dc.contributor.author | Mutschler, Maximus | |
dc.contributor.author | Zell, Andreas | |
dc.date.accessioned | 2021-10-15T15:30:34Z | |
dc.date.available | 2021-10-15T15:30:34Z | |
dc.date.issued | 2021-09-07 | |
dc.identifier.isbn | 978-3-030-86339-5 | |
dc.identifier.uri | http://hdl.handle.net/10900/119777 | |
dc.language.iso | en | de_DE |
dc.publisher | Cham : Springer | de_DE |
dc.relation.ispartofseries | Lecture Notes in Computer Science;12892 | |
dc.relation.uri | https://doi.org/10.1007/978-3-030-86340-1_37 | de_DE |
dc.subject.ddc | 004 | de_DE |
dc.title | Empirically explaining SGD from a line search perspective | de_DE |
dc.type | BookPart | de_DE |
dc.type | ConferenceObject | de_DE |
utue.publikation.seiten | 459-471 | de_DE |
utue.personen.roh | Mutschler, Maximus | |
utue.personen.roh | Zell, Andreas | |
utue.publikation.buchdesbeitrags | Farkaš, I., Masulli, P., Otte, S., Wermter, S. (Hrsg.): Artificial Neural Networks and Machine Learning – ICANN 2021 | de_DE |
Dateien | Größe | Format | Anzeige |
---|---|---|---|
Zu diesem Dokument gibt es keine Dateien. |