
Detached Provenance Analysis

Dissertation
der Mathematisch–Naturwissenschaftlichen Fakultät

der Eberhard Karls Universität Tübingen
zur Erlangung des Grades eines
Doktors der Naturwissenschaften

(Dr. rer. nat.)

vorgelegt von
Tobias Müller
aus Tübingen

Tübingen
2019

Gedruckt mit Genehmigung der Mathematisch–Naturwissenschaftlichen Fakultät der
Eberhard Karls Universität Tübingen.

Tag der mündlichen Qualifikation: 5. März 2020
Dekan: Prof. Dr. Wolfgang Rosenstiel
1. Berichterstatter: Prof. Dr. Torsten Grust
2. Berichterstatter: Dr. Boris Glavic, Assoc. Prof.

2

Abstract

Data provenance is the research field of the algorithmic derivation of the source and
processing history of data. In this work, the derivation of Where– and Why–provenance
in sub–cell–level granularity is pursued for a rich SQL dialect. For example, we support
the provenance analysis for individual elements of nested rows and/or arrays. The SQL
dialect incorporates window functions and correlated subqueries.

We accomplish this goal using a novel method called detached provenance analysis. This
method carries out a SQL–level rewrite of any user query Q, yielding (Q1

, Q
2). Em-

ploying two queries facilitates a low–invasive provenance analysis, i.e. both queries can
be evaluated using an unmodified DBMS as backend. The queries implement a split of
responsibilities: Q1 carries out a runtime analysis and Q2 derives the actual data prove-
nance. One drawback of this method is that a synchronization overhead between Q

1

and Q2 is induced. Experiments quantify the overheads based on the TPC-H benchmark
and the PostgreSQL DBMS.

A second set of experiments carried out in row–level granularity compares our approach
with the PERM approach (as described by B. Glavic et al.). The aggregated results
show that basic queries (typically, a single SFW expression with aggregations) perform
slightly better in the PERM approach while complex queries (nested SFW expressions
and correlated subqueries) perform considerably better in our approach.

3

Zusammenfassung

Data Provenance ist das Forschungsgebiet, auf dem man sich mit der Berechnung von
Herkunft und Verarbeitungshistorie von Daten beschäftigt. In dieser Arbeit verfolgen
wir das Ziel, die Where– und Why–Provenance in feiner Granularität und für einen
reichen SQL Dialekt zu berechnen. Der SQL Dialekt beinhaltet Window Functions und
korrelierte Subqueries.

Wir erreichen dieses Ziel mittels eines neuen Ansatzes, genannt Detached Provenance
Analysis. Dieser Ansatz basiert darauf, eine gegebene Query Q umzuschreiben in Q

1

und Q
2. Durch die Verwendung zweier Queries ist es möglich, eine minimalinvasive

Provenance–Analyse durchzuführen. Mit anderen Worten, beide Queries können von
einem unmodifizierten DBMS berechnet werden. Dies ist möglich dank einer klaren
Aufgabentrennung. Q1 führt eine leichtgewichtige Laufzeitanalyse durch und Q2 berech-
net die eigentliche Data Provenance. Ein Nachteil dieses Ansatzes ist ein zusätzlicher
Synchronisierungsaufwand zwischen Q

1 und Q
2. Wir quantifizieren diesen Aufwand

experimentell, basierend auf dem TPC-H Benchmark und dem PostgreSQL DBMS.

Mit weiteren Experimenten in Zeilengranularität vergleichen wir unsere Ergebnisse mit
dem PERM Ansatz (von B. Glavic et al.). Die aggregierten Ergebnisse zeigen, dass
einfache Queries etwas schneller von PERM ausgewertet werden. Komplexe Queries
(geschachtelte SFW Ausdrücke und korrelierte Subqueries) werden mit unserem Ansatz
erheblich schneller ausgewertet.

5

Contents

I Introduction 13

1 Data Provenance 15
1.1 Data Provenance for SQL . 16

2 Research Focus and Contribution 17
2.1 Publications . 21

II Fundamentals 23

3 Notation 25

4 Relational Model 29
4.1 Introductory Example . 29
4.2 RM Types . 29
4.3 RM Values . 30

4.3.1 Base Domains . 31
4.3.2 Array Domains . 31
4.3.3 Row Domains . 32
4.3.4 Table Domains . 32
4.3.5 Database Domains . 33

5 Provenance Representation 35
5.1 Motivating Example . 35
5.2 Provenance Annotations . 37

5.2.1 Union Operators ∪ and ⋃ . 37
5.2.2 Where–Provenance . 37
5.2.3 Why–Provenance . 39

5.3 Lifted Relational Model (LRM) . 40
5.3.1 Integration of Provenance Annotations 40
5.3.2 LRM Types . 40
5.3.3 LRM Values . 41
5.3.4 liftrm(⋅) . 43

7

Contents

5.3.5 Push Ψ(⋅, ⋅) . 44
5.3.6 Collect .(⋅) . 45

6 SQL and its Provenance Semantics 47
6.1 Cell Expressions . 49

6.1.1 Literals ` . 51
6.1.2 Row Constructors ROW . 52
6.1.3 Column References .col . 52
6.1.4 Comparison of Row Values . 52
6.1.5 Generic Operators . 53
6.1.6 ISNULL . 54
6.1.7 Variable References var . 54
6.1.8 Array Constructors ARRAY . 55
6.1.9 CASE . 56
6.1.10 EQCASE . 57
6.1.11 TOROW . 57
6.1.12 EXISTS . 59

6.2 Table Expressions . 60
6.2.1 Table References tab . 61
6.2.2 VALUES . 62
6.2.3 WITH . 62
6.2.4 UNION ALL . 63
6.2.5 Table–Valued UDFs . 63

6.3 SFW Expression . 63
6.3.1 Decomposition . 65
6.3.2 Joined Tables . 67
6.3.3 Formalized Decomposition . 69
6.3.4 e

clause Expressions . 69
6.4 Aggregations and Window Functions . 76

6.4.1 Aggregations in the Backend Dialect 76
6.4.2 groupagg . 77

6.5 Aggregation Functions . 80
6.5.1 SUM . 81
6.5.2 SUM–Like Provenance Semantics . 81
6.5.3 THE . 81
6.5.4 COUNTSTAR() . 82

6.6 Window Functions . 82
6.6.1 Introductory Example . 82
6.6.2 windows . 84
6.6.3 Window Functions ewin . 84

8

Contents

6.7 Data Provenance for SQL . 86

III Provenance Analysis 89

7 Normalization 91
7.1 Definition . 91
7.2 UDF Inlining . 91
7.3 Correlation Normalization . 92
7.4 SFW Normalization . 95

7.4.1 Motivation and Example . 95
7.4.2 Overview . 96
7.4.3 FROM and WHERE . 98
7.4.4 GROUP BY, AGGREGATES and HAVING 99
7.4.5 WINDOWS . 100
7.4.6 ORDER BY, DISTINCT ON and OFFMIT 101
7.4.7 The Fully Normalized SFW Expression 102

8 Detached Provenance Analysis 103
8.1 Overview . 103
8.2 Introductory Example . 104

8.2.1 One Table Detached . 106
8.2.2 All Tables Detached . 106
8.2.3 Phase 1 . 108
8.2.4 Phase 2 . 110

8.3 Formalization . 112
8.3.1 Row Identifiers ρ . 112
8.3.2 Logging and Nested Loops . 113
8.3.3 Logging Locations ` and UDFs . 113
8.3.4 RM1 . 114
8.3.5 RM2 . 115
8.3.6 SQL . 115
8.3.7 Detached Provenance Analysis . 117

8.4 Provenance Annotation Operators . 118
8.4.1 Definitions . 119

8.5 Rewrite of Cell Expressions . 121
8.5.1 Literals ` . 122
8.5.2 Row Constructors ROW . 122
8.5.3 Column References .col . 123
8.5.4 Comparison of Row Values . 123

9

Contents

8.5.5 Generic Operators . 124
8.5.6 ISNULL . 124
8.5.7 Variable Reference var . 124
8.5.8 Array Constructor ARRAY . 124
8.5.9 Array Length . 125
8.5.10 CASE . 125
8.5.11 TOROW . 128
8.5.12 EXISTS . 128

8.6 Rewrite of Table Expressions . 129
8.6.1 Table References tab . 129
8.6.2 VALUES . 129
8.6.3 WITH . 130
8.6.4 UNION ALL . 130

8.7 Rewrite of the SFW Expression . 132
8.7.1 Normalized SELECT . 132
8.7.2 Normalized Join . 132
8.7.3 Normalized ORDER BY . 136
8.7.4 Normalized AGGREGATES . 136
8.7.5 Normalized WINDOWS . 141

9 Experimental Evaluation 147
9.1 Implementation in PostgreSQL . 147

9.1.1 Query Rewrites . 147
9.1.2 Implementation of Provenance Annotations 148
9.1.3 Implementation of Logging: Overview 151
9.1.4 Implementation of Logging: Example 151

9.2 Setup . 156
9.2.1 Hard– and Software . 156
9.2.2 Database . 156

9.3 Normalization Overhead . 159
9.3.1 Speedup of Q9 . 159
9.3.2 Speedup of Q21 . 160
9.3.3 Slowdown of Q16 . 161

9.4 Phase 1 Overhead . 161
9.4.1 Results . 163
9.4.2 Speedup of Q2 . 164
9.4.3 Slowdown of Q18 . 164
9.4.4 Slowdown of Q17 . 167
9.4.5 Optimization . 168

10

Contents

9.5 Phase 2 Overhead . 169
9.5.1 Provenance Size . 170
9.5.2 Absolute Performance . 171
9.5.3 Performance Relative to Provenance Size 172
9.5.4 Speedup of Q19 . 175
9.5.5 Slowdown of Q10 . 175

9.6 Optimization of Phase 2 . 176
9.6.1 ⋃ Optimization . 176

IV Conclusion 179

10 Related Work 181
10.1 Fine–Grained Data Lineage . 182
10.2 Data Lineage . 183

10.2.1 WHIPS Implementation . 184
10.3 Why– and Where–Provenance . 186

10.3.1 Why–Provenance . 186
10.3.2 Where–Provenance . 187
10.3.3 Comparison . 187
10.3.4 DBNotes Implementation . 189

10.4 Semirings Approach . 190
10.4.1 Comparison of Data Provenance 191
10.4.2 ProvSQL . 194

10.5 Traces Approach . 194
10.6 Smoke Approach . 194
10.7 The Detached Approach and Imperative Languages 195
10.8 GProM . 197

11 Comparison with PERM 199
11.1 Implementation of Row–Level Granularity 199

11.1.1 Tables of Phase 2 . 199
11.1.2 Queries of Phase 2 . 199
11.1.3 Conclusion . 200

11.2 PERM . 200
11.2.1 Introductory Example . 200
11.2.2 Provenance Semantics . 203

11.3 Experiments . 204
11.3.1 Setup . 204
11.3.2 Comparison of Provenance Representation Sizes 204

11

Contents

11.3.3 Comparison of Performance . 207
11.3.4 Basic Queries . 208
11.3.5 Nesting–Heavy Queries . 209

12 Summary 211

13 Future Work 213
13.1 WITH RECURSIVE . 213
13.2 Set Operations . 215
13.3 Slicing–Based How–Provenance . 216
13.4 Parallel Query Execution . 217

Bibliography 223

Acknowledgements 225

12

Part I

Introduction

13

1 Data Provenance

Data is an inevitable part of the modern life. Maybe the most critical kind is financial
data which keeps track of the funds of countries, companies and individuals. Other
examples are books, news, health data, shipment tracking or meta data. The last one is
nothing else but data about data. Example meta data can be as simple as the author
of a book or as complex (and important for retirement planning) as the credit rating of
a country or company.

This very work contributes towards the algorithmic derivation of meta data. More
exactly, we focus on the derivation of data provenance for database queries. In their
influential work, P. Buneman, S. Khanna and W. Tan [BKT01, Sec. 1] specify:

Data provenance — sometimes called “lineage” or “pedigree” is the de-
scription of the origins of a piece of data and the process by which it arrived
in a database.

An example is provided in Figure 1.1. For the concrete piece of output data ⟨John Doe⟩,
which input data has contributed to its existence? Data provenance provides an answer
to this question and identifies corresponding cells (denoted), ignoring everything
not important (denoted □).

input table
□ □ □ □

Doe John □ □

□ □ □ □

□ □ □ □

output table
John Doe

Q

Figure 1.1: Example: query Q yields an output table. Data provenance ()
identifies the input/output relationships.

15

1 Data Provenance

planets
name density volume
Earth ⟨rocky, 5.5 ⋅ 1035.5 ⋅ 103 ⟩ 1.1 ⋅ 10211.1 ⋅ 1021

t1

Jupiter ⟨gaseous, 1.3 ⋅ 103⟩ 1.4 ⋅ 1024
t2

(a) Example database with planetary data.

output
planet mass
Earth 6.1 ⋅ 10246.1 ⋅ 1024

Jupiter 1.8 ⋅ 1027

(b) Output of query Q.

FROM planets AS p
...

SELECT p.name AS planet,
(p.density).numerical * p.volume AS mass

...

(c) Query Q: what is the mass of a planet?

Figure 1.2: Example: analysis of output , yielding data provenance .
The units for density, volume and mass are: [kg/m3], [m3] and [kg].

1.1 Data Provenance for SQL

Next, we discuss a less obvious example of data provenance for a SQL query. Figure 1.2(a)
lists the input table planets. The density of a planet is a nested row value. For example, t1
can be denoted

⟨Earth, ⟨rocky, 5.5 ⋅ 103⟩, 1.1 ⋅ 1021⟩

(with implicit attribute names). Query Q (see Figure 1.2(c)) is denoted in the SQL
dialect from the body of this work. That dialect features an alternative order of SFW
clauses (FROM before SELECT — details omitted for now). The result table is shown in
Figure 1.2(b).

What data provenance has to offer is to support the database user in query understanding
and debugging. Inspecting the output table (see Figure 1.2(b)) and value 6.1 ⋅ 10246.1 ⋅ 1024 ,
our provenance analysis finds that 5.5 ⋅ 1035.5 ⋅ 103 and 1.1 ⋅ 10211.1 ⋅ 1021 have contributed to its
computation. Evidently, both of the input values have been transformed during query
evaluation (i.e., cannot be recognized in the output table) but the methods of provenance
analysis still unveil the relationships between output and the original inputs. Looking
at this provenance result, the database user can gain confidence in the correctness of Q
and its computation of the mass (implementing m = ρ ⋅ V). We continue this example
in the next chapter and sketch how its provenance derivation works.

16

2 Research Focus and Contribution

Feature-Rich SQL Dialect One main focus of our work is the provenance analysis
for a feature–rich (read–only) SQL dialect. Among other features, this dialect covers
bag semantics, aggregations, correlated subqueries, nested row/array expressions and
window functions.

We consider the PERM approach by B. Glavic and G. Alonso [GA09a] the closest related
work in terms of the supported SQL dialect. The implementation (also called PERM)
supports the provenance analysis of all queries in the TPC-H benchmark. It integrates
the support for correlated subqueries [GA09b] (same authors as above). PERM ’s im-
plementation is freely available and we carried out an experimental comparison with
our approach (subject of Chapter 11). The more recent GProM project by B. Arab, S.
Feng et al. [AFG+18] may be considered a successor of PERM but does not support
correlated subqueries.

Fine–Grained Data Provenance A well–known classification criterion for data prove-
nance is called the provenance granularity. Our provenance analysis implements a sub–
cell granularity of data provenance (already exemplified in Section 1.1). An early work
by A. Woodruff and M. Stonebraker [WS97] shares this focus. A considerable share of
contemporary works (more discussion carried out in Chapter 10) derives data provenance
in (coarser) row granularity.

On top of that, our analysis approach allows for a switch to row granularity with little
effort. We exploited this feature in the experimental comparison with PERM .

Provenance Notions Different types of data provenance can be distinguished. P. Bune-
man, S. Khanna and W. Tan [BKT01] characterize the two notions of so–called Where–
and Why–provenance. In our work, we use their very intuitive terminology but with an
adapted provenance semantics.

• Where does an output value v come from? This provenance notion encompasses
all input values which have been copied or transformed in order to produce v.
We call this relationship Where–provenance. Both examples from Chapter 1 yield
Where–provenance.

17

2 Research Focus and Contribution

planets
name density volume
Earth ⟨rocky, 5.5 ⋅ 1035.5 ⋅ 103 ⟩ 1.1 ⋅ 10211.1 ⋅ 1021

1 FROM
2 planets AS p
3 ...
4 SELECT
5 (p.density).numerical
6 *
7 p.volume
8 AS mass
9 ...

output
mass

6.1 ⋅ 10246.1 ⋅ 1024

(a) Original query Q and data.

planets2
name density volume
p10 ⟨p20, p30 ⟩ p40

1 FROM
2 planets2 AS p
3 ...
4 SELECT
5 (p.density).numerical
6 ∪
7 p.volume
8 AS mass
9 ...

output2
mass

p30 ∪ p40

(b) Q2 and provenance annotations.

Figure 2.1: Example: values and provenance each computed separately (sim-
plified).

• Why is v an output value? This provenance notion encompasses all input values
which have been inspected through predicates in order to yield v. We call this
relationship Why–provenance. Our understanding of Why–provenance strongly
deviates from [BKT01]. A comparison is carried out in Chapter 10.

Put in a single sentence, Where–provenance tracks data while Why–provenance tracks
predicate decisions. Both notions share the same granularity and get computed in par-
allel. We provide definitions for a SQL dialect and its Where– and Why–provenance.

Detached Provenance Analysis (Example) The main contribution of this work is the
approach called detached provenance analysis. We continue the example from Section 1.1
which involves nested rows. Figure 2.1(a) lists query Q and data, supposedly specified
by the database user.

What we basically do in our approach is to rewrite Q into Q
2 (see Figure 2.1(b)),

replacing data values with provenance annotations p□. We point out some important
properties of Q and Q2.

18

∼Prov(∆, Q)
= P

≡

(∆, Q)

Phase 1 Phase 2

P

Figure 2.2: Overview: detached provenance analysis.

• The base tables planets and planets2 share the same column names and row counts.
However, planets2 contains provenance annotations instead of data. Any p□ is a
flat set.

• The arithmetic operator * (see line 6) is replaced with set union, denoted ∪. Ba-
sically, this substitution turns * into the derivation of Where–provenance.

• The two result tables (output and output2) share the same column name(s) and
row count(s). output2 contains the resulting data provenance.

• Both output and output2 may become the input tables for subsequent database
queries.

Due to symmetry in data structures, corresponding provenance annotations and data
values can be associated with each other. We use dashed edges () in Figure 2.1 to
connect the corresponding pairs. The solid edges () denote relationships between
provenance annotations. Following all edges, it can be concluded that the data prove-
nance of 6.1 ⋅ 10246.1 ⋅ 1024 is 5.5 ⋅ 1035.5 ⋅ 103 and 1.1 ⋅ 10211.1 ⋅ 1021 . This very result is the same as in
Section 1.1.

The example just discussed is kept very basic for presentation reasons. In fact, the
example breaks for table cardinalities > 1 (details omitted). In the body of this work,
additional means are introduced which support the provenance analysis of a feature–rich
SQL dialect.

Detached Provenance Analysis (Generalization) A high–level overview of our ap-
proach is provided in Figure 2.2. Let ∼Prov(∆, Q) = P be the problem of provenance

19

2 Research Focus and Contribution

analysis with ∆ a database instance, Q a user query and P the resulting data provenance.
The detached provenance analysis turns this task into two steps.

• Phase 1 carries out a dynamic analysis of the user query (elaborated later) and

• phase 2 carries out the provenance analysis (as exemplified in Figure 2.1(b)).

In the body of this work, we provide a definitional interpreter ∼Prov(⋅, ⋅), formalizing
SQL, its semantics and its provenance semantics. On that basis, SQL rewrite rules (Q↝

(Q1
, Q

2)) are defined. The phases 1 and 2 (right–hand side of Figure 2.2) denote the
evaluations of the rewritten queries. We call this method detached provenance analysis
because the provenance derivation is carried out detached from the evaluation of (regular)
data. A proof of equality (according to Figure 2.2) is not part of this work.

One major advantage of the detached approach (over a definitional interpreter) is that
Q
1 and Q2 can be evaluated using an off–the–shelf DBMS and benefit from query opti-

mization (continued below).

Low–Invasive Provenance Analysis The detached provenance analysis produces rewrit-
ten queries (Q1 and Q2) which can be be evaluated by a DBMS backend. The DBMS
core does not require any modifications which is why we call our approach low–invasive.
In fact, the experimental evaluation provided in this work (described in Chapter 9) was
carried out using an off–the–shelf PostgreSQL 9.5 DBMS. Exploiting existing DBMS
infrastructure has a couple of advantages (compared to a provenance implementation
from scratch).

• A modern DBMS is the result of decades of research, e.g. query optimization,
indexing and caching. The detached provenance analysis leverages that research.

• The query rewrite (Q ↝ (Q1
, Q

2)) sits on a comparably high abstraction level,
i.e. SQL. This makes the technology stack below SQL exchangeable (e.g., DBMS,
operating system, hardware). Moreover, the detached provenance analysis will
benefit from future improvements in that stack.

20

2.1 Publications

2.1 Publications

This thesis continues the thread of research we have started in 2013. Our findings thus
far have been published in the following papers.

• T. Müller, B. Dietrich and T. Grust: You Say ’What’, I Hear ’Where’ and ’Why’
— (Mis-)Interpreting SQL to Derive Fine-Grained Provenance, PVLDB 2018,
[MDG18a]

• D. O’Grady, T. Müller and T. Grust: How "How" Explains What "What" Computes
— How-Provenance for SQL and Query Compilers, TaPP 2018, [OMG18]

• B. Dietrich, T. Müller and T. Grust: The Best Bang for Your Bu(ck)g, EDBT
2016, [DMG16]

• T. Müller: Have Your Cake and Eat it, Too: Data Provenance for Turing-Complete
SQL Queries, VLDB PhD Workshop 2016, [Mül16]

• T. Müller and T. Grust: Provenance for SQL through Abstract Interpretation:
Value-less, but Worthwhile, PVLDB 2015, [MG15]

• T. Müller: Where- und Why-Provenance für syntaktisch reiches SQL durch Kom-
bination von Programmanalysetechniken, GvDB 2015, [Mül15]

The full bibliographic information is provided at the end of the document. In context
of this thesis, the most relevant publication is [MDG18a]. We thank Benjamin Dietrich,
Daniel O’Grady and Torsten Grust for the productive and pleasant cooperation in the
research and publication process.

21

Part II

Fundamentals

23

3 Notation

This chapter provides an overview of the main notations used in the document.

Meta Variables Meta variables are denoted in italic font, e.g. x or foo. Typically, sub-
scripts x1, x2 are used for counters while superscripts ecell

, e
table are used to distinguish

types. The square symbol □ is a context–specific placeholder. For example, x□ where □
is a counter variable.

Sets The elements of a set are unique and unordered.

Symbol Example Description
{⋅} {x1, x2, . . .} A set. The empty set is {} or ∅.
∪ {x1} ∪ {x2} = {x1, x2} Binary set union.
⋃ ⋃n

i=1 xi n–ary set union.
P(⋅) P({x1, x2}) = {∅, {x1}, . . .} Power set.

Dictionaries The keys of a dictionary are unique and unordered.

Symbol Example Description
⦃⋅⦄ ⦃k1 ↦ v1, . . .⦄ A dictionary associating keys k□ with values v□.

∪∪∪∪
⦃k ↦ v1⦄ ∪∪∪∪ ⦃k ↦ v2⦄

= ⦃k ↦ v2⦄

Binary union of dictionaries. For duplicate keys,
the right dictionary dominates.

Data Provenance Data provenance is central to this work. Here, an overview of the
notation is provided. The formal introduction is carried out in Chapter 5.

25

3 Notation

Symbol Example Description
□e 10e A single identifier of Where–provenance with □ ∈ N.
□y 20y A single identifier of Why–provenance with □ ∈ N.
p p = {10e, 20y} A provenance annotation.

Y(⋅) Y({10e, 20y})
= {10y, 20y}

Transform Where–provenance into Why–provenance.

⋅, ⋅ 42, {10e} Value 42 has the provenance annotation
(i.e., data provenance) {10e}.

Any provenance annotation p is a flat set. The set operations (see above) are applicable.
The union of provenance annotations (e.g. p1 ∪ p2) is of high relevance.

Due to their central role in this work, custom formatting is employed for

• provenance annotations p (= a meta variable in blackboard font) and

• value/provenance pairs v,p (= an ordered pair with triangular delimiters).

Types Types are denoted in small capitals, e.g. int. The associated meta variable is τ .
The type τ of a value v is denoted typeof(v) = τ or v ∶∶ τ . For example, 42 ∶∶ int.

Values and types are nested in analogous manner. For example, the type of an array
value would be denoted [42] ∶∶ array(int).

For convenience, we add so–called super types which include multiple types. Super types
are decorated with an overbar. For example, array denotes all array(τ) with τ only
restricted regarding to legal array types (elaborated later). For succinct notation, ∶∶ is
overloaded, e.g. [42] ∶∶ array. Inclusion check is denoted array(int) <∶ array.

Expressions have their dedicated types, e.g., etable ∶∶ etable. Inferring value types from
expressions is not part of this work.

SQL Listings We employ two dialects of SQL.

• The so–called backend dialect is exemplified in Figure 3.1(a). This dialect (and
its data provenance) is defined in Chapter 6 and is the primary dialect of this
document. It is easily distinguishable through the highlighted keywords and the
uncommon (but beneficial) order of SFW clauses.

• For the experimental parts of this work, we employed the PostgreSQL DBMS and
discuss some concrete queries. Their formatting is exemplified in Figure 3.1(b).

26

FROM table AS t
WHERE ...

...
SELECT t.column AS result

...

(a) Backend dialect.

SELECT t.column AS result
FROM table AS t

WHERE ...
...

(b) PostgreSQL dialect.

Figure 3.1: Examples: formatting of SQL listings.

example
premise1 premise2

env ⊢ e⤇ v

Figure 3.2: Notation example: natural semantics.

Natural Semantics Natural semantics by G. Kahn [Kah87] is a formalization tool for
semantics specification. It is also known as big–step semantics (or operational semantics).
Natural semantics employs a set of rules. An example rule (example) is provided in
Figure 3.2. The wide bar separates premises (above) from a single conclusion (below).

The conclusion can be read as: under the environment env, expression e evaluates to
value v. In context of SQL,

• env would denote the visible tuple variables,

• e would represent the SQL expression currently being defined and

• v would define the result table.

A premise can be a predicate (hence the name). If ¬premise1 , the conclusion does
not hold. Alternatively, auxiliary variables can be defined (for example, the single rows
constituting v). Premises are unordered.

Other The operations listed below are used to inspect / access container structures
(like sets, dictionaries, rows or arrays).

Symbol Example Description
∣⋅∣ ∣∅∣ = 0 Cardinality, i.e. the count of elements.
⋅⟦ ⋅ ⟧ ⦃x↦ 42⦄⟦x ⟧ = 42 Element retrieval (not for sets).

27

4 Relational Model

In this chapter, we formally introduce a relational model (RM) tailored for the context
of this work. It is based on the pioneering works of E. Codd, starting with [Cod70]. Our
flavor of the RM is designed for compatibility with the SQL dialect (subject of Chapter 6)
and has bag semantics.

4.1 Introductory Example

Figure 4.1 shows an example table of the RM. The table goes by the name planets and it
consists of the four rows (=tuples) t1, . . . t4. Each row has the two attributes name and
density and all rows together constitute two accordingly named columns.

4.2 RM Types

Central to the formalization of the relational model are the types of Definition 4.1.

planets
name density

Earth rocky t1

Mars rocky t2

Jupiter gaseous t3

Neptune icy t4

Figure 4.1: A table in the relational model. The row numbers t□ are an optional
meta description.

29

4 Relational Model

Definition 4.1: RM Types

An RM type is a substitution of τbase, τcell, τrow, τtable or τdb. The substitu-
tion rules (listed below) are applied recursively until all non–terminals have been
replaced.

τ
base ∶∶=bool

∣ int
∣ dec
∣ text

τ
cell ∶∶= τbase

∣ τ
row

∣ array(τcell)
τ

row ∶∶=row(col1 ↦ τ
cell
1 , . . . coln ↦ τ

cell
n)

τ
table ∶∶=table(τrow)
τ

db ∶∶=⦃tab1 ↦ τ
table
1 , . . . tabm ↦ τ

table
m ⦄

The column identifiers coli in row(⋅) are pairwise different and ordered.
The super types base, cell, row, table and db consist of all types which can be
substituted starting from τ

base, τcell, τrow, τtable and τdb, respectively.

For example, the table from Figure 4.1 has the type

table(row(name ↦ text, density ↦ text))

.

4.3 RM Values

The RM types according to Definition 4.1 provide the rules to construct RM values.

30

4.3 RM Values

4.3.1 Base Domains

Definition 4.2: Base Domains

The four base domains are

dom(bool)≔ {true, false, nullbool}
dom(int) ≔ {0,+1,−1, . . . nullint}
dom(dec)≔ {0,+0.1,−0.1, . . . nulldec}
dom(text)≔ {, a, b, . . . nulltext}

.

For example, 42 ∶∶ int. The leftmost entry in the definition of dom(text) is the empty
text with length of zero characters (different from nulltext). The implementation details
of the base domains (i.e. maximum length and precision) are kept abstract. Values of
the base domains are called base values and considered atomic.

null Values The RM supports null values (with limitations). To avoid ambiguity, null
can be annotated with type information. In total, there are nullbool, nullint, nulldec and
nulltext. Put in other words, null is a (special) base value and nothing else.

4.3.2 Array Domains

Definition 4.3: Array Domains

Let array(τ) be a type according to Definition 4.1.
Its associated array domain is

dom(array(τ)) ≔
{[] ∶∶ array(τ)} ∪ {[v1, . . . vn]∣n ∈ N>0, v1 ∈ dom(τ), . . . vn ∈ dom(τ)}

. The elements of an array are ordered.

For example, [10, 20] ∶∶ array(int) is an array value with two elements.

Arrays can be empty (i.e., []) but they cannot be null. Different empty arrays may have
different types.

31

4 Relational Model

4.3.3 Row Domains

Definition 4.4: Row Domains

Let row(col1 ↦ τ1, . . . coln ↦ τn) be a type according to Definition 4.1.
Its associated row domain is

dom(row(col1 ↦ τ1, . . . coln ↦ τn)) ≔
{⟨v1, . . . vn⟩∣ v1 ∈ dom(τ1), . . . vn ∈ dom(τn)}

.

As an example, ⟨nulltext
, 42⟩ ∶∶ row(question ↦ text, answer ↦ int) is a row value.

Column names (i.e., attribute names) col are denoted in the row type and not in the value
constructor. As a reminder of Definition 4.1, column names are unique and ordered.

4.3.4 Table Domains

Definition 4.5: Table Domains

Let table(τ) be a type according to Definition 4.1. The associated table domain
is

dom(table(τ)) ≔
{❲❳ ∶∶ table(τ)} ∪ {❲v1, . . . vn❳∣n ∈ N>0, v1 ∈ dom(τ), . . . vn ∈ dom(τ)}

. The elements of a table are ordered.

Due to the type constraints of Definition 4.1, table elements are exclusively rows. For
example, ❲⟨42⟩❳ ∶∶ table(row(answer ↦ int)) is a table containing a single row. Du-
plicate rows are possible, for example ❲⟨42⟩, ⟨42⟩❳ (known as bag semantics).

According to Definition 4.5, tables have ordered rows. This restriction only applies to
materialized tables. We generally consider the physical operators of a DBMS to produce
tables with pseudo–random row order. The performance experiments employed such
physical operators.

32

4.3 RM Values

❲⟨Earth, rocky⟩,
⟨Mars, rocky⟩,
⟨Jupiter, gaseous⟩,
⟨Neptune, icy⟩❳

(a) A table according to Definition 4.5.

planets
name density

Earth rocky
Mars rocky
Jupiter gaseous
Neptune icy

(b) Pretty–printed table, including a
table name.

Figure 4.2: Example: pretty–printing of tables.

4.3.4.1 Pretty–Printed Tables

Pretty–printed tables are generally preferred. As an example for the two representations,
see Figure 4.2. The pretty–printed table (on the right) integrates column names and the
table name.

4.3.5 Database Domains

Definition 4.6: Database Domains

Let τ ≔ ⦃tab1 ↦ τ1, . . . tabn ↦ τn⦄ be a type with τ <∶ db according to Defini-
tion 4.1.
Its associated database domain is

dom(τ) ≔ {⦃tab1 ↦ v1, . . . tabn ↦ vn⦄∣ v1 ∈ dom(τ1), . . . vn ∈ dom(τn)}

.

The meta variable ∆ denotes a database instance, i.e. ∆ ∶∶ db. An example database
with a single table is provided in Figure 4.3. The tables of a database have unique names
(implemented as the unique keys of a dictionary). The more compact notation on the
right–hand side is preferred.

33

4 Relational Model

⦃planets ↦

name density
Earth rocky
Mars rocky
Jupiter gaseous
Neptune icy

⦄

(a) Notation with explicit ↦.

⦃

planets
name density

Earth rocky
Mars rocky
Jupiter gaseous
Neptune icy

⦄

(b) Compact notation.

Figure 4.3: An example database with a single table.

34

5 Provenance Representation

In this chapter, we formally define the (set–based) provenance representation. This rep-
resentation is the basis for the lifted relational model (short: LRM) which is a relational
model with integrated provenance annotations.

5.1 Motivating Example

planets
name density

Earth rocky t1

Mars rocky t2

Jupiter gaseous t3

Neptune icy t4

(a) Example table.

