On Fano varieties of low Picard number with torus action

DSpace Repository


Dateien:

URI: http://hdl.handle.net/10900/153010
http://nbn-resolving.de/urn:nbn:de:bsz:21-dspace-1530107
http://dx.doi.org/10.15496/publikation-94349
Dokumentart: PhDThesis
Date: 2024-04-29
Language: English
Faculty: 7 Mathematisch-Naturwissenschaftliche Fakultät
Department: Mathematik
Advisor: Hausen, Jürgen (Prof. Dr.)
Day of Oral Examination: 2024-04-19
DDC Classifikation: 510 - Mathematics
Keywords: Algebraische Geometrie
Other Keywords: Fano-Varietät
Coxring
Klassifikation
Kombinatorik
Torische Varietät
toric variety
combinatorics
classification
Cox ring
Fano variety
License: http://tobias-lib.uni-tuebingen.de/doku/lic_ohne_pod.php?la=de http://tobias-lib.uni-tuebingen.de/doku/lic_ohne_pod.php?la=en
Show full item record

Abstract:

This thesis contributes to the explicit classification of Fano varieties of Picard number one and two. In the first chapter we give sharp upper bounds on various geometric invariants of fake weighted projective spaces, only depending on the dimension and the Gorenstein index. Moreover, we present an efficient procedure for explicitly classifying fake weighted projective spaces of any dimension and Gorenstein index and we carry out the classification up to dimension four for various Gorenstein indices. Chapter two is devoted to the classification of the non-toric, Q-factorial, log terminal, Gorenstein Fano threefolds of Picard number one that admit an effective action of a two-dimensional torus. Finally, in chapter three we classify the locally factorial Fano fourfolds of Picard number two with a hypersurface Cox ring that admit an effective action of a three-dimensional torus.

This item appears in the following Collection(s)