dc.contributor.author | Geiger, Andreas | |
dc.date.accessioned | 2022-01-27T16:27:33Z | |
dc.date.available | 2022-01-27T16:27:33Z | |
dc.date.issued | 2021-11-13 | |
dc.identifier.isbn | 978-1-6654-4509-2 | |
dc.identifier.uri | http://hdl.handle.net/10900/123610 | |
dc.language.iso | en | de_DE |
dc.publisher | IEEE Computer Society | de_DE |
dc.relation.uri | http://dx.doi.org/10.1109/CVPR46437.2021.00322 | de_DE |
dc.subject.ddc | 004 | de_DE |
dc.title | Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks | de_DE |
dc.type | Article | de_DE |
utue.publikation.seiten | 3203-3214 | de_DE |
utue.personen.roh | Paschalidou, Despoina | |
utue.personen.roh | Katharopoulos, Angelos | |
utue.personen.roh | Geiger, Andreas | |
utue.personen.roh | Fidler, Sanja | |
dcterms.isPartOf.ZSTitelID | 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) | de_DE |
Dateien | Größe | Format | Anzeige |
---|---|---|---|
Zu diesem Dokument gibt es keine Dateien. |