SELECT p.name AS name
FROM planets AS p

WHERE p.density=’rocky’

(b) Example query Q.

Figure 5.1: Running example.

Figure 5.1 lists an example table and query. For presentation reasons, the SQL query is
provided in a non–formal SQL dialect. Planets Earth and Mars qualify against the WHERE–
predicate. We are going to analyze this query and input table for two provenance notions:
Where–provenance (visualized) and Why–provenance (visualized).

The visualized provenance result is listed in Figures 5.2(a) and 5.2(b). The output table
contains a marker MarsMars which denotes a provenance inquiry for the according cell. In
the input table, its data provenance is highlighted. The data provenance states that

MarsMars and rockyrocky contributed to the result cell in two different ways.

• The value MarsMars has been copied to the output MarsMars (modeled as Where–
provenance).

• The value rockyrocky has been inspected by a predicate in order to produce the output
MarsMars (modeled as Why–provenance).

35

5 Provenance Representation

planets
name density

EarthEarth rockyrocky t1

MarsMars rockyrocky t2

JupiterJupiter gaseousgaseous t3

NeptuneNeptune icyicy t4

(a) Input table with markers.

output
name
EarthEarth t101

MarsMars t102

(b) Output table with markers.

planets⇧
name density

Earth, {1e} rocky, {5e} t1

Mars, {2e} rocky, {6e} t2

Jupiter, {3e} gaseous, {7e} t3

Neptune, {4e} icy, {8e} t4

(c) Lifted input table.

output⇧
name

Earth, {1e, 5y} t101

Mars, {2e, 6y} t102

(d) Lifted output table.

Figure 5.2: Provenance visualization (above) and provenance annotations (be-
low).

We are going to switch from the visualized data provenance to the more technical per-
spective of provenance representation. Provenance annotations are supposed to

• reference multiple input values,

• distinguish between two different provenance notions and

• accompany every single value.

Figures 5.2(c) and 5.2(d) continue the example with all provenance annotations made
explicit. The fundamental idea is to turn any value v into a pair v,p where p is a
provenance annotation. Tables planets/planets⇧ and output/output⇧ directly correspond
to each other. The arrow (⇧) indicates that the table has been lifted and integrates
provenance annotations.

• The concrete Where–provenance from above (MarsMars) is now represented as 2e.
Its appearance in tuples t2 and t102 denotes the provenance relationship between
the two corresponding data values. The visualization renders their relationship in
color .

• The concrete Why–provenance from above (rockyrocky) is now represented as 6y.
Why–provenance uses a conversion step, i.e. 6y is derived from the 6e (tuple t2).

36

5.2 Provenance Annotations

The visualization is aware of this, detects the correspondence between 6y/6e and
renders the according marker in the color .

As a reminder, the example just discussed is only for introduction and motivation of
provenance annotations (not for provenance semantics or computation). In the body
of this chapter, provenance annotations and the lifted relational model get introduced
formally.

5.2 Provenance Annotations

Definition 5.1: Provenance Annotation

Let P ≔ {αβ∣α ∈ N≥1, β ∈ {e, y}} be the set of all provenance identifiers.
A provenance annotation is a set p ∈ P(P).

For example, ∅ and {1e, 2y} are provenance annotations.

In the definition, P(⋅) denotes the powerset. The values α are restricted to natural
numbers due to a design decision in the context of this work. It is not a limita-
tion of the approach. For example, string–based identifiers {fooe, bary} could easily
be created. Throughout the document, the meta–variable p is used to denote prove-
nance annotations. The superscript letters e and y denote the provenance notion, i.e.
Where–provenance and Why–provenance, respectively. More superscripts can be added
if more provenance notions are to be represented. (We consider the integration of How–
provenance as an item of future work, see Section 13.3.)

5.2.1 Union Operators ∪ and ⋃
Set union is heavily utilized in our approach. For example,

{1e, 2e} ∪ {2e, 3e} = {1e, 2e, 3e}

with implicit duplicate elimination of the surplus 2e. Different notions of provenance do
not get eliminated, for example {1e} ∪ {1y} = {1e, 1y}. The n–ary union operator ⋃ is
analogous.

5.2.2 Where–Provenance

The term Where–provenance originates in the work of P. Buneman, S. Khanna and W.
Tan [BKT01]. Intuitively, they model copy operations of table cells (=cell granularity)

37

5 Provenance Representation

as Where–provenance. An example satisfying these criteria is the query discussed in
Section 5.1, which copies the value Mars from the database to the output table. However,
we deviate from the understanding of P. Buneman et al. in two main aspects.

• The granularity of Where–provenance is not fixed. We use sub–cell granularity
in our formalization (happening now) and row granularity for the second set of
experiments (Chapter 11).

• The semantics of Where–provenance is not restricted to copy operations. Instead,
value transformations (like arithmetics) are considered as Where–provenance as
well. An according example can be found in Chapter 2.

Overview The formalization of Where–provenance consists of two parts.

• Generation of the initial □e in the preparation phase of a provenance analysis.
This is discussed next.

• The rules for forwarding them from the database towards the result table. This is
part of Chapter 6 and happens on a per–expression basis for the SQL language.

5.2.2.1 Initial Annotations

Before a provenance analysis is carried out, the input tables get extended with initial
annotations. As an example, see table planets⇧ in Figure 5.2(c). Planet Earth is anno-
tated with a singleton set {1e}. Creating these initial annotations is delegated to the
auxiliary function freshp(). Each evaluation of freshp() yields a singleton set {□e} which
is globally unique. For example,

• freshp() = {1e},

• freshp() = {2e},

• freshp() = {5e},

• freshp() = {4e},

•

The implementation details of freshp() are kept abstract. It is considered to have an
integer counter which is incremented on each evaluation. The provenance annotations
being produced are not necessarily in ascending order (exemplified above) but unique.
In this work, the management of the mandatory side–effects is kept implicit.

38

5.2 Provenance Annotations

5.2.3 Why–Provenance

The termWhy–provenance also originates in the work of P. Buneman, S. Khanna and W.
Tan [BKT01]. A feature of Why–provenance is that it provides multiple explanations for
a output values. Also, it is defined to be row–level granularity. In our work, we deviate
considerably from that understanding however stick to the name. A more elaborate
comparison is deferred until the discussion of related work (in Chapter 10). A short
characterization of Why–provenance in the context of our work is provided below.

• Why–provenance and Where–provenance share the same granularity.

• Any Why–provenance is created through transformation of Where–provenance into
Why–provenance.

• Semantically, the inspection of predicates is modeled as Why–provenance.

Overview The formalization of Why–provenance consists of two parts.

• Definition of the Y(⋅) operator which turns Where–provenance inWhy–provenance.
This is discussed next.

• The concrete rules when Y(⋅) is to be applied. This is part of Chapter 6 and
happens on a per–expression basis for the SQL language.

5.2.3.1 Why Operator

Definition 5.2: Why Operator

Let p be a provenance annotation.
The Why operator is Y(p) ≔ {αy∣α□ ∈ p}.

As an example, Y({1e, 1y, 2y}) = {1y, 2y}. Due to duplicate elimination, the cardinalities
generally are ∣Y(p)∣ ≤ ∣p∣ for any provenance annotation p. A reverse operation (turning
Why–provenance into Where–provenance) does not exist.

The example provenance analysis from Section 5.1 already involves an application of Y(⋅)
for the WHERE predicate. In that step, {6y} = Y({6e}) (visualized: rockyrocky = Y(rockyrocky))
is computed.

39

5 Provenance Representation

planets
name density

Earth rocky
Mars rocky
Jupiter gaseous
Neptune icy

(a) Table in the RM.

planets⇧
name density

Earth,p1 rocky,p5

Mars,p2 rocky,p6

Jupiter,p3 gaseous,p7

Neptune,p4 icy,p8

(b) Table in the LRM.

Figure 5.3: Example: a table with and without provenance annotations.

5.3 Lifted Relational Model (LRM)

The lifted relational model (short: LRM) is an extended RM with the ability to integrate
provenance annotations. As an example, see Figure 5.3. The main idea of the LRM is
to turn values v ∶∶ base into pairs of value and an associated provenance annotation p,
denoted v,p . A formal introduction of the LRM is carried out in this section.

5.3.1 Integration of Provenance Annotations

Provenance annotations (defined in the previous section) are to be integrated into the
relational model. For consistency, a dedicated type and domain is specified.

Definition 5.3: Provenance Annotation Type and Domain

The type of provenance annotations is pset. The associated value domain is
dom(pset) ≔ P(P)

with P as in Definition 5.1.

For example, {1e} ∈ dom(pset) and {1e} ∶∶ pset.

5.3.2 LRM Types

The LRM types are formalized in Definition 5.4. The (very) high resemblance with
Definition 4.1 is intended. By design, the only difference between RM and LRM is the
integration of provenance annotations.

40

5.3 Lifted Relational Model (LRM)

Definition 5.4: LRM Types

An LRM type is a substitution of τbase⇧, τcell⇧, τrow⇧, τtable⇧ or τdb⇧. The
substitution rules (listed below) are applied recursively until all non–terminals are
replaced.

τ
base⇧

∶∶= bool,pset
∣ int,pset
∣ dec,pset
∣ text,pset

τ
cell⇧ ∶∶=τbase⇧

∣ τrow⇧

∣ array⇧(τcell⇧)
τ

row⇧
∶∶=row⇧(col1 ↦ τ

cell⇧
1 , . . . coln ↦ τ

cell⇧
n)

τ
table⇧

∶∶=table⇧(τrow⇧)
τ

db⇧
∶∶=⦃tab1 ↦ τ

table⇧

1 , . . . tabm ↦ τ
table⇧

m ⦄

The column identifiers coli in row(⋅) are pairwise different and ordered.
The super types base⇧, cell⇧, row⇧, table⇧ and db⇧ consist of all types which
can be substituted starting from τ

base⇧, τcell⇧, τrow⇧, τtable⇧ and τdb⇧, respectively.

LRM types consistently are suffixed with an arrow (⇧) in order to distinguish them from
their corresponding RM types. For example, the tables in Figure 5.3 have the types

• planets ∶∶ table(row(name ↦ text, density ↦ text)) and

• planets⇧ ∶∶ table⇧(row⇧(name ↦ text,pset , density ↦ text,pset)).

The triangles ⋅, ⋅ are nothing but 2–tuples with custom delimiters (due to the high
importance of annotations for this work).

5.3.3 LRM Values

The value domains for the LRM are composed from the value domains of the RM (defined
in Section 4.3) and dom(pset).

41

5 Provenance Representation

Definition 5.5: LRM Base Domains

The LRM base domains are:

dom(bool,pset) ≔ { v,p ∣v ∈ dom(bool),p ∈ dom(pset)}
dom(int ,pset) ≔ { v,p ∣v ∈ dom(int),p ∈ dom(pset)}

dom(dec ,pset) ≔ { v,p ∣v ∈ dom(dec),p ∈ dom(pset)}
dom(text,pset) ≔ { v,p ∣v ∈ dom(text),p ∈ dom(pset)}

.

For example, true, {1e} ∈ dom(bool,pset). The triangles ⋅, ⋅ denote types and
values as well.

Definition 5.6: LRM Array, Row, Table and DB Domains

The value domains for LRM arrays, rows, tables and databases are

dom(array⇧(τ)) ≔
{[] ∶∶ array⇧(τ)}∪
{[v⇧

1, . . . v
⇧

n]∣n ∈ N∗, v
⇧

1 ∈ dom(τ), . . . v⇧

n ∈ dom(τ)}

dom(row⇧(col1↦τ1,

. . . coln↦τn))
≔

{⟨col1 ↦ v
⇧

1, . . . coln ↦ v
⇧

n⟩∣
v
⇧

1 ∈ dom(τ1), . . . v
⇧

n ∈ dom(τn)}

dom(table⇧(τ)) ≔
{❲❳ ∶∶ table⇧(τ)}∪
{❲v⇧

1, . . . v
⇧

n❳∣n ∈ N∗, v
⇧

1 ∈ dom(τ), . . . v⇧

n ∈ dom(τ)}

dom(db⇧(tab1↦τ1,

. . . tabn↦τn))
≔

{⦃tab1 ↦ v
⇧

1, . . . tabn ↦ v
⇧

n⦄∣
v
⇧

1 ∈ dom(τ1), . . . v
⇧

n ∈ dom(τn)}

. The elements of an array and of a table are ordered.

As an example, see table planets⇧ in Figure 5.3(b). For better readability, table names
are suffixed with an arrow (⇧).

It is noteworthy that only the LRM base domains (see Definition 5.5) have provenance
annotations associated directly. The domains in Definition 5.6 do not have their dedi-
cated annotations but embed those from the base domains.

42

5.3 Lifted Relational Model (LRM)

5.3.4 liftrm(⋅)
An existing RM database is turned into its LRM equivalent before a provenance analysis
can be carried out. The auxiliary function liftrm(⋅) takes care of this task.

Definition 5.7: Lift Operator

Let v ∶∶ τ be an RM value (according to Section 4.3) with τ one of the types base,
array, row, table or db.
The lift operator is

liftrm(v) ≔

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v, freshp() , v ∶∶ base

let [v1, . . .] ≔ v

in [liftrm(v1), . . .]
, v ∶∶ array

let ⟨col1 ↦ v1, . . . ⟩ ≔ v

in ⟨col1 ↦ liftrm(v1), . . . ⟩
, v ∶∶ row

let ❲v1, . . .❳ ≔ v

in ❲liftrm(v1), . . .❳
, v ∶∶ table

let ⦃tab1 ↦ v1, . . .⦄ ≔ v

in ⦃tab1⇧ ↦ liftrm(v1), . . .⦄
, v ∶∶ db

.

For example, liftrm(⋅) applied to a database may yield

liftrm

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

planets
name density
Earth rocky
⋮ ⋮

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

planets⇧
name density

Earth, {1e} rocky, {5e}
⋮ ⋮

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

. The order of the generated provenance annotations ({1e}, . . . {ne}) is non–deterministic.
This is not an issue. In our analysis context, the lifting step is carried out only once per
database.

RM types get lifted to their corresponding LRM types. The example from directly above
yields

• planets ∶∶ table(row(name ↦ text, density ↦ text)) and

43

5 Provenance Representation

• planets⇧ ∶∶ table⇧(row⇧(name ↦ text,pset , density ↦ text,pset)).

Converting the types from Definition 4.1 (RM) into Definition 5.4 (LRM) is a straight–
forward task by design. Compared to the lifting of values, there is no non–deterministic
component. The RM/LRM types row(⋅) and row⇧(⋅) are supposed to keep the order
of their attributes. We skip the formalization.

5.3.5 Push Ψ(⋅, ⋅)
The LRM supports nested data structures. For example, rows can be nested arbitrarily
deep. For provenance analysis, this makes additional recursive operators necessary.

Definition 5.8: Push Operator

Let v⇧
∶∶ τ with τ one of the types base⇧, array⇧, row⇧ or table⇧. Let p ∶∶ pset

be a provenance annotation.
The push operator is

Ψ(v⇧
,p) ≔

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

let v,p∗ ≔ v
⇧

in v,p∗ ∪ p
, v

⇧
∶∶ base⇧

let [v⇧

1, . . .] ≔ v
⇧

in [Ψ(v⇧

1,p), . . .]
, v

⇧
∶∶ array⇧

let ⟨col1 ↦ v
⇧

1, . . . ⟩ ≔ v
⇧

in ⟨col1 ↦ Ψ(v⇧

1,p), . . . ⟩
, v

⇧
∶∶ row⇧

let ❲v
⇧

1, . . .❳ ≔ v
⇧

in ❲Ψ(v⇧

1,p), . . .❳
, v

⇧
∶∶ table⇧

.

For example, let v⇧
= ⟨ 42,p1 , 43,p2 ⟩ be a row value with two attributes and their

provenance annotations. Let p+ be another provenance annotation. Application of
Ψ(v⇧

,p+) yields

Ψ(⟨ 42,p1 , 43,p2 ⟩,p+)
= ⟨ 42,p1 ∪ p+ , 43,p2 ∪ p+ ⟩

. The typical use case for the push operator is the provenance analysis of predicates. For

44

5.3 Lifted Relational Model (LRM)

example, a WHERE predicate decides if a certain row v
⇧

□ gets filtered or not. This decision
applies to all values sitting inside of v⇧

□.

The push operator does not change the type of v⇧. For any v⇧

a ∶∶ τ and p,

Ψ(v⇧

a ∶∶ τ,p) = v
⇧

b ∶∶ τ

.

5.3.6 Collect .(⋅)

Definition 5.9: Collect Operator

Let v⇧
∶∶ τ with τ one of the types base⇧, array⇧, row⇧ or table⇧.

The collect operator is

.(v⇧) ≔

⎧⎪⎪⎨⎪⎪⎩

let v,p ≔ v
⇧

in (v,p)
, v

⇧
∶∶ base⇧

let [v⇧

1, . . .] ≔ v
⇧
,

(v1,p1) ≔ .(v⇧

1),
⋮

in ([v1, . . .],⋃i=1,... pi)

, v
⇧
∶∶ array⇧

let ⟨v⇧

1, . . . v
⇧

n⟩ ≔ v
⇧
,

(v1,p1) ≔ .(v⇧

1),
⋮

in (⟨v1, . . . ⟩,⋃i=1,... pi)

, v
⇧
∶∶ row⇧

let ❲v
⇧

1, . . . v
⇧

n❳ ≔ v
⇧
,

(v1,p1) ≔ .(v⇧

1),
⋮

in (❲v1, . . .❳,⋃i=1,... pi)

, v
⇧
∶∶ table⇧

.

As an example, the collect operator is used in the provenance definition of the ORDER BY
clause. Let

45

5 Provenance Representation

v
⇧
≔ [abc, {1e, 3e} , def, {2e, 3e}]

be an array value utilized as sort criterion. The collect operator yields

.(v⇧) = ([abc, def], {1e, 2e, 3e})

. The components of the result are:

• [abc, def], which can be handed over to the low–level sort routine. This ensures
that the provenance annotations are not considered as additional sort criteria.

• {1e, 2e, 3e}, which can be processed independently from the sort operation and
re–integrated afterwards.

46

6 SQL and its Provenance Semantics

This chapter builds upon the lifted relation model (LRM) introduced previously. We
are about to formalize a SQL dialect in form of a definitional interpreter. Any SQL
expression being defined yields an LRM value, i.e. the regular result value augmented
with data provenance.

Related Work SQL is based on SEQEL by D. Chamberlin and R. Boyce [CB74]. For ex-
ample, an original feature of SEQEL is the characteristic SELECT ... FROM ... WHERE ...
syntax. The first commercial DBMS products with SQL implementations were the Or-
acle Database (1979) and IBM’s DB2 (1983). In 1986, the first SQL (ANSI) standard
appeared. It got revised and (massively) extended over the past decades. Today, SQL
is considered the dominant query language in the field of relational databases. Looking
only at the most recent part 2 of the standard (which focuses on the SQL language itself),
the document [SQL16] stretches over 1, 700 pages. We cover a small SQL dialect in our
provenance definition. The provenance definition is based on annotation propagation.
We consider an early work by Y. Wang and S. Madnick [WM90] the first in employing
this technique.

Language Context The dialect of SQL we are about to define is also called backend
dialect. Figure 6.1 puts it in context. In comparison to the frontend dialect (which is

Frontend
SQL Dialect

⋅
Backend
SQL dialect

From
User
Interface

To
Query

Planner

Lexing,
Parsing,
Type Checking

Basic Query
Rewrites

Figure 6.1: The context of the (backend) SQL dialect. Dashed edges hint to-
wards the previous/next processing steps.

47

6 SQL and its Provenance Semantics

exposed to database users), the lexing, parsing and type checking steps have been carried
out already (and succeeded). The so–called basic query rewrites enable us to simplify
the succeeding formalization steps. For example, the rewrites expand SELECT * to actual
column names. From the perspective of this work, the backend dialect is the starting
point. The backend dialect and its provenance semantics are formalized in the body of
this chapter.

SQL Expressions SQL expressions are categorized according to their result types.

• Cell expressions ecell ∶∶ ecell (to be defined) evaluate to cell values of type cell⇧
(see Definition 5.4).

• Table expressions etable ∶∶ etable (to be defined) evaluate to table values of type
table⇧ (see Definition 5.4).

• Additional expressions are employed for aggregations (eagg), window functions
(ewin) and the SFW expression gets decomposed into its clauses (eclause).

UDFs The dialect supports cell–valued (cell⇧) UDFs and table–valued (table⇧)
UDFs. Both are restricted to cell–valued arguments. UDFs are stored in a (read–only)
UDF environment F . Its type is

udfs ≔ ⦃udf ↦ (xs,ecell)⦄⋓ ⦃udf ↦ (xs,etable)⦄

where

• udf is the name of a UDF,

• xs is an ordered list of parameter names and

• ecell (or etable) is the UDF body.

The symbol ⋓ denotes the combination of two types, which makes udfs a super type.

Data Provenance Our provenance definition for SQL distinguishes between Where–
provenance and Why–provenance (introduced in Section 5.2). One contribution of our
work is that both notions can be mixed. Each individual provenance annotation p can
contain both types of provenance. A high–level perspective is provided below.

• In a preparation step, the database ∆ is augmented with provenance annotations,
resulting in ∆⇧

= liftrm(∆). These annotations contain single identifiers of Where–
provenance.

48

6.1 Cell Expressions

• A SQL query reads data from ∆⇧ and the result table is assembled. The annotations
(of Where–provenance) sitting in ∆⇧ are carried along and also arrive in the result
table. This technique is generally known as annotation propagation.

• Whenever SQL predicates are evaluated, the associated provenance annotation p is
turned into Why–provenance Y(p). A transformation back into Where–provenance
does not exist.

We are going to define the SQL dialect and its data provenance in parallel and on a
per–expression basis. This chapter concludes with the definition of

Prov(liftrm(∆), Q, F) = v⇧

which formalizes the data provenance v⇧ for database ∆, query Q and UDF definitions F .

6.1 Cell Expressions

An EBNF–like grammar for the SQL cell expressions ecell ∶∶ ecell is provided in Fig-
ure 6.2. Our definition of data provenance for the individual cell expression employs the
natural semantics formalism by G. Kahn [Kah87] (introduced in Chapter 3). Conclusions
are denoted

Γ⇧; ∆⇧;F ⊢ e
cell

⤇
cell
def v

⇧

where

• Γ⇧
∶∶ ⦃var ↦ cell⇧⦄ is the environment of tuple variables.

• ∆⇧
∶∶ db⇧ is the (read–only) database instance. However, more tables can be added

to ∆⇧ through the WITH expression.

• F contains the (read–only) UDF definitions (see below).

• e
cell ∶∶ ecell is the SQL expression currently being defined.

• v
⇧
∶∶ cell⇧ is the result value with provenance annotation.

Arrows (□⇧) denote (lifted) meta variables with integrated provenance annotations.

UDF Definitions The dialect supports cell–valued (cell⇧) UDFs and table–valued
(table⇧) UDFs. Both are restricted to cell–valued arguments.

The F environment contains all UDF definitions for the current query. Its type is

49

6 SQL and its Provenance Semantics

e
cell ∶∶= `

∣ ROW(ecell, . . .)

∣ e
cell.col

∣ e
cell ⊛row e

cell

∣ ⊛(ecell, . . .)

∣ ISNULL(ecell)

∣ var
∣ ARRAY(ecell, . . .)

∣ LENGTH(ecell)

∣ CASE

WHEN ecell THEN ecell,

⋮

ELSE ecell

END

∣ EQCASE ecell

WHEN ecell THEN ecell,

⋮

ELSE ecell

END

∣ TOROW(etable)

∣ EXISTS(etable)

∣ udf(ecell
, . . .)

Figure 6.2: SQL cell expressions.

50

6.1 Cell Expressions

F ∶∶ ⦃udf ↦ (xs,ecell)⦄⋓ ⦃udf ↦ (xs,etable)⦄

where

• udf is the name of an UDF,

• xs is a shortcut for the (ordered) list of parameter names and

• the expression types ecell and etable represent the body of a cell–valued or
table–valued UDF.

The symbol ⋓ denotes that both types of UDFs are merged together. UDF names must
be globally unique. F is a read–only data structure which is accessed via F ⟦□ ⟧ with □
being a UDF name.

6.1.1 Literals `
def-literal
Γ⇧; ∆⇧;F ⊢ `⤇

cell
def `,∅

Value Semantics Literal expressions ` expand according to Figure 6.3(a) (syntactic
details omitted). The mapping to the base domains of Definition 4.2 is straightfor-
ward. For example, the boolean literals (see Figure 6.3(b)) evaluate to dom(bool) =
{true, false, nullbool}.

Provenance Semantics The provenance annotation of literals is generally empty (∅).
This is not a limit of the approach but a question of focus. In this work, we focus on data
provenance for values sitting in the database. The provenance analysis of query constants
is part of our future work on the topic of How–provenance (outlined in Chapter 13).

` ∶∶= bool
∣ int
∣ float
∣ text

(a) Literal non–terminals.

bool ∶∶= TRUE

∣ FALSE

∣ NULL

(b) Boolean keywords.

Figure 6.3: SQL literals.

51

6 SQL and its Provenance Semantics

6.1.2 Row Constructors ROW

def-row »»»»» Γ⇧; ∆⇧;F ⊢ e
cell
i ⤇

cell
def v

⇧

i
»»»»»i=1..n

Γ⇧; ∆⇧;F ⊢ ROW(e
cell
1 , . . . e

cell
n) ⤇

cell
def ⟨v⇧

1, . . . v
⇧

n⟩

Value Semantics The ROW(⋅) expression assembles a row value ⟨⋅⟩. Recursion is employed
to construct the individual attributes. Attribute names are implicit.

Provenance Semantics The resulting provenance annotations are nested in the individ-
ual attributes v⇧

i=1..n. The row itself (=a container of values) has no additional prove-
nance annotation.

6.1.3 Column References .col
def-col
Γ⇧; ∆⇧;F ⊢ e

cell
⤇

cell
def v

⇧
v
⇧
∶∶ row⇧

Γ⇧; ∆⇧;F ⊢ e
cell

.col ⤇cell
def v

⇧
⟦ col ⟧

Value Semantics The column reference ecell.col unwraps a single attribute from a row
value. In consequence, ecell must yield a row value (to be checked statically).

Unqualified column references (col instead of ecell.col) are not supported (in the backend
dialect). A query rewrite (outlined in Figure 6.1) resolves this issue.

Provenance Semantics The provenance semantics is analogous to the value semantics.
Put in other words, ecell.col keeps the provenance annotations sitting in the col attribute.

6.1.4 Comparison of Row Values

def-rowop
Γ⇧; ∆⇧;F ⊢ e

cell
1 ⤇

cell
def v

⇧

1 v
⇧

1 ∶∶ row⇧ (v1,p1) ≔ .(v⇧

1)
Γ⇧; ∆⇧;F ⊢ e

cell
2 ⤇

cell
def v

⇧

2 v
⇧

2 ∶∶ row⇧ (v2,p2) ≔ .(v⇧

2)
v ≔ v1⊛̂rowv2 v ∶∶ bool p ≔ p1 ∪ p2

Γ⇧; ∆⇧;F ⊢ e
cell
1 ⊛row e

cell
2 ⤇

cell
def v,p

52

6.1 Cell Expressions

Value Semantics The abstract operator ⊛row compares two row values with each other.
It supports the default comparison operators =, >, ≥, < and ≤. The collect operator .(⋅)
(see Definition 5.9) is used to recursively extract all provenance annotations from the row
values (turning v⇧

□ into v□). Then, the low–level comparison operator ⊛̂row (incapable
to process provenance annotations) carries out the value–only comparison operation.

Provenance Semantics The provenance definition assumes that the entire row value is
relevant for the result of the comparison. Lazy implementations of ⊛̂row are not in the
scope of this work.

The provenance computation consists of two steps.

• .(v⇧

□) recursively merges all provenance annotations sitting in the row value v⇧

□

(greedy provenance semantics).

• The resulting data provenance is the union (p1 ∪ p2) of both row values.

6.1.5 Generic Operators

def-operator»»»»» Γ⇧; ∆⇧;F ⊢ e
cell
i ⤇

cell
def vi,pi

»»»»»i=1..n ∣ vi ∶∶ base ∣i=1..n

v ≔ ⊛̂(v1, . . . vn) p ≔ ⋃
i=1..n

pi

Γ⇧; ∆⇧;F ⊢ ⊛(e
cell
1 , . . . e

cell
n) ⤇

cell
def v,p

Value Semantics The generic operators (abstract notation: ⊛) cover a huge number
of n–ary operators. Each argument ecell

□ yields a value v□,p□ with v□ atomic. Fig-
ure 6.4 provides examples of operators being supported in our SQL dialect. Most of the
aliases use infix notation and may have a syntax highlighting. Many operators (e.g. +)
are overloaded — types are listed on the right–hand side. Implicit type casts are not
permitted. Instead, explicit casts (e.g. totext(⋅)) exist. The low–level implementation of
⊛ is denoted ⊛̂ and carries out the value–only computation (see def-operator). Lazy
operators are not considered.

Provenance Semantics The data provenance of an n–ary operator is defined as the data
provenance of its n arguments (⋃i=1..n pi).

53

6 SQL and its Provenance Semantics

operator alias type
and(., .) AND (bool,bool) ➛ bool
or(., .) OR (bool,bool) ➛ bool
not(.) NOT bool ➛ bool
plus(., .) + (int, int) ➛ int
plus(., .) + (dec,dec) ➛ dec
round(., .) (dec, int) ➛ dec
concat(., .) || (text,text) ➛ text
eq(., .) = (text,text) ➛ text
gte(., .) >= (dec,dec) ➛ bool
totext(.) bool ➛ text
totext(.) int ➛ text
totext(.) dec ➛ text
totext(.) text ➛ text

⋮

Figure 6.4: Concrete examples for the generic operator ⊛.

6.1.6 ISNULL
def-isnull
Γ⇧; ∆⇧;F ⊢ e

cell
⤇

cell
def v

⇧
v
⇧
∶∶ base⇧ v,p ≔ v

⇧

Γ⇧; ∆⇧;F ⊢ ISNULL(e
cell

) ⤇
cell
def v = null,p

Value Semantics The ISNULL(ecell) expression is defined separately from the generic
operator ⊛ for better awareness of null semantics. Most SQL expressions just forward null
values towards the result table. However, in def-isnull the two–valued meta–syntactical
= is employed. When v = null is evaluated, the result is exclusively true or false.

Provenance Semantics From provenance perspective, the null value is just another value
with provenance annotation p. In any case (if null or not), this annotation is propagated
to the result.

6.1.7 Variable References var
def-var

Γ⇧
= ⦃. . . , var ↦ v

⇧
, . . .⦄

Γ⇧; ∆⇧;F ⊢ var ⤇
cell
def Γ⇧

⟦ var ⟧

54

6.1 Cell Expressions

Value Semantics The variable reference .var performs a lookup in the variable environ-
ment Γ⇧. If the variable is not found, the query fails statically.

Provenance Semantics Provenance annotations already exist in Γ⇧. On variable lookup,
these annotations are forwarded to the result.

6.1.8 Array Constructors ARRAY

def-array»»»»» Γ⇧; ∆⇧;F ⊢ e
cell
i ⤇

cell
def v

⇧

i
»»»»»i=1..n

Γ⇧; ∆⇧;F ⊢ ARRAY(e
cell
1 , . . . e

cell
n) ⤇

cell
def [v⇧

1, . . . v
⇧

n]

Value Semantics The ARRAY(⋅) expression assembles the according array value [⋅]. Re-
cursion is employed to construct the individual elements, formalized in def-array. This
SQL dialect supports nesting of array values (instead of multi–dimensional arrays).

Provenance Semantics The resulting data provenance is nested in the individual ele-
ments v⇧

i=1..n of the resulting array value [v⇧

1, . . . v
⇧

n]. The array itself (i.e., the container)
has no additional provenance annotation.

6.1.8.1 Operations on Array Values

Let a and b be two array values. Typical operations are

• concatenation (a || b),

• retrieval of the i–th array element (a[i]),

• comparison of arrays (a <= b) or

• cardinality (length(a)).

The provenance semantics of array concatenation is that the individual elements keep
their individual provenance annotation. The provenance semantics of element access
and comparison is analogous to the semantics of row values. We skip the formalization.

Array Length

def-array-length
Γ⇧; ∆⇧;F ⊢ e

cell
⤇

cell
def v

⇧
v
⇧
∶∶ array⇧ (v,p) ≔ .(v⇧)

Γ⇧; ∆⇧;F ⊢ LENGTH(e
cell

) ⤇
cell
def ∣v∣,∅

55

6 SQL and its Provenance Semantics

def-case
Γ⇧; ∆⇧;F ⊢ e

cell
else ⤇

cell
def v

⇧

else

Γ⇧; ∆⇧;F ⊢ e
cell
w1 ⤇

cell
def vw1 ,pw1 vw1 ∶∶ bool Γ⇧; ∆⇧;F ⊢ e

cell
t1 ⤇

cell
def v

⇧

t1

Γ⇧; ∆⇧;F ⊢

CASE

WHEN ecell
w2 THEN ecell

t2 ,

⋮

WHEN ecell
wn

THEN ecell
tn ,

ELSE ecell
else

END

⤇
cell
def v

⇧

tail

v
⇧
≔

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

v
⇧

else , n = 0
Ψ(v⇧

t1 ,Y(pw1)) , vw1 = true
Ψ(v⇧

tail ,Y(pw1)) , else

Γ⇧; ∆⇧;F ⊢

CASE

WHEN ecell
w1 THEN ecell

t1 ,

⋮

WHEN ecell
wn

THEN ecell
tn ,

ELSE ecell
else

END

⤇
cell
def v

⇧

Figure 6.5: CASE semantics.

