dc.contributor.author | Valera, Isabel | |
dc.date.accessioned | 2021-01-27T15:19:02Z | |
dc.date.available | 2021-01-27T15:19:02Z | |
dc.date.issued | 2020 | |
dc.identifier.issn | 1532-4435 | |
dc.identifier.uri | http://hdl.handle.net/10900/112063 | |
dc.language.iso | en | en |
dc.publisher | Microtome Publ | de_DE |
dc.subject.ddc | 004 | de_DE |
dc.subject.ddc | 600 | de_DE |
dc.title | General Latent Feature Models for Heterogeneous Datasets | de_DE |
dc.type | Article | de_DE |
utue.quellen.id | 20200929220116_01108 | |
utue.personen.roh | Valera, Isabel | |
utue.personen.roh | Pradier, Melanie F. | |
utue.personen.roh | Lomeli, Maria | |
utue.personen.roh | Ghahramani, Zoubin | |
dcterms.isPartOf.ZSTitelID | Journal of Machine Learning Research | de_DE |
dcterms.isPartOf.ZS-Issue | Article 21 | de_DE |
dcterms.isPartOf.ZS-Volume | 21 | de_DE |
Dateien | Größe | Format | Anzeige |
---|---|---|---|
Zu diesem Dokument gibt es keine Dateien. |