| dc.contributor.author | Eschenhagen, Runa | |
| dc.contributor.author | Hennig, Philipp | |
| dc.contributor.author | Kristiadi, Agustinus | |
| dc.date.accessioned | 2022-05-12T15:09:23Z | |
| dc.date.available | 2022-05-12T15:09:23Z | |
| dc.date.issued | 2021-11-05 | |
| dc.identifier.uri | http://hdl.handle.net/10900/127057 | |
| dc.language.iso | en | de_DE |
| dc.publisher | Cornell University | de_DE |
| dc.relation.uri | https://doi.org/10.48550/arXiv.2111.03577 | de_DE |
| dc.subject.ddc | 004 | de_DE |
| dc.title | Mixtures of Laplace Approximations for Improved Post-Hoc Uncertainty in Deep Learning | de_DE |
| dc.type | Preprint | de_DE |
| utue.personen.roh | Eschenhagen, Runa | |
| utue.personen.roh | Daxberger, Erik | |
| utue.personen.roh | Hennig, Philipp | |
| utue.personen.roh | Kristiadi, Agustinus | |
| dcterms.isPartOf.ZSTitelID | ArXiv | de_DE |
| dcterms.isPartOf.ZS-Volume | 2111.03577 | de_DE |
| Dateien | Größe | Format | Anzeige |
|---|---|---|---|
|
Zu diesem Dokument gibt es keine Dateien. |
|||