Value Semantics The cardinality of the array value v (as in def-array-length) is eval-
uated using the meta–syntactical cardinality operator ∣v∣.

Provenance Semantics The data provenance of LENGTH is empty (∅). Why is that? Intu-
itively, the cardinality depends on the array elements. Our opinion is that only a specific
data provenance is desirable. Data provenance being empty or data provenance includ-
ing everything are both not useful. The empty data provenance is preferred because of
its compactness.

In rule def-array-length, the ∣v∣,∅ can easily be switched to ∣v∣,p . In a software
product, this might be implemented as a configuration option.

6.1.9 CASE

The CASE semantics is listed in Figure 6.5. The input expression consists of n ≥ 0

WHEN e
cell
wi

THEN e
cell
ti

56

6.1 Cell Expressions

branches with i = 1, . . . n. The first ecell
wi

being satisfied determines the resulting ecell
ti

expression. Otherwise, the ELSE branch is evaluated (which must always be provided).

Value Semantics The formalization of def-case uses a three–way case distinction (in
meta–language).

• If no WHEN . . . branches are provided (n = 0), the ELSE branch is evaluated.

• If the first predicate ecell
w1 qualifies, the the according THEN expression is evaluated.

• Otherwise, recursive evaluation is carried out with branches i = 2, . . . n.

Take note that the expression vw1 = true is different from vw1 . The meta–syntactical =
is 2–valued and cannot yield null.

Provenance Semantics The CASE expression chooses a certain THEN branch (or the ELSE
expression). The provenance annotations found in the associated subexpression are
forwarded to the result.

Additionally, the CASE expression is the first expression which involves predicates, i.e.
the ecell

wi
. According to our provenance notions (see Chapter 5), predicates are modeled

as Why–provenance. Thus, the Why operator (Y(⋅)) according to Definition 5.2 is
employed. For the base case vw1 = true, the definition denotes Y(pw1). This Why–
provenance is then “pushed down” the (lifted) result value, i.e. Ψ(v⇧

t1 ,Y(pw1)). Through
recursion, the Why–provenance gets accumulated until the first branch qualifies.

6.1.10 EQCASE

The EQCASE expression heavily resembles the CASE expression and may be considered
syntactic sugar. The rewrite strategy shown in Figure 6.6 is employed if EQCASE occurs
in the input query. The idea of the rewrite is to make the implicit = operator explicit.

Nonetheless, EQCASE is considered an expression of the backend dialect. We make use of
it in Chapter 8.

6.1.11 TOROW
def-torow
Γ⇧; ∆⇧;F ⊢ e

table
⤇

table
def v

⇧

table table⇧(τ) ≔ typeof(v⇧

table)

v
⇧

row ≔

⎧⎪⎪⎪⎨⎪⎪⎪⎩

nullvalue⇧(τ) , ∣v⇧

table∣ = 0
v
⇧

table⟦ 1 ⟧ , ∣v⇧

table∣ = 1

Γ⇧; ∆⇧;F ⊢ TOROW(e
table

) ⤇
cell
def v

⇧

row

57

6 SQL and its Provenance Semantics

EQCASE ecell
0

WHEN ecell
w1 THEN ecell

t1 ,

⋮

WHEN ecell
wn

THEN ecell
tn ,

ELSE ecell
else

END

(a) Input expression.

CASE

WHEN ecell
0 =ecell

w1 THEN ecell
t1 ,

⋮

WHEN ecell
0 =ecell

wn
THEN ecell

tn ,

ELSE ecell
else

END

(b) Rewritten expression.

Figure 6.6: Substitution of EQCASE with CASE.

Value Semantics The TOROW(etable) expression is an explicit cast from a table to a (single)
row value. etable is supposed to yield a table t with ∣t∣ ≤ 1. A runtime error is raised
otherwise and the query evaluation is stopped. If ∣t∣ = 0, an artificial row is created
with all values set to null.

Rule def-torow has a case distinction to switch between cardinalities 0 and 1. Case
1 is straight–forward but case 0 is more intricate as our SQL dialect does not support
type–generic null values (just null ∶∶ base is defined). We employ the auxiliary function
nullvalue⇧(τ) which expects an LRM type τ as argument and assembles a null–like value
with type τ . For example,

nullvalue⇧(row⇧(foo ↦ text⇧)) = ⟨ null,∅ ⟩

. The definition of nullvalue⇧(⋅) would be based on a case distinction between the types
according to Definition 5.4. Recursively, it turns any type into its value equivalent
(padded with null and ∅). Row values retain all attributes (as exemplified above) and
array values have length 0. The formalization is omitted.

Provenance Semantics The provenance semantics is analogous to the value semantics.
The null values are basically created from nothing and hence, the data provenance is
empty (∅). In other words, nullvalue⇧(⋅) produces pairs null ∶∶ base,∅ (exemplified
above).

6.1.11.1 Comparison to the SQL Standard

Figure 6.7 shows a grammar piece quoted from the SQL standard. On the bottom,
a subquery is defined consisting of a pair of parentheses and a nested expression. An
according parser would carry out a three–way case distinction:

58

6.1 Cell Expressions

<scalar subquery> ::=
<subquery>

<row subquery> ::=
<subquery>

<table subquery> ::=
<subquery>

<subquery> ::=
<left paren> <query expression> <right paren>

Figure 6.7: Grammar rules for subqueries according to [SQL16][p. 472].

• keep the tabular result or

• cast it to a row or

• cast it to a scalar.

The concrete case depends on the expression context. In contrast, the backend dialect of
our work is more explicit and TOROW always casts to a row value (second case from above).
If the row value is to be unwrapped, the expression can be rewritten into TOROW(ecell).col.

6.1.12 EXISTS
def-exists

Γ⇧; ∆⇧;F ⊢ e
table

⤇
table
def v

⇧

table v
⇧
≔ { false,∅ , ∣v⇧

table∣ = 0
true,Y(snd(.(v⇧

table⟦ 1 ⟧))) , else

Γ⇧; ∆⇧;F ⊢ EXISTS(e
table

) ⤇
cell
def v

⇧

Value Semantics EXISTS(etable) has a nested table expression etable. The value semantics
is to decide if etable yields an empty table (cardinality 0) or not. A single row is enough
to determine the true condition.

Provenance Semantics If the sub–expression yields an empty table (∣v⇧

table∣ = 0), the
provenance is empty (∅) as well.

In the else case, a single row is extracted from the intermediate table (v⇧

table⟦ 1 ⟧). The first
row always exists, although being non–deterministic due to generally pseudo–random row
order. This randomness may appear unsatisfying, however the value semantics of EXISTS
also does not care about row ordering. Any row is good enough to determine the true
case. The full term is Y(snd(.(v⇧

table⟦ 1 ⟧))) which carries out the transformation steps

59

6 SQL and its Provenance Semantics

• recursively collect all provenance annotations of the row ((v,p) ≔ .(⋅)),

• pick the snd(⋅) (provenance–only) component and

• turn the provenance into Why–provenance (for EXISTS being a predicate).

6.1.12.1 Cell–Valued UDFs
def-udf-cell »»»»» Γ⇧; ∆⇧;F ⊢ e

cell
i ⤇

cell
def v

⇧

i
»»»»»i=1..n

(xs, ecell) ≔ F ⟦udf ⟧ n = ∣xs∣ Γ⇧

∗ ≔ ⦃

»»»»» xs⟦ i ⟧ ↦ v
⇧

i ,
»»»»»i=1..n⦄

Γ⇧

∗; ∆⇧;F ⊢ e
cell

⤇
cell
def v

⇧

Γ⇧; ∆⇧;F ⊢ udf (e
cell
1 , . . . e

cell
n) ⤇

cell
def v

⇧

Value Semantics Each cell–valued UDF udf called in a SQL query has a corresponding
entry in the dictionary F = ⦃. . . , udf ↦ (xs, ecell), . . .⦄ or the query fails statically. The
pair (xs, ecell) consists of

• an ordered list of parameter names xs = [var1, var2, . . .] and

• the (cell–valued) body of the UDF e
cell .

Rule def-udf-cell formalizes UDF calls. The arguments ecell
i yield the values v⇧

i . A new
variable environment Γ⇧

∗ ≔ ⦃. . . , var i ↦ v
⇧

i , . . .⦄ is assembled. Then, ecell is evaluated
providing Γ⇧

∗ as its variable environment. The variables bindings of the original Γ⇧ are
not visible to the UDF.

UDFs are restricted to cell expressions and table expressions with their bodies in SQL.
Adding more languages is considered future work.

Provenance Semantics The provenance semantics is analogous to the value semantics.

6.2 Table Expressions

The table expressions etable ∶∶ etable are listed in Figure 6.8. Conclusions are denoted

Γ⇧; ∆⇧;F ⊢ e
table

⤇
table
def v

⇧

where

• Γ⇧, ∆⇧ and F are analogous to cell expressions (see Section 6.1),

• e
table is the expression currently being defined and

60

6.2 Table Expressions

e
table ∶∶= tab

∣ VALUES(ecell, . . .)

∣ WITH(tab AS etable, . . .) etable

∣ e
table UNION ALL etable

∣ udf(ecell, . . .)

∣ FROM (efrom, . . .)

WHERE e
cell

GROUP BY (ecell, . . .)

AGGREGATES (eagg AS col, . . .)
HAVING e

cell

WINDOWS (ewin OVER eover AS col, . . .)
SELECT (ecell AS col,. . .)

ORDER BY (ecell asc, . . .)

DISTINCT ON (ecell, . . .)

OFFMIT ` `

e
table UNION ALL etable

∣ BIND var

Figure 6.8: SQL table expressions.

• v
⇧
∶∶ table⇧ is the result table with provenance annotations.

Views are not considered in our SQL dialect. However, a view may be represented as a
table–valued UDF with no arguments.

6.2.1 Table References tab
def-tab

∆⇧
= ⦃. . . , tab ↦ v

⇧
, . . .⦄

Γ⇧; ∆⇧;F ⊢ tab ⤇
table
def ∆⇧

⟦ tab ⟧

Value Semantics The table reference tab performs a lookup in the table environment
∆⇧. If the corresponding entry does not exist, the query fails statically. The entries of
∆⇧ incorporate (lifted) base tables and WITH definitions.

Provenance Semantics Provenance annotations and values get propagated in pairs.

61

6 SQL and its Provenance Semantics

6.2.2 VALUES
def-values»»»»» Γ⇧; ∆⇧;F ⊢ e

cell
i ⤇

cell
def v

⇧

i v
⇧

i ∶∶ row⇧ »»»»»i=1..n

Γ⇧; ∆⇧;F ⊢ VALUES(e
cell
1 , . . . e

cell
n) ⤇

table
def ❲v

⇧

1, . . . v
⇧

n❳

Value Semantics The VALUES(ecell
1 , . . .) expression assembles a table. Each e

cell
□ eval-

uates to a row value. The types of all rows v⇧

□ must match (checked statically, not
formalized).

Provenance Semantics Provenance annotations and values get propagated in pairs. The
expressions ecell

□ are not necessarily literals. For example, tuple variables can be refer-
enced which may yield non–empty provenance annotations.

6.2.3 WITH

def-with»»»»» Γ⇧; ∆⇧

i−1;F ⊢ e
table
i ⤇

table
def v

⇧

i
»»»»»i=1..n+1»»»»» ∆⇧

i ≔ ∆⇧

i−1 + ⦃tabi ↦ v
⇧

i ⦄
»»»»»i=1..n

Γ⇧; ∆⇧

0;F ⊢

WITH

(tab1 AS etable
1 ,

⋮

tabn AS etable
n)

e
table
n+1

⤇
table
def v

⇧

n+1

Value Semantics The WITH expression according to rule def-with defines n an auxiliary
tables tabi. New entries are added to the table environment ∆⇧ in ascending order. Thus,
a table expression etable

k can read from all tables tabk′ with k
′
< k. The etable

□ must be
topologically ordered. This task is not formalized but considered another simple query
rewrite (see the overview in Figure 6.1). Cyclic dependencies among the table definitions
raise a static error. Finally, etable

n+1 evaluates to v⇧

n+1 which is the result table of the WITH
expression.

Provenance Semantics Provenance annotations and values get propagated in pairs.

Future Work Recursion (using the WITH RECURSIVE expression) is not covered in this
work. We consider it the very first item of future work (discussed in Chapter 13).

62

6.3 SFW Expression

6.2.4 UNION ALL
def-union-all

Γ⇧; ∆⇧;F ⊢ e
cell
a ⤇

cell
def ❲v

⇧

1, . . . v
⇧

n❳

Γ⇧; ∆⇧;F ⊢ e
cell
b ⤇

cell
def ❲v

⇧

n+1, . . . v
⇧

n+m❳

Γ⇧; ∆⇧;F ⊢ e
table
a UNION ALLe

table
b ⤇

table
def ❲v

⇧

1, . . . , v
⇧

n, v
⇧

n+1, . . . v
⇧

n+m❳

Value Semantics The UNION ALL expression concatenates two tables. Its definition is
provided in def-union-all. The order of rows in the resulting table is pseudo–random
(we do however not formalize the randomness).

Provenance Semantics Provenance annotations and values get propagated in pairs.

6.2.5 Table–Valued UDFs

Both value semantics and provenance semantics of table–valued UDFs are analogous to
cell–valued UDFs (see Section 6.1.12.1). The essential difference is that the UDF lookup

(xs, etable) ≔ F ⟦udf ⟧

yields a table expression etable instead of a cell expression. The according result value is
a table (with provenance annotations).

6.3 SFW Expression

Due to its size and complexity, the SFW expression is challenging to formalize. For this
very reason, we break up with the traditional SFW syntax and formalize the expression
listed in Figure 6.9. Our SFW expression is designed to form a straight pipeline of data
transformation. For example,

SELECT ecell
1 AS col1, . . .

evaluates the expression e
cell
1 and binds it to the column name col1. Afterwards, col1

may be specified as a sort criterion in the ORDER BY–clause. Logically, SELECT is evaluated
first (creating an intermediate table) and ORDER BY is evaluated afterwards (reading the
table emitted by SELECT).

We chose what appears to be the (most) logical dependency of SFW clauses and designed
the SFW syntax accordingly. This commitment is not to be mistaken with the physical
query evaluation. A query optimizer can enforce any evaluation order as long as the
query semantics (which we are going to specify) is preserved.

63

6 SQL and its Provenance Semantics

e
table ∶∶= ...

∣ FROM (efrom, . . .)

WHERE e
cell

GROUP BY (ecell, . . .)

AGGREGATES (eagg AS col, . . .)
HAVING e

cell

WINDOWS (ewin OVER eover AS col, . . .)
SELECT (ecell AS col,. . .)

ORDER BY (ecell asc, . . .)

DISTINCT ON (ecell, . . .)

OFFMIT ` `

Figure 6.9: The SFW expression (repeated from Figure 6.8).

Related Work G. Bierman, E. Meijer and M. Torgersen propose a SQL–like grammar
which also deviates from the common SFW structure. In [BMT07, Sec. 3] they provide
a grammar of Query Expressions qe, beginning with the from keyword.

6.3.0.1 Semantics Overview

A short overview of the SFW semantics is provided. For the purpose of this overview,
we assume that all clauses are utilized and have sensible sub–expressions.

• FROM (efrom, . . .): Each expression e
from reads from an intermediate table. An

n–way cross join is carried out.

• WHERE ecell : The expression ecell serves as a filter predicate eliminating unqualified
rows.

• GROUP BY (ecell, . . .): Individual rows are turned into groups of rows, according to
the expressions ecell .

• AGGREGATES (eagg AS col, . . .): Each group is aggregated according to the aggregate
functions eagg. The result is assigned to an internal column name col.

• HAVING ecell The expression ecell serves as a filter predicate eliminating unqualified
groups.

• WINDOWS (ewin OVER eover AS col, . . .): The window function ewin is computed with
frame specification e

over and the internal column name col is used to store the
result.

64

6.3 SFW Expression

• SELECT (ecell AS col,. . .): This clause evaluates generic expressions ecell and binds
them to the final column names col. Aggregations and window functions have
already been evaluated and their results can be accessed using the internal column
names (see above).

• ORDER BY (ecell asc, . . .): The intermediate table is sorted according to the crite-
ria ecell with sort directions asc.

• DISTINCT ON (ecell, . . .): Duplicate rows are removed. The criteria for duplicate
comparison are the ecell .

• OFFMIT ` `: A constant number of preceding and trailing rows is removed. (Name
derived from the well known clauses offset and limit.)

Most of the clauses discussed above are well known from common SQL dialects. The
clauses AGGREGATES and WINDOWS are custom to our backend SQL dialect. The advantage
of introducing them is that aggregation expressions eagg and window function expressions
e

win OVER eover can now be restricted to those two clauses. Thus, complexity of the other
clauses is reduced.

The backend dialect does not support SELECT DISTINCT. Instead, the more flexible
DISTINCT ON is available. A simple rewrite (copy all result column names from SELECT to
DISTINCT ON) emulates SELECT DISTINCT logic.

6.3.1 Decomposition

As the first step in formalizing the SFW semantics, the monolithic SFW expression is
decomposed into individual clauses which can be formalized independently from each
other. Figure 6.10 provides an overview of this translation. Both perspectives (mono-
lithic and individual) are supposed to yield the same result table.

• Dashed arrows denote the correspondence between two clauses.

• Solid arrows represent data flow of intermediate tables. Most individual clause
consume and produce one of those tables. The intermediate tables are augmented
with tuple variables and get formalized next.

• Thin arrows represent lifted tables of type table⇧. This is the result type of the
SFW evaluation.

Small letters are used to denote individual clauses. For example, SELECT becomes select.

• from is the first clause. Its sub–expressions are supposed to reference base tables (or
other table expressions). The decomposed from clause is supposed to materialize
the cross product for simplicity of the formalization. Also, tuple variables are

65

6 SQL and its Provenance Semantics

Monolithic SFW

FROM

WHERE

GROUP BY

AGGREGATES

HAVING

WINDOWS

SELECT

ORDER BY

DISTINCT ON

OFFMIT

Individual Clauses

from

filter

groupagg

filter

windows

select

order by

distinct on

unjoin()

offmit()

≡

Result Table

Figure 6.10: Decomposition of the SFW expression.

66

6.3 SFW Expression

introduced. Query optimization (by the DBMS) is supposed to be carried out in
a later stage and has strategies to circumvent computing the full cross product.

• filter appears twice. Its first appearance is as a substitute for the WHERE clause.
It evaluates a predicate expression and drops unqualified tuples.

• groupagg carries out grouping and aggregation in a single step. As a major advan-
tage, this saves the rest of the SFW query from distinguishing between tuples and
groups. Groups are entirely local to groupagg and appear nowhere else1.

• filter again filters unqualified tuples. But now, each tuple is an aggregation result
(of a former group). Globally, the two filter clauses are different. Locally, they
share the very same semantics. Our formalization exploits this redundancy.

• order by sorts the table. The succeeding clauses must retain the order of tuples
(not formalized).

• unjoin() throws away all tuple variables and turns the intermediate data structure
into type table⇧.

6.3.2 Joined Tables

Joined tables are the main data structure used in the SFW formalization. They are
nothing else than the cartesian product of the input tables, qualified with tuple variables.
The type of a joined table is denoted jtable⇧(var ↦ row⇧(⋅), . . .) where var is the
tuple variable specified in the from clause and row⇧(⋅) the row type of the corresponding
input table.

For example, let planets⇧ and stars⇧ of Figure 6.11(a) be two input tables. The from
clause in Figure 6.11(b) (the LATERAL keyword can be ignored for now) then generates the
joined table listed in Figure 6.11(c). The value constructor for joined tables is denoted
J❲⋅❳. The type of the example table is

jtable(⦃p↦ row(name ↦ text, density ↦ text),
s↦ row(name ↦ text)⦄)

.

Single rows of a joined table can be added to the variable environment Γ⇧. Using an
example row, this is denoted

Γ⇧
∪∪∪∪ ⦃p↦ ⟨ Earth,p1 , rocky,p5 ⟩, s↦ ⟨ Sol,p10 ⟩⦄

1As a small exception, window functions can define (group–like) partitions.

67

6 SQL and its Provenance Semantics

planets⇧
name density

Earth,p1 rocky,p5

Mars,p2 rocky,p6

Jupiter,p3 gaseous,p7

Neptune,p4 icy,p8

stars⇧
name

Sol,p10

(a) Input tables.

from planets LATERAL () AS p,
stars LATERAL () AS s

(b) from clause.

J❲⦃p ↦ ⟨ Earth,p1 , rocky,p5 ⟩ , s ↦ ⟨ Sol,p10 ⟩⦄,
⦃p ↦ ⟨ Mars,p2 , rocky,p6 ⟩ , s ↦ ⟨ Sol,p10 ⟩⦄,
⦃p ↦ ⟨ Jupiter,p3 , gaseous,p7 ⟩, s ↦ ⟨ Sol,p10 ⟩⦄,
⦃p ↦ ⟨ Neptune,p4 , icy,p8 ⟩ , s ↦ ⟨ Sol,p10 ⟩⦄
❳

(c) The corresponding joined table.

Figure 6.11: Example: a joined table being constructed.

68

6.3 SFW Expression

e
clause ∶∶= from (efrom, . . .)

∣ filter ecell

∣ groupagg (ecell, . . .)(ecell AS col, . . .)
∣ windows (ewin OVER eover AS col, . . .)
∣ select (ecell AS col, . . .)
∣ order by (ecell asc, . . .)

∣ distinct on (ecell, . . .)

Figure 6.12: eclause expressions.

. The operation ∪∪∪∪ merges two dictionaries and favors entries of the right–handed
dictionary in case of conflicting keys. We make heavy use of this operation to formalize
the loop semantics of the individual SFW clauses. The asymmetry of ∪∪∪∪ implements
variable shadowing.

6.3.3 Formalized Decomposition

Through decomposition, the SFW expressions breaks down into the individual clauses
of Figure 6.12. These expressions and the two auxiliary functions unjoin(⋅) and offmit(⋅)
get formalized afterwards. First, we formalize the decomposition step.

Value Semantics Rule def-sfw of Figure 6.13 formalizes the SFW decomposition step.
It has basically the same semantics as the informal version in Figure 6.10, i.e. a straight
pipeline of data transformation steps. The joined tables J⇧

□ are intermediate results of
individual SFW clauses. The pipeline starts with J❲⦃⦄❳ (=a joined table consisting of a
single, empty row) which is fed into the from expression (more explanation regarding to
from will be carried out below). After evaluation of from and assignment of J⇧

0 , the very
same J⇧

0 is fed into the evaluation of filter. This pattern repeats until distinct on is
evaluated. The semi–final J⇧

7 is fed into two auxiliary functions which assemble v⇧, the
final result of the SFW expression.

Provenance Semantics Provenance annotations and values get propagated in pairs.

6.3.4 e
clause Expressions

Conclusions are denoted

J
⇧; Γ⇧; ∆⇧;F ⊢ e

clause
⤇

sfw
def J

⇧

res

69

6 SQL and its Provenance Semantics
def-sfw
J
❲
⦃
⦄
❳;Γ

⇧;∆
⇧;F

⊢
from

(e from
1

,
...e from

n
)
⤇

sfw
def

J
⇧0

J
⇧0 ;Γ

⇧;∆
⇧;F

⊢
filter

e cell
w

he
⤇

sfw
def

J
⇧1

J
⇧1 ;Γ

⇧;∆
⇧;F

⊢
groupagg

(e cell
gro

1 ,
...e cell

gro
m

)
(e agg

1
AS

colagg
1 ,
...e agg

p
AS

colagg
p)

⤇
sfw
def

J
⇧2

J
⇧2 ;Γ

⇧;∆
⇧;F

⊢
filter

e cell
hav

⤇
sfw
def

J
⇧3

J
⇧3 ;Γ

⇧;∆
⇧;F

⊢
windows

(e w
in

1
OVER

e over
1

AS
colw

in
1 ,
...

e w
in

q
OVER

e over
q

AS
colw

in
q)

⤇
sfw
def

J
⇧4

J
⇧4 ;Γ

⇧;∆
⇧;F

⊢
select

(e cell
sel1

AS
colsel1 ,

...e cell
selr

AS
colselr)

⤇
sfw
def

J
⇧5

J
⇧5 ;Γ

⇧;∆
⇧;F

⊢
order

by
(e cell

ord
1

asc1 ,
...e cell

ord
u

asc
u)

⤇
sfw
def

J
⇧6

J
⇧6 ;Γ

⇧;∆
⇧;F

⊢
distinct

on
(e cell

dis1 ,
...e cell

dis
v)

⤇
sfw
def

J
⇧7

v
⇧
≔

offm
it(unjoin(J

⇧7),`offset ,`lim
it)

Γ
⇧;∆

⇧;F
⊢

FROM
(e from

1
,
...e from

n
)

WHERE
e cell

w
he

GROUP
BY

(e cell
gro

1 ,
...e cell

gro
m

)

AGGREGATES
(e agg

1
AS

colagg
1 ,
...e agg

p
AS

colagg
p)

HAVING
e cell

hav

WINDOWS
(e w

in
1

OVER
e over

1
AS

colw
in

1 ,
...

e w
in

q
OVER

e over
q

AS
colw

in
q)

SELECT
(e cell

sel1
AS

colsel1 ,
...e cell

selr
AS

colselr)
ORDER

BY
(e cell

ord
1

asc1 ,
...e cell

ord
u

asc
u)

DISTINCT
ON

(e cell
dis1 ,

...e cell
dis

v)

OFFMIT
`off

`lim

⤇
table
def

v
⇧

Figure
6.13:T

he
SF

W
sem

antics.

70

6.3 SFW Expression

where

• J
⇧
∶∶ jtable⇧(⋅) is the joined table (handed over from the previous SFW clause),

• Γ⇧, ∆⇧ and F are analogous to cell expressions (see Section 6.1),

• e
clause is the expression currently being defined and

• J
⇧

res ∶∶ jtable⇧(⋅) is the resulting joined table.

The two joined tables J⇧ and J⇧

res do not share the same type. For example, a select
clause specifies new columns.

6.3.4.1 from

The from (e
from
1 , . . . efrom

n) expression undergoes an additional expansion step (for pre-
sentation reasons). The according production rule is listed directly below.

e
from ∶∶= etable LATERAL (var lat, . . .) AS varbind

On the right–hand side, etable specifies the table expression to be evaluated and varbind
the name of a non–optional tuple variable. Additionally, LATERAL semantics is supported.
If variable names var lat (bound in preceding from entries) are provided, these variables
become visible for etable. It is a design decision to enforce explicit LATERAL variables (i.e.,
non–standard SQL). In our opinion, this improves the readability of queries.

Value Semantics Rule def-from-rec uses recursion to implement m–way cross joins.
In each recursion step, a single join (between the existing J⇧ and the current etable) is
carried out. (Plain cross joins easily exceed reasonable query runtimes. As a reminder,
we specify the semantics of from and not its execution plan.) After all joins have been
processed, rule def-from-stop yields the final J⇧. If m = 0, the single and empty row
J❲⦃⦄❳ (see Figure 6.13) becomes the result.

Taking a closer look at def-from-rec, n ≔ ∣J⇧∣ denotes the cardinality of the current
joined table. The expression e

table
1 is evaluated n times, because sensible LATERAL is

assumed in general. We construct a new environment Γ⇧
∪∪∪∪ J

⇧
⟦ i ⟧ for each evaluation.

Thus, the n different valuations of LATERAL–specific tuple variables are accessible to
the evaluation of etable

1 . The resulting v
⇧

i are then used to implement the cross join,
assembling J⇧

+. If LATERAL variables are not specified, the v⇧

i are all the same and the
ordinary cross join is carried out.

Provenance Semantics Provenance annotations and values get propagated in pairs.

71

6 SQL and its Provenance Semantics

def-from-rec
n ≔ ∣J⇧∣

»»»»» Γ⇧
∪∪∪∪ J⟦ i ⟧

⇧; ∆⇧;F ⊢ e
table
1 ⤇

table
def v

⇧

i
»»»»»i=1..n

J
⇧

+ ≔ J❲
»»»»» J

⇧
⟦ i ⟧ ∪∪∪∪ ⦃var1 ↦ v

⇧

i ⟦ k ⟧⦄,
»»»»»i=1..n,k=1..∣v⇧i ∣

❳

J
⇧

+; Γ⇧; ∆⇧;F ⊢

from (e
table
2 LATERAL vs1 AS var2,

⋮

e
table
m LATERAL vsm AS varm

)

⤇
sfw
def J

⇧

res

J
⇧; Γ⇧; ∆⇧;F ⊢

from (e
table
1 LATERAL vs1 AS var1,

⋮

e
table
m LATERAL vsm AS varm

)

⤇
sfw
def J

⇧

res

def-from-stop
J

⇧; Γ⇧; ∆⇧;F ⊢ from () ⤇
sfw
def J

⇧

Figure 6.14: Semantics of from.

6.3.4.2 filter

The WHERE– and HAVING–clauses are both mapped to instances of filter (see Figure 6.10).
The filter semantics is formalized in rule def-filter and the auxiliary function of
Figure 6.15.

Value Semantics For each input row (=each variable environment Γ⇧
∪∪∪∪ J

⇧
⟦ i ⟧), the

predicate ecell is evaluated. The resulting v
⇧

i is always an annotated boolean. The
auxiliary function appendif(⋅) adds any row v

⇧

cur which satisfies the predicate to the
result.

Provenance Semantics The interesting part is the true–case of appendif(.), i.e.

Ψ(v⇧

cur ,Y(ppred))

. The predicate ecell decides about the existence of v⇧

cur in the result table. We consider
this dependency as Why–provenance (as described in Section 5.2.3). The elements of
ppred are first turned into Why–provenance and the resulting annotation is recursively
added to the entire row.

72

6.3 SFW Expression

def-filter
n ≔ ∣J⇧∣

»»»»» Γ⇧
∪∪∪∪ J

⇧
⟦ i ⟧; ∆⇧;F ⇧

⊢ e
cell

⤇
cell
def v

⇧

i v
⇧

i ∶∶ bool,pset »»»»»i=1..n
J

⇧

0 ≔ J❲❳
»»»»» J

⇧

i ≔ appendif(J⇧

i−1, v
⇧

i , J
⇧
⟦ i ⟧) »»»»»i=1..n

J
⇧; Γ⇧; ∆⇧;F ⊢ filter e

cell
⤇

sfw
def J

⇧

n

(a) Main rule.

appendif(J❲v⇧

1, . . . v
⇧

m❳, vpred ,ppred , v
⇧

cur) ≔
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

J❲v
⇧

1, . . . v
⇧

m,Ψ(v⇧

cur ,Y(ppred))❳ , vpred = true
J❲v

⇧

1, . . . v
⇧

m❳ , vpred = false
J❲v

⇧

1, . . . v
⇧

m❳ , vpred = null

(b) Auxiliary function.

Figure 6.15: Semantics of filter.

If v⇧

cur does not satisfy the predicate, the provenance annotations are dropped together
with the values.

6.3.4.3 select

def-select
n ≔ ∣J⇧∣ »»»»» Γ⇧

∪∪∪∪ J
⇧
⟦ i ⟧; ∆⇧;F ⊢ e

cell
k ⤇

cell
def v

⇧

i,k
»»»»»i=1..n,k=1..m

J
⇧

res ≔ ❲

»»»»» J
⇧
⟦ i ⟧ ∪∪∪∪ ⦃sel ↦ ⟨v⇧

i,1, . . . v
⇧

i,m⟩⦄, »»»»»i=1..n❳

J
⇧; Γ⇧; ∆⇧;F ⊢ select (e

cell
1 AS col1, . . . e

cell
m AS colm) ⤇

sfw
def J

⇧

res

Rule def-select formalizes the select clause. Due to substitution of aggregates and
window functions (these are processed in their dedicated clauses), the formalization of
the select clause is focused on simple cell expressions.

Value Semantics The select expression evaluates n⋅m cells for the n ≔ ∣J⇧∣ input rows
and m columns. Each input row J

⇧
⟦ i ⟧ yields an output row

J
⇧
⟦ i ⟧ ∪∪∪∪ ⦃sel ↦ ⟨v⇧

i,1, . . . ⟩⦄

73

6 SQL and its Provenance Semantics

with the new rows (column names implicit) bound to an artificial tuple variable sel.
Succeeding SFW clauses can reference sel and its columns. For example, subexpressions
in the order by clause can reference such columns and employ them as sort criteria. In a
later stage of the SFW evaluation (namely, unjoin(⋅)) the contents of sel get unwrapped
and constitute the sole result of the SFW expression.

Provenance Semantics Provenance annotations and values get propagated in pairs.

6.3.4.4 order by

def-order-by
J

⇧

s ≔ sort⇧(J⇧
,Γ⇧

,∆⇧
, F, (e

cell
1 asc1, . . . e

cell
m ascm))

n ≔ ∣J⇧

s ∣»»»»» Γ⇧
∪∪∪∪ J

⇧

s ⟦ i ⟧; ∆⇧;F ⊢ e
cell
k ⤇

cell
def v

⇧

i,k (vi,k,pi,k) ≔ .(v⇧

i,k)
»»»»»i=1..n,k=1..m»»»»»»»»»»

pi ≔ Y(
m

⋃
k=1

pi,k)
»»»»»»»»»»i=1..n

J
⇧

res ≔ J❲Ψ(J⇧

s ⟦ 0 ⟧,p0), . . .Ψ(J⇧

s ⟦n ⟧,pn)❳

J
⇧; Γ⇧; ∆⇧;F ⊢ order by (e

cell
1 asc1, . . . e

cell
m ascm) ⤇

sfw
def J

⇧

res

Value Semantics Rule def-order-by formalizes the order by expression. We employ
the auxiliary function sort⇧(⋅) which carries out the actual sorting and yields the sorted
(joined) table J⇧

s . The function sort⇧(⋅) ignores the provenance annotations (does not
consider them as sort criteria) but keeps the annotations attached to their values.

