Naturwissenschaftliche Fakultät de_DE
utue.publikation.noppn yes de_DE

Dateien:

Das Dokument erscheint in:

Zur Kurzanzeige