dc.contributor.advisor |
Nagel, Rainer (Prof. Dr.) |
|
dc.contributor.author |
Küster, Kari Valentina |
|
dc.date.accessioned |
2021-12-15T08:07:55Z |
|
dc.date.available |
2021-12-15T08:07:55Z |
|
dc.date.issued |
2021-12-15 |
|
dc.identifier.uri |
http://hdl.handle.net/10900/121768 |
|
dc.identifier.uri |
http://nbn-resolving.de/urn:nbn:de:bsz:21-dspace-1217682 |
de_DE |
dc.identifier.uri |
http://dx.doi.org/10.15496/publikation-63134 |
|
dc.description.abstract |
This thesis deals with the interplay of quotient systems of a topological dynamical system and subsystems of its corresponding Koopman system. It begins with a historical „prelude“ (in German) where biographical aspects of the involved mathematicians are highlighted. In Chapter 1 topological dynamical systems and their corresponding Koopman systems are introduced and the correspondence of quotient systems and subsystems is explained. Chapter 2 is devoted to the simplest subsystem of a Koopman system, the fixed space. A dynamical description of the corresponding quotient system of the dynamical system is derived via a hierarchy of transfinite orbits. In particular, this leads to the characterization of a one-dimensional fixed space. In Chapter 3 the Lyapunov algebra is defined which is generated by so-called Lyapunov functions. Its properties, special cases and its connection to the generalized recurrent set are discussed. Also algebras which are generated by a single Lyapunov function are considered and extended Lyapunov functions are introduced. Finally, decompositions of the state space obtained by the Lyapunov algebra are studied. |
en |
dc.language.iso |
de |
de_DE |
dc.language.iso |
en |
de_DE |
dc.publisher |
Universität Tübingen |
de_DE |
dc.rights |
ubt-podok |
de_DE |
dc.rights.uri |
http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=de |
de_DE |
dc.rights.uri |
http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=en |
en |
dc.subject.classification |
Topologische Dynamik , Funktionalanalysis , Subsystem , Ljapunov-Funktion , Ergodentheorie |
de_DE |
dc.subject.ddc |
510 |
de_DE |
dc.subject.other |
ergodic theory |
en |
dc.subject.other |
verallgemeinerte rekurrente Menge |
de_DE |
dc.subject.other |
topological dynamics |
en |
dc.subject.other |
functional analysis |
en |
dc.subject.other |
Lyapunovalgebra |
de_DE |
dc.subject.other |
Fixraum |
de_DE |
dc.subject.other |
subsystem |
en |
dc.subject.other |
Zerlegung |
de_DE |
dc.subject.other |
Lyapunov function |
en |
dc.subject.other |
Koopman operator |
en |
dc.subject.other |
topologische Ergodizität |
de_DE |
dc.subject.other |
generalized recurrent set |
en |
dc.subject.other |
Quotientensystem |
de_DE |
dc.subject.other |
Koopmanoperator |
de_DE |
dc.subject.other |
Lyapunov algebra |
en |
dc.subject.other |
fixed space |
en |
dc.subject.other |
decomposition |
en |
dc.subject.other |
topological ergodicity |
en |
dc.subject.other |
quotient system |
en |
dc.subject.other |
Conley decomposition |
en |
dc.title |
Topological Dynamics via Structured Koopman Subsystems |
en |
dc.type |
PhDThesis |
de_DE |
dcterms.dateAccepted |
2021-09-24 |
|
utue.publikation.fachbereich |
Mathematik |
de_DE |
utue.publikation.fakultaet |
7 Mathematisch-Naturwissenschaftliche Fakultät |
de_DE |
utue.publikation.noppn |
yes |
de_DE |