Proof-Theoretic Harmony: The Issue of Propositional Quantification

DSpace Repositorium (Manakin basiert)

Zur Kurzanzeige

dc.contributor.author Schroeder-Heister, Peter
dc.date.accessioned 2022-08-16T12:46:54Z
dc.date.available 2022-08-16T12:46:54Z
dc.date.issued 2014
dc.identifier.isbn 978-83-7969-161-6
dc.identifier.uri http://hdl.handle.net/10900/130967
dc.identifier.uri http://nbn-resolving.de/urn:nbn:de:bsz:21-dspace-1309676 de_DE
dc.identifier.uri http://dx.doi.org/10.15496/publikation-72327
dc.description.abstract We present our calculus of higher-level rules, extended with propositional quantification within rules. This makes it possible to present general schemas for introduction and elimination rules for arbitrary propositional operators and to define what it means that introductions and eliminations are in harmony with each other. This definition does not presuppose any logical system, but is formulated in terms of rules themselves. We therefore speak of a foundational (rather than reductive) account of proof-theoretic harmony. With every set of introduction rules a canonical elimination rule, and with every set of elimination rules a canonical introduction rule is associated in such a way that the canonical rule is in harmony with the set of rules it is associated with. An example given by Hazen and Pelletier is used to demonstrate that there are significant connectives, which are characterized by their elimination rules, and whose introduction rule is the canonical introduction rule associated with these elimination rules. Due to the availability of higher-level rules and propositional quantification, the means of expression of the framework developed are sufficient to ensure that the construction of canonical elimination or introduction rules is always possible and does not lead out of this framework. en
dc.language.iso en de_DE
dc.publisher Universität Tübingen de_DE
dc.rights ubt-podok de_DE
dc.rights.uri http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=de de_DE
dc.rights.uri http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=en en
dc.subject.classification Logik , Beweistheorie de_DE
dc.subject.ddc 004 de_DE
dc.subject.ddc 100 de_DE
dc.subject.other Beweistheoretische Semantik de_DE
dc.subject.other Propositionale Quantifikation de_DE
dc.subject.other Proof-theoretic Semantics en
dc.subject.other Propositional Quantification en
dc.subject.other Proof Theory en
dc.subject.other Logic en
dc.title Proof-Theoretic Harmony: The Issue of Propositional Quantification en
dc.type Article de_DE
utue.publikation.fachbereich Informatik de_DE
utue.publikation.fakultaet 7 Mathematisch-Naturwissenschaftliche Fakultät de_DE
utue.publikation.source Trends in Logic XIII. Gentzen's and Jaśkowski's Heritage. 80 Years of Natural Deduction and Sequent Calculi. Ed. by Andrzej Indrzejczak, Janusz Kaczmarek and Michał Zawidzki. Łódż University Press 2014, pp. 5-15 de_DE
utue.publikation.noppn yes de_DE

Dateien:

Das Dokument erscheint in:

Zur Kurzanzeige