Provenance Semantics We consider the sort criteria as predicates (in the broader sense).
These criteria decide over the position of a row in the result table. Therefore, they are
modeled as Why–provenance.

The first part of rule def-order-by produces the sorted table J⇧

s . The sort criteria ecell
k

get evaluated in order to assemble a single provenance annotation pi for each row. Then,
this Why–provenance is recursively added to its associated row.

Outlook A formalization of the intricate sort⇧(⋅) is not carried out. The main feature of
our approach to provenance analysis (subject of Chapter 8) is able to separate provenance
annotations from values. Thus, mixed workloads (values and provenance) do not occur
and an implementation of sort⇧(⋅) is not needed.

74

6.3 SFW Expression

def-distinct-on-void
J

⇧; Γ⇧; ∆⇧;F ⊢ distinct on () ⤇
sfw
def J

⇧

def-distinct-on
m ≥ 1 J

⇧

d ≔ distincton⇧(J⇧
,Γ⇧

,∆⇧
, F, (e

cell
1 , . . . e

cell
m))

n ≔ ∣J⇧

d ∣»»»»» Γ⇧
∪∪∪∪ J

⇧

d ⟦ i ⟧; ∆⇧;F ⊢ e
cell
k ⤇

cell
def v

⇧

i,k (vi,k,pi,k) ≔ .(v⇧

i,k)
»»»»»i=1..n,k=1..m»»»»»»»»»»

pi ≔ Y(
m

⋃
k=1

pi,k)
»»»»»»»»»»i=1..n

J
⇧

res ≔ J❲Ψ(J⇧

d ⟦ 0 ⟧,p0), . . .Ψ(J⇧

d ⟦n ⟧,pn)❳

J
⇧; Γ⇧; ∆⇧;F ⊢ distinct on (e

cell
1 , . . . e

cell
m) ⤇

sfw
def J

⇧

res

Figure 6.16: Semantics of distinct on.

6.3.4.5 distinct on

The formalization of the distinct on clause is very similar to order by. The rules are
provided in Figure 6.16.

Value Semantics Rule distinct-on-def-empty deals with the trivial case when no crite-
ria are provided (all rows are kept). The other cases are handled by rule def-distinct-on.
The structure of this rule (and its semantics) is very similar to def-order-by. The main
difference is that function distincton⇧(⋅) removes duplicates. The function does not in-
spect provenance annotations for the purpose of duplicate elimination. However, all
provenance annotations (of not eliminated rows) stick to their associated values. The
cardinalities are ∣J⇧

d ∣ ≤ ∣J⇧∣.

Provenance Semantics In the remaining formalization, the criteria ecell
1 , . . . e

cell
m are an-

alyzed for their data provenance pi (specific for every i–th row), Why–provenance is
generated and then added to the i–th row. The data provenance of eliminated rows is
dropped.

6.3.4.6 unjoin(.)

The unjoin(.) auxiliary function has the type

unjoin(.) ∶∶ jtable⇧(. . . , sel ↦ τ, . . .) ➛ table⇧(τ)

75

6 SQL and its Provenance Semantics

and definition

unjoin(J❲v⇧

1, . . . v
⇧

n❳) ≔ ❲v
⇧

1⟦sel ⟧, . . . v
⇧

n⟦sel ⟧❳

. Essentially, it dereferences sel (which contains the final columns evaluated in the
select clause). At this point in the pipeline (see Figure 6.10 for the overview), all
intermediate results (like, variables bound in the from clause) can be thrown away. The
final evaluation step is carried out through offmit(⋅) (see below) which removes rows
according to literal expressions.

6.3.4.7 offmit(⋅)

offmit(⋅) takes care of removing leading (OFFSET semantics) and trailing (LIMIT semantics)
rows. It has the type

offmit(⋅) ∶∶ (table⇧(τ), int, int) ➛ table⇧(τ)

and definition

offmit(❲v⇧

1, . . . v
⇧

n❳, o, l) ≔
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

❲v
⇧

1, . . . v
⇧

n❳ , (o = null) ∧ (l = null)
❲v

⇧

o+1, . . . v
⇧

n❳ , (o ≠ null) ∧ (l = null)
❲v

⇧

1, . . . v
⇧

l ❳ , (o = null) ∧ (l ≠ null)
offmit(offmit(❲v⇧

1, . . . v
⇧

n❳, o, null), null, l) , (o ≠ null) ∧ (l ≠ null)

. The expressions o and l are integer literals. We employ null values to denote OFFSET 0
and LIMIT ∞ (=all rows are to be kept).

6.4 Aggregations and Window Functions

6.4.1 Aggregations in the Backend Dialect

Before we carry out the formalization of aggregations, we go one step back and discuss
aggregations from the perspectives of the frontend and backend SQL dialects.

Figure 6.17(a) shows an example query in common SQL. The hidden complexity in this
example is located in SELECT p.density which is not as simple as it seems. p.density

76

6.4 Aggregations and Window Functions

SELECT p.density AS density,
COUNT(*) AS count

FROM planets AS p
GROUP BY p.density

(a) Frontend dialect.

1 FROM planets AS p
2 WHERE TRUE
3 GROUP BY p.density
4 AGGREGATES THE(p.density) AS a1,
5 COUNTSTAR() AS a2
6 HAVING TRUE
7 WINDOWS ()
8 SELECT aggs.a1 AS density,
9 aggs.a2 AS count

10 ORDER BY ()
11 DISTINCT ON ()
12 OFFMIT NULL NULL

(b) Backend dialect.

Figure 6.17: Example: rewrite of aggregations.

is not an ordinary column reference but reaches into the current group of rows (let the
group size be n rows) and yields just one of the n identical values of p.density. This
semantics is different from non–aggregating context where p.density would be evaluated
per input row. In other words, the semantics of an expression depends on the context.
This observation is not new but has already been formulated by S. Peyton Jones and
P. Wadler in [PW07][Sec. 3.4]. They have introduced the aggregate function the(⋅) in
order to make this contextual knowledge explicit.

We adopt their approach for SQL and when our backend dialect is produced, we turn
p.density into THE(p.density) (see Figure 6.17(b) on line 4). This rewrite step allows
us to process THE and ordinary aggregation functions (like COUNTSTAR) in the same way.

On top of that, the backend dialect introduces a new SFW clause called AGGREGATES. In
that clause, the collected aggregations from the entires SFW block are collected. Results
of aggregations get bound to artificial columns and the tuple variable aggs. The SELECT
clause of Figure 6.17(b) is totally unaware of aggregations. This substitution is carried
out for HAVING, ORDER BY and DISTINCT ON as well and greatly reduces their complexity.
In an analogous way, this substitution is carried out for window functions, collecting
them in the WINDOWS clause.

6.4.2 groupagg

The groupagg expression is a merge of the GROUP BY and AGGREGATES clause. Merging them
together is of advantage because groups (=an additional data structure) can be kept local
to groupagg. Figure 6.18 provides an overview of the types used inside of groupagg. The

77

6 SQL and its Provenance Semantics

jtable⇧(τ)

⦃int ↦ jtable⇧(τ)⦄

jtable⇧(τ ′)

GROUP BY

AGGREGATES

(a) Types.

jtable⇧(⦃var1 ↦ τ1, . . .⦄)

⦃1↦ jtable⇧(⦃var1 ↦ τ1, . . .⦄),
2↦ jtable⇧(⦃var1 ↦ τ1, . . .⦄),
. . .⦄

jtable⇧(⦃aggs ↦ row⇧
⦄)

GROUP BY

AGGREGATES

(b) Variable names.

Figure 6.18: Overview: data structures used in the groupagg formalization.

input is a joined table, emitted by the previous clause (i.e., filter). First, grouping
is carried out according to the GROUP BY clause. The result is a dictionary where each
group corresponds to a value in the dictionary. The row type τ does not change in this
process. Second, each group is aggregated into a single row. We introduce the tuple
variable aggs to qualify those rows. After aggregation, aggs is the only variable left. For
example, all FROM bindings (except for the correlated tuple variables still sitting in Γ⇧)
are gone. Rule def-groupagg is presented in Figure 6.19. We discuss the provenance
semantics first.

Provenance Semantics Similar to order by and distinct on, Why–provenance is gen-
erated. The grouping criteria (ecell

1 , . . . ecell
r) determine the group of a row. Rule

def-groupagg evaluates the criteria (for each of the n rows) and collects the Why–
provenance in pi. Then, the Why–provenance is added to the associated row. The
intermediate result is J⇧

y . In the remaining rule, the provenance annotations just get
forwarded.

Value Semantics Regarding to GROUP BY, we make use of the helper function groupby⇧(⋅).
The expressions ecell

□ get evaluated for each row and according groups are formed, consti-
tuting the dictionary G⇧. The contents of G⇧ are exemplified in Figure 6.18, i.e. keys are
unique (ascending integers) and the dictionarie’s values are the groups. If the GROUP BY
clause is empty, a single group is created.

78

6.4 Aggregations and Window Functions

def-groupagg
n ≔ ∣J⇧∣

»»»»» Γ⇧
∪∪∪∪ J

⇧
⟦ i ⟧; ∆⇧;F ⊢ e

cell
k ⤇

cell
def v

⇧

i,k (vi,k,pi,k) ≔ .(v⇧

i,k)
»»»»»i=1..n,k=1..r»»»»»»»»»»

pi ≔ Y(
m

⋃
k=1

pi,k)
»»»»»»»»»»i=1..n

J
⇧

y ≔ J❲Ψ(J⇧
⟦ 0 ⟧,p0), . . .Ψ(J⇧

⟦n ⟧,pn)❳
G

⇧
≔ groupby⇧(J⇧

y ,Γ
⇧
,∆⇧

, F, (e
cell
1 , . . . e

cell
r))

g ≔ ∣G⇧∣
»»»»» G⇧

⟦ i ⟧; Γ⇧; ∆⇧;F ⊢ e
agg
k ⤇

agg
def v

⇧

aggi,k

»»»»»i=1..g,k=1..m»»»»» v
⇧

i ≔ ⦃aggs ↦ ⟨col1 ↦ v
⇧

aggi,1 , . . . colm ↦ v
⇧

aggi,m
⟩⦄ »»»»»i=1..g

J
⇧; Γ⇧; ∆⇧;F ⊢

groupagg (e
cell
1 , . . . e

cell
r)

(e
agg
1 AS col1,

⋮

e
agg
m AS colm)

⤇
sfw
def J❲v

⇧

1, . . . v
⇧

g❳

def-groupagg-void
J

⇧; Γ⇧; ∆⇧;F ⊢ groupagg () () ⤇
sfw
def J

⇧

Figure 6.19: Semantics of groupagg.

79

6 SQL and its Provenance Semantics

e
agg ∶∶= SUM(ecell)

∣ AVG(ecell)

∣ MIN(ecell)

∣ MAX(ecell)

∣ COUNT(ecell)

∣ THE(ecell)

∣ COUNTSTAR()

Figure 6.20: Aggregation functions.

In the final part of rule def-groupagg, each of the g group gets aggregated, formalized
as ⋅ ⊢ ⋅ ⤇

agg
def ⋅ (see below). The result table accordingly has g rows. The only tuple

variable in the result table is aggs.

Rule def-groupagg-void just forwards the input table. This rule keeps all tuple vari-
ables.

6.5 Aggregation Functions

A representative set of aggregation functions (expressions eagg) is listed in Figure 6.20.
Conclusions are denoted

J
⇧; Γ⇧; ∆⇧;F ⊢ e

agg
⤇

agg
def v

⇧

where

• J
⇧ is a single group,

• Γ⇧, ∆⇧ and F are known already,

• e
agg is an aggregation expression and

• v
⇧
∶∶ cell⇧ is the result value.

In this work, all aggregations share the same provenance semantics but different value
semantics. We do not discuss the semantics of null in aggregation context.

80

6.5 Aggregation Functions

6.5.1 SUM

def-sum
n ≔ ∣J⇧∣

»»»»» Γ⇧
∪∪∪∪ J

⇧
⟦ i ⟧; ∆⇧;F ⊢ e

cell
⤇

cell
def vi,pi

»»»»»i=1..n

v
⇧
≔ v1 + ⋅ ⋅ ⋅ + vn,

n

⋃
i=1

pi

J
⇧; Γ⇧; ∆⇧;F ⊢ SUM(e

cell
) ⤇

agg
def v

⇧

Value Semantics The SUM aggregate is defined for number types only (int and dec in our
case), however we do not formalize the type restrictions. The expression ecell evaluates
to n pairs of value and provenance annotation. Both get aggregated individually.

Provenance Semantics The intuition for the data provenance of SUM is that all values
are added up in order to constitute a grand total. We employ ⋃ to combine all sets pi
of the group.

6.5.2 SUM–Like Provenance Semantics

The aggregates AVG, MIN, MAX and COUNT share the provenance semantics of SUM. More
specific provenance semantics for MIN and MAX could be realized (e.g., only the single
minimum or maximum input value) but is not pursued in this work. The COUNT aggregate
counts values ≠ null but our provenance semantics does not make this distinction.

6.5.3 THE

def-the
n ≔ ∣J⇧∣ n ≥ 1

»»»»» Γ⇧
∪∪∪∪ J

⇧
⟦ i ⟧; ∆⇧;F ⊢ e

cell
⤇

cell
def v

⇧

i (vi,pi) ≔ .(v⇧

i)
»»»»»i=1..n

v1 = ⋅ ⋅ ⋅ = vn v
⇧
≔ v1,

n

⋃
i=1

pi

J
⇧; Γ⇧; ∆⇧;F ⊢ THE(e

cell
) ⤇

agg
def v

⇧

Value Semantics Rule def-the formalizes the THE aggregate. A groups (of rows) must
have at least one row (or the group does not exist). The first value in this row constitutes
the value result of THE. Any other value could be chosen as well. It is checked that all
values match, using the two–valued =.

81

6 SQL and its Provenance Semantics

Provenance Semantics The provenance semantics is consistent with MIN and MAX. One
single value is selected as result but the data provenance is derived from all values.

6.5.4 COUNTSTAR()
def-countstar
J

⇧; Γ⇧; ∆⇧;F ⊢ COUNTSTAR() ⤇
agg
def ∣J⇧∣,∅

Value Semantics The COUNTSTAR() aggregate yields the cardinality of a table.

Provenance Semantics As a design decision, we yield the empty data provenance for
COUNTSTAR(). The argument is similar to Section 6.1.8.1, i.e. aggregating the entire
table is considered too unspecific.

6.6 Window Functions

6.6.1 Introductory Example

We aim for partial support of SQL window functions. In contrast to aggregate functions,
a window function does not change the row count. We call the row currently being
processed the current row. The example from Figure 6.21 lists the input table sales.
The window frames of t2 and t3 are highlighted. The window functions yields column
avg3 (see table output) which is the specific average per frame. Any aggregate function
(here: AVG) can be turned into a window function (which is the focus of our work).
The corresponding query is listed in Figure 6.21(c). On line 6, AVG decorated with the
additional OVER clause makes it a window function. The OVER clause is syntactically rich.

• PARTITION BY (very similar to GROUP BY): distribute the input rows over partitions;
the window frames will not cross partitions borders (but process each partition
individually). Without partition criteria, the entire input table becomes one par-
tition.

• ORDER BY specifies the row order. Each partition gets sorted individually.

• ROWS determines the frame width, i.e. the number of preceding and following rows.
Special values are 0 (which denotes the current row) and NULL (which denotes the
first or last row in the partition). Negative values would raise an error.

The example query specifies a sliding window of width 3. The expression ROWS 1 1
specifies

• 1 preceding row,

82

6.6 Window Functions

sales
month units
1 20 t1

2 30 t2

3 25 t3

4 25 t4

frame of t2

frame of t3

(a) Input table.

output
month avg3
1 . . .
2 25.0 t2′ ∶ avg(t1, t2, t3)
3 26.7 t3′ ∶ avg(t2, t3, t4)
4 . . .

(b) Output table.

1 FROM sales LATERAL () AS s
2 WHERE TRUE
3 GROUP BY ()
4 AGGREGATES ()
5 HAVING TRUE
6 WINDOWS AVG(s.units) OVER (PARTITION BY ()
7 ORDER BY s.month ASC
8 ROWS 1 1) AS w1
9 SELECT s.month AS month,

10 wins.w1 AS avg3
11 ORDER BY ()
12 DISTINCT ON ()
13 OFFMIT NULL NULL

(c) SQL query with a window function.

Figure 6.21: Example: syntax and semantics of a window function.

83

6 SQL and its Provenance Semantics

• the current row and

• 1 following row.

Frames at partition borders get shortened accordingly (not exemplified).

6.6.2 windows

As a reminder, entries of the windows clause are denoted

e
win

OVER e
over

AS col

. The expansion rules for eover and ewin are provided below. Our provenance definition
is restricted to window functions derived from aggregations.

e
over ∶∶= (PARTITION BY (ecell

, . . .)

ORDER BY (ecellasc, . . .)
ROWS ` `

)

e
win ∶∶= eagg

Semantics Rule def-windows is listed in Figure 6.22. Basically, k window functions for
i rows get evaluated. Each row corresponds to a window frame which is evaluated using
the auxiliary function getframe⇧(⋅). This auxiliary function hides a considerable amount
of complexity and is not formalized. All environments are handed over to getframe⇧(⋅)
in order to evaluate sub–expressions. Also, i is handed over to determine the current
row (=frame). The semantics of PARTITION BY and ORDER BY correspond to the semantics
of GROUP BY and ORDER BY, respectively. The window frames J⇧

j,k are specific for the i–th
current row and for the k–th window function.

In the next step, ⋅ ⊢ ⋅⤇win
def ⋅ is evaluated (formalized below) which yields one cell value

v
⇧

i,k for each frame. The v⇧

i,k get bound to column names and the artificial tuple variable
wins is introduced (analogous to aggregations).

6.6.3 Window Functions ewin

The conclusion for a window function ewin is denoted

J
⇧; Γ⇧; ∆⇧;F ⊢ e

win
⤇

win
def v

⇧

where

84

6.6 Window Functions

def-windows
n ≔ ∣J⇧∣

»»»»»»»»»»»
J

⇧

i,k ≔ getframe⇧ ⎛⎜
⎝
J

⇧
,Γ⇧

,∆⇧
, F, i,

PARTITION BY (ecell
par,k,1, . . .)

ORDER BY (ecell
ord,k,1 asck,1, . . .)

ROWS `prec,k `foll,k

⎞
⎟
⎠

»»»»»»»»»»»i=1..n,k=1..m»»»»» J
⇧

i,k; Γ⇧; ∆⇧;F ⊢ e
win
k ⤇

win
def v

⇧

i,k
»»»»»i=1..n,k=1..m»»»»» v

⇧

i ≔ ⟨col1 ↦ v
⇧

i,1, . . . colm ↦ v
⇧

i,m⟩ »»»»»i=1..n
J

⇧

res ≔ J❲J
⇧
⟦ 1 ⟧ ∪∪∪∪ ⦃wins ↦ v

⇧

1⦄, . . . J
⇧
⟦n ⟧ ∪∪∪∪ ⦃wins ↦ v

⇧

n⦄❳

J
⇧; Γ⇧; ∆⇧;F ⊢

windows

e
win
1 OVER (

PARTITION BY (ecell
par,1,1, . . .)

ORDER BY (ecell
ord,1,1 asc1,1, . . .)

ROWS `prec,1 `foll,1
) AS col1,
⋮

e
win
m OVER (

PARTITION BY (ecell
par,m,1, . . .)

ORDER BY (ecell
ord,m,1 ascm,1, . . .)

ROWS `prec,m `foll,m
) AS colm

⤇
sfw
def J

⇧

res

Figure 6.22: Semantics of windows.

85

6 SQL and its Provenance Semantics

• J
⇧ is the current frame,

• Γ⇧, ∆⇧ and F are known already,

• e
win is the window function and

• v
⇧
∶∶ cell⇧ is the result value for this window function and frame.

6.6.3.1 Aggregation to Window Function
def-window-function
J

⇧; Γ⇧; ∆⇧;F ⊢ e
win

⤇
agg
def v

⇧

J
⇧; Γ⇧; ∆⇧;F ⊢ e

win
⤇

win
def v

⇧

In this work, we only define the data provenance for window functions ewin created from
aggregation functions eagg. The corresponding rule is def-window-function. Support-
ing real window functions is considered future work.

6.7 Data Provenance for SQL

Based upon the previous definitions of a SQL (backend) dialect and its provenance
semantics, we can now formalize the data provenance for SQL.

Definition 6.1: Data Provenance

Let ∆ ∶∶ db be a database instance and ∆⇧
= liftrm(∆) be the lifted database. Let

Q ∶∶ etable be a table expression and F the associated UDF definitions. Let the
definitional interpreter

⦃⦄; ∆⇧;F ⊢ Q⤇
table
def v

⇧

evaluate to v⇧.
Then v⇧ is the data provenance regarding to ∆, Q and F , denoted

Prov(liftrm(∆), Q, F) = v⇧

.

Example We repeat the example from Section 5.1 using the notation from Defini-
tion 6.1. Query Q

′ listed in Figure 6.23(a) is formulated in a frontend query dialect
(see our distinction in Figure 6.1). The formal part of the provenance analysis starts

86

6.7 Data Provenance for SQL

SELECT p.name AS name
FROM planets AS p

WHERE p.density=’rocky’

(a) Raw query Q
′ (frontend dialect).

FROM planets AS p
WHERE p.density=’rocky’

GROUP BY ()
AGGREGATES ()

HAVING TRUE
WINDOWS ()
SELECT p.name AS name

ORDER BY ()
DISTINCT ON ()

OFFMIT NULL NULL

(b) Query Q (backend dialect).

Prov

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

planets⇧
name density

Earth, {1e} rocky, {5e}
Mars, {2e} rocky, {6e}
Jupiter, {3e} gaseous, {7e}
Neptune, {4e} icy, {8e}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, Q,⦃⦄

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

output⇧
name

Earth, {1e, 5y}
Mars, {2e, 6y}

(c) Provenance analysis of Q.

Figure 6.23: An example data provenance according to Definition 6.1.

with query Q of Figure 6.23(b), formulated in the backend dialect. The data provenance
according to Prov(⋅, ⋅, ⋅) is listed in Figure 6.23(c).

Outlook The provenance definition Prov(⋅, ⋅, ⋅) is not designed to be implemented. The
definition employs pairs of value and provenance (i.e., v,p). However, SQL fragments
like ...WHERE TRUE,p□ ... cannot be evaluated using an unmodified DBMS. The WHERE
predicate must yield boolean values.

We present our solution to this implementation issue in Chapter 8. The core idea is to
process values v and provenance p in two different queries.

87

Part III

Provenance Analysis

89

7 Normalization

This chapter introduces a normalization procedure. The normalization is an important
service which helps to make the rewrite rules for provenance analysis (subject of the next
chapter) simpler. The normalization uses expression duplication. This is not an issue
since we are restricted to a read–only query dialect.

Related Work This normalization strategy is based on [MDG18a] by T. Müller, B.
Dietrich and T. Grust.

7.1 Definition

Definition 7.1: Query Normalization

Let etable be a query formulated in the backend SQL dialect and F its corresponding
UDF definitions.
The query normalization

normalize(⋅, ⋅) ∶∶ (etable,udfs) ➛ etable
normalize(etable

, F) = etable
norm

consists of the sequential rewriting steps
• UDF inlining,
• correlation normalization and
• SFW normalization.

We specify all three normalization steps in the body of this chapter.

7.2 UDF Inlining

Our approach to provenance analysis (subject of the next chapter) augments tuple vari-
ables with context information (in an additional attribute). However, an UDF call like

91

7 Normalization

udf(var.col)

propagates the contents of attribute col towards the UDF body, ignoring the remaining
attributes. This is an issue for non–trivial UDF bodies (for example, a body with an
SFW expression). We consider the support of recursive UDFs future work.

In this work, we employ inlining and support only non–recursive UDFs. For example,
let

• F ≔ ⦃func ↦ ([x], x+x)⦄ be the UDF environment and

• q ≔ func(ecell
1) be a query fragment.

Through inlining, the UDF call gets substituted with the UDF body (here: x+x) and
the parameters (here: [x]) get substituted with the argument expression. The resulting
query fragment is q′ ≔ e

cell
1 +ecell

1 .

7.3 Correlation Normalization

Extended SQL Dialect For the purpose of correlation normalization, we augment the
backend dialect with an additional table expression etable ∶∶ etable. Its syntax is

BIND var

and it is semantically equivalent to SELECT var.*, i.e. all attributes of the correlated tuple
variable are selected. The resulting table has cardinality 1, because the tuple variable
always binds a single row. The main features of BIND are that it provides protection
from later rewrite steps and it is way more compact than the full SFW expression of
the backend dialect. As a final rewrite step (directly before query evaluation), BIND is
turned into SELECT, as explained above.

Correlation A correlated subquery is a subquery which references a free tuple variable.
The example query of Figure 7.1 computes the planets which have a moon orbiting
them. The subquery on lines 2-12 references p which gets bound in the outer query.
The subquery gets evaluated for each valuation of p. We observe that this semantics is
basically a cross join between planets and moons.

92

7.3 Correlation Normalization

1 FROM planets LATERAL () AS p
2 WHERE EXISTS(FROM moons LATERAL () AS m
3 WHERE p.name=m.planet -- ’p’ is a free
4 -- variable
5 GROUP BY ()
6 AGGREGATES ()
7 HAVING TRUE
8 WINDOWS ()
9 SELECT TRUE

10 ORDER BY ()
11 DISTINCT ON ()
12 OFFMIT NULL NULL)
13 GROUP BY ()
14 AGGREGATES ()
15 HAVING TRUE
16 WINDOWS ()
17 SELECT p.name AS has_moons
18 ORDER BY ()
19 DISTINCT ON ()
20 OFFMIT NULL NULL

(a) SFW expression with a correlated subquery.

planets
name density

Mercury rocky t1

Venus rocky t2

Earth rocky t3

Mars rocky t4

moons
name planet

Luna Earth t11

Phobos Mars t12

Deimos Mars t13

(b) Input tables.

output
has_moons
Earth t21

Mars t22

(c) Result table.

Figure 7.1: Example query: which planets have moons?

93

7 Normalization

1 FROM planets LATERAL () AS p
2 WHERE EXISTS(FROM moons LATERAL () AS m,
3 BIND p -- outer ’p’ (correlated)
4 LATERAL () AS p
5 WHERE p.name=m.planet -- ’p’ is a bound
6 -- variable
7 GROUP BY ()
8 AGGREGATES ()
9 HAVING TRUE

10 WINDOWS ()
11 SELECT TRUE
12 ORDER BY ()
13 DISTINCT ON ()
14 OFFMIT NULL NULL)
15 GROUP BY ()
16 AGGREGATES ()
17 HAVING TRUE
18 WINDOWS ()
19 SELECT p.name AS has_moons
20 ORDER BY ()
21 DISTINCT ON ()
22 OFFMIT NULL NULL

Figure 7.2: Query from Figure 7.1(a) after normalization.

94

7.4 SFW Normalization

Example Rewrite Figure 7.2 lists the rewritten example query which makes the implicit
join semantics explicit. Variable p gets added to the entries in the FROM clause (line 3)
and gets bound to a fresh p (line 4), shadowing the first one. The query semantics
does not change, because the value of p stays the same and there are as many subquery
evaluations as there have been before. The essential outcome of this rewrite is that all
variables (correlated and not) get bound in the FROM clause and later rewrite steps can
treat all variables uniformly. The BIND expression protects those artificial FROM entries
from getting rewritten any further.

Normalization Algorithm This rewrite step traverses a query Q and triggers the fol-
lowing steps for any FROM clause.

• Scan all subexpressions of the current SFW expression for free variables (unlimited
scan depth).

• If a free variable var is found, add the entry

BIND var LATERAL () AS var

to the FROM clause.

The rewritten query Q′ is input to the SFW normalization, see below.

Correctness Duplicate BIND (or BIND–equivalent) entries in the same FROM clause are
not an issue.

Argument: Let the unmodified FROM clause yield n rows. The rewrite adds an additional
join partner (i.e. the BIND expression) which evaluates to tables of cardinality 1. The
rewritten FROM clause yields n ⋅ 1 = n rows.

7.4 SFW Normalization

7.4.1 Motivation and Example

The SFW expression poses a challenge due to its size in in notation and complexity in
semantics. Regarding to the provenance definition (carried out in Chapter 6), the 10
clauses of the SFW expression got formalized individually. In order to stay compatible
with DBMS implementations of SQL, the normalization is designed to be less invasive.
The basic idea of this SFW normalization is to create additional SFW expression (ratio:
one in, five out). Each of the normalized SFW expressions only deals with a fraction of
the entire SFW logic. As an example input to normalization, see the query in Figure 7.3.

95

7 Normalization

FROM planets LATERAL () AS p,
moons LATERAL () AS m

WHERE p.id=m.planet
GROUP BY ()

AGGREGATES ()
HAVING TRUE

WINDOWS ()
SELECT p.name AS planet,

m.name AS moon
ORDER BY ()

DISTINCT ON ()
OFFMIT NULL NULL

(a) Query before normalization.

planets
id name
1 Mercury t1

2 Venus t2

3 Earth t3

4 Mars t4

moons
name planet

Luna 3 t11

Phobos 4 t12

Deimos 4 t13

(b) Input tables.

output
planet moon
Earth Luna t3

Mars Phobos t4

Mars Deimos t4

(c) Output table.

Figure 7.3: Example: input query and tables.

The query consists of a simple join of rocky planets and their moons. The column
planets.id is a primary key.

Through normalization, the query listed in Figure 7.4 is produced. The inner SFW
expression carries out the join logic and provides a single tuple variable v to the outer
SFW expression. The outer expression has its focus on a different task, i.e. the evaluation
of the original SELECT with the final column names planet and moon. The two nested
SFW expressions implement the same value semantics as the query in Figure 7.3.

7.4.2 Overview

In this section, we specify five normalized SFW expressions. Each of them has its focus
on a certain responsibility (e.g., join logic). The query listed in Figure 7.4 is fully
normalized already, i.e. it utilizes only two of the five expressions. The five normalized
SFW expressions can be distinguished in later rewrite steps, using pattern matching. The
structure of the SFW normalization is sketched in Figure 7.5. For each SFW expression

96

7.4 SFW Normalization

FROM (
FROM planets LATERAL () AS p,

moons LATERAL () AS m
WHERE p.id=m.planet

GROUP BY ()
AGGREGATES ()

HAVING TRUE
WINDOWS ()
SELECT p.name AS p_name,

m.name AS m_name
ORDER BY ()

DISTINCT ON ()
OFFMIT NULL NULL

) LATERAL () AS v
WHERE TRUE

GROUP BY ()
AGGREGATES ()

HAVING TRUE
WINDOWS ()
SELECT v.p_name AS planet,

v.m_name AS moon
ORDER BY ()

DISTINCT ON ()
OFFMIT NULL NULL

Figure 7.4: Normalization of the SFW expression from Figure 7.3: the join
logic sits in a dedicated SFW expression.

97

7 Normalization

normalizeSFW(e) ≔

normalizeOrderBy(
normalizeWindows(

normalizeAggregations(
normalizeFrom(e)

)
)

)

Figure 7.5: Normalization procedure of the SFW expression.

e, the four normalization steps are carried out.

7.4.3 FROM and WHERE

Normalization of FROM is the first normalization step and hence applies to the most
general SFW expression e listed in Figure 7.6(a). For now, we assume that there exist
≥ 2 entries in the FROM clause. The cases < 2 are discussed afterwards.

Figure 7.6(b) lists the result expression normalizeFrom(e) which consists of two (nested)
SFW expressions. This duplication implements a separation of responsibilities regarding
to join logic:

• The inner SFW expression specifies multiple tuple variables (on line 2) and a
predicate ecell

w (on line 3).

• The outer SFW expression is only aware of a single, artificial tuple variable v
(bound on line 12).

For consistency, the auxiliary function sub(⋅) (short for: substitute) turns any variable
reference into a reference of v. The SELECT (ecell

v,1 AS colv,1 , . . .) clause on line 8 ac-
cordingly propagates all referenced columns. If conflicts in column names would occur,
according renaming is carried out. For example, lines 9-10 in Figure 7.4 introduce the
prefixed column names p_name and m_name in order to avoid such conflict.

7.4.3.1 Case Distinction

The number of n bindings in the input FROM (efrom
1 , . . ., e

from
n) determines three cases:

• n ≥ 2: Discussed above.

• n = 1: The tuple variable is renamed to v and references are updated. If the input
query specifies WHERE TRUE, the SFW expression is not duplicated.

98

7.4 SFW Normalization

1 FROM (efrom
1 , . . .)

2 WHERE e
cell
w

3 GROUP BY (ecell
g,1 , . . .)

4 AGGREGATES (eagg
1 AS cola,1, . . .)

5 HAVING e
cell
h

6 WINDOWS (eover
1 AS colw,1, . . .)

7 SELECT (ecell
s,1 AS cols,1, . . .)

8 ORDER BY (ecell
o,1 ASC|DESC, . . .)

9 DISTINCT ON (ecell
d,1 , . . .)

10 OFFMIT `off `lim

(a) Expression e.

1 FROM (

2 FROM (efrom
1 , . . .)

3 WHERE e
cell
w

4 GROUP BY ()
5 AGGREGATES ()
6 HAVING TRUE
7 WINDOWS ()

8 SELECT (ecell
v,1 AS colv,1, . . .)

9 ORDER BY ()
10 DISTINCT ON ()
11 OFFMIT NULL NULL
12) LATERAL () AS v
13 WHERE TRUE

14 GROUP BY (sub(ecell
g,1), . . .)

15 AGGREGATES (sub(eagg
1) AS cola,1, . . .)

16 HAVING sub(ecell
h)

17 WINDOWS (sub(eover
1) AS colw,1, . . .)

18 SELECT (sub(ecell
s,1) AS cols,1, . . .)

19 ORDER BY (sub(ecell
o,1) ASC|DESC, . . .)

20 DISTINCT ON (sub(ecell
d,1), . . .)

21 OFFMIT `off `lim

(b) Expression normalizeFrom(e).

