Towards learning mechanistic models at the right level of abstraction

DSpace Repositorium (Manakin basiert)

Zur Kurzanzeige

dc.contributor.advisor Schölkopf, Bernhard (Prof. Dr.)
dc.contributor.author Neitz, Alexander
dc.date.accessioned 2023-05-24T10:26:00Z
dc.date.available 2023-05-24T10:26:00Z
dc.date.issued 2023-05-24
dc.identifier.uri http://hdl.handle.net/10900/141414
dc.identifier.uri http://nbn-resolving.de/urn:nbn:de:bsz:21-dspace-1414147 de_DE
dc.identifier.uri http://dx.doi.org/10.15496/publikation-82761
dc.description.abstract Das menschliche Gehirn ist in der Lage, Vorhersagen zu treffen, zu planen und sich durch mentale Simulationen kontrafaktische Situationen vorzustellen. Künstliche neuronale Netze sind zwar in bestimmten Bereichen brereits sehr leistungsfähig, scheinen aber immer noch ein mechanistisches Verständnis der Welt zu vermissen. In dieser Arbeit befassen wir uns mit verschiedenen Ansätzen, wie neuronale Netze die zugrundeliegenden Mechanismen des modellierten Systems besser erfassen können. Wir werden uns mit Adaptive skip intervals (ASI) befassen; eine Methode, die es dynamischen Modellen ermöglicht, ihre eigene zeitliche Vergröberung an jedem Punkt zu wählen. Dadurch werden langfristige Vorhersagen sowohl einfacher als auch rechnerisch effizienter. Als Nächstes werden wir uns mit alternativen Möglichkeiten zur Aggregation von Gradienten in verschiedenen Umgebungen befassen, was zum Begriff der Invariant Learning Consistency (ILC) und der Methode AND-mask für einen modifizierten stochastischen Gradientenabstieg führt. Durch das Herausfiltern inkonsistenter Trainingssignale aus verschiedenen Umgebungen bleiben die gemeinsamen Mechanismen erhalten. Schließlich werden wir sehen, dass Lernen auf der Grundlage von Meta-Gradienten Trajektorien von dynamischen Systemen transformieren kann, um nützliche Lernsignale in Richtung eines zugrunde liegenden Ziels zu konstruieren, wie z. B. Reward beim Reinforcement Learning. Dadurch kann das interne Modell sowohl eine zeitliche als auch eine Zustandsabstraktion beinhalten. de_DE
dc.language.iso en de_DE
dc.publisher Universität Tübingen de_DE
dc.rights ubt-podok de_DE
dc.rights.uri http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=de de_DE
dc.rights.uri http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=en en
dc.subject.classification Maschinelles Lernen , Künstliche Intelligenz de_DE
dc.subject.ddc 004 de_DE
dc.title Towards learning mechanistic models at the right level of abstraction en
dc.type PhDThesis de_DE
dcterms.dateAccepted 2022-11-23
utue.publikation.fachbereich Informatik de_DE
utue.publikation.fakultaet 7 Mathematisch-Naturwissenschaftliche Fakultät de_DE
utue.publikation.noppn yes de_DE

Dateien:

Das Dokument erscheint in:

Zur Kurzanzeige