dc.contributor.author | Otte, Sebastian | |
dc.date.accessioned | 2023-12-22T11:56:01Z | |
dc.date.available | 2023-12-22T11:56:01Z | |
dc.date.issued | 2023-09 | |
dc.identifier.issn | 0893-6080 | |
dc.identifier.uri | http://hdl.handle.net/10900/148843 | |
dc.language.iso | en | de_DE |
dc.publisher | Elsevier | de_DE |
dc.relation.uri | http://dx.doi.org/10.1016/j.neunet.2023.06.036 | de_DE |
dc.subject.ddc | 004 | de_DE |
dc.subject.ddc | 570 | de_DE |
dc.subject.ddc | 610 | de_DE |
dc.title | The deep arbitrary polynomial chaos neural network or how Deep Artificial Neural Networks could benefit from data-driven homogeneous chaos theory | de_DE |
dc.type | Article | de_DE |
utue.quellen.id | 20230928000000_00097 | |
utue.publikation.seiten | 85-104 | de_DE |
utue.personen.roh | Oladyshkin, Sergey | |
utue.personen.roh | Praditia, Timothy | |
utue.personen.roh | Kroeker, Ilja | |
utue.personen.roh | Mohammadi, Farid | |
utue.personen.roh | Nowak, Wolfgang | |
utue.personen.roh | Otte, Sebastian | |
dcterms.isPartOf.ZSTitelID | Neural Networks | de_DE |
dcterms.isPartOf.ZS-Volume | 166 | de_DE |
utue.fakultaet | 07 Mathematisch-Naturwissenschaftliche Fakultät | de_DE |
Dateien | Größe | Format | Anzeige |
---|---|---|---|
Zu diesem Dokument gibt es keine Dateien. |