Neural Reflectance Decomposition

DSpace Repositorium (Manakin basiert)

Zur Kurzanzeige

dc.contributor.advisor Lensch, Hendrik P. A. (Prof. Dr.)
dc.contributor.author Boss, Mark Benedikt
dc.date.accessioned 2023-03-17T09:30:40Z
dc.date.available 2023-03-17T09:30:40Z
dc.date.issued 2023-03-17
dc.identifier.uri http://hdl.handle.net/10900/138184
dc.identifier.uri http://nbn-resolving.de/urn:nbn:de:bsz:21-dspace-1381842 de_DE
dc.identifier.uri http://dx.doi.org/10.15496/publikation-79535
dc.description.abstract Die Erstellung von fotorealistischen Modellen von Objekten aus Bildern oder Bildersammlungen ist eine grundlegende Herausforderung in der Computer Vision und Grafik. Dieses Problem wird auch als inverses Rendering bezeichnet. Eine der größten Herausforderungen bei dieser Aufgabe ist die vielfältige Ambiguität. Der Prozess Bilder aus 3D-Objekten zu erzeugen wird Rendering genannt. Allerdings beeinflussen sich mehrere Eigenschaften wie Form, Beleuchtung und die Reflektivität der Oberfläche gegenseitig. Zusätzlich wird eine Integration dieser Einflüsse durchgeführt, um das endgültige Bild zu erzeugen. Die Umkehrung dieser integrierten Abhängigkeiten ist eine äußerst schwierige und mehrdeutige Aufgabenstellung. Die Lösung dieser Aufgabe ist jedoch von entscheidender Bedeutung, da die automatisierte Erstellung solcher wieder beleuchtbaren Objekte verschiedene Anwendungen in den Bereichen Online-Shopping, Augmented Reality (AR), Virtual Reality (VR), Spiele oder Filme hat. In dieser Arbeit werden zwei Ansätze zur Lösung dieser Aufgabe beschrieben. Erstens wird eine Netzwerkarchitektur vorgestellt, die die Erfassung eines Objekts und dessen Materialien von zwei Aufnahmen ermöglicht. Der Grad der Blicksynthese von diesen Objekten ist jedoch begrenzt, da bei der Dekomposition nur eine einzige Perspektive verwendet wird. Daher wird eine zweite Reihe von Ansätzen vorgeschlagen, bei denen eine Sammlung von 360 Grad verteilten Bildern in die Form, Reflektanz und Beleuchtung gespalten werden. Diese Multi-View-Bilder werden pro Objekt optimiert. Das resultierende Objekt kann direkt in handelsüblicher Rendering-Software oder in Spielen verwendet werden. Wir erreichen dies, indem wir die aktuelle Forschung zu neuronalen Feldern erweitern Reflektanz zu speichern. Durch den Einsatz von Volumen-Rendering-Techniken können wir ein Reflektanzfeld aus natürlichen Bildsammlungen ohne jegliche Ground Truth (GT) Überwachung optimieren. Die von uns vorgeschlagenen Methoden erreichen eine erstklassige Qualität der Dekomposition und ermöglichen neuartige Aufnahmesituationen, in denen sich Objekte unter verschiedenen Beleuchtungsbedingungen oder an verschiedenen Orten befinden können, was üblich für Online-Bildsammlungen ist. de_DE
dc.description.abstract Creating relightable objects from images or collections is a fundamental challenge in computer vision and graphics. This problem is also known as inverse rendering. One of the main challenges in this task is the high ambiguity. The creation of images from 3D objects is well defined as rendering. However, multiple properties such as shape, illumination, and surface reflectiveness influence each other. Additionally, an integration of these influences is performed to form the final image. Reversing these integrated dependencies is highly ill-posed and ambiguous. However, solving the task is essential, as automated creation of relightable objects has various applications in online shopping, augmented reality (AR), virtual reality (VR), games, or movies. In this thesis, we propose two approaches to solve this task. First, a network architecture is discussed, which generalizes the decomposition of a two-shot capture of an object from large training datasets. The degree of novel view synthesis is limited as only a singular perspective is used in the decomposition. Therefore, the second set of approaches is proposed, which decomposes a set of 360-degree images. These multi-view images are optimized per object, and the result can be directly used in standard rendering software or games. We achieve this by extending recent research on Neural Fields, which can store information in a 3D neural volume. Leveraging volume rendering techniques, we can optimize a reflectance field from in-the-wild image collections without any ground truth (GT) supervision. Our proposed methods achieve state-of-the-art decomposition quality and enable novel capture setups where objects can be under varying illumination or in different locations, which is typical for online image collections. en
dc.language.iso en de_DE
dc.publisher Universität Tübingen de_DE
dc.rights ubt-podok de_DE
dc.rights.uri http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=de de_DE
dc.rights.uri http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=en en
dc.subject.classification Bidirektionale Reflektanzverteilungsfunktion , Maschinelles Sehen , Grafik , Rendering , Bilderzeugung de_DE
dc.subject.ddc 004 de_DE
dc.subject.other Inverse Rendering en
dc.subject.other BRDF en
dc.subject.other Neural Fields en
dc.subject.other Computer Graphics en
dc.subject.other Multiview Stereo en
dc.title Neural Reflectance Decomposition en
dc.type PhDThesis de_DE
dcterms.dateAccepted 2023-03-03
utue.publikation.fachbereich Informatik de_DE
utue.publikation.fakultaet 7 Mathematisch-Naturwissenschaftliche Fakultät de_DE
utue.publikation.noppn yes de_DE

Dateien:

Das Dokument erscheint in:

Zur Kurzanzeige