dc.contributor.author |
Hepp, Tobias |
|
dc.contributor.author |
Küstner, Thomas |
|
dc.contributor.author |
Seith, Ferdinand Frederic |
|
dc.date.accessioned |
2024-05-06T08:18:58Z |
|
dc.date.available |
2024-05-06T08:18:58Z |
|
dc.date.issued |
2023 |
|
dc.identifier.issn |
0029-5566 |
|
dc.identifier.uri |
http://hdl.handle.net/10900/153132 |
|
dc.language.iso |
en |
de_DE |
dc.publisher |
Stuttgart : Georg Thieme Verlag KG |
de_DE |
dc.relation.uri |
http://dx.doi.org/10.1055/a-2157-6670 |
de_DE |
dc.subject.ddc |
610 |
de_DE |
dc.title |
Multiparametric Oncologic Hybrid Imaging: Machine Learning Challenges and Opportunities |
de_DE |
dc.type |
Article |
de_DE |
utue.quellen.id |
20240124000000_00985 |
|
utue.publikation.seiten |
306-313 |
de_DE |
utue.personen.roh |
Kuestner, Thomas |
|
utue.personen.roh |
Hepp, Tobias |
|
utue.personen.roh |
Seith, Ferdinand |
|
dcterms.isPartOf.ZSTitelID |
Nuklearmedizin - Nuclear Medicine |
de_DE |
dcterms.isPartOf.ZS-Issue |
5 |
de_DE |
dcterms.isPartOf.ZS-Volume |
62 |
de_DE |
utue.fakultaet |
04 Medizinische Fakultät |
de_DE |