On Fano and Calabi-Yau varieties with hypersurface Cox rings

DSpace Repositorium (Manakin basiert)

Zur Kurzanzeige

dc.contributor.advisor Hausen, Jürgen (Prof. Dr.)
dc.contributor.author Mauz, Christian
dc.date.accessioned 2021-09-09T12:18:59Z
dc.date.available 2021-09-09T12:18:59Z
dc.date.issued 2021-09-09
dc.identifier.uri http://hdl.handle.net/10900/118790
dc.identifier.uri http://nbn-resolving.de/urn:nbn:de:bsz:21-dspace-1187907 de_DE
dc.identifier.uri http://dx.doi.org/10.15496/publikation-60164
dc.description.abstract This thesis contributes to the explicit classification of Fano and Calabi-Yau varieties. First, we deal with complete intersections in projective toric varieties that arise from a non-degenerate system of Laurent polynomials. Here we obtain Bertini type statements on canonical and terminal singularities. This enables us to classify all non-toric terminal Fano threefolds that arise as a general complete intersection in a fake weighted projective space. The second chapter is devoted to the classification of all smooth Fano fourfolds of Picard number two that have a general hypersurface Cox ring. Using the Cox ring based description of these varieties we investigate their birational geometry and compute Hodge numbers. Moreover, we present a toolbox for constructing examples of general hypersurface Cox rings including several factoriality criteria for graded hypersurface rings. Finally, we give classification results on smooth Calabi-Yau threefolds of Picard number one and two that have a general hypersurface Cox ring. en
dc.language.iso en de_DE
dc.publisher Universität Tübingen de_DE
dc.rights ubt-podok de_DE
dc.rights.uri http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=de de_DE
dc.rights.uri http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=en en
dc.subject.classification Algebraische Geometrie de_DE
dc.subject.ddc 510 de_DE
dc.subject.other Fano-Varietät de_DE
dc.subject.other Calabi-Yau variety en
dc.subject.other Calabi-Yau-Varietät de_DE
dc.subject.other Coxring de_DE
dc.subject.other Cox ring en
dc.subject.other Fano variety en
dc.subject.other Klassifikation de_DE
dc.subject.other classification en
dc.subject.other combinatorics en
dc.subject.other Kombinatorik de_DE
dc.title On Fano and Calabi-Yau varieties with hypersurface Cox rings en
dc.type PhDThesis de_DE
dcterms.dateAccepted 2021-07-27
utue.publikation.fachbereich Mathematik de_DE
utue.publikation.fakultaet 7 Mathematisch-Naturwissenschaftliche Fakultät de_DE
utue.publikation.noppn yes de_DE

Dateien:

Das Dokument erscheint in:

Zur Kurzanzeige