dc.contributor.author |
Perl, Regine |
|
dc.contributor.author |
Hepp, Tobias |
|
dc.contributor.author |
Horger, Marius Stefan |
|
dc.date.accessioned |
2021-09-06T11:50:21Z |
|
dc.date.available |
2021-09-06T11:50:21Z |
|
dc.date.issued |
2021 |
|
dc.identifier.issn |
1536-0210 |
|
dc.identifier.uri |
http://hdl.handle.net/10900/118624 |
|
dc.language.iso |
en |
de_DE |
dc.publisher |
Lippincott Williams & Wilkins |
de_DE |
dc.relation.uri |
http://dx.doi.org/10.1097/RLI.0000000000000713 |
de_DE |
dc.subject.ddc |
610 |
de_DE |
dc.title |
Can a Novel Deep Neural Network Improve the Computer-Aided Detection of Solid Pulmonary Nodules and the Rate of False-Positive Findings in Comparison to an Established Machine Learning Computer-Aided Detection? |
de_DE |
dc.type |
Article |
de_DE |
utue.quellen.id |
20210512015105_01039 |
|
utue.publikation.seiten |
103-108 |
de_DE |
utue.personen.roh |
Perl, Regine Mariette |
|
utue.personen.roh |
Grimmer, Rainer |
|
utue.personen.roh |
Hepp, Tobias |
|
utue.personen.roh |
Horger, Marius Stefan |
|
dcterms.isPartOf.ZSTitelID |
Investigative Radiology |
de_DE |
dcterms.isPartOf.ZS-Issue |
2 |
de_DE |
dcterms.isPartOf.ZS-Volume |
56 |
de_DE |
utue.fakultaet |
04 Medizinische Fakultät |
de_DE |