Proof-Theoretic Semantics: Some Basic Ideas

DSpace Repositorium (Manakin basiert)

Zur Kurzanzeige

dc.contributor.author Schroeder-Heister, Peter
dc.date.accessioned 2022-08-24T09:13:42Z
dc.date.available 2022-08-24T09:13:42Z
dc.date.issued 2022
dc.identifier.uri http://hdl.handle.net/10900/131188
dc.identifier.uri http://nbn-resolving.de/urn:nbn:de:bsz:21-dspace-1311885 de_DE
dc.identifier.uri http://dx.doi.org/10.15496/publikation-72548
dc.description.abstract This manuscript of 2003 describes and compares two basic approaches to what the author has called “proof-theoretic semantics”. The “standard” approach, which is mainly due to Dummett and Prawitz, attempts to give a semantics of proofs by defining what counts as a valid proof. The second one, which is based on ideas by Hallnäs and the author, understands proofs semantically by reading the application of certain proof rules directly as semantical steps. Whereas the first one is a global approach, dealing with proofs as a whole and imposing requirements on them, the second one is local as is interprets individual proof steps without demanding from the very beginning that a proof composed of such single steps has special features. -- The attached manuscript on proof-theoretic vs. constructive consequence argues that the proof-theoretic notion fully specifies reduction procedures and is nearer to term rewriting than the more general constructive notion. en
dc.language.iso en de_DE
dc.publisher Universität Tübingen de_DE
dc.rights ubt-podok de_DE
dc.rights.uri http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=de de_DE
dc.rights.uri http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=en en
dc.subject.classification Logik , Beweistheorie de_DE
dc.subject.ddc 004 de_DE
dc.subject.ddc 100 de_DE
dc.subject.other Beweistheoretische Semantik de_DE
dc.subject.other Proof Theory en
dc.subject.other Logic en
dc.subject.other Proof-Theoretic Semantics en
dc.title Proof-Theoretic Semantics: Some Basic Ideas en
dc.type Other de_DE
utue.publikation.fachbereich Informatik de_DE
utue.publikation.fakultaet 7 Mathematisch-Naturwissenschaftliche Fakultät de_DE
utue.publikation.noppn yes de_DE

Dateien:

Das Dokument erscheint in:

Zur Kurzanzeige