Abstract:
Acetogenic bacteria have great potential for the use in modern industries to convert gaseous substrates, such as carbon monoxide (CO), carbon dioxide (CO2), and hydrogen (H2) into valuable biochemicals. Gas fermentation with acetogenic bacteria provides an alternative route with a reduced CO2 footprint when compared to existing petrochemical-based production processes. The main products of the acetogenic gas fermentation are acetate and ethanol, with the latter being a drop-in biofuel. Commercial gas fermentation plants with acetogenic bacteria are operated by the company Lanzatech, which underlines the industrial relevance of this technology. Although acetogenic bacteria are promising biocatalysts, their general metabolism is suffering from energy limitations. The main currency of the energy metabolism of a bacterial cell is ATP. The ATP is required for cell growth and for many metabolic pathways, such as those that can be used to produce valuable and industrial relevant products. All known acetogenic bacteria use the Wood-Ljungdahl pathway (WLP) to fix carbon. However, the WLP has no net ATP gain. One mole of ATP is invested to fix CO2, while one mole of ATP is regenerated through dephosphorylation of acetyl phosphate to acetate. The only way an acetogenic bacterium can acquire surplus ATP during autotrophy is based on membrane complexes such as the Rhodobacter Nitrogen Fixation-like complex (RNF complex). This complex generates a proton or sodium ion gradient across the bacterial membrane, which is then used by an ATPase to generate ATP. However, the ATP gain of this chemiosmotic mechanism is low. For instance, the acetogenic bacterium Clostridium ljungdahlii can generate a maximum of 0.63 ATP/mol H2 when growing with H2 and CO2. This small amount of ATP is just enough to enable growth and a functional metabolism. On the one hand, the low ATP gain is an advantage for biofuel production because electrons are predominantly used for the product rather than for biomass. On the other hand, the energy limitation in acetogenic bacteria is one of the highest burdens to overcome, and still limits the production of high-value and ATP-demanding fermentation products, which are required for a broad application of the acetogenic gas fermentation in industry. Therefore, more research with these microbes is highly required.
This dissertation investigates the RNF complex of the acetogenic bacterium C. ljungdahlii and its impact on autotrophic energy metabolism. A CRISPR-Cas12a technique was developed and used for the genetic manipulation of genes that are associated with the RNF complex and the energy metabolism. A full deletion of all RNF complex genes was achieved in C. ljungdahlii for the first time and confirmed the essential role of this complex for autotrophy. Furthermore, the manipulation of the gene rseC, which has a potential role in the transcriptional control of the RNF-complex gene expression, unraveled a novel and unknown factor for a functional RNF complex in C. ljungdahlii. In addition, this dissertation focuses on nitrate metabolism of C. ljungdahlii, which was recently characterized in detail. Nitrate reduction in C. ljungdahlii is tightly connected to energy metabolism. The mechanism behind this is not understood yet. However, when C. ljungdahlii co-utilizes nitrate and CO2, more ATP is generated and available for its metabolism. The potential use of this increased ATP pool is addressed with the implementation of a pathway to produce the biopolymer cyanophycin. Cyanophycin mainly consists of the amino acids arginine and aspartate and might be a suitable precursor for the feed and food industry. In addition, new insights were made by studying the nitrate reduction of C. ljungdahlii in self-built bioreactors. Bioreactor experiments with acetogenic bacteria are essential to investigate the microbial behavior under controlled conditions (e.g., pH-control, continuous gassing, continuous medium feed). Experimental data from bioreactor experiments are one critical step for the upscaling process of gas fermentation of acetogenic bacteria, and therefore a key factor to show the applicability of this technology.