Hodge Theory of Nondegenerate Minimal Toric Hypersurfaces

DSpace Repository


Dateien:

URI: http://hdl.handle.net/10900/148801
http://nbn-resolving.de/urn:nbn:de:bsz:21-dspace-1488019
http://dx.doi.org/10.15496/publikation-90141
http://nbn-resolving.org/urn:nbn:de:bsz:21-dspace-1488018
http://nbn-resolving.org/urn:nbn:de:bsz:21-dspace-1488016
Dokumentart: PhDThesis
Date: 2023-12-21
Source: ein Teil der Arbeit wird erscheinen im Journal of Combinatorial Algebra, Status: Zur Veröffentlichung zugelassen.
Language: English
Faculty: 7 Mathematisch-Naturwissenschaftliche Fakultät
Department: Mathematik
Advisor: Batyrev, Victor (Prof. Dr.)
Day of Oral Examination: 2023-12-14
DDC Classifikation: 510 - Mathematics
Other Keywords:
Toric Hypersurfaces
Newton Polytope
Plurigenera
Kodaira-Spencer map
Infinitesimal deformations
Infinitesimal Torelli Theorem
License: http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=de http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=en
Order a printed copy: Print-on-Demand
Show full item record

Abstract:

In this thesis we study toric hypersurfaces in the context of higher-dimensional algebraic geometry. The topics are quite complicated but restricting to generic situations and almost smooth birational models (minimal models), we are able to get good results. We ask how to calculate invariants like the Plurigenera or the Hodge numbers of toric hypersurfaces. Deforming such hypersurfaces within the surrounding toric variety we study a Kodaira-Spencer map, parameterizing infinitesimal deformations one-to-one and the infinitesimal Torelli theorem, bridging deformation theory and Hodge theory, both by very explicit formulas, though for this part we restrict to surfaces in toric 3-folds.

This item appears in the following Collection(s)