dc.contributor.author |
Bringmann, Oliver |
|
dc.date.accessioned |
2023-05-19T05:11:00Z |
|
dc.date.available |
2023-05-19T05:11:00Z |
|
dc.date.issued |
2022-11-02 |
|
dc.identifier.isbn |
978-1-6654-7296-8 |
|
dc.identifier.issn |
2643-1726 |
|
dc.identifier.uri |
http://hdl.handle.net/10900/141252 |
|
dc.language.iso |
en |
de_DE |
dc.publisher |
IEEE |
de_DE |
dc.relation.uri |
https://doi.org/10.1109/CASES55004.2022.00020 |
de_DE |
dc.subject.ddc |
004 |
de_DE |
dc.title |
Work-in-Progress: Ultra-fast yet Accurate Performance Prediction for Deep Neural Network Accelerators |
de_DE |
dc.type |
Article |
de_DE |
dc.type |
ConferenceObject |
de_DE |
utue.personen.roh |
Lübeck, Konstantin |
|
utue.personen.roh |
Jung, Alexander Louia-Ferdinand |
|
utue.personen.roh |
Wedlich, Felix |
|
utue.personen.roh |
Bringmann, Oliver |
|
dcterms.isPartOf.ZSTitelID |
2022 International Conference on Compilers, Architecture, and Synthesis for Embedded Systems (CASES) |
de_DE |