dc.contributor.advisor |
Hausen, Jürgen (Prof. Dr.) |
|
dc.contributor.author |
Mauz, Christian |
|
dc.date.accessioned |
2021-09-09T12:18:59Z |
|
dc.date.available |
2021-09-09T12:18:59Z |
|
dc.date.issued |
2021-09-09 |
|
dc.identifier.uri |
http://hdl.handle.net/10900/118790 |
|
dc.identifier.uri |
http://nbn-resolving.de/urn:nbn:de:bsz:21-dspace-1187907 |
de_DE |
dc.identifier.uri |
http://dx.doi.org/10.15496/publikation-60164 |
|
dc.description.abstract |
This thesis contributes to the explicit classification
of Fano and Calabi-Yau varieties.
First, we deal with complete intersections in
projective toric varieties that arise from a
non-degenerate system of Laurent polynomials.
Here we obtain Bertini type statements on canonical and
terminal singularities. This enables us to classify
all non-toric terminal Fano threefolds that
arise as a general complete intersection in a fake weighted projective space.
The second chapter is devoted to
the classification of all smooth Fano fourfolds of Picard number two
that have a general hypersurface Cox ring.
Using the Cox ring based description of these varieties
we investigate their birational geometry and compute Hodge numbers.
Moreover, we present a toolbox for constructing examples of general
hypersurface Cox rings including several factoriality criteria for
graded hypersurface rings.
Finally, we give classification results on smooth Calabi-Yau threefolds
of Picard number one and two that have a general hypersurface Cox ring. |
en |
dc.language.iso |
en |
de_DE |
dc.publisher |
Universität Tübingen |
de_DE |
dc.rights |
ubt-podok |
de_DE |
dc.rights.uri |
http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=de |
de_DE |
dc.rights.uri |
http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=en |
en |
dc.subject.classification |
Algebraische Geometrie |
de_DE |
dc.subject.ddc |
510 |
de_DE |
dc.subject.other |
Fano-Varietät |
de_DE |
dc.subject.other |
Calabi-Yau variety |
en |
dc.subject.other |
Calabi-Yau-Varietät |
de_DE |
dc.subject.other |
Coxring |
de_DE |
dc.subject.other |
Cox ring |
en |
dc.subject.other |
Fano variety |
en |
dc.subject.other |
Klassifikation |
de_DE |
dc.subject.other |
classification |
en |
dc.subject.other |
combinatorics |
en |
dc.subject.other |
Kombinatorik |
de_DE |
dc.title |
On Fano and Calabi-Yau varieties with hypersurface Cox rings |
en |
dc.type |
PhDThesis |
de_DE |
dcterms.dateAccepted |
2021-07-27 |
|
utue.publikation.fachbereich |
Mathematik |
de_DE |
utue.publikation.fakultaet |
7 Mathematisch-Naturwissenschaftliche Fakultät |
de_DE |
utue.publikation.noppn |
yes |
de_DE |