Figure 7.6: Normalization of join logic.

• n = 0: A dummy FROM (VALUES (ROW())) LATERAL () AS v is created, i.e. a single
row with zero columns. If a WHERE TRUE is specified in the input, the inner SFW
expression is skipped.

Outcome After the FROM normalization has been carried out, the outer SFW expres-
sion only knows about variable v and this variable always exists. Join logic and WHERE
predicate are specified in their dedicated subquery.

7.4.4 GROUP BY, AGGREGATES and HAVING

This normalization step isolates aggregation logic from the rest of the SFW expression.
That means, it focuses on the clauses GROUP BY, AGGREGATES and HAVING. It is a feature of
our backend SQL dialect that aggregation functions only occur in the AGGREGATES clause
and nowhere else.

If the AGGREGATES clause is empty (i.e. AGGREGATES ()) the query is non–aggregating.
In such cases, this normalization step is skipped. Otherwise, normalization is carried
out according to Figure 7.7. The input expression e is already normalized regarding

99

7 Normalization

FROM e
table LATERAL () AS v

WHERE TRUE

GROUP BY (ecell
g,1 , . . .)

AGGREGATES (eagg
1 AS cola,1, . . .)

HAVING e
cell
h

WINDOWS (eover
1 AS colw,1, . . .)

SELECT (ecell
s,1 AS cols,1, . . .)

ORDER BY (ecell
o,1 ASC|DESC, . . .)

DISTINCT ON (ecell
d,1 , . . .)

OFFMIT `off `lim

(a) Expression e.

FROM (

FROM e
table LATERAL () AS v

WHERE TRUE

GROUP BY (ecell
g,1 , . . .)

AGGREGATES (eagg
1 AS cola,1, . . .)

HAVING e
cell
h

WINDOWS ()
SELECT (aggs.cola,1 AS cola,1, . . .)

ORDER BY ()
DISTINCT ON ()

OFFMIT NULL NULL
) LATERAL () AS v

WHERE TRUE
GROUP BY ()

AGGREGATES ()
HAVING TRUE

WINDOWS (sub(eover
1) AS colw,1, . . .)

SELECT (sub(ecell
s,1) AS cols,1, . . .)

ORDER BY (sub(ecell
o,1) ASC|DESC, . . .)

DISTINCT ON (sub(ecell
d,1), . . .)

OFFMIT `off `lim

(b) Expression normalizeAggregations(e).

Figure 7.7: Normalization of aggregation logic.

to FROM and WHERE (discussed above). On the right–hand side, normalizeAggregations(e)
assembles two nested SFW expressions.

• The inner SFW expression carries out regular grouping, aggregation and filtering.
Aggregation results are bound to the aggs tuple variable. The (inner) SELECT
clause references all aggregated columns and makes them available to the outer
SFW expression.

• The outer SFW expression binds the aggregation results to v and the auxiliary
function sub(⋅) renames references of aggs into v.

Outcome After this normalization step has been carried out, the outer SFW expression
is unaware of any aggregation logic.

7.4.5 WINDOWS

The windows normalization is analogous to the normalization of aggregations. If the
WINDOWS–clause is non–empty, this normalization is carried out. The function sub(⋅)
replaces references to wins with references to v. Column name conflicts may occur (see

100

7.4 SFW Normalization

FROM e
table LATERAL () AS v

WHERE TRUE
GROUP BY ()

AGGREGATES ()
HAVING TRUE

WINDOWS (eover
1 AS colw,1, . . .)

SELECT (ecell
s,1 AS cols,1, . . .)

ORDER BY (ecell
o,1 ASC|DESC, . . .)

DISTINCT ON (ecell
d,1 , . . .)

OFFMIT `off `lim

(a) Expression e.

FROM (

FROM e
table LATERAL () AS v

WHERE TRUE
GROUP BY ()

AGGREGATES ()
HAVING TRUE

WINDOWS (eover
1 AS colw,1, . . .)

SELECT (v.colv,1 AS colv,1, . . .,
wins.colw,1 AS colw,1, . . .)

ORDER BY ()
DISTINCT ON ()

OFFMIT NULL NULL
) LATERAL () AS v

WHERE TRUE
GROUP BY ()

AGGREGATES ()
HAVING TRUE

WINDOWS ()

SELECT (sub(ecell
s,1) AS cols,1, . . .)

ORDER BY (sub(ecell
o,1) ASC|DESC, . . .)

DISTINCT ON (sub(ecell
d,1), . . .)

OFFMIT `off `lim

(b) Expression normalizeWindows(e).

Figure 7.8: Normalization of window function logic.

lines 8-9 in Figure 7.8(b)). If colv,i = colwins,k (with i and k a valid index in range), this
can be resolved by adding prefixes to column names.

7.4.6 ORDER BY, DISTINCT ON and OFFMIT

This final normalization step checks for non–trivial ORDER BY, DISTINCT ON and OFFMIT
clauses. If at least one is non–trivial, the normalization according to Figure 7.9 produces
an additional (outer) SFW expression. Expression normalizeOrderBy(e) consists of two
nested SFW expressions:

• The inner SFW expression evaluates the original SELECT clause. Additionally, all
existing columns in tuple variable v are propagated outwards. Conflicts in column
names may occur. These can be resolved using prefixes (not formalized here).

• The outer SFW expression evaluates the original ORDER BY, DISTINCT ON and OFFMIT
clauses.

101

7 Normalization

FROM e
table LATERAL () AS v

WHERE TRUE
GROUP BY ()

AGGREGATES ()
HAVING TRUE

WINDOWS ()

SELECT (ecell
s,1 AS cols,1, . . .)

ORDER BY (ecell
o,1 ASC|DESC, . . .)

DISTINCT ON (ecell
d,1 , . . .)

OFFMIT `off `lim

(a) Expression e.

FROM (

FROM e
table LATERAL () AS v

WHERE TRUE
GROUP BY ()

AGGREGATES ()
HAVING TRUE

WINDOWS ()

SELECT (ecell
s,1 AS cols,1, . . .,

v.colv,1 AS colv,1, . . .)
ORDER BY ()

DISTINCT ON ()
OFFMIT NULL NULL

) LATERAL () AS v
WHERE TRUE

GROUP BY ()
AGGREGATES ()

HAVING TRUE
WINDOWS ()
SELECT (v.cols,1 AS cols,1, . . .)

ORDER BY (ecell
o,1 ASC|DESC, . . .)

DISTINCT ON (ecell
d,1 , . . .)

OFFMIT `off `lim

(b) Expression normalizeOrderBy(e).

Figure 7.9: Normalization of sort logic.

7.4.7 The Fully Normalized SFW Expression

After the four normalization steps have been carried out, a single SFW expression may
have turned into five nested SFW expressions. Their individual responsibilities are

• join logic,

• aggregation logic,

• window function logic,

• select logic and

• sort logic.

The huge benefit of this normalization is that the provenance analysis can be structured
accordingly. Instead of rewriting a single (and complex) SFW expression, five more
lightweight SFW expressions are to be rewritten. We found no impact on the query
performance (subject of Chapter 9).

102

8 Detached Provenance Analysis

8.1 Overview

We introduce a method which derives the data provenance P for a SQL query Q and
a database ∆. Figure 8.1 provides an overview of the problem statement (on the left,
according to Definition 6.11) and our solution (on the right) being called detached prove-
nance analysis. Looking at the right–hand side, the main feature of our analysis method
is to derive the data provenance P in two computation steps.

• Phase 1 has its sole focus on evaluating predicates. The specific outcomes (per
tuple and predicate) are recorded and stored for later use.

• Phase 2 has its sole focus on propagating provenance annotations and does not
access the input database ∆. When the outcome of a specific predicate is required,
phase 2 looks up the recorded data from phase 1.

Put in other words, the two phases are designed to realize a separation of concerns. The
two concerns are the domain of values (phase 1) and the domain of provenance anno-
tations (phase 2). This separation makes the detached provenance analysis executable
using existing, unmodified DBMS infrastructure. A modern DBMS is the result of
decades of database research. The detached provenance analysis leverages this research.

Related work The term detached provenance analysis is new but one of the earliest
works on the topic has been published by T. Müller and T. Grust [MG15]. The ap-
proach of that particular work employs compilation of the SQL query into an imperative
program. Then, an earlier version of the detached analysis is used to analyze the im-
perative program and indirectly, yield the data provenance for the original SQL query.
The most recent work by T. Müller, B. Dietrich and T. Grust [MDG18a] skips the com-
pilation step and carries out the detached analysis directly on SQL level. This thesis is
based on the approaches of [MDG18a].

C. Jay and J. Cockett [JC94] introduce the perspective of shape. For example, a list
[42, 43] can be decomposed into its data (e.g., 42 and 43) and its shape (e.g., [□,□]).

1For presentation reasons, we approximate Prov(⋅, ⋅, ⋅) with ∼Prov(⋅, ⋅).

103

8 Detached Provenance Analysis

∼Prov(∆, Q)
= P

≡

(∆, Q)

Phase 1 Phase 2

P

Figure 8.1: A provenance analysis (left) turned into a detached provenance
analysis (right).

In our phase 2, the shape is kept but all data is replaced with provenance annotations
(e.g., [p1,p2]).

8.2 Introductory Example

We exemplify the phases 1 and 2 and explain how they work together in carrying out a
provenance analysis.

Example Query Query Q from Figure 8.2 is the running example. Semantically, it
selects planets with rocky density. For the example database ∆, two rows get filtered and
two are in the result table. In general, the query normalization of Chapter 7 is required
before the detached analysis takes place. Exclusively because Q is rather simple, its
normalization can be skipped.

Data Provenance The data provenance according to Definition 6.1 is denoted

Prov(liftrm(∆), Q, F)

. Applying this formalism (UDFs are not defined, hence F ≔ ⦃⦄) to the running example
yields the provenance results presented in Figure 8.3. It is the goal of the detached
provenance analysis to compute the very same result using a DBMS as backend.

104

8.2 Introductory Example

FROM planets LATERAL () AS p
WHERE p.density=’rocky’

GROUP BY ()
AGGREGATES ()

HAVING TRUE
WINDOWS ()
SELECT p.name AS name

ORDER BY ()
DISTINCT ON ()

OFFMIT NULL NULL

(a) Query Q formulated in the backend SQL dialect.

∆ ≔

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

planets
name density

Earth rocky t1

Mars rocky t2

Jupiter gaseous t3

Neptune icy t4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(b) Input database ∆.

output
name
Earth t101

Mars t102

(c) Result table.

Figure 8.2: Example query and data.

Prov

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

planets⇧
name density

Earth, {11e} rocky, {21e} t1

Mars, {12e} rocky, {22e} t2

Jupiter, {13e} gaseous, {23e} t3

Neptune, {14e} icy, {24e} t4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, Q,⦃⦄

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

output⇧
name

Earth, {11e, 21y} t101

Mars, {12e, 22y} t102

Figure 8.3: Example data provenance.

105

8 Detached Provenance Analysis

output⇧
name

Earth, {11e, 21y} t101

Mars, {12e, 22y} t102

(a) Original table (for reference).

output1
ρ name
t101 Earth
t102 Mars

(b) Output table in phase 1.

output2
ρ name
t101 {11e, 21y}
t102 {12e, 22y}

(c) Output table in phase 2.

Figure 8.4: The output table from Figure 8.3 in the detached approach.

8.2.1 One Table Detached

The very basic idea of the detached provenance analysis is to derive data provenance
detached from actual values. We exemplify this for output⇧. Figure 8.4 contains the
original table and its detached counterparts, denoted output1 and output2. Take note of
the symmetry between output1 and output2: both tables have the same column names
and cardinality but they have disjunct domains (i.e., regular values and provenance
annotations). As another important feature, the tables share the same row identifiers ρ.
These identifiers constitute actual columns in the detached approach. In comparison,
output⇧ has the same annotations but in meta language. Adding the ρ columns is
mandatory, because in plain bag semantics, there would be no deterministic way to
reconstruct the matching pairs of value and provenance (e.g., Earth, {11e, 21y}).

The bottom line of this example is that the two tables (output1, output2) and the single
table output⇧ are equivalent and can be translated into each other.

8.2.2 All Tables Detached

Ultimately, we aim to detach all parts of the provenance analysis. Keeping the current
example and zooming out a bit, the tables from Figure 8.5 appear. The figure exhibits
the same diamond shape as Figure 8.1. The provenance computation is carried out
in two (roughly independent) computation cycles. Phase 1 evaluates Q1 and phase 2
evaluates Q2. We are going to discuss the components of Figure 8.5 in turn.

For the discussion of output⇧, see above. The auxiliary function merge(⋅, ⋅) denotes the

106

8.2 Introductory Example

planets
name density

Earth rocky t1

Mars rocky t2

Jupiter gaseous t3

Neptune icy t4

planets1
ρ name density
t1 Earth rocky
t2 Mars rocky
t3 Jupiter gaseous
t4 Neptune icy

planets2
ρ name density
t1 { 1e } { 5e }
t2 { 2e } { 6e }
t3 { 3e } { 7e }
t4 { 4e } { 8e }

output1
ρ name
t101 Earth
t102 Mars

output2
ρ name
t101 { 1e, 5y }
t102 { 2e, 6y }

output⇧
name

Earth, { 1e, 5y } t101

Mars, { 2e, 6y } t102

detachrm(liftrm(⋅))

Q
1

Q
2

merge(⋅, ⋅)

log
ρin ρout

t1 t101

t2 t102

Figure 8.5: The tables involved in the analysis of the running example. Edge
semantics according to their labels and the textual description.

107

8 Detached Provenance Analysis

reintegration of values with provenance annotations.

In the upper part of the figure, the input table planets is processed using

detachrm(liftrm(∆))

. In this example, ∆ contains the only table planets. liftrm(⋅) generates the provenance
annotations which are to be propagated towards the result table (formal introduction
in Section 5.3.4). The auxiliary function detach∆(⋅) detaches provenance annotations
from values and yields the two tables planets1 and planets2.

In the center section of the figure, the queries Q1 and Q2 get evaluated (discussion of the
query text is deferred). They consume and produce the accordingly named input and
output tables. Both queries are the result from rewriting the input query Q according
to the rewrite rules we present in the body of this chapter.

The table log gets conveyed from Q
1 to Q2. This can be considered an integral overhead

of the detached analysis approach. Since the table planets2 only deals with provenance
sets, Q2 cannot evaluate WHERE predicates (e.g., p.density=’rocky’) to booleans. In
order to compensate for this deficiency, the row identifiers of qualified rows get recorded
in Q1 and are made available to Q2. In the example, this is the responsibility of table
log . We call this process logging. Only through logging, both tables output1 and output2
can maintain a synchronized row count. In order to carry out the final merge(⋅, ⋅) step
and reconnect the corresponding rows with each other, this kind of synchronization is
mandatory.

8.2.3 Phase 1

Evaluating Q1 is (due to logging) a non–optional preprocessing step before the actual
provenance analysis (carried out through Q

2) can take place. Q1, Q and the relevant
tables are listed in Figure 8.6. The resemblance between Q

1 and Q is very high by
intention. Both queries are supposed to compute (nearly) the same result table, but Q1

carries along ρ columns and uses logging to record relevant ρ values and provide them
to Q2. Hence, Q1

• references table planets1 (which contains all values of planets, augmented with a ρ
column) and

• yields another additional ρ column in its output table (see Figure 8.6(a) on line
8). As motivated above, the ρ identifier gets logged using the (side–effecting) UDF
writeLog(p.ρ).

108

8.2 Introductory Example

1 FROM planets1
2 LATERAL () AS p
3 WHERE p.density=’rocky’
4 GROUP BY ()
5 AGGREGATES ()
6 HAVING TRUE
7 WINDOWS ()
8 SELECT writeLog(p.ρ) AS ρ,
9 p.name AS name

10 ORDER BY ()
11 DISTINCT ON ()
12 OFFMIT NULL NULL

(a) Query Q
1 (generated from Q).

1 FROM planets
2 LATERAL () AS p
3 WHERE p.density=’rocky’
4 GROUP BY ()
5 AGGREGATES ()
6 HAVING TRUE
7 WINDOWS ()
8 SELECT
9 p.name AS name

10 ORDER BY ()
11 DISTINCT ON ()
12 OFFMIT NULL NULL

(b) Query Q (for reference).

planets1
ρ name density
t1 Earth rocky
t2 Mars rocky
t3 Jupiter gaseous
t4 Neptune icy

(c) Input table.

output1
ρ name
t101 Earth
t102 Mars

(d) Output table.

log
ρin ρout

t1 t101

t2 t102

(e) Logging table.

Figure 8.6: Q1 and the involved tables.

109

8 Detached Provenance Analysis

1 FROM planets2
2 LATERAL () AS p,
3 readlog(p.ρ)
4 LATERAL (p) AS l
5 WHERE TRUE
6 GROUP BY ()
7 AGGREGATES ()
8 HAVING TRUE
9 WINDOWS ()
10 SELECT l.ρ AS ρ,
11 p.name
12 ∪ toY(p.density ∪ ∅)
13 AS name
14 ORDER BY ()
15 DISTINCT ON ()
16 OFFMIT NULL NULL

(a) Query Q
2 (generated from Q).

1 FROM planets
2 LATERAL () AS p
3
4
5 WHERE p.density=’rocky’
6 GROUP BY ()
7 AGGREGATES ()
8 HAVING TRUE
9 WINDOWS ()

10 SELECT
11 p.name
12
13 AS name
14 ORDER BY ()
15 DISTINCT ON ()
16 OFFMIT NULL NULL

(b) Query Q (for reference).

planets2
ρ name density
t1 { 1e } { 5e }
t2 { 2e } { 6e }
t3 { 3e } { 7e }
t4 { 4e } { 8e }

(c) Input table.

output2
ρ name
t101 { 1e, 5y }
t102 { 2e, 6y }

(d) Output table.

log
ρin ρout

t1 t101

t2 t102

(e) Logging table.

Figure 8.7: Q2 and the involved tables.

The produced logging table is listed in Figure 8.6(e). It contains one row for each tuple
that has survived the WHERE clause. Also, ρ identifiers are exchanged with fresh ones
(this is important for n–way joins, discussed later). In the scope of this work, all logs
are relational.

8.2.4 Phase 2

Q
2, Q and the relevant tables are listed in Figure 8.7.

110

8.2 Introductory Example

Logging In general, WHERE e
cell cannot be evaluated in phase 2, because the predi-

cate ecell would yield data provenance instead of a boolean value. If we fed this to a
DBMS, a (static) type error could be expected.

Looking at line 5 of Q2, the WHERE predicate is gone and has been replaced with a
type–correct TRUE value. As a replacement, readlog(p.ρ) (lines 3-4) now implements the
filtering semantics. The SQL code of the table–valued readlog(p.ρ) UDF stays abstract
for now. Semantically, it accesses the logging table (produced in phase 1, listed in
Figure 8.7(e)) and looks up the current p.ρ identifier. For example, t1 is sitting in log ,
i.e. the corresponding tuple has passed the WHERE clause (in phase 1). The new identifier
ρout is bound to l.ρ and used from this point on.

As another example, t3 is not included in log . This lets readlog(p.ρ) produce an empty
table, i.e. the current binding of p has no join partner and gets dropped.

In conclusion, logging enforces symmetry between the two phases and therefore enables
us to run phase 2 values–less.

Provenance Annotations Going from phase 1 to phase 2, every data value becomes
a provenance annotation. The (initial) annotations of base tables (like planets2) have
been created through application of liftrm(⋅). Through evaluation of Q2, these initial
annotations get propagated towards the result table. Any annotation arriving in the
result table is part of the data provenance of query Q.

With exception of log inspection, Q2 operates exclusively in the domain of provenance
annotations. Looking at Q2 in Figure 8.7(a),

• the initial provenance annotations from planets2 are accessed (line 1),

• the rows (i.e. annotations) get assigned to tuple variable p (line 2),

• some rows get filtered through logging (line 3),

• the annotations sitting in p.name are referenced (line 11)

• Why–provenance (elaborated below) is added (line 12) and

• the result column name is determined (line 13).

In the end, Q2 emits table output2 (see Figure 8.7(d)) which contains the final provenance
annotations.

Why–Provenance According to the provenance definition for the WHERE–clause (see
Section 6.3.4.2), the associated predicate yields Why–provenance. This provenance is
then added (using ∪) to the individual output row.

111

8 Detached Provenance Analysis

Q
2 implements just this provenance semantics. The original WHERE–predicate

• p.density=’rocky’ (line 5 in Figure 8.7(a)) becomes

• p.density ∪∅ (line 12 in Figure 8.7(a))

as a result of query rewriting .

8.3 Formalization

8.3.1 Row Identifiers ρ

In the detached provenance analysis, each row is augmented with an additional column
from the domain of row identifiers. The meta variable ρ denotes row identifiers.

Definition 8.1: Row Identifier

A row identifier has the type rid and the domain dom(rid).
The auxiliary function freshρ() creates new and unique row identifiers.

The purpose of row identifiers is twofold.

• The output table of phase 1 and the output table of phase 2 get merged to-
gether, based on their ρ columns. For an example, see tables output1 , output2 and
outputfrom Figure 8.5.

• Through logging, results of predicates get communicated between phases 1 and 2.
For an example, see table log in Figure 8.5. Row identifiers map log entries to the
row currently being processed.

For both applications, row identifiers must be unique per (intermediate) table. Below,
we formulate an according correctness condition.

Condition 1

Row identifiers ρ are unique per (intermediate) table.

Condition 1 is referred to as C1.

112

8.3 Formalization

1 (FROM ... AS a
2 ...
3 (FROM ... AS b
4 WHERE ... a.x+b.x ...
5 ...
6 SELECT writeFilter(a.ρ, b.ρ) ...
7)
8 ...)

Figure 8.8: Example: a correlated subquery in pseudocode.

8.3.2 Logging and Nested Loops

SQL is a language which makes heavy use of nested loops. As an example, see Figure 8.8
which sketches a correlated subquery. The variable a is correlated (referenced on line 4).
In general, the result of the example WHERE predicate depends on all combinations of a
and b. If a concrete combination of rows qualifies against the WHERE predicate, the log
writing on line 6 is carried out. The log would be ambiguous if a.ρ were not included in
the log. For example, there could be a combination (a.ρ1, b.ρ1) which gets filtered and
another combination (a.ρ2, b.ρ1) which does not get filtered. Therefore, the log must
be able to distinguish between all combinations of tuple variables.

Condition 2

Log writing/reading includes the row identifiers ρ of free variables.

It is generally not desirable to include all visible variables in the log. Doing so would
force query optimizers to design plans with additional loops and thus, a major impact
on query performance could be expected.

A subexpression traversal can be employed to identify the free variables. The normaliza-
tion step (see Section 7.3) takes care of this issue for the SFW expression. For non–SFW
expressions, we discuss the correctness in the according rewrite rule. Condition 2 is re-
ferred to as C2.

8.3.3 Logging Locations ` and UDFs

Within a single query, multiple expressions may require logging. We use unique identi-
fiers to distinguish the different logging locations. The auxiliary function

113

8 Detached Provenance Analysis

` ≔ freshlog()

generates unique identifiers ` which denote a certain logging location.

8.3.4 RM1

We are going to formalize RM1 which is the relational model of phase 1.

Definition 8.2: RM1 Types

An RM1 type is a substitution of τbase1, τcell1, τrow1, τtable1 or τdb1. The sub-
stitution rules listed in Figure 8.9(a) are applied recursively until all non–terminals
are replaced.
The column identifiers coli in row(⋅) are pairwise different and ordered.
The super types base1, cell1, row1, table1 and db1 consist of all types which
can be substituted starting from τ

base1, τcell1, τrow1, τtable1 and τ
db1, respec-

tively.

The only difference between Definition 8.2 and the corresponding RM definition (see
Definition 4.1) is that rows have additional row identifiers. The base domains are
equivalent to Definition 4.2. Also, the domains for arrays dom(array1(τ)), tables
dom(table1(τ)) and databases are nearly equivalent with exception of nested row val-
ues (which include row identifiers). The value domain dom(row1(⋅)) gets formalized
next.

Definition 8.3: Row Domains in RM1

Let row1(ρ↦ rid, col1 ↦ τ1, . . . coln ↦ τn) be a type according to Figure 8.9(a).
The row domain is

dom(row1(ρ↦ rid, col1 ↦ τ1, . . . coln ↦ τn)) ≔
{⟨v0, v1, . . . vn⟩∣ v0 ∈ dom(rid), v1 ∈ dom(τ1), . . . vn ∈ dom(τn)}

.

RM1 has minimal requirements (i.e., an additional column) if implemented using an
off–the–shelf DBMS.

114

8.3 Formalization

8.3.5 RM2

The relational model of phase 2 is called RM2. Phase 2 does not process regular values
but propagates provenance annotations.

Definition 8.4: RM2 Types

An RM2 type is a substitution of τbase2, τcell2, τrow2, τtable2 or τdb2. The sub-
stitution rules listed in Figure 8.9(b) are applied recursively until all non–terminals
are replaced.
The column identifiers coli in row(⋅) are pairwise different and ordered.
The super types base2, cell2, row2, table2 and db2 consist of all types which
can be substituted starting from τ

base2, τcell2, τrow2, τtable2 and τ
db2, respec-

tively.

Directly comparing the type definitions of Figure 8.9, the essential difference is that base
types (bool, int, dec and text) get replaced with provenance annotations (pset) in
RM2. It is noteworthy that RM2 only has one type of provenance annotation while RM1
may support hundreds of base types. Besides of that, RM1 and RM2 are analogous by
design. Especially the augmented row value types (having ρ as their first column) are
consistent between both definitions. The value domains for rows, arrays, tables and
databases are analogous to phase 1 and are omitted. The pset domain is according to
Definition 5.3.

8.3.6 SQL

The detached provenance analysis is based on rewrites of SQL queries, i.e. the query
language stays (nearly) the same. Figure 8.10 provides an overview of the rewrite steps.
Query Q (with UDF definitions F) is supposed to be analyzed for its data provenance.
The scope of this work starts with Q formulated in the backend SQL dialect. In a first
rewrite step, Q gets normalized into Qnorm . The normalization is subject of Chapter 7
and is considered done. The main rewrite

detach(⋅) ∶∶ etable ➛ (etable,etable)
detach(Qnorm) = (Q1

, Q
2)

is subject of this chapter. The formalization of detach(⋅) is carried out next. Through
evaluation of the two queries Q1 and Q2, the data provenance is computed.

115

8 Detached Provenance Analysis

τ
base1 ∶∶=bool

∣ int
∣ dec
∣ text

τ
cell1 ∶∶=τbase1

∣ τrow1

∣ array1(τcell1)
τ

row1 ∶∶=row1(ρ ↦ rid,
col ↦ τ

cell1
,

⋮

)
τ

table1∶∶=table1(τrow1)
τ

db1 ∶∶=⦃tab ↦ τ
table1

, . . .⦄

(a) RM1 types.

τ
base2 ∶∶=pset

τ
cell2 ∶∶=τbase2

∣ τrow2

∣ array2(τcell2)
τ

row2 ∶∶=row2(ρ ↦ rid,
col ↦ τ

cell2
,

⋮

)
τ

table2∶∶=table2(τrow2)
τ

db2 ∶∶=⦃tab ↦ τ
table2

, . . .⦄

(b) RM2 types.

Figure 8.9: Substitution rules used in definitions.

(Q,F)

Q
norm

Q
1

Q
2

normalize(⋅, ⋅)

detach(⋅)

Figure 8.10: Overview of query rewrites.

116

8.3 Formalization

8.3.7 Detached Provenance Analysis

Definition 8.5: Detached Provenance Analysis

Let Q ∶∶ etable be a query formulated in the backend SQL dialect with the
corresponding UDF definitions F ∶∶ udfs. Let ∆ ∶∶ db be a database instance.
Let P ∶∶ table⇧ be the data provenance according to Prov(liftrm(∆), Q, F) = P .

The detached provenance analysis evaluates P with

•
normalize(⋅, ⋅) ∶∶ (etable,udfs) ➛ etable
normalize(Q,F) = Qnorm ,

•
detachrm(liftrm(⋅)) ∶∶ db ➛ (db1,db2)
detachrm(liftrm(∆)) = (∆1

,∆2)
,

•
detach(⋅) ∶∶ etable ➛ (etable,etable)
detach(Qnorm) = (Q1

, Q
2)

,

•
Phase1(⋅, ⋅, ⋅) ∶∶ (db1,etable,udfs*) ➛ (table1,db)
Phase1(∆1

, Q
1
, Flog1) = (v1,∆log)

,

•
Phase2(⋅, ⋅, ⋅, ⋅) ∶∶ (db2,etable,udfs,db) ➛ table2
Phase2(∆2

, Q
2
, Flog2,∆log) = v2

and

•
merge(⋅, ⋅) ∶∶ (table1,table2) ➛ table⇧
merge(v1, v2) = P

.

Normalization normalize(Q,F) = Qnorm denotes the query normalization according to
Definition 7.1. Qnorm is the normalized query with the inlined UDF definitions F .

Database detachrm(liftrm(∆)) = (∆1
,∆2) denotes the preparation step for the user

database ∆. First, liftrm(∆) = ∆⇧ according to Definition 5.7 is carried out. Thereby,
the LRM database ∆⇧

∶∶ db⇧ is created which integrates both data values and initial
provenance annotations (see discussion in Section 5.2.2). Next, detachrm(∆⇧) separates
the two domains of i) regular values and ii) provenance annotations, thereby creating
databases (∆1 ∶∶ db1,∆2 ∶∶ db2) which are specific for the corresponding phase. Ta-
ble names get suffixed with an according 1 or 2. For example, table planets would
become planets1 and planets2, exemplified in Figure 8.5. We omit the formalization of
detachrm(⋅).

117

8 Detached Provenance Analysis

Query Rewrite detach(Qnorm) = (Q1
, Q

2) denotes the application of the main rewrite
rules. These rules get specified in the body of this chapter.

Phase 1 Phase1(∆1
, Q

1
, Flog1) = (v1,∆log) denotes the value–only query evaluation

which is to be carried out by an off–the–shelf DBMS. Its arguments are

• the database instance ∆1 (discussed above),

• SQL query Q1 (discussed above) and

• the logging UDFs Flog1 ∶∶ udfs*.

The UDFs type is annotated with * in order to point out an additional requirement:
these UDFs write to the logging database ∆log. Accordingly, they cannot be specified in
the SQL backend dialect.

Phase 2 Phase2(∆2
, Q

2
, Flog2,∆log) = v2 is similar to phase 1 but consumes the logs

∆log instead. The log replaces the (now unnecessary) evaluation of predicates. There-
fore, phase 2 can focus on propagation of provenance annotations. The other inputs
to phase 2 are ∆2 (user database substituted with initial provenance annotations), Q2

(the rewritten query) and Flog2 (the UDFs responsible for log reading, corresponding
directly to the UDFs in Flog1). Flog2 is simpler and can be expressed in the backend
dialect. Finally, v2 is the result table with provenance annotations instead of values. As
an example, see table output2 from Figure 8.5.

Merge merge(v1, v2) = P carries out the re–combination of the domains of values and
provenance annotations. Both input tables v1 and v2 may have a different tuple order.
Joining them on column ρ yields the correct pairs of value and data provenance. This
step is exemplified in Figure 8.5 (without formalization).

8.4 Provenance Annotation Operators

For provenance propagation in the LRM context (see Chapter 5), we employed the
following operations.

• ∪ and ⋃ evaluate the union of two provenance annotations.

• Y(⋅) turns any provenance identifier into Why–provenance.

• .(⋅) computes the deep union of all provenance annotations in a nested data
structure.

118

8.4 Provenance Annotation Operators

• Ψ(⋅, ⋅) recursively adds a provenance annotation to a nested data structure.

For the detached provenance analysis, the operators ∪, ⋃ and Y(⋅) are kept without
modification. The recursive operators require definitions specific to phases 1 and 2.

8.4.1 Definitions

Definition 8.6: Collect2 Operator

Let v ∶∶ τ with τ one of the types base2, array2, row2 or table2.
The collect2 operator is

.2(v) ≔

⎧⎪⎪⎨⎪⎪⎩

let p ≔ v

in p
, v ∶∶ base2

let [v1, . . .] ≔ v,

p1 ≔ .2(v1),
⋮

in ⋃i=1,... pi

, v ∶∶ array2

let ⟨ρ, v1, . . . vn⟩ ≔ v,

v1 ≔ .2(v1),
⋮

in ⋃i=1,... pi

, v ∶∶ row2

let ❲v1, . . . vn❳ ≔ v,

p1 ≔ .2(v1),
⋮

in ⋃i=1,... pi

, v ∶∶ table2

.

Semantically, .2(v) evaluates to the deep union of all provenance annotations in v. Row
identifiers ρ are skipped.

For example,

.2([{1e}, {1e, 2y}]) = {1e, 2y}

119

8 Detached Provenance Analysis

merges the two provenance annotations of an array.

Definition 8.7: Push2 Operator

Let v ∶∶ τ with τ one of the types base2, array2, row2 or table2. Let p+ ∶∶ pset
be a provenance annotation.
The push2 operator is

Ψ2(v,p+) ≔

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

let p ≔ v

in p ∪ p+
, v ∶∶ base2

let [v1, . . .] ≔ v

in [Ψ2(v1,p+), . . .]
, v ∶∶ array2

let ⟨ρ, v1, . . . ⟩ ≔ v

in ⟨ρ,Ψ2(v1,p+), . . . ⟩
, v ∶∶ row2

let ❲v1, . . .❳ ≔ v

in ❲Ψ2(v1,p+), . . .❳
, v ∶∶ table2

.

