Artificial Neural Networks for Knowledge Extraction in Spatiotemporal Dynamics and Weather Forecasting

DSpace Repositorium (Manakin basiert)

Zur Kurzanzeige

dc.contributor.advisor Butz, Martin
dc.contributor.author Karlbauer, Matthias
dc.date.accessioned 2024-08-15T07:29:17Z
dc.date.available 2024-08-15T07:29:17Z
dc.date.issued 2024
dc.identifier.uri http://hdl.handle.net/10900/156815
dc.identifier.uri http://nbn-resolving.de/urn:nbn:de:bsz:21-dspace-1568159 de_DE
dc.identifier.uri http://dx.doi.org/10.15496/publikation-98147
dc.description.abstract This thesis explores the potential of machine learning methods for improving weather forecasts. Since weather is considered a spatiotemporal process that evolves over space through time, the thesis first investigates the design choices required for machine learning models to simulate synthetic spatiotemporal processes, such as the two-dimensional wave equation. It then develops a method for analyzing machine learning models that enables the extraction of unknown process-relevant context that parameterizes an observed simulated spatiotemporal process of interest. Relating these extracted factors to physical properties leads the thesis to physics-aware machine learning, where it explores how to fuse process knowledge from physics with the learning ability of artificial neural networks. Given the insights from those investigations, a competitive deep learning weather prediction model is designed to understand which design choices support data-driven algorithms to learn a meaningful function that predicts realistic and stable states of the atmosphere over hundreds of hours, days, and weeks into the future. en
dc.language.iso en de_DE
dc.publisher Tübingen Library Publishing de_DE
dc.rights.uri https://creativecommons.org/licenses/by/4.0/deed.de
dc.subject.classification Deep learning , Wetter , Wettervorhersage , Maschinelles Lernen , Neuronales Netz de_DE
dc.subject.ddc 004 de_DE
dc.subject.other spatiotemporal dynamics en
dc.subject.other knowledge extraction en
dc.subject.other physics aware neural networks en
dc.subject.other deep learning en
dc.subject.other weather prediction en
dc.subject.other deep learning weather prediction en
dc.title Artificial Neural Networks for Knowledge Extraction in Spatiotemporal Dynamics and Weather Forecasting en
dc.type PhDThesis de_DE
dcterms.dateAccepted 2024-03-22
utue.publikation.fachbereich Informatik de_DE
utue.publikation.fakultaet 7 Mathematisch-Naturwissenschaftliche Fakultät de_DE
utue.publikation.noppn yes de_DE


Dateien zu dieser Ressource

Dateien Größe Format Anzeige

Zu diesem Dokument gibt es keine Dateien.

Das Dokument erscheint in:

Zur Kurzanzeige

https://creativecommons.org/licenses/by/4.0/deed.de Solange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: https://creativecommons.org/licenses/by/4.0/deed.de