dc.contributor.author |
Thorwarth, Daniela |
|
dc.date.accessioned |
2023-03-20T10:47:07Z |
|
dc.date.available |
2023-03-20T10:47:07Z |
|
dc.date.issued |
2022 |
|
dc.identifier.issn |
1053-4296 |
|
dc.identifier.uri |
http://hdl.handle.net/10900/138258 |
|
dc.language.iso |
en |
de_DE |
dc.publisher |
W B Saunders Co - Elsevier Inc |
de_DE |
dc.relation.uri |
http://dx.doi.org/10.1016/j.semradonc.2022.06.007 |
de_DE |
dc.subject.ddc |
610 |
de_DE |
dc.title |
Potential of Deep Learning in Quantitative Magnetic Resonance Imaging for Personalized Radiotherapy |
de_DE |
dc.type |
Article |
de_DE |
utue.quellen.id |
20230202000000_01038 |
|
utue.publikation.seiten |
377-388 |
de_DE |
utue.personen.roh |
Gurney-Champion, Oliver J. |
|
utue.personen.roh |
Landry, Guillaume |
|
utue.personen.roh |
Redalen, Kathrine Roe |
|
utue.personen.roh |
Thorwarth, Daniela |
|
dcterms.isPartOf.ZSTitelID |
Seminars in Radiation Oncology |
de_DE |
dcterms.isPartOf.ZS-Issue |
4 |
de_DE |
dcterms.isPartOf.ZS-Volume |
32 |
de_DE |
utue.fakultaet |
04 Medizinische Fakultät |
de_DE |