Semantically, Ψ2(v,p) recursively adds the provenance annotation p to all existing prove-
nance annotations in v. The operator preserves the data type of v, i.e.

Ψ2(⋅, ⋅) ∶∶ (τ,pset) ➛ τ

as well as the cardinalities of arrays and tables. Moreover, the row identifiers ρ are
retained.

For example,

Ψ2([{1e}, {1e, 2e}], {3y}) = [{1e, 3y}, {1e, 2e, 3y}]

adds 3y to both provenance annotations of an array.

120

8.5 Rewrite of Cell Expressions

Definition 8.8: Collect1 Operator

Let v ∶∶ τ with τ one of the types base1, array1 or row1.
The collect1 operator is

.1(v) ≔

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v , v ∶∶ base1

let [v1, . . .] ≔ v

in [.1(v1), . . .]
, v ∶∶ array1

let ⟨ρ, v1, . . . vn⟩ ≔ v,

in ⟨.1(v1),1(vn)⟩
, v ∶∶ row1

.

Semantically, .1(v) recursively throws away the row identifiers ρ (and according columns)
of v. The function type is

.1(⋅) ∶∶ τ ➛ τ
′

with τ ≠ τ
′ in the general case. As the main feature, τ ′ is an RM type according to

Definition 4.1, designed to be compatible with common SQL dialects and query engines.
Implementations of sort algorithms can process values of type τ ′ without being misguided
by any row identifiers.

For example,

.1(⟨ρ↦ 42, foo ↦ payload⟩) = ⟨foo ↦ payload⟩

drops the row identifier 42 and the row type changes accordingly.

8.5 Rewrite of Cell Expressions

Cell expressions get rewritten according to the rules provided below. Each rewrite rule
has its corresponding provenance definition in Chapter 6. Conclusions are denoted

e
cell

⤇
cell
detach (ecell,1

, e
cell,2)

where

• e
cell ∶∶ ecell is the expression to be rewritten,

121

8 Detached Provenance Analysis

• e
cell,1 ∶∶ ecell is the resulting expression for phase 1 and

• e
cell,2 ∶∶ ecell is the resulting expression for phase 2.

The rewrite formalism demands two environments which we keep implicit. The two
auxiliary functions

• freshlog() ∶∶ logid and

• freshρ() ∶∶ rid.

create unique identifiers for logging locations and rows, respectively. Order does not
matter.

8.5.1 Literals `
detach-literal
`⤇

cell
detach (`,∅)

Rule detach-literal keeps the literal expressions ` for phase 1. For phase 2 however,
the resulting expression is the empty annotation–constructor ∅.

Comparison with the Definitional Interpreter In Chapter 6, we employed a definitional
interpreter and defined the semantics for SQL expressions. Below, rule def-literal is
reproduced.

def-literal
Γ⇧; ∆⇧;F ⊢ `⤇

cell
def `,∅

Both rules (detach-literal and def-literal) distinguish between value and provenance
in a similar fashion and ultimately yield the same semantics. However, the definitional
interpreter yields values (i.e., ∅ ∶∶ pset) while the rewrite rules yield expressions (i.e.,
∅ ∶∶ ecell). In the latter case, the expressions are supposed to be evaluated by the
query processor of a DBMS.

8.5.2 Row Constructors ROW
detach-row»»»»» e

cell
i ⤇

cell
detach (ecell,1

i , e
cell,2
i) »»»»»i=1..n

ρ ≔ freshρ()
e

cell,1
≔ ROW(ρ, e

cell,1
1 , . . . e

cell,1
n)

e
cell,2

≔ ROW(ρ, e
cell,2
1 , . . . e

cell,2
n)

ROW(e
cell
1 , . . . e

cell
n) ⤇

cell
detach (ecell,1

, e
cell,2)

122

8.5 Rewrite of Cell Expressions

Rule detach-row uses recursion to detach the n sub–expressions first. Then, a value–
only and a provenance–only row expression gets assembled. A unique ρ identifier is
generated which populates the (equally named) ρ attribute. Both SQL expressions share
the same row identifier.

Correctness The ROW expression may get evaluated in a loop (at runtime). However,
row identifiers ρ ≔ freshρ() are generated statically. We are going to discuss the two
correctness conditions from Section 8.3.

• C1 cannot be violated since the row constructor does not create tables.

• C2 cannot be violated since log writing/reading does not happen.

8.5.3 Column References .col
detach-col

e
cell

⤇
cell
detach (ecell,1

, e
cell,2)

e
cell

.col ⤇cell
detach (ecell,1

.col, ecell,2
.col)

Rule detach-column is perfectly symmetric in phases 1 and 2. Both phases share
the same column names and on evaluation, the corresponding value or provenance is
retrieved.

8.5.4 Comparison of Row Values

detach-rowop
e

cell
a ⤇

cell
detach (ecell,1

a , e
cell,2
a) e

cell
b ⤇

cell
detach (ecell,1

b , e
cell,2
b)

e
cell,1

≔ .1(ecell,1
a)⊛row .1(ecell,1

b)
e

cell,2
≔ .2(ecell,2

a) ∪ .2(ecell,2
b)

e
cell
a ⊛row e

cell
b ⤇

cell
detach (ecell,1

, e
cell,2)

The abstract operator ⊛row compares two row values with each other. In our detached
approach, row values get generally augmented with an additional ρ attribute (this hap-
pens in the recursive rewrites of ecell

a and ecell
b). However, this attribute would change

the query semantics if it were included in the comparison. .1(⋅) (see Definition 8.8)
recursively removes this attribute in phase 1. In phase 2, all provenance annotations of
the two rows get merged together (eager semantics).

123

8 Detached Provenance Analysis

8.5.5 Generic Operators
detach-operator»»»»» e

cell
i ⤇

cell
detach (ecell,1

i , e
cell,2
i) »»»»»i=1..n

⊛(e
cell
1 , . . . e

cell
n) ⤇

cell
detach (⊛(e

cell,1
1 , . . . e

cell,1
n), ⋃

i=1..n
e

cell,2
i)

Compared to ⊛row (see above), the operands of ⊛ always evaluate to unnested (i.e.,
base) values. The rewrite for phase 1 is trivial and the rewrite for phase 2 basically
replaces ⊛row with ⋃.

8.5.6 ISNULL

detach-isnull
e

cell
⤇

cell
detach (ecell,1

, e
cell,2)

ISNULL(e
cell

) ⤇
cell
detach (ISNULL(e

cell,1
), e

cell,2)

The rewrite of ISNULL is straightforward.

8.5.7 Variable Reference var
detach-var
var ⤇

cell
detach (var , var)

A variable reference var yields the corresponding value sitting in the current variable
environment Γ1 (in phase 1) and Γ2 (in phase 2). Our rewrite rules are static and do not
formalize the corresponding environments for the two phases (or during type checking).
At runtime, their types would be

• Γ1 ∶∶ ⦃var ↦ cell1⦄ and

• Γ2 ∶∶ ⦃var ↦ cell2⦄.

Due to the specific environments, var yields a value or provenance annotation when
evaluated in phase 1 or 2.

8.5.8 Array Constructor ARRAY

detach-array»»»»» e
cell
i ⤇

cell
detach (ecell,1

i , e
cell,2
i) »»»»»i=1..n

e
cell,1

≔ ARRAY(e
cell,1
1 , . . . e

cell,1
n)

e
cell,2

≔ ARRAY(e
cell,2
1 , . . . e

cell,2
n)

ARRAY(e
cell
1 , . . . e

cell
n) ⤇

cell
detach (ecell,1

, e
cell,2)

124

8.5 Rewrite of Cell Expressions

The rewrite of array expressions is very similar to row expressions (rule detach-row)
but simpler (because there is no row identifier).

8.5.9 Array Length
detach-array-length
LENGTH(e

cell
) ⤇

cell
detach (LENGTH(e

cell
),∅)

Rule detach-array-length directly corresponds to the definition def-array-length in
Section 6.1.8.1. Our arguments regarding to the empty provenance annotation (∅) can
be found there.

8.5.10 CASE

Figure 8.11 lists the rewrite rule detach-case. We make use of the related EQCASE
expression in the rewrite (introduced in Section 6.1.10).

Logging CASE is the first expression which involves logging. As a reminder, the main
advantage and challenge of the detached provenance analysis is that phase 2 is free of
data values. However, the CASE expression uses predicates which must yield booleans,
or the CASE fails to select a branch. The solution to this issue is logging. We employ
the two UDFs writecase(⋅) and readcase(⋅) which can dynamically communicate the
branch selection from phase 1 to phase 2.

writecase(`,ρ,branch) is a side–effecting UDF with three arguments. This UDF is
generic enough to cover all CASE expressions of a query. Because of its side–effect, it
cannot be formulated in the backend dialect. We are going to specify the log (=a
table) instead. Example implementations of some log–writing UDFs are provided in the
experiments context (see Section 9.1.3). The arguments are

• ` which statically identifies the current CASE expression,

• ρ which uniquely identifies the current tuple being processed and

• branch which encodes the selected WHEN... branch. We employ integer constants
to identify the n–th branch and 0 for the ELSE case.

logcase is the table containing the branch decisions of CASE expressions (schema listed
below). Its three columns directly correspond to the three arguments of writecase(⋅)
which implements an unconditional insert. The primary key stretches over ` and ρ,
because for any concrete combination of them, there can only be one branch. null values
are not possible.

125

8 Detached Provenance Analysis

detach-case
` ≔ freshlog()

»»»»» e
cell
when,i ⤇

cell
detach (ecell,1

when,i , e
cell,2
when,i)

»»»»»i=1 ...n»»»»» e
cell
then,i ⤇

cell
detach (ecell,1

then,i , e
cell,2
then,i)

»»»»»i=1 ...n e
cell
else ⤇

cell
detach (ecell,1

else , e
cell,2
else)

e
cell,1

≔

EQCASE

writecase(`, v.ρ, ecell
when)

WHEN 1 THEN e
cell,1
then,1

⋮

WHEN n THEN e
cell,1
then,n

ELSE e
cell,1
else

END

e
cell
when ≔

CASE

WHEN e
cell,1
when,1 THEN 1

⋮

WHEN e
cell,1
when,n THEN n

ELSE 0

END

e
cell,2

≔

EQCASE

readcase(`, v.ρ)

WHEN 1 THEN Ψ2(ecell,2
then,1 ,Y(⋃i=1 ..1 e

cell,2
when,i))

⋮

WHEN n THEN Ψ2(ecell,2
then,n ,Y(⋃i=1 ..n e

cell,2
when,i))

ELSE Ψ2(ecell,2
else ,Y(⋃i=1 ..n e

cell,2
when,i))

END

CASE

WHEN ecell
when,1 THEN ecell

then,1

⋮

WHEN ecell
when,n THEN ecell

then,n

ELSE ecell
else

END

⤇
cell
detach (ecell,1

, e
cell,2)

Figure 8.11: Rewrite of CASE.

126

8.5 Rewrite of Cell Expressions

logcase
` ρ branch

The UDF readcase(`,ρ) is the log–reading counterpart, called in phase 2. Providing
the attributes for the primary key, the branch is looked up and returned as result. An
empty result would indicate a serious error.

Rewrite Rule The rewrite rule detach-case is provided in Figure 8.11. The rule em-
ploys

• CASE to evaluate WHEN branches (phase 1 only) and

• EQCASE to evaluate THEN branches (both phases).

(A solution without EQCASE can be realized as well but requires to distribute the logging
UDFs over all n predicates. We omit the details.)

On the bottom of the rule, the n input branches and the mandatory ELSE branch are
provided. On the very top of the rule, an identifier for the current CASE expression is
generated and used in the logging UDFs. Phase 1 uses a sub–CASE to evaluate the WHEN
predicates and yields a simple integer–based identifier to uniquely identify the branch
having qualified. The outer EQCASE transparently logs this very identifier (see discussion
above) and uses it to pick the according branch for evaluation of the corresponding THEN
expression.

In phase 2, the inner CASE does not exist. Instead, the log is consulted and the ac-
cording THEN branch gets evaluated. Due to predicates, Why–provenance is created (see
Section 6.1.9 and rule def-case for a discussion of the provenance semantics).

(Non)–Compositionality and Correctness C1 cannot be violated since CASE does not
yield tables.

The argument forC2 is more complex. In our formalization, rule detach-case references
the row identifier v.ρ in its logging calls. However, C2 clearly states that correlated tu-
ple variables must be included in the log. At first sight, this looks like a violation of
C2. However, due to normalization (see Section 7.4.3) and according to rewrite rule
detach-join (introduced later in Section 8.7.2), identifiers v.ρ get composed from all
correlated tuple variables. Through transitivity, C2 holds. The drawback of this ap-
proach is that CASE violates the compositionality of the SQL dialect. The CASE expression
is restricted to those expression contexts where v exists. These are all SFW clauses ex-

127

8 Detached Provenance Analysis

cept for FROM and WHERE. For example, the TPC-H benchmark contains queries with CASE
in the SELECT clause.

8.5.11 TOROW
detach-torow

e
table

⤇
table
detach (etable,1

, e
table,2)

TOROW(e
table

) ⤇
cell
detach (TOROW(e

table,1
), TOROW(e

table,2
))

Rule detach-torow looks simple at first sight, but has interesting details.

Let the nested table expression etable evaluate to n rows.

• For n ≥ 2, the query fails (in both phases).

• For n = 1, TOROW(⋅) yields the row with all of its attributes. In both phases,
this includes the ρ attribute. This additional column is not an issue because the
expression yields multiple columns in general. Any other value or provenance
annotation sitting in that row just stays there and is part of the result.

• For n = 0, TOROW(⋅) generates a type–correct null value. I.e., a single row is pro-
duced with all attributes set to null. Rows and arrays can be nested arbitrarily
deep. (In our SQL dialect, the helper makenull(⋅) is utilized, discussed in Sec-
tion 6.1.11.) That being said, what is the semantics of null in phase 1, phase 2
and as a row identifier ρ?

– In phase 1, null values are retained.

– In phase 2, null values are implicitly turned into the empty provenance anno-
tation (∅).

– As a row identifier, null may be kept or converted into 0 (for compatibility
with primary keys in logging tables). As long as the row count is n ≤ 1, any
identifier is a unique identifier. It only needs to be consistent between the
two phases.

8.5.12 EXISTS
detach-exists

e
table

⤇
table
detach (etable,1

, e
table,2)

EXISTS(e
table

) ⤇
cell
detach (EXISTS(e

table,1
),.2(etable,2))

Rule detach-exists first detaches the table expression etable using the according rewrite
rules (table expression are subject of the next section). For phase 1, the EXISTS can be

128

8.6 Rewrite of Table Expressions

retained. For phase 2, the entire tabular result of etable,2 is merged and yields a single
(big) provenance annotation. In contrast, the rule def-exists defines a single row to
be included in the provenance result. Why is there a mismatch between definition and
rewrite rule?

We observed from the experiments that the DBMS used lazy evaluation in phase 1.
Typically, the EXISTS expressions sits behind a WHERE predicate. Hence, the first row
passing the WHERE predicate is included in the log, the rest is ignored. Through the log,
this lazy evaluation is transferred to phase 2 and becomes lazy provenance semantics.
There is however no guarantee. If etable,2 were a base table, the provenance of the entire
table table would be collected. A more elaborate rewrite rule may employ a LIMIT clause
in order to consistently yield a single row in phase 2. We consider this future work.

8.6 Rewrite of Table Expressions

Table expressions get rewritten according to the rules provided below. Each rewrite rule
has its corresponding provenance definition in Chapter 6. Conclusions are denoted

e
table

⤇
table
detach (etable,1

, e
table,2)

where

• e
table ∶∶ etable is the expression to be rewritten,

• e
table,1 ∶∶ etable is the resulting expression for phase 1 and

• e
table,2 ∶∶ etable is the resulting expression for phase 2.

8.6.1 Table References tab
detach-tab
tab ⤇

table
detach (tab1, tab2)

Rule detach-table is a mere renaming of referenced tables. The suffixes (1 and 2)
match those created by detachrm(⋅).

8.6.2 VALUES
detach-values»»»»» e

cell
i ⤇

cell
detach (ecell,1

i , e
cell,2
i) »»»»»i=0 ..n

e
table,1

≔ VALUES(e
cell,1
1 , . . . e

cell,1
n)

e
table,2

≔ VALUES(e
cell,2
1 , . . . e

cell,2
n)

VALUES(e
cell
1 , . . . e

cell
n) ⤇

table
detach (etable,1

, e
table,2)

129

8 Detached Provenance Analysis

stars1
ρ name

42 Sol

(a) Input table.

stars1

UNION ALL

stars1

(b) Naive query rewrite.

output1
ρ name

42 Sol
↯ Sol

(c) Output table.

Figure 8.12: Example query: UNION ALL in phase 1.

The rule detach-values is analogous to detach-array but on table level.

Correctness C2 holds because no logging is carried out.

In order to satisfy C1, we restrict the ecell
□ to row expressions ROW. The ROW expression

statically enforces fresh ρ values for each expression, thereby C1 is satisfied.

8.6.3 WITH
detach-with »»»»» e

table
i ⤇

table
detach (etable,1

i , e
table,2
i) »»»»»i=0 ..n

e
table,1

≔ WITH (tab11 AS e
table,1
1 , . . . tabn1 AS e

table,1
n) e

table,1
0

e
table,2

≔ WITH (tab12 AS e
table,2
1 , . . . tabn2 AS e

table,2
n) e

table,2
0

WITH (tab1 AS e
table
1 , . . . tabn AS e

table
n) e

table
0 ⤇

table
detach (etable,1

, e
table,2)

Rule detach-with uses the same renaming pattern as detach-tab.

8.6.4 UNION ALL

The etable
l UNION ALL etable

r expression merges the result tables of its two subexpressions.
All rows including duplicates are retained. This semantics may violateC1, as exemplified
in Figure 8.12. In table output1, a collision of row identifiers ρ = 42 occurs.

Rewrite rule detach-union-all of Figure 8.13 employs logging to avoid such conflicts.
The idea is that any row identifier of etable

r gets substituted with a fresh (i.e., globally
unique) one. Depending on cardinalities, etable

l can be a better choice (not covered in
our work).

The schema is

logunion
` ρin ρf,1 . . . ρf,m ρout

130

8.6 Rewrite of Table Expressions

detach-union-all
e

table
l ⤇

table
detach (etable,1

l , e
table,2
l) e

table
r ⤇

table
detach (etable,1

r , e
table,2
r)

(col1, . . . coln) ≔ colnames(etable
r) (f1, . . . fm) ≔ freevariables(etable

r)

e
table,1
r∗ ≔

FROM etable,1
r LATERAL () AS v

WHERE TRUE

GROUP BY ()

AGGREGATES ()

HAVING TRUE

WINDOWS ()

SELECT writeUnion(`, v.ρ, f1.ρ, . . . fm.ρ) AS ρ,

v.col1 AS col1,

⋮

v.coln AS coln
ORDER BY ()

DISTINCT ON ()

OFFMIT NULL NULL

e
table,2
r∗ ≔

FROM etable,2
r LATERAL () AS v

WHERE TRUE

GROUP BY ()

AGGREGATES ()

HAVING TRUE

WINDOWS ()

SELECT readUnion(`, v.ρ, f1.ρ, . . . fm.ρ) AS ρ,

v.col1 AS col1,

⋮

v.coln AS coln
ORDER BY ()

DISTINCT ON ()

OFFMIT NULL NULL

e
table,1

≔ e
table,1
l UNION ALL e

table,1
r∗ e

table,2
≔ e

table,2
l UNION ALL e

table,2
r∗

e
table
l UNION ALL e

table
r ⤇

table
detach (etable,1

, e
table,2)

Figure 8.13: Rewrite of UNION ALL.

131

8 Detached Provenance Analysis

where

• ` is the log identifier,

• ρin is the row identifier of the input row,

• ρf,1, . . . ρf,m are the row identifiers of correlated tuple variables and

• ρout is a fresh and unique row identifier.

The auxiliary function colnames(etable
□) yields the list of column names in table expres-

sion etable
□ (not formalized).

Correctness Through the logging procedure formalized above, C1 is satisfied. C2 is
satisfied through including the row identifiers of all correlated (i.e., free) variables. The
auxiliary function freevariables(⋅) carries out the search for free variables (not formalized).

8.7 Rewrite of the SFW Expression

The query normalization (described in Chapter 7) yields five types of SFW expressions
which can be distinguished through simple pattern matching. In this section, we provide
the five corresponding rewrite rules.

8.7.1 Normalized SELECT

The rewrite rule detach-select from Figure 8.14 has a single entry in its FROM clause
(due to normalization) and specifies n columns in its SELECT clause. The rewrite adds
the ρ column to the result columns and goes into recursion for all expressions in the
SELECT clause.

8.7.2 Normalized Join

Rule detach-join of Figure 8.15 has a non–trivial WHERE predicate and multiple entries
in its FROM clause. In the detached approach, this rule requires logging for two reasons.
First, the WHERE–predicate filters away certain combinations of join partners. Second,
joining n rows rows together requires a consistent strategy for how to merge their n
individual row identifiers ρ□. Our approach is to generate fresh row identifiers at runtime
and to record the mapping between the old identifiers and the new one. For n = 2, the
schema of the log is

132

8.7 Rewrite of the SFW Expression

de
ta

ch
-s

el
ec

t
eta

bl
e

fr
om

⤇
ta

bl
e

de
ta

ch
(e

ta
bl

e,
1

fr
om

,e
ta

bl
e,
2

fr
om

)
» » » » »e

ce
ll

i
⤇

ce
ll

de
ta

ch
(e

ce
ll
,1

i
,e

ce
ll
,2

i
)
» » » » »i=

1.
.n

eta
bl

e,
1
≔

FR
OM

eta
bl

e,
1

fr
om

LA
TE

RA
L

()
AS

v
WH

ER
E

TR
UE

GR
OU

P
BY

()
AG

GR
EG

AT
ES

()
HA

VI
NG

TR
UE

WI
ND

OW
S

()
SE

LE
CT

v.
ρ

AS
ρ
,

ece
ll

,1
1

AS
co

l 1
,
..
.
ece

ll
,1

n
AS

co
l n

OR
DE

R
BY

()
DI

ST
IN

CT
ON

()
OF

FM
IT

NU
LL

NU
LL

eta
bl

e,
2
≔

FR
OM

eta
bl

e,
2

fr
om

LA
TE

RA
L

()
AS

v
WH

ER
E

TR
UE

GR
OU

P
BY

()
AG

GR
EG

AT
ES

()
HA

VI
NG

TR
UE

WI
ND

OW
S

()
SE

LE
CT

v.
ρ

AS
ρ
,

ece
ll

,2
1

AS
co

l 1
,
..
.
ece

ll
,2

n
AS

co
l n

OR
DE

R
BY

()
DI

ST
IN

CT
ON

()
OF

FM
IT

NU
LL

NU
LL

FR
OM

eta
bl

e
fr

om
LA

TE
RA

L
()

AS
v

WH
ER

E
TR

UE
GR

OU
P

BY
()

AG
GR

EG
AT

ES
()

HA
VI

NG
TR

UE
WI

ND
OW

S
()

SE
LE

CT
ece

ll
1

AS
co

l 1
,
..
.
ece

ll
n

AS
co

l n
OR

DE
R

BY
()

DI
ST

IN
CT

ON
()

OF
FM

IT
NU

LL
NU

LL

⤇
ta

bl
e

de
ta

ch
(e

ta
bl

e,
1
,e

ta
bl

e,
2
)

Fi
gu

re
8.
14

:R
ew

ri
te

ru
le
:
no

rm
al
iz
ed

SE
LE

CT
.

133

8 Detached Provenance Analysis

detach-join
`
≔

fresh
log()

»»»»»
e table
i

⤇
table
detach (e table

,1
i

,e table
,2

i
)
»»»»» i
=1
..n

e cell
⤇

cell
detach (e cell,1

,e cell,2)

e table
,1

≔

1
FROM

e table
,
1

1
LATERAL

vs1
AS

var
1 ,

2
⋮

3
e table

,
1

n
LATERAL

vs
n

AS
var

n

4
WHERE

e cell,
1

5
GROUP

BY
()

6
AGGREGATES

()
7

HAVING
TRUE

8
WINDOWS

()
9

SELECT
writejoin(`,

var
1 .ρ,

...
var

n
.ρ)

AS
ρ,

10
var

sel,1 .col1
AS

col1 ,
...

11
ORDER

BY
()

12
DISTINCT

ON
()

13
OFFMIT

NULL
NULL

e table
,2

≔

1
FROM

e table
,
2

1
LATERAL

vs1
AS

var
1 ,

2
⋮

3
e table

,
2

n
LATERAL

vs
n

AS
var

n
,

4
readjoin(`,

var
1 .ρ,

...
var

n
.ρ)

5
LATERAL

(var
1 ,

...
var

n
)

AS
l

6
WHERE

TRUE
7

GROUP
BY

()
8

AGGREGATES
()

9
HAVING

TRUE
10

WINDOWS
()

11
SELECT

l.ρ
AS

ρ,

12
Ψ
2(var

sel,1
.col1

,Y(e cell,
2))

AS
cols

,1 ,
...

13
ORDER

BY
()

14
DISTINCT

ON
()

15
OFFMIT

NULL
NULL

1
FROM

e table
1

LATERAL
vs1

AS
var

1 ,
2

⋮

3
e table

n
LATERAL

vs
n

AS
var

n

4
WHERE

e cell

5
GROUP

BY
()

6
AGGREGATES

()
7

HAVING
TRUE

8
WINDOWS

()
9

SELECT
var

sel,1 .cols
,1

AS
col1 ,

...

10
ORDER

BY
()

11
DISTINCT

ON
()

12
OFFMIT

NULL
NULL

⤇
table
detach (e table

,1
,e table

,2)

Figure
8.15:R

ew
rite

rule:
norm

alized
join.

134

8.7 Rewrite of the SFW Expression

FROM logjoin2 LATERAL () AS l
WHERE a0=` AND a1=l.ρ1 AND a2=l.ρ2

GROUP BY ()
AGGREGATES ()

HAVING TRUE
WINDOWS ()
SELECT l.ρout AS ρ

ORDER BY ()
DISTINCT ON ()

OFFMIT NULL NULL

Figure 8.16: UDF body of readJoin(⋅) for a 2–way join, using positional param-
eters (a0, a1, . . .).

logjoin2
` ρ1 ρ2 ρout

. ρout is the resulting row identifier and ` the logging location. For n > 2, the schema
grows accordingly.

Looking at etable,1 from detach-join, the log–writing UDF is placed in the SELECT clause.
Its call references all ρ□ values which in turn get written to the log. For each write, a new
ρout is produced which in turn becomes the new ρ value in the result table. The remaining
entries of the SELECT clause can be copied literally from the input expression (see rules
detach-var and detach-col which have trivial rewrites — other subexpressions do not
appear in the SELECT clause due to normalization).

In phase 2 (see etable,2), the log–reading UDF is placed in the FROM clause. Using LATERAL,
all other variables become visible to the UDF. An implementation of the log–reading
function for 2–way joins is provided in Figure 8.16. It can only yield zero rows or a
single row (due to the primary key of the log).

In the provenance definition (see def-where), Why–provenance gets added to the current
row. In detach-join, this semantics is achieved through adding it to each individual
result column (see line 12 of etable,2 in detach-join).

Correctness C1 is satisfied: for each output row, a fresh row identifier is generated dy-
namically. C2 is satisfied: all correlated tuple variables are listed in the FROM expression
(due to normalization, see Section 7.3).

135

8 Detached Provenance Analysis

8.7.3 Normalized ORDER BY

Rule detach-order-by (provided in Figure 8.17) rewrites the non–trivial ORDER BY,
DISTINCT ON and OFFMIT clauses. The two latter ones depend on logging (i.e., synchronize
the removal of rows between the two phases), however ORDER BY does not (i.e., the row
ordering between phases 1 and 2 is generally different). Put in other words, rows in
phase 2 can always stay unordered.

The query expression e
table,1 of phase 1 (see detach-order-by) consists of two nested

SFW expressions. The basic issue here is that logging must be carried out after the
OFFMIT clause has been processed. Therefore, the inner expression carries out the sort
operation, duplicate elimination and removes leading/trailing rows. The outer expression
carries out the logging (i.e, any rows being left are considered qualified) and sorts again.
We assume that query optimizers exploit the redundancy in the two ORDER BY clauses
(they are identical) and the according query plan only triggers a single, physical sort
operation. The schema of the log is

logfilter
` ρ

with ` being the logging location and ρ the row identifier of a qualified row. Put in other
words, our detached provenance analysis models the tripel (ORDER BY, DISTINCT ON and
OFFMIT) as a filter operation. The log does not contain information about the row order.

In phase 2 (see etable,2 of detach-order-by), we employ readfilter(⋅) in an additional
FROM entry to replay the filter semantics of DISTINCT ON and OFFMIT. The row order
is not explicitly synchronized but implicitly through the (omnipresent) row identifiers
which connect the rows of phase 2 to the ordered rows of phase 1. Why–provenance
is generated on lines 9-10 from the subexpressions of ORDER BY and DISTINCT ON. The
Why–provenance is added to all output columns.

For simpler SFW expressions (with trivial DISTINCT ON and OFFMIT), the logging can be
skipped entirely. We do not formalize these corner cases.

Correctness C1 is satisfied: the SFW expression discussed above exclusively removes
rows. Therefore, ambiguous row identifiers cannot be added.

C2 is satisfied through transitivity: the v.ρ identifiers have been generated according
to rule detach-join with all (correlated) tuple variables taken into account.

8.7.4 Normalized AGGREGATES

136

8.7 Rewrite of the SFW Expression

de
ta

ch
-o

rd
er

-b
y

eta
bl

e,
1
≔

1
FR

OM
(

FR
OM

eta
bl

e,
1

LA
TE

RA
L

()
AS

v
2

WH
ER

E
TR

UE
3

GR
OU

P
BY

()
4

AG
GR

EG
AT

ES
()

5
HA

VI
NG

TR
UE

6
WI

ND
OW

S
()

7
SE

LE
CT

v.
ρ

AS
ρ
,

8
v.

co
l s

el
,1

AS
co

l s
el

,1
,
..
.

9
OR

DE
R

BY
v.

co
l o

rd
,1

as
c 1

,
..
.

10
DI

ST
IN

CT
ON

v.
co

l d
is

,1
,
..
.

11
OF

FM
IT

` o
ff
` l

im
)

AS
v

12
WH

ER
E

TR
UE

13
GR

OU
P

BY
()

14
AG

GR
EG

AT
ES

()
15

HA
VI

NG
TR

UE
16

WI
ND

OW
S

()
17

SE
LE

CT
wr

it
ef

il
te

r(
`,

v.
ρ
)

AS
ρ
,

18
v.

co
l s

el
,1

AS
co

l s
el

,1
,
..
.

19
OR

DE
R

BY
v.

co
l o

rd
,1

as
c 1

,
..
.

20
DI

ST
IN

CT
ON

()
21

OF
FM

IT
NU

LL
NU

LL

`
≔

fre
sh

lo
g (
)

eta
bl

e
⤇

ta
bl

e
de

ta
ch

(e
ta

bl
e,
1
,e

ta
bl

e,
2
)

eta
bl

e,
2
≔

1
FR

OM
eta

bl
e,
2

LA
TE

RA
L

()
AS

v,
2

re
ad

fi
lt

er
(`

,
v.
ρ
)

LA
TE

RA
L

(v
)

AS
l

3
WH

ER
E

TR
UE

4
GR

OU
P

BY
()

5
AG

GR
EG

AT
ES

()
6

HA
VI

NG
TR

UE
7

WI
ND

OW
S

()
8

SE
LE

CT
l.
ρ

AS
ρ
,

9
Ψ
2
(v

.c
ol

se
l,

1,
Y
(v

.c
ol

or
d,

1
∪
..
.

10
v.

co
l d

is
,1
∪
..
.)
)

11
AS

co
l s

el
,1

,
12

⋮
13

OR
DE

R
BY

()
14

DI
ST

IN
CT

ON
()

15
OF

FM
IT

NU
LL

NU
LL

1
FR

OM
eta

bl
e

LA
TE

RA
L

()
AS

v
2

WH
ER

E
TR

UE
3

GR
OU

P
BY

()
4

AG
GR

EG
AT

ES
()

5
HA

VI
NG

TR
UE

6
WI

ND
OW

S
()

7
SE

LE
CT

v.
co

l s
el

,1
AS

co
l s

el
,1

,
..
.

8
OR

DE
R

BY
v.

co
l o

rd
,1

as
c 1

,
..
.

9
DI

ST
IN

CT
ON

v.
co

l d
is

,1
,
..
.

10
OF

FM
IT

` o
ff
` l

im

⤇
ta

bl
e

de
ta

ch
(e

ta
bl

e,
1
,e

ta
bl

e,
2
)

Fi
gu

re
8.
17

:R
ew

ri
te

ru
le
:
no

rm
al
iz
ed

OR
DE

R
BY
.

