Improving assessment of lesions in longitudinal CT scans: a bi-institutional reader study on an AI-assisted registration and volumetric segmentation workflow

DSpace Repository

Improving assessment of lesions in longitudinal CT scans: a bi-institutional reader study on an AI-assisted registration and volumetric segmentation workflow

Author: Hering, Alessa; Westphal, Max; Gerken, Annika; Almansour, Haidara; Maurer, Michael; Geisler, Benjamin; Kohlbrandt, Temke; Eigentler, Thomas; Amaral, Teresa; Lessmann, Nikolas; Gatidis, Sergios; Hahn, Horst; Nikolaou, Konstantin; Othman, Ahmed; Moltz, Jan; Peisen, Felix
Tübinger Autor(en):
Almansour, Haidara
Eigentler, Thomas
Amaral, Teresa
Gatidis, Sergios
Nikolaou, Konstantin
Othman, Ahmed
Peisen, Felix Ludwig
Published in: International Journal of Computer Assisted Radiology and Surgery (2024), Bd. 19, H. 9, S. 1689-1697
Verlagsangabe: Heidelberg : Springer Heidelberg
Language: English
Full text: http://dx.doi.org/10.1007/s11548-024-03181-4
ISSN: 1861-6410
DDC Classifikation: 600 - Technology
610 - Medicine and health
Dokumentart: Article
Show full item record

This item appears in the following Collection(s)