Abstract:
Some knowledge of chemistry seems necessary again to understand the fragments of disaster medicine. A special case for the connection of the two atoms A and B is the heteropolar ionic compound A+B-. Its electrolytic dissociation in solution was established by S. Arrhenius and its crystalline structure was perfected by W. Kossel with the octet rule, that means: In polar bonds atoms try to arrange their outer bond electrons similar to outer noble gas shells. On the other hand, however, a covalent bond consisting of atoms A and B is verified by quantum chemical calculations, even if this bond in A-B showed a certain polarity before: Each bond break yields uncharged fragments of reactive free radicals. They are fundamental to understanding of becoming and decay, diseases, pandemics, catastrophes and the recognition of changes in the environment, in the atmosphere as well as global warming. Kossel ́s binding theory had a strong influence on the development of chemistry in Germany. However, it does not provide a space for the existence of free radicals, nor does it provide an adequate environment for homolysis and homo-synthesis in the world of biology. Moreover Kossel ́s theory collocated polar and ionic structure from experimental synthetic chemistry into physiological processes, which are exactly impossible there for thermodynamic reasons.