137

8 Detached Provenance Analysis

detach-aggregates
`
≔

fresh
log()

e table
⤇

table
detach (e table

,1
,e table

,2)
»»»»»
e agg
i

⤇
agg
detach (e agg

,1
i

,e agg
,2

i
)
»»»»» i
=1
..n

e cell
hav

⤇
cell
detach (e cell,1

hav
,e cell,2

hav
)

»»»»»
e cell
k

⤇
cell
detach (e cell,1

k
,e cell,2
k

)
»»»»» k
=1
..m

e table
,1

≔

1
FROM

e table
,
1

LATERAL
()

AS
v

2
WHERE

TRUE

3
GROUP

BY
e cell,

1

1
,
...

e cell,
2

m

4
AGGREGATES

array_agg(v.ρ)
AS

ρ
group ,

5
e agg

,
1

1
AS

col1 ,
...

e agg
,
1

n
AS

coln
6

HAVING
e cell,

1

hav
7

WINDOWS
()

8
SELECT

writeagg(`,
aggs.ρ

group)
AS

ρ,
9

aggs.col1
AS

col1 ,
10

⋮
11

ORDER
BY

()
12

DISTINCT
ON

()
13

OFFMIT
NULL

NULL

e table
,2

≔

1
FROM

e table
,
2

LATERAL
()

AS
v,

2
readagg(`,

v.ρ)
LATERAL

(v)
AS

l
3

WHERE
TRUE

4
GROUP

BY
l.ρ

5
AGGREGATES

the(l.ρ)
AS

ρ

6
e agg

,
2

1
AS

col1 ,
...

e agg
,
2

n
AS

coln
7

HAVING
TRUE

8
WINDOWS

()
9

SELECT
aggs.ρ

AS
ρ,

10
Ψ
2(aggs.col1 ,Y(e cell,

2

hav
∪
⋃

mi
=1
e cell,

2

i
))

11
AS

col1 ,
12

⋮
13

ORDER
BY

()
14

DISTINCT
ON

()
15

OFFMIT
NULL

NULL

1
FROM

e table
LATERAL

()
AS

v
2

WHERE
TRUE

3
GROUP

BY
e cell

1
,
...

e cell
m

4
AGGREGATES

e agg
1

AS
col1 ,

...
e agg

n
AS

coln
5

HAVING
e cell

hav
6

WINDOWS
()

7
SELECT

aggs.col1
AS

col1 ,
8

⋮
9

ORDER
BY

()
10

DISTINCT
ON

()
11

OFFMIT
NULL

NULL

⤇
table
detach (e table

,1
,e table

,2)

Figure
8.18:R

ew
rite

rule:
norm

alized
AGGREGATES.

138

8.7 Rewrite of the SFW Expression

FROM logagg LATERAL () AS l
WHERE a0=l.` AND a1=l.ρin

GROUP BY ()
AGGREGATES ()

HAVING TRUE
WINDOWS ()
SELECT l.ρout AS ρ

ORDER BY ()
DISTINCT ON ()

OFFMIT NULL NULL

Figure 8.19: UDF body of readagg(⋅).

The rule detach-aggregates is similar to detach-join in the aspect of combining mul-
tiple ρ identifiers into a single one. Only in this case, the ρ values getting merged share
the same group. The schema of the log is

logagg
` ρin ρout

with ρout being identical for the ρin sharing the same group. The HAVING predicate can
remove certain groups from the result. If a group gets filtered, the log does not contain
the according entries.

Looking at the rewrite implementation in detach-aggregates, the predicate HAVING ecell
hav

is handled similar to the WHERE–predicate in detach-join (i.e., kept in phase 1 and turned
into Why–provenance in 2).

We employ an additional aggregation function ARRAY_AGG(ecell) (not introduced in the
backend dialect) which has the semantics to evaluate ecell for all rows and put the values
in an array value. Using ARRAY_AGG, all row identifiers constituting the current group
get collected (see line 4 of etable,1). The resulting array value gets bound to aggs.ρ and
becomes an argument of writeagg() (on line 8) which implements the log write and
returns a fresh (single) ρ to be the representative for the entire group. In parallel, all n
user–specified aggregation functions (eagg,1

1) get evaluated.

In phase 2, the aggregation log is inspected in order to re–create the same groups
from phase 1). (The UDF body for readagg(a0, a1) is listed in Figure 8.19.) Using
GROUP BY (l.ρ), the same groups from phase 1 get re–assembled. Then, the evaluation
of the (rewritten) aggregate expressions is carried out. Hereby, the aggregation func-
tion THE() yields the shared identifier of the current group — which becomes the row
identifier of the result row.

139

8 Detached Provenance Analysis

detach-sum
e

cell
⤇

cell
detach (ecell,1

, e
cell,2)

SUM(e
cell

) ⤇
agg
detach (SUM(e

cell,1
),⋃ e

cell,2)

detach-countstar
COUNTSTAR() ⤇

agg
detach (COUNTSTAR(),∅)

Figure 8.20: Rewrite of aggregations.

Correctness C1 is satisfied: the SFW expression discussed above creates fresh row
identifiers.

C2 is satisfied through transitivity: the v.ρ identifiers have been generated according
to rule detach-join with all (correlated) tuple variables taken into account.

8.7.4.1 Rewrite of Aggregation Functions

The rewrite of aggregations is formalized using conclusions

e
agg

⤇
agg
detach (eagg,1

, e
agg,2)

where

• e
agg is the aggregation expression to be rewritten,

• e
agg,1 is the rewritten expression for phase 1 and

• e
agg,2 is the rewritten expression for phase 2.

The concrete rewrite rules are listed in Figure 8.20. Rule detach-sum represents the
generic case and covers AVG, MIN, MAX, COUNT and THE as well. detach-countstar yields
the empty data provenance. We keep this discussion short, since the rewrite rules obey
the provenance definition for aggregates (see Section 6.5).

The provenance analysis of ARRAY_AGG is not supported. The issue is that the arrays
created in phases 1 and 2 generally differ in their order of elements. Some SQL dialects
support an additional ORDER BY specifier for aggregates, however our backend dialect
does not.

140

8.7 Rewrite of the SFW Expression

8.7.5 Normalized WINDOWS

As introduced in Section 6.6, a window functions employs a sliding window. While
the sliding window is being moved over the input table, an aggregation functions gets
evaluated repeatedly. The detached provenance analysis can grasp the sliding window
and its movement. Since input rows get partitioned and ordered (both depending on
runtime values), logging is required.

8.7.5.1 Logging

We reuse the example query from Section 6.6.1 to introduce our approach to logging
of window functions. An excerpt of the original query is listed in Figure 8.21(a) and
the input table (for phase 1) is listed in Figure 8.21(c). For now, we just focus on the
definition of the window frame and what information is needed in the log. The resulting
log (see Figure 8.21(d)) consists of four columns. The information stored there does
not explicitly store the four window frames (that would require more data) but enough
information to determine these frames.

• ` holds the logging identifier which is unique per window function in the query.

• ρ contains the row identifiers of the input table. These are not necessarily ordered.
For each of those row identifiers, one window frame is to be determined.

• part stores an identifier denoting the partition of ρ. Shared identifiers means that
the corresponding rows share the same partition. In our (deliberately simple)

OVER (PARTITION BY ()
ORDER BY v.month
ROWS 1 1)

(a) Example OVER clause.

OVER (PARTITION BY l.part
ORDER BY v.month ASC

ROWS 1 1)

(b) Example OVER clause in phase 2.

sales1
ρ month units
t1 1 20
t2 2 30
t3 3 25
t4 4 25

(c) Phase 1 input table.

logwindow
` ρ part rank
`1 t1 t1 1
`1 t2 t1 2
`1 t3 t1 3
`1 t4 t1 4

(d) The resulting log.

Figure 8.21: Logging example for a window function.

141

8 Detached Provenance Analysis

example, only one partition exists.

• rank determines the position of the row in its partition, after sorting.

What phase 2 does is to reference columns part and rank directly in the correspond-
ing OVER clause. Figure 8.21(b) lists the according query fragment. Input table and
logwindow got joined on ρ and logwindow gets bound to variable l (FROM clause not
listed). Hence,

• PARTITION BY l.part yields the same partitions,

• ORDER BY l.rank ASC yields the same order of rows and

• ROWS 1 1 yields the same window width

in phase 2.

8.7.5.2 Rewrite Rules

The rewrite rule detach-windows of Figures 8.22 and 8.23 is restricted to the rewrite of
a single window function (for its size and complexity). If multiple window functions are
to be rewritten, we are confident that an additional normalization step could be used
(not formalized in this work). The idea of such normalization is based on the principle of
window functions that they do not change the row count. Therefore, SFW expressions
(each evaluating a single window function) can be nested into each other (using their
FROM clauses). Each SFW expression would then evaluate one window function and add
one additional column.

Phase 1 The input expression of rule detach-windows contains a single window func-
tion w1 (defined on lines 6-9). The basic idea of phase 1 is to keep w1 (see etable,1 on
lines 6-9) and only rewrite its subexpressions. On top of that, we employ two additional
window functions which are responsible for collecting the data for the log.

• w2 uses the window function FIRST_VALUE which yields the first value of the current
partition, ordered according to the ORDER BY clause. We employ this value (which
is the same for all tuples of the same partition) as the partition identifier in the
log (see column part in Figure 8.21(d)).

• w3 uses the window function ROW_NUMBER which yields the (dense and ascending)
number of the row in the current partition, ordered according to the ORDER BY
clause. We store this value in the log (see column rank in Figure 8.21(d)) and use
it as the sole sort criterion in phase 2.

142

8.7 Rewrite of the SFW Expression

detach-windows
` ≔ freshlog() e

table
from ⤇

table
detach (etable,1

from , e
table,2
from)

e
win

⤇
win
detach (ewin,1

, e
win,2)

»»»»» e
cell
par ,k ⤇

cell
detach (ecell,1

par ,k , e
cell,2
par ,k)

»»»»»k=1..m
»»»»» e

cell
ord,i ⤇

cell
detach (ecell,1

ord,i , e
cell,2
ord,i)

»»»»»i=1..n

e
table,1

≔

1 FROM e
table,1
from LATERAL () AS v

2 WHERE TRUE
3 GROUP BY ()
4 AGGREGATES ()
5 HAVING TRUE

6 WINDOWS e
win,1 OVER (

7 PARTITION BY e
cell,1
par,1, . . .

8 ORDER BY e
cell,1
ord,1 asc1, . . .

9 ROWS `prec `foll) AS w1,
10 FIRST_VALUE(v.ρ) OVER (

11 PARTITION BY e
cell,1
par,1, . . .

12 ORDER BY e
cell,1
ord,1 asc1, . . .

13 ROWS NULL 0) AS w2,
14 ROW_NUMBER() OVER (

15 PARTITION BY e
cell,1
par,1, . . .)

16 ORDER BY e
cell,1
ord,1 asc1, . . .

17 ROWS NULL 0) AS w3
18 SELECT writewindow(`, v.ρ, wins.w2, wins.w3) AS ρ,
19 wins.w1 AS w1, . . .

20 ORDER BY ()
21 DISTINCT ON ()
22 OFFMIT NULL NULL

1 FROM e
table
from LATERAL () AS v

2 WHERE TRUE
3 GROUP BY ()
4 AGGREGATES ()
5 HAVING TRUE

6 WINDOWS e
win OVER (

7 PARTITION BY (ecell
par,1, . . .)

8 ORDER BY (ecell
ord,1 asc1, . . .)

9 ROWS `prec `foll) AS w1
10 SELECT wins.w1 AS w1, . . .

11 ORDER BY ()
12 DISTINCT ON ()
13 OFFMIT NULL NULL

⤇
table
detach (etable,1

, e
table,2)

Figure 8.22: Rewrite rule: normalized WINDOWS. Continued in Figure 8.23.

143

8 Detached Provenance Analysis

ov ≔

1 PARTITION BY l.part
2 ORDER BY l.rank ASC
3 ROWS `prec `foll

ps ≔ .2(ecell,2
par ,1) ∪ ⋅ ⋅ ⋅ ∪ .2(ecell

ord,1) ∪⋯

e
table,2

≔

1 FROM e
table,2
from LATERAL () AS v,

2 readwindow(`, v.ρ) LATERAL (v) AS l
3 WHERE TRUE
4 GROUP BY ()
5 AGGREGATES ()
6 HAVING TRUE

7 WINDOWS e
win,2 OVER ov AS w1,

8 ⋃ ps OVER ov AS w2
9 SELECT v.ρ AS ρ,

10 Ψ2(wins.w1, Y (wins.w2)) AS w1
11 ORDER BY ()
12 DISTINCT ON ()
13 OFFMIT NULL NULL

Figure 8.23: Continuation: additional premises of the WINDOWS rewrite rule.

Lines 9 (w1), 13 (w2) and 17 (w3) specify the window width for the three window functions.
The width differs on purpose.

• w1 keeps the values of the input expression (as w1 is supposed to keep the original
query semantics).

• w2 and w3 however denote ROWS NULL 0 which defines a window stretching from the
beginning of the current partition to the current row. This setting is important
since the beginning of the partition is used to determine the offset of the current
row and the identifier used to represent the current partition.

The log–writing UDF is located on line 18. It writes its arguments directly to table
logwindow . Its schema is as in the example of Figure 8.21(d).

Phase 2 Phase 2 employs the UDF readwindow() on line 2 of etable,2 in Figure 8.23.
This log–reading UDF is very similar to previous UDFs and not listed (it joins v.ρ
with the log and filters for `). The log yields the columns l.part and l.rank which
get referenced in ov (see Figure 8.23). These values re–create the window frames from
phase 1 in phase 2 (discussed above). Again, w1 denotes the window function directly
assembled from the input expression and computes Where–provenance.

144

8.7 Rewrite of the SFW Expression

Why–Provenance First, the cell expression ps is assembled from all PARTITION BY and
ORDER BY criteria. We employ .2(⋅) in order to yield flat sets. On line 8 (see Figure 8.23),
the ⋃ aggregate is used to union the data provenance of all criteria together. The Why
operator is applied on line 10 and the Why–provenance is distributed over the (possibly
nested) wins.w1.

Correctness C1 is satisfied: the output rows (i.e., etable,1 and etable,2) retain the row
identifiers from the input rows (i.e., etable

from).

C2 is satisfied through transitivity: the v.ρ identifiers have been generated according
to rule detach-join with all (correlated) tuple variables taken into account.

8.7.5.3 Rewrite of Window Expressions

The rewrites of window expressions is formalized using conclusion

e
win

⤇
win
detach (ewin,1

, e
win,2)

where

• e
win is the expression being rewritten,

• e
win,1 is the expression for phase 1 and

• e
win,2 is the expression for phase 2.

In the context of this work, all window functions are created from aggregation functions.
Rule detach-window-function is listed below.

detach-window-function
e

agg
⤇

agg
detach (eagg,1

, e
agg,2)

e
agg

⤇
win
detach (eagg,1

, e
agg,2)

The provenance definition and analysis of true window functions (for example, FIRST_VALUE)
are considered future work.

145

9 Experimental Evaluation

An experimental evaluation was carried out in order to determine the runtime overhead
of the detached provenance analysis. We determined the slowdown factors

• 1.00 for query normalization,

• 3.56 for phase 1,

• 5.48 for phase 2 and

• 12.5 in total.

According to these (aggregated and rounded) numbers, phase 2 is the most expensive
computation step and the query normalization has no performance impact at all. In
total, the runtime of a provenance analysis is 12.5 times the runtime of the original
query. We employed PostgreSQL as DMBS backend and successfully evaluated the 22
queries of the TPC-H benchmark (with scale factor 1.0). The details are presented in
the body of this chapter.

9.1 Implementation in PostgreSQL

We chose a PostgreSQL DBMS backend for the experiments. The implementation of
the detached provenance analysis was low–invasive and basically consisted of additional
tables and UDFs. A precompiled PostgreSQL binary was used.

9.1.1 Query Rewrites

A manual rewrite of the 22 TPC-H queries was carried out. That means, for each of
the i original queries (denoted Quser

i), we produced the normalized query (Qnorm
i), the

query for phase 1 (Q1
i) and for phase 2 (Q2

i). An overview of noteworthy differences
(compared to the formalization of Chapter 8) is provided below.

• Q13 employed a left outer join. Outer joins are not in the scope of our formaliza-
tion. An outer join potentially produces null values which can be cast to 0 (for
the purpose of logging) or to ∅ (the empty provenance annotation). Besides the

147

9 Experimental Evaluation

db=> SELECT ARRAY[1,-2]::int[] AS example;
example

{1,-2}

(1 row)

Figure 9.1: Example: a provenance annotation.

treatment of null values, the provenance semantics and logging are very similar to
joins detach-join (see Section 8.7.2). We skip the details.

• Q15 involved the view definition revenue0. We added view definitions for phases 1
and 2, i.e. the views revenue0_1 and revenue0_2 and applied the rewrite rules
recursively for the body of revenue0.

• Q16 uses an additional DISTINCT flag in its aggregation, i.e. COUNT(DISTINCT ...)
which is not supported by the SQL backend dialect. We turned the DISTINCT flag
into a subquery.

9.1.2 Implementation of Provenance Annotations

Provenance annotations according to Definition 5.1 are (flat) sets. Using the unmodified
PostgreSQL DBMS, we implemented them as arrays of signed 4–byte integers. The
provenance annotation {1e, 2y} is exemplified in Figure 9.1.

Where– and Why–provenance get mapped to the positive and negative integer domain,
respectively. The zero value is forbidden for ambiguity. There are two limitations to
keep in mind.

• Integer arrays can contain a maximum number of ≈ 65 million entries (due to a
hard–coded memory limitation of PostgreSQL).

• The (4 byte) integer domain ranges between ≈ −2 and ≈ +2 billion.

The biggest table in the TPC-H benchmark is lineitem and has ≈ 6 million tuples
(on scale factor 1.0) and 16 columns, i.e. 6 ∗ 16 = 96 million provenance identifiers1.
Therefore, aggregating the lineitem table would already exceed the maximum array size
(96 > 65 million). However, the 22 queries of the benchmark are selective enough to stay
within the limit. Regarding to the second limitation (4 byte integer domain), a scale
factor of up to ≈ 20 can be supported. If necessary, the 8 byte integers of PostgreSQL
could be employed.

1If Where– and Why– provenance are both considered, this makes an additional factor of 2.

148

9.1 Implementation in PostgreSQL

CREATE AGGREGATE ⋃(anyarray) (
INITCOND=’{}’,
STYPE=anyarray,
SFUNC=array_cat,
FINALFUNC=array_unique

)

(a) Definition as custom aggregate.

-- phase 1

SELECT
...
SUM(e),
...

...
-- phase 2

SELECT
...
⋃(e),
...

...

(b) Idiomatic usage.

Figure 9.2: ⋃ in PostgreSQL.

Array elements are in a fixed sequence (not relevant for the representation of data prove-
nance). Arrays may contain duplicate elements which is against Definition 5.1. We
employ explicit duplicate elimination. In the context of this work, we did not evaluate
different implementations of provenance annotations. The optimization of phase 2 is
generally considered future work, elaborated in Chapter 13.

9.1.2.1 NULL

In phase 2, NULL–valued provenance annotations may occur. For example, the outer join
of Q13 emits cells with NULL::int[]. Through implicit casting, these get turned into
empty arrays.

9.1.2.2 Binary Union ∪

The (small) union combines two sets (i.e., provenance annotations) a and b into a re-
sulting set a ∪ b.

We implement ∪ with the PostgreSQL builtin array_cat(a, b) (infix notation: a || b)
which concatenates two arrays a and b. Duplicate elimination is not carried out imme-
diately.

9.1.2.3 n–Ary Union ⋃
Our primary method for the implementation of ⋃ is inlining using ∪. This is possible
as long as the number of operands is statically known.

149

9 Experimental Evaluation

CREATE FUNCTION array_unique(a anyarray)
RETURNS anyarray AS

$$
SELECT ARRAY(SELECT DISTINCT v.unnested

FROM unnest(a) AS v(unnested))
$$ LANGUAGE SQL IMMUTABLE;

Figure 9.3: Implementation of duplicate removal.

However for aggregations (see the example in Figure 9.2(b)), we implemented a custom
aggregation function in PostgreSQL, listed in Figure 9.2(a). The aggregate definition
specifies INITCOND (start value: the empty array), STYPE (the accumulator type), SFUNC
(accumulation function: array_cat() from above) and FINALFUNC (duplicate removal,
discussed below).

Optimization Despite of its conciseness, the⋃ definition from Figure 9.2(a) turned out
as a major bottleneck when utilized for the provenance analysis of the TPC-H queries.
Therefore, all experimental results presented in this work are based on an optimized ver-
sion of ⋃. Both implementations (–concise and –optimized) are PostgreSQL aggregates
and can be exchanged easily. The idea behind the optimized version is sketched below.

1. Nest each array into a row (with a single attribute).

2. Collect the rows into an array, using ARRAY_AGG (which is fast).

3. Carry out a double unnest and thereby yield a single, unnested array.

Step 1. is necessary to avoid constructing two–dimensional arrays. We skip the details.

9.1.2.4 Duplicate Removal

The UDF array_unique(a) (listed in Figure 9.3) detects and removes duplicates in ar-
ray a.

9.1.2.5 Why Operator Y(⋅)

The Why operator is defined in Definition 5.2 and is responsible for generating Why–
provenance from Where–provenance. The experiments were carried out using the Post-
greSQL implementation listed in Figure 9.4. The basic idea is to

• turn the array a into a table with a single column,

150

9.1 Implementation in PostgreSQL

CREATE OR REPLACE FUNCTION toY(a int[])
RETURNS int[] AS
$$

SELECT array(
SELECT -abs(var.col)

FROM unnest(a) AS var(col))
$$ LANGUAGE SQL IMMUTABLE;

Figure 9.4: Implementation of Y(⋅).

• make all integers negative (see line 5) and

• turn the table back into an array.

Duplicate removal is deferred.

Semantics Switch A local change to the implementation of Y(⋅) can be used to switch
between different provenance semantics.

• The computation of Why–provenance is skipped if toY is implemented as the empty
array ARRAY[]. Where–provenance stays unaffected.

• Where–and Why–provenance get merged together if toY is implemented as the
identity id(a).

9.1.2.6 Recursive Set Operators

We did not implement the recursive set operators (i.e., .1(⋅), .2(⋅) and Ψ2(⋅, ⋅)) but
used inlining where needed.

9.1.3 Implementation of Logging: Overview

Relational logs were used in the experiments (evaluating other storage options is con-
sidered future work). For TPC-H, we defined 10 logging tables with their respective
read/write UDFs. The individual TPC-H queries had between 1 and 4 logging locations.

9.1.4 Implementation of Logging: Example

The implementation of logging for 2–way joins is exemplified. The schema from Sec-
tion 8.7.2 is reproduced in Figure 9.5(a). We implemented the log according to Fig-
ure 9.5(b). It defines the compositional primary key (`, ρ1, ρ2). One essential task

151

9 Experimental Evaluation

logjoin2
` ρ1 ρ2 ρout

(a) Log schema.

-- sequence definition: shared between logs
CREATE SEQUENCE ρseq;

-- definition of log.join2
CREATE TABLE log.join2 (` integer NOT NULL,

ρ1 integer NOT NULL,
ρ2 integer NOT NULL,
ρout integer NOT NULL);

ALTER TABLE log.join2 ADD PRIMARY KEY (`, ρ1, ρ2);
ALTER TABLE log.join2 ALTER COLUMN ρout

SET DEFAULT NEXTVAL(’ρseq’);

(b) Table definition in PostgreSQL.

Figure 9.5: Example: 2–way joins and log implementation.

for the primary key is to block duplicate entries (elaborated below). The NEXTVAL(.)
expression generates unique ρ values.

9.1.4.1 UDF Placement

Figure 9.6 exemplifies the placement of logging UDFs. Be aware that the example query
is normalized, i.e. there are no additional SFW clauses.

In phase 1, the ρ values of the contributing rows got written to the according log. The
first argument (here: 42) is to distinguish between different logging locations. It must
be unique and match between the two phases.

In phase 2, the log gets read. Basically, the log replaced the WHERE–clause. Due to
implicit LATERAL semantics, the variables row1 and row2 are visible to the UDF. The
resulting values in column log.ρ match with those from phase 1.

9.1.4.2 UDF Implementations

Continuing the example from above, the UDF implementations for the 2–way join are
listed in Figure 9.7. The implementation of readjoin() is straightforward. The UDF can
be declared STABLE which is beneficial for query optimization. The implementation of

152

9.1 Implementation in PostgreSQL

1 SELECT
2 writeJoin(42, row1.ρ,
3 row2.ρ) AS ρ,
4 . . .

5 FROM
6 (. . .) AS row1,
7 (. . .) AS row2
8 WHERE
9 . . .

(a) Phase 1–query.

1 SELECT
2 log.ρ
3 AS ρ,
4 . . .

5 FROM
6 (. . .) AS row1,
7 (. . .) AS row2,
8 readJoin(42, row1.ρ,
9 row2.ρ) AS log(ρ)

(b) Phase 2–query.

Figure 9.6: Placement of logging UDFs.

writejoin() basically writes its arguments to the log, returning a fresh row identifier ρout .
On top of that, lines 13-15 specify an EXCEPTION handling (discussed below).

9.1.4.3 Duplicate Log Writes

The necessity of detecting / avoiding duplicate log entries is induced by the limitations
of query optimizers. Duplicate log writes can be triggered when the query executor
repeats the same evaluation multiple times. Of course, this is inefficient and would not
happen in a perfect world. An example for when repeated evaluation occurs is failed
query decorrelation (a concrete example is Q17, discussed in this chapter). For regular
query evaluation, the consequence of surplus evaluations is decreased performance. In
context of the detached provenance analysis, the consequences are worse. By default,
any log write yields a unique ρout . If the same log write is carried out twice, two different
ρout are produced (for the same combination of ρ1, . . .). This is an ambiguity and in
phase 2 it is no longer clear which input/output ρ values belong to each other. To avoid
such ambiguity beforehand, we employed primary keys and exception handling.

The terminal listing of Figure 9.8 exemplifies how our implementation transparently deals
with duplicate log writes. Calling writeJoin(1, 10, 51) twice yields the same ρ value
101. Under the hood, the primary key stops duplicate log entries from being written.
The program logic on lines 13-15 (see Figure 9.7(a)) handles any UNIQUE_VIOLATION being
raised and looks up the already existing ρ value through calling readjoin(). For reasons
not further elaborated, we recommend to inline readjoin() which significantly increases
the performance.

153

9 Experimental Evaluation

1 CREATE FUNCTION writejoin(` integer,
2 ρ1 integer,
3 ρ2 integer)
4 RETURNS integer AS
5 $$
6 DECLARE
7 res integer;
8 BEGIN
9 INSERT INTO log.join2 (`, ρ1, ρ2)

10 VALUES (`, ρ1, ρ2)
11 RETURNING ρout INTO res;
12 RETURN res;
13 EXCEPTION
14 WHEN UNIQUE_VIOLATION THEN
15 RETURN readJoin(`, ρ1, ρ2);
16 END;
17 $$ LANGUAGE PLPGSQL VOLATILE;

(a) Log–writing UDF.

1 CREATE FUNCTION readjoin(` integer,
2 ρ1 integer,
3 ρ2 integer)
4 RETURNS TABLE(ρ integer) AS
5 $$
6 SELECT j.ρout
7 FROM log.join2 AS j
8 WHERE j.`=`
9 AND j.ρ1=ρ1

10 AND j.ρ2=ρ2
11 $$ LANGUAGE SQL STABLE;

(b) Log–reading UDF.

Figure 9.7: UDF logging implementation for 2–way joins.

154

9.1 Implementation in PostgreSQL

-- start sequence at 101
db => ALTER SEQUENCE ρseq RESTART WITH 101;
ALTER SEQUENCE

-- (1): first log write
db => SELECT writejoin(1, 10, 51);
writejoin

101

(1 row)

-- (2): second log write
db => SELECT writejoin(1, 10, 52);
writejoin

102

(1 row)

-- (3): first log write (repeated)
db => SELECT writejoin(1, 10, 51);
writejoin

101

(1 row)

-- final log
db => TABLE log.join2;
` | ρ1 | ρ2 | ρout

---+----+----+-----
1 | 10 | 51 | 101
1 | 10 | 52 | 102

(2 rows)

Figure 9.8: Example: unambiguous log entries (i.e., (`, ρ1, ρ2) ↦ ρout) are en-
forced.

155

9 Experimental Evaluation

9.2 Setup

9.2.1 Hard– and Software

Hardware The experiments were carried out on a machine with two Intel Xeon 5570
CPUs2. The machine had 72 GB of main memory installed and plenty of HDD storage.
Due to caching, HDD overheads were supposedly not significant.

Operating System The machine ran an Ubuntu 16.04 operating system with a Linux
4.4 kernel. Swap space and cron daemon were disabled during the experiments, however
the machine was connected to the network. To compensate for network events and other
pseudo–random effects, all time–sensitive experiments were carried out five times. We
ignored the minimum and maximum value and took the arithmetic average of the rest.

DBMS We picked PostgreSQL [Pos] as the DBMS backend for our experiments. It is a
very accessible system (well documented and open source) and has been modified in the
context of a number of research projects. For example, there is PERM and we carried
out a direct comparison with our approach (subject of Chapter 11).

We installed the precompiled PostgreSQL 9.5 package delivered by the distribution’s
package manager. This is possible because our low–invasive approach to provenance
analysis does not require any core modification. More recent PostgreSQL versions (as
of September 2019, version 11.5) have built–in support for parallel query evaluation. A
topic we consider future work.

9.2.2 Database

The TPC-H Benchmark We used the TPC-H benchmark in version 2.18.0. TPC-H is
a well–established benchmark in the DB field for OLAP workloads. It consists of eight
tables and 22 query templates. The benchmark comes with a data / query generator
tool. For our experiments, we

• created a database with scale factor 1 (≈ 1 GB of relational data) and

• generated a single set of 22 concrete queries. Using the rewrite rules from Chap-
ter 8, the queries for provenance analysis have been derived manually.

One drawback of TPC-H is its high age of ≈ 20 years. More recent SQL features (like
window functions, row values, arrays) are not covered.

2The CPUs provided 16 logical threads, however the experiments did not exploit parallelization.

156

9.2 Setup

Keys and Indices All primary keys according to [TPC][p.18, sec.1.4.2.2] and foreign
keys according to [TPC][p.18, sec.1.4.2.3] have been created. PostgreSQL implicitly adds
(composite) indices for primary keys. On top of that, we added

• (composite) indices for (composite) foreign keys and

• single–column indices for the remaining columns.

Populating the Database The TPC-H benchmark comes with a data generator. We
used the scale factor s = 1.0 to generate the payload data (emitted in CSV format).
This produces ≈ 1GB of data (files) and the biggest table lineitem contains ≈ 6 million
rows.

Loading the data into the database takes ≈ 30 minutes. I.e.,

• read the CSV files and populate the respective database tables,

• create the derived input tables for phases 1 and 2 (discussed next),

• create indices and

• create statistics (using the command: VACUUM (FULL, ANALYZE)).

The steps discussed next are specific to the detached provenance analysis. We are
about to discuss how to create the input tables for phases 1 and 2. For example, we
derived tables lineitem1 and lineitem2 from lineitem. In the formalization according
to Definition 8.5, this is the detachrm(liftrm(⋅)) step.

Tables for Phase 1 The phase 1–specific tables are a copy of the original tables with an
additional ρ column. The sequence defined in Figure 9.9 is used to generate the required
unique values for the ρ column. Right below, the table lineitem1 is being defined. The
* on line 8 basically makes a copy of schema and rows of the already existing table
lineitem.

Finally, the same keys and indices (already created for the original tables) are to be
recreated for the tables of phase 1 (not exemplified). This step is very important for a
fair comparison of the query runtimes.

Tables for Phase 2 The tables of phase 2 got populated with provenance annotations.

As a concrete example, the DDL snippet listed in Figure 9.10 defines the table lineitem2.
The ρ column (see line 7) is copied from lineitem1 in order to enforce symmetry between
both tables. The sequence Aseq is used to create unique annotations.

157

9 Experimental Evaluation

1 -- once per instance: initialize a PostgeSQL sequence
2 CREATE SEQUENCE ρseq;
3
4 -- phase 1 table definition and population
5 CREATE TABLE lineitem1 AS
6 SELECT
7 nextval(’ρseq’)::int AS ρ,
8 *
9 FROM

10 lineitem;

Figure 9.9: Excerpt: definition and population of the phase 1–tables.

1 -- initialize a sequence for provenance annotations
2 CREATE SEQUENCE Aseq;
3
4 -- phase 2 tables
5 CREATE TABLE lineitem2 AS
6 SELECT
7 ρ AS ρ,
8 ARRAY[nextval(’Aseq)::int] AS L_ORDERKEY,
9 ...

10 FROM
11 lineitem1;
12
13 -- phase 2 indices
14 CREATE UNIQUE INDEX ON lineitem2 (ρ);

Figure 9.10: Excerpt: definition and population of the phase 2–tables.

Indices for tables in phase 2 are entirely different. It makes no sense to create an index
on a column filled with provenance annotations (the provenance annotations are never
referenced in any predicate). Only the ρ columns (one column per table) is inspected in
predicates. We define them as primary keys, exemplified on line 14 of Figure 9.10.

Database Size In the end, there are three sets of tables:

• original TPC-H: 1.3 GB (with 3.4 GB of indices),

• phase 1: 1.3 GB (with 3.4 GB of indices) and

• phase 2: 3.1 GB (with 0.18 GB of indices).

158

9.3 Normalization Overhead

In total, the tables of phase 1 and 2 consume 4.4 GB of disk space (with 3.6 GB of
indices). In the context of our experiments, we did not care about disk space but about
simplicity (all columns indexed) and performance (no time overhead for on–the–fly table
fabrication).

The tables of phase 2 are quite space demanding with 3.1 GB. This is because the
singleton arrays of PostgreSQL have a bad overhead / payload ratio (improving with
array length).

9.3 Normalization Overhead

The purpose of query normalization (subject of Chapter 7) is to simplify the queries
for the provenance analysis. The TPC-H benchmark has a normalization overhead of
1.00 (rounded to two digits). This number is the geometric mean calculated from the
quotients

T
norm
i

T user
i

for each of the i = 1, . . . 22 queries. T user
i is the wall clock time for the evaluation of the

original i–th TPC-H query and T norm
i is its normalized counterpart. Figure 9.11 shows

the quotient for each pair of queries. The unitless slowdown (if < 1.0, it is a speedup)
is plotted on the y–axis. A perfect query optimizer would generate the same plans for
the semantics–preserving query normalization. Below, we carry out a short discussion
of some queries. The achievement of our normalization is that it simplifies the queries
without performance impact.

9.3.1 Speedup of Q9

The slowdown of Q9 was ≈ 0.94 which is a small performance gain. The inner query
of Q9 consists of a 6–way join and an accordingly complex conjunctive WHERE predicate
(not listed). The PostgreSQL query optimizer underestimated the row cardinality by
the factor ≈ 7, 000 (see Figure 9.12(a): 47 vs. 319404 rows). This misprediction hap-
pens in both queries: normalized and not normalized. However, due to normalization
the new plan employed a HashAggregate node (originally, this was a GroupAggregate).
HashAggregate is more performant for the (7, 000 times bigger) row cardinality which ex-
plains the improved query runtime. But why does the query optimizer employ different
operators? For both queries, the cardinality estimate is way off.

Looking at Figure 9.13 (Q9 before and after normalization), the rewritten query has ded-
icated SFW expressions for sorting and aggregation. We assume that the query optimizer

159

9 Experimental Evaluation

slowdown

0.9

0.95

1

1.05

1.1

Q1

Q2

Q3

Q4

Q5

Q6

Q7 Q8

Q9

Q10

Q11

Q12

Q13
Q14

Q15

Q16

Q17

Q18

Q19

Q20

Q21

Q22

Figure 9.11: Query speedup and slowdown through normalization.

was not aware of the nesting and just planned the two SFW expressions individually.
For the not normalized Q9, the query optimizer exploited similarities between sorting
and grouping. Due to cardinality underestimation, this strategy backfired.

9.3.2 Speedup of Q21

We found an improved query performance for Q21 (slowdown: ≈ 0.92). The main differ-
ence according to the query plans is how the correlated subqueries of Q21 get optimized.
In the original query, PostgreSQL plans the correlated EXISTS and NOT EXISTS subqueries
as a semi join and an anti join, respectively. In the normalized query, PostgreSQL em-
ploys more general subplan nodes instead. This resulted in different join orders. We
assume that the different optimizer decisions are related to the additional tuple vari-
ables our rewrite introduces. Figure 9.14 lists an excerpt of the normalized Q21. The
variable l1 gets bound outside and is inspected on line 10. Our normalization procedure
introduces line 7. Re–binding l1 might be the reason that the PostgreSQL optimizer did
not recognize an anti join pattern. Instead, the more general optimization employing a
subplan was carried out. In this specific case, the more general optimization turned out
to evaluate faster.

160

9.4 Phase 1 Overhead

Sort (cost=49240.58..49240.70 rows=47 width=66)
(actual time=4668.951..4668.964 rows=175 loops=1)

-> HashAggregate (cost=49237.98..49238.80 rows=47 width=53)
(actual time=4668.640..4668.684 rows=175 loops=1)

-> Nested Loop (cost=1.57..49237.16 rows=47 width=53)
(actual time=0.150..4178.316 rows=319404 loops=1)

-> ...
-> ...

(a) Plan of the normalized query.

GroupAggregate (cost=49238.46..49240.23 rows=47 width=53)
(actual time=4875.346..5240.587 rows=175 loops=1)

-> Sort (cost=49238.46..49238.58 rows=47 width=53)
(actual time=4873.974..4924.113 rows=319404 loops=1)

-> Nested Loop (cost=1.57..49237.16 rows=47 width=53)
(actual time=0.159..4396.589 rows=319404 loops=1)

-> ...
-> ...

(b) Plan of the original query.

Figure 9.12: Excerpts from the execution plans for Q9.

9.3.3 Slowdown of Q16

The slowdown of Q16 is not directly associated with the normalization rules. Instead,
it is caused by a substitution of

COUNT(DISTINCT ps_suppkey)

with an according subquery implementing the DISTINCT semantics separately. The slow-
down was ≈ 1.1. Details are omitted.

9.4 Phase 1 Overhead

Producing logs is the essential task of phase 1. As an example for a phase 1–rewrite,
Figure 9.15 shows an excerpt of Q2. The normalized query (on the left) contains a
multi–way join between base tables and the correlated tuple variable p. For the phase
1–query (on the right), the base tables get renamed (i.e., suffixed with 1) and the logging
call writejoin(⋅) gets added. The logging call has a statically unique identifier (3) and
references all ρ columns. For Q2, we employed three logging calls in total (not listed).

161

9 Experimental Evaluation

SELECT
nation,
o_year,
SUM(amount) AS sum_profit

FROM
(

...
) AS profit

GROUP BY
nation,
o_year

ORDER BY
nation ASC,
o_year DESC

(a) Before normalization.

SELECT
v.nation AS nation,
v.o_year AS o_year,
v.sum_profit AS sum_profit

FROM
(SELECT

nation AS nation,
o_year AS o_year,
SUM(amount) AS sum_profit

FROM
(

...
) AS profit

GROUP BY
nation,
o_year

) AS v
ORDER BY

v.nation ASC,
v.o_year DESC

(b) After normalization.

Figure 9.13: Excerpts of Q9.

1 WHERE
2 ...
3 AND NOT EXISTS (
4 SELECT
5 ...
6 FROM
7 (SELECT l1.*) AS l1, --normalization
8 ...
9 WHERE

10 ... --references to l1
11)
12 ...

Figure 9.14: Excerpt: Q21 after normalization.

162

9.4 Phase 1 Overhead

1 SELECT
2
3
4
5
6 ps.ps_supplycost
7 FROM
8 (SELECT p.*) AS p,
9 partsupp AS ps,

10 ...
11 region AS r
12 WHERE
13 p.p_partkey = ...

(a) Normalized query.

1 SELECT
2 writejoin(3, p.ρ,
3 ps.ρ,
4 ...
5 r.ρ) AS ρ,
6 ps.ps_supplycost
7 FROM
8 (SELECT p.*) AS p,
9 partsupp1 AS ps,

10 ...
11 region1 AS r
12 WHERE
13 p.p_partkey = ...

(b) Phase 1–query.

Figure 9.15: Example: rewrite of Q2 for phase 1.

9.4.1 Results

According to our experiments, the slowdown for log writing was 3.56. This is the geo-
metric mean from the quotients

T
1
i

T norm
i

for the i–th TPC-H query. Our discussion of phase 1 is however based on

T
1
i − T

norm
i

∣logi∣
(9.1)

, where ∣logi∣ is the log cardinality for query i. Put in plain words, Equation (9.1) yields
the absolute time for writing a single log row.

Runtime Overheads Figure 9.16(a) shows the runtime overheads in terms of Equa-
tion (9.1). The three outliers Q2, Q17 and Q18 are to be discussed below. The remaining
19 overheads are in the value range between 0.005ms (Q4) and 0.11ms (Q19).

Log Sizes Figure 9.16(b) shows the log sizes in row counts (and kilobytes). The smallest
log had 121 rows (Q19) and the biggest one had ≈ 6 million rows (Q1). Log sizes are

163

9 Experimental Evaluation

specific to the query and input tables. For Q19 and Q1, selectivities of their WHERE
predicates were essential.

• Q19 specified a join of lineitem and part which yielded 121 rows (selectivity:
1.0 ⋅ 10−10). The result table had a single row due to additional aggregation.

• Q1 applied a filter to lineitem and yielded ≈ 6 million rows (selectivity: 0.99).
The result table had four rows due to additional aggregation.

Optimizing the row count in logs is difficult, because the resulting ρ columns are generally
needed in subsequent evaluation steps. It is therefore not an option to invert the logging,
i.e. only record the unqualified row identifiers. However, redundancy could be exploited.
In case of Q1, there are only four output rows (with four different row identifiers ρout).
In the current (normalized) log format, these four identifiers get stored literally for all
of the 6 million log entries.

9.4.2 Speedup of Q2

The logging overhead of Q2 is −0.38ms per row, i.e. writing logs makes the query run
faster. This result is strange at first sight but finds an explanation in optimizer decisions.
We provide the relevant query plans in Figure 9.17. The plan of Qnorm

2 employs a
sequential scan while Q1

2 profits from a predicate pushdown and an index scan (both
scans repeated 460 times). The underlying reasons for the (different) optimizer decisions
are not evident.

We carried out an additional sanity check and disabled sequential scans. After a re–
evaluation of the normalized query, its plan had changed as expected (i.e., index scan
with predicate pushdown) and the runtime had improved by a factor of ≈ 19. The
unmodified (not normalized) Q2 shared the same optimization issue with the normalized
Q2.

9.4.3 Slowdown of Q18

We observed a considerable slowdown for Q18. On average, writing a single log row took
0.80ms (with ∣log∣ = 1197). Looking at Figure 9.16(a), this makes Q18 one of the three
outliers in phase 1.

The issue can be narrowed down to Q18’s (non–correlated) subquery listed in Figure 9.18
which produced 399 log rows and expended 2.83ms per row. The according query plan
is however not detailed enough to pinpoint where the time goes. We presume (based
on running derivative queries) that the aggregate expression on line 3 (ARRAY_AGG) got

164

9.4 Phase 1 Overhead

T
1−Tnorm

∣log∣

-0.4ms

0ms

0.5ms

1ms

1.5ms

2ms

Q1

Q2

Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16

Q17

Q18

Q19
Q20 Q21 Q22

(a) Write overhead per log row in milliseconds (ms).

100

1k

10k

100k

1m

10m

∣log∣

Q1

51
5,

52
8k

b

Q2

23
2k

b

Q3

5,
28

8k
b

Q4

4,
68

0k
b

Q5

1,
53

6k
b

Q6

6,
65

6k
b

Q7

1,
28

8k
b

Q8

88
0k

b

Q9

62
,2

72
kb

Q10

20
,5

60
kb

Q11

5,
43

2k
b

Q12

9,
16

8k
b

Q13

26
0,

41
6k

b

Q14

10
,6

96
kb

Q15

19
,8

32
kb

Q16

19
,2

40
kb

Q17

60
0k

b

Q18

24
0k

b

Q19

10
4k

b

Q20

1,
31

2k
b

Q21

22
,6

64
kb

Q22

3,
82

4k
b

(b) Log sizes in cardinality and kilobytes (kb).

Figure 9.16: Phase 1 results.

165

9 Experimental Evaluation

-> Nested Loop (cost=116.82..63853.00 rows=1 width=170)
(actual time=2.894..790.444 rows=460 loops=1)

Join Filter: (ps.ps_suppkey = s.s_suppkey)
Rows Removed by Join Filter: 4599540
-> ... -- 460 rows (expected 1)
-> Seq Scan on supplier s

(cost=0.00..322.00 rows=10000 width=144)
(actual time=0.002..0.730 rows=10000 loops=460)

(a) Plan for the normalized query.

-> Nested Loop (cost=124.72..67360.50 rows=1 width=182)
(actual time=2.404..125.446 rows=460 loops=1)

-> ... -- 460 rows (expected 1)
-> Index Scan using supplier_1_pkey on supplier_1 s

(cost=0.29..0.30 rows=1 width=148)
(actual time=0.002..0.003 rows=1 loops=460)
Index Cond: (s_suppkey = ps.ps_suppkey)

(b) Plan for phase 1.

Figure 9.17: Query plans: Q2 (excerpts).

1 ...
2 SELECT
3 writeagg(4, ARRAY_AGG(l.ρ)) AS ρ,
4 l.l_orderkey AS l_orderkey
5 FROM
6 lineitem_1 AS l
7 GROUP BY
8 l.l_orderkey
9 HAVING

10 SUM(l.l_quantity) > 300
11 ...

Figure 9.18: Excerpt of Q18: the relevant subquery causing the significant
overhead.

166

9.4 Phase 1 Overhead

1 SELECT
2 writeJoin(2, p.ρ, l.ρ) AS ρ,
3 l.l_quantity AS l_quantity,
4 l.l_partkey AS l_partkey
5 FROM
6 (SELECT p.*) AS p,
7 lineitem_1 AS l
8 WHERE
9 l.l_partkey = p.p_partkey

(a) Subquery with correlated tuple variable p.

1 FOR p IN part:
2 -- here: 204 iterations
3 ...
4 FOR l IN lineitem:
5 -- here:
6 -- 6088 iterations
7 -- with 204 unique bindings of p
8 ...
9 subquery(p)

(b) High–level execution plan of Q17 in pseudocode.

Figure 9.19: Q17 in phase 1.

evaluated in parallel with the (highly selective) HAVING predicate (rather than after the
predicate). In consequence, the result of ARRAY_AGG

• got written to the log in 57 cases3 and

• got thrown away in ≈ 1.5 million cases (HAVING selectivity: ≈ 0.004%).

This means that most (i.e. ≈ 99.996%) of the computational effort invested in evaluating
ARRAY_AGG was wasted. Manipulation of the selectivity (new selectivity: 100%; new log
cardinality: ≈ 6.0 million) reduced the average time to ≈ 0.01ms per log row.

9.4.4 Slowdown of Q17

Q17 experiences an overhead of 1.8ms per log row (with ∣log∣ = 6675). This was the
biggest overhead of all phase 1–queries.

3The 57 arrays written to the log yielded 399 rows. This is because arrays generally got unnested and
hence one array became multiple rows in the log.

167

9 Experimental Evaluation

The reason for the performance loss is that ≈ 180, 000 redundant log writes got triggered.
These had to be detected and skipped (explained in Section 9.1.4.3) and made the actual
6675 log entries appear expensive. Without duplicate removal, the overhead would have
dropped to ≈ 0.02ms per log row (and ∣log∣ = 187, 625). The main question therefore is:
why did Q17 trigger superfluous log writes?

The PostgreSQL query optimizer failed to decorrelate the subquery of Figure 9.19(a).
This has nothing to do with the provenance analysis of phase 1 or the normalization but
already occurred with the unaltered Q17. However, in phase 1 and through the logging
call placed on line 2 (see Figure 9.19(a)), the negative consequences got amplified. The
pseudocode listed in Figure 9.19(b) sketches the PostgreSQL query plan:

• In an outer query (line 1), p gets bound (cardinality: 204).

• In the same (outer) query (line 4), a join with lineitem is carried out. In total,
6088 intermediate rows are being produced. The 204 unique valuations of p get
replicated accordingly.

• The subquery (called on line 9 and SQL code in Figure 9.19(a)) only references p
(ignoring l) and hence, suffers from redundant valuations.

• Inside of the subquery, another join with lineitem is carried out and yields the
≈ 180, 000 redundant logging calls.

Future versions of PostgreSQL might feature improved query decorrelation and massively
reduce the overhead of Q17 in phase 1. HyPer [KN10] by A. Kemper and T. Neumann
and its advanced decorrelation algorithm [NK15] may provide an alternative DBMS
backend for provenance analysis.

9.4.5 Optimization

A simple logging optimization can reduce the log size (and runtime overhead) consider-
ably. Figure 9.20 exemplifies this for Q1. There are

• two logging locations (lines 2 and 8) on the left and

• only one logging location on the right (line 2) — through optimization.

The main idea of this optimization is that writeFilter() only forwards the ρ values, i.e.
it implements the identity (with a side–effect). It does not merge ρ values or create new
ones (like it happens for logging of joins). From value perspective, the UDF call can be
replaced with l.ρ (see line 8). But why is the log not needed?

The optimization is restricted to writeFilter() sitting directly inside of another log–
writing subquery (writeagg() on line 2). The semantics of writeagg() is to log any

168

9.5 Phase 2 Overhead

1 SELECT
2 writeagg(1, ARRAY_AGG(v.ρ))
3 AS ρ,
4 SUM(...),
5 ...
6 FROM
7 (SELECT
8 writefilter(2, l.ρ)
9 AS ρ,

10 ...
11 FROM
12 lineitem1 AS l
13 WHERE
14 ...
15) AS v
16 GROUP BY
17 ...

(a) Before optimization.

1 SELECT
2 writeagg(1, ARRAY_AGG(v.ρ))
3 AS ρ,
4 SUM(...),
5 ...
6 FROM
7 (SELECT
8 l.ρ
9 AS ρ,

10 ...
11 FROM
12 lineitem1 AS l
13 WHERE
14 ...
15) AS v
16 GROUP BY
17 ...

(b) After optimization.

Figure 9.20: Example: logging optimization of Q1.

pair of input tuple and group. If nothing gets logged, the according input tuple is
filtered. Hence, both logging UDFs implement filter semantics and this redundancy can
be exploited.

We applied this optimization to queries Q1, Q4 and Q15 (the unoptimized queries were
not part of our performance evaluation). Without this optimization, the log of Q1
(already the biggest log with ≈ 6 million rows) would have been even bigger. We carried
out a comparable optimization for Q16, but the details are omitted.

9.5 Phase 2 Overhead

In phase 2, provenance annotations get propagated. Figure 9.21(b) lists an excerpt of
Q2 as a typical example for a phase 2–query. For reference, the according phase 1–query
is listed in Figure 9.21(a). These queries have been created through application of the
rewrite rules presented in Chapter 8 — with adaptions to the SQL dialect of PostgreSQL.

• In phase 1, the query utilizes multiple FROM entries and a WHERE predicate to realize
a join. The writejoin() call logs row identifiers of the join partners which have
qualified against the predicate.

169

9 Experimental Evaluation

1 SELECT
2 writejoin(3, p.ρ,
3 ps.ρ,
4 ...
5 r.ρ) AS ρ,
6 ps.ps_supplycost
7 FROM
8 (SELECT p.*) AS p,
9 partsupp1 AS ps,

10 ...
11 region1 AS r
12 WHERE
13 p.p_partkey = ...
14
15
16

(a) Phase 1–query.

1 SELECT
2 log.ρ AS ρ,
3
4
5
6 y.y | ps.ps_supplycost
7 FROM
8 (SELECT p.*) AS p,
9 partsupp2 AS ps,

10 ...
11 region2 AS r,
12 readjoin(3, p.ρ,
13 ps.ρ,
14 ...
15 r.ρ) AS log(ρ),
16 toWhy(p.p_partkey | ...) AS y(y)

(b) Phase 2–query.

Figure 9.21: Example: excerpt of Q2.

• In phase 2, the predicate is basically replaced with an inspection of the log (see
lines 12-15). The columns inspected in the WHERE predicate constitute the Why–
provenance of phase 2, assembled on line 16.

9.5.1 Provenance Size

The most important factor regarding to the phase 2 runtime is the size of the data prove-
nance being computed. We denote the provenance size with ∣provi∣, i.e. the cardinality
of all provenance annotations. For example, the table

output
ρ col1 col2

42 {1e, 2y} {1e, 2y}

has a provenance size of ∣{1e, 2y}∣ + ∣{1e, 2y}∣ = 4.

The provenance size for each query is provided in Figure 9.22.

• Q1 had the biggest provenance size of ≈ 250 million. The query aggregated (nearly)
the entire lineitem table. Also, we found the single biggest provenance annotation
of the benchmark with ≈ 18 million entries for Q1.

• Q11 had a provenance size of ≈ 200 million. Its HAVING predicate had an SFW

170

9.5 Phase 2 Overhead

∣prov∣

103

104

105

106

107

108

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

Figure 9.22: Provenance size.

subexpression which aggregated ≈ 30, 000 rows.

• Q3 had a LIMIT 10 clause and yielded one of the smallest provenance cardinalities.

• Q19 was highly selective. Its provenance size of ≈ 1, 000 was the smallest of the
benchmark.

9.5.2 Absolute Performance

Our experimental evaluation found a total slowdown for phase 2 of 5.48. This is the
geometric mean from the quotients

T
2
i

T norm
i

for the i–th TPC-H query. The individual slowdowns are represented as the wide bars
of Figure 9.23. The range of values is between

• 0.065 for Q18 (which makes it a speedup) and

• 996 for Q11.

The narrow bars denote the total overhead for the entire provenance analysis. The
formula for the total slowdown is

171

9 Experimental Evaluation

T
1
i + T

2
i

T user
i

which integrates all slowdowns (or speedups) of normalization, phase 1 and phase 2. This
formula constitutes our measure for the total performance of the detached provenance
analysis. Compared to Definition 8.5, the formula omits the query rewrites, database
preparation and the final merge step. The total slowdowns are represented as narrow
bars in Figure 9.23. Their geometric mean is 12.5. We state some general observations.

• Q11, Q1 and Q20 had the biggest slowdowns of phase 2. This result is consistent
with their comparably big provenance sizes (see Figure 9.22).

• Q2, Q18, Q19 and Q21 showed a speedup in phase 2. Q19 is discussed below.

• Q2 was by far the best–performing query in the benchmark. Its total slowdown
was 0.39 which makes it a speedup. Put in other words, computing the data
provenance of Q2 is faster than evaluating the original Q2.

• Q17’s performance in phase 1 was lower than in phase 2. A discussion of Q17’s
phase 1 can be found in Section 9.4.4.

Next, we factor in the provenance size and discuss selected queries.

9.5.3 Performance Relative to Provenance Size

In this part of the discussion, we focus on

T
2
i − T

norm
i

∣provi∣
(9.2)

which denotes the time expended (in phase 2) for computing a single provenance iden-
tifier. The results are presented individually for any i–th TPC-H query in Figure 9.24.
Most notably, there are four queries which have a negative overhead, i.e. they evaluated
faster in phase 2 than the normalized TPC-H query got evaluated. We discuss

• Q19 having the smallest overhead of −69µs and

• Q10 having the biggest overhead of 2918µs.

Compared to Figure 9.23, the three most expensive queries Q11, Q20 and Q1 are no
longer remarkable after their provenance sizes have been factored in.

172

9.5 Phase 2 Overhead

0.05
0.1
0.2
0.5
1
2
5
10
20
50
100
200
500
1000

slowdown [1]

Q1

Q2

Q3

Q4

Q5

Q6

Q7 Q8

Q9

Q10

Q11

Q12

Q13

Q14
Q15 Q16

Q17

Q18

Q19

Q20

Q21

Q22

Figure 9.23: Wide bars denote the slowdown of phase 2. Narrow bars denote
the total slowdown for the detached provenance analysis.

T
2−Tnorm

∣prov∣ [µs]

0.1

1

10

100

1000

Q1

Q3

Q4

Q5

Q6

Q7 Q8
Q9

Q10

Q11

Q12
Q13 Q14

Q15
Q16

Q17

Q20 Q22

−0.1

−1

−10

−100
Q2

Q18

Q19

Q21

Figure 9.24: Expended time in phase 2 for evaluating a single provenance iden-
tifier. The unit of time is microseconds (µs).

173

9 Experimental Evaluation

1 Aggregate (cost=2004.22..2004.73 rows=1 width=82)
2 (actual time=7.326..7.326 rows=1 loops=1)
3 -> Nested Loop (cost=1.12..2003.01 rows=121 width=82)
4 (actual time=0.184..5.040 rows=121 loops=1)
5 -> Nested Loop (cost=0.85..2000.32 rows=121 width=250)
6 (actual time=0.042..2.841 rows=121 loops=1)
7 -> Nested Loop (cost=0.43..1026.17 rows=121 width=154)
8 (actual time=0.031..1.752 rows=121 loops=1)
9 -> Seq Scan on join2 j

10 (cost=0.00..2.51 rows=121 width=8)
11 (actual time=0.015..0.069 rows=121 loops=1)
12 Filter: ((`)::integer = (1)::integer)
13 -> Index Scan using lineitem_2_pkey on lineitem_2 l
14 (cost=0.43..8.45 rows=1 width=154)
15 (actual time=0.012..0.013 rows=1 loops=121)
16 Index Cond: (ρ = j.ρ1)
17 -> Index Scan using part_2_pkey on part_2 p
18 (cost=0.42..8.04 rows=1 width=104)
19 (actual time=0.007..0.008 rows=1 loops=121)
20 Index Cond: (ρ = j.ρ2)
21 -> Function Scan on toy _y
22 (cost=0.27..0.28 rows=1 width=32)
23 (actual time=0.017..0.017 rows=1 loops=121)

Figure 9.25: Query plan of Q19 in phase 2.

174

9.5 Phase 2 Overhead

9.5.4 Speedup of Q19

Q19 was a comparably simple query joining the tables part and lineitem together, using
a conjunctive WHERE–predicate (≈ 30 lines of SQL code) with many conditions being
checked. We provide the full query plan for phase 2 in Figure 9.25. The innermost
table getting scanned is join2 (on line 9) which basically contains the evaluated WHERE
predicate. Afterwards, the joins with lineitem_2 and part_2 are carried out based on
the ρ columns and indices are exploited. This example shows that the query optimizer
is fully able to push down the log access (which replaces predicate evaluation). This
option does not exist for single–pass query evaluation, since the outcome of predicates
is typically not known in advance. The slowdown for Q19 in phase 2 was ≈ 0.20, i.e. it
evaluated ≈ 5 times faster than the normalized query.

Line 21 of Figure 9.25 is the plan node for evaluating Why–provenance. If we omitted
the derivation of Why–provenance for Q19, the query optimizer would have employed
an Index Only Scan for table part_2.

9.5.5 Slowdown of Q10

According to Figure 9.24, Q10 has the highest overhead of all queries in phase 2. The
issue is specific to the LIMIT clause and occurs for Q3 and Q2 as well. (However for Q2,
the quantitative impact is faint.) Directly compared to the discussion of Q19 from above
(where the predicate can be pushed downwards), the LIMIT filter does not get pushed in
any of the queries, including phase 2.

For phase 2, the query plan of Q10 is listed in Figure 9.26. The GroupAggregate node
yields 30780 rows (see line 7) while the LIMIT clause (in phase 2, implemented through log
inspection and the Merge Join on lines 3-4) yields only 20 rows. Denoted in selectivity,
only 20/30780 = 0.06% of the intermediate rows qualify against LIMIT. (In comparison,
Q3 yields 10/10713 = 0.09% and Q2 yields 100/460 = 22%.)

For confirmation, we evaluated a modified set of Q10 queries with LIMIT removed in each
of them. Using Equation (9.2), the new overhead is

49.7s − 1.41s
8076035 = 5.98µs

. Looking at Figure 9.24, the updated value closes the gap between Q10 and the majority
of queries.

175

9 Experimental Evaluation

1 Nested Loop (cost=553367.19..693381.18 rows=3078 width=292)
2 (actual time=9127.706..38610.508 rows=20 loops=1)
3 -> Merge Join (cost=553366.94..687101.81 rows=3078 width=260)
4 (actual time=9126.352..38597.259 rows=20 loops=1)
5 Merge Cond: (l_1.ρout = j.ρout)
6 -> GroupAggregate (cost=553365.26..686669.21 rows=30780 width=293)
7 (actual time=8948.160..38582.901 rows=37488 loops=1)
8 -> ...
9 -> ...

Figure 9.26: Excerpt: query plan of Q10 in phase 2.

9.6 Optimization of Phase 2

The queries in phase 2 are dominated by union (∪ and ⋃) operations, processing prove-
nance annotations represented as sets. With PostgreSQL as backend DBMS, we utilized
arrays and according concat operations (|| and ARRAY_agg()) instead of set operations.
This is a mismatch to some degree. One consequence is that PostgreSQL is unaware of
the optimization potential of the union operator. For example,

px ∪ px = px (9.3)

holds for any px but would not hold if translated into array concatenation. The union
operator is commutative and associative which offers a lot of optimization potential.
The PostgreSQL query optimizer however does not exploit this advantage. In our exper-
iments, we have exploited the following optimization strategy through query rewriting.

9.6.1 ⋃ Optimization

We discuss the poorly optimized phase 2–example of Figure 9.27(a). The provenance
annotation pconst represents the provenance of a sub–expression in a WHERE–predicate.
The three input rows p1, p2 and p3 (for presentation reasons, let each row consist of a
single provenance annotation) survive the WHERE–predicate and get aggregated using ⋃,
yielding pres. Take note that the very same pconst contributes to all three individual rows,
however two of them turn out as duplicates when ⋃ is applied. The transformation

(p1 ∪ pconst) ∪ (p2 ∪ pconst) ∪ (p3 ∪ pconst) = p1 ∪ pconst ∪ p2 ∪ p3

exploits associativity and commutativity of ∪ and Equation (9.3). In Figure 9.27(b), the
rewritten operator tree is shown. We applied this optimization to the TPC-H queries (on

176

9.6 Optimization of Phase 2

pconst

p1 ∪

pconst

p2 ∪

pconst

p3 ∪

⋃ pres

(a) Input query.

p1

p2

p3

pconst

⋃ ∪ pres

(b) Optimized query.

Figure 9.27: Example: ⋃ optimization of a phase 2–query.

SQL level), i.e. relocated entire subqueries (details omitted). This optimization is how-
ever not possible if correlated subqueries are involved. Our reported performance results
include this very optimization, where applicable. We consider the (serious) optimization
of phase 2 future work.

177

Part IV

Conclusion

179

10 Related Work

Related work is selected according to criteria provided below.

Language and Data Model In our work, we have contributed a provenance analysis for
a feature–rich SQL dialect and the relational model with bag semantics. For example,
we cover correlated subqueries and window functions. A number of related works is
considerably less expressive. To the best of our knowledge, window functions are not
supported by any other work.

Provenance Granularity Generally spoken, provenance analysis tracks pieces of data
involved in computations. Provenance granularity specifies the size of such pieces. Well–
known examples are

• row granularity (very common in RA–based analysis approaches) or

• cell granularity.

We have contributed a provenance analysis in sub–cell–level granularity. An early work
of A. Woodruff and M. Stonebraker [WS97] also pursues this goal, discussed below.

Provenance Semantics A provenance semantics (also called provenance notion or con-
tribution semantics) is a set of rules which maps single (abstract) evaluation steps to
their corresponding provenance results. For the entire research field, an important con-
tribution is [BKT01] by P. Buneman, S. Khanna and W. Tan. They distinguish between
Where–provenance and Why–provenance. Our approach adopts their vocabulary but
uses a different semantics, elaborated below.

Implementation Approach In context of the databases field, we observe two entirely
different kinds of implementations of provenance analyses: with or without DBMS sup-
port. A modern, fully–fledged DBMS encompasses the result of decades of research
in query optimization, indexing, table statistics, caching and so on. If the provenance
analysis does not exploit DBMS capabilities, its practical relevance is probably limited.

181

10 Related Work

Implementation Invasiveness Approaches leveraging an existing DBMS (see directly
above) may require modifications to the DBMS. These can be more or less invasive. For
example,

• modification of the DBMS core (like, physical operators) or

• plug–in installation or

• definition of additional tables and UDFs. Our detached approach belongs to this
category.

Presupposed that the source code of the desired DBMS is available, the typical ad-
vantage of invasive provenance implementations is improved performance. The typical
disadvantage is that the provenance implementation will not be maintained in future
DBMS releases and will be outdated sooner or later. P. Senellart, L. Jachiet et al. list
examples and argument that such modification

results in code that cannot be easily maintained or even compiled on modern
operating systems. [SJMR18, Sec. 1]

10.1 Fine–Grained Data Lineage

[WS97] by A. Woodruff and M. Stonebreaker is an early work on data provenance (before
the term data provenance got established). One distinct objective of their work is to
derive fine–grained provenance for complex (nested) data structures.

[...] POSTGRES supports a variety of complex attributes, e.g., arrays, tuple
types (in which an attribute may be broken down into a number of other
attributes), and user–defined types [...]. [WS97, Sec. 3.1.2]

In our work, we pursue a very similar goal, termed provenance analysis in sub–cell
granularity.

An essential difference between [WS97] and our work is that their approach for prove-
nance computation is based on query inversion. For a query f , they evaluate f−1 which
yields the original inputs to f , i.e. the data provenance. They consider their approach
lazy because f−1 only gets evaluated if the provenance is actually requested (alterna-
tively, f had to compute and store additional metadata eagerly). Of course, f−1 does
not always exist. For these cases, [WS97] contributes a method to approximate f−1. The
considerable downside of this method is that query–specific helper functions have to be
provided by the user. In our approach, the user does not have to provide such helper
functions nor do we employ query inversion. However, our phase 1 may be considered
an eager component, slowing down the overall performance of the DBMS.

182

10.2 Data Lineage

T

t

Op

t

T1

T1∗

T2

T2∗

Figure 10.1: Lineage example with two input tables, reproduced from
[CWW00, p.187, Fig. 9].

10.2 Data Lineage

The work of Y. Cui, J. Widom and J. Wiener [CWW00] is similar to [WS97] (discussed
directly above) in employing inverse queries. However, it is more focused and defines con-
crete Op−1 for a number of RA operators Op. Also, [CWW00] restricts the provenance
analysis to row granularity.

We use the abstract evaluation model from Figure 10.1 to sketch their perspective. Let
T be a materialized view, T1 and T2 be two intermediate tables and Op be an operator
of the relational algebra. For a tuple t ∈ T , the data lineage consists of the subsets
T1∗ ⊆ T1 and T2∗ ⊆ T2 . In [CWW00], the notation Op−1(t) is employed to denote
the data lineage of t (not to be mixed up with the notation for the inverse function f−1

in the mathematical sense). In [CWW00, p.189, Theorem 4.4], they provide the Op−1

for selection, projection, theta join, aggregation, union and difference in set semantics.
These can be extended for bag semantics ([CWW00, Section 8]).

Example We provide an example in order to directly compare between data lineage
and our provenance semantics. The table sales (see Figure 10.2(a)) contains revenue
data per sales region and article. The example query

Qlin ≔ σsum>80(αarticle,sum(revenue) (sales))

183

10 Related Work

consists of two nested RA operators (selection σ and aggregation α
1) and finds top–

selling articles. The only result tuple is t11 = ⟨laptops, 90⟩, listed in Figure 10.2(b). We
sketch the lineage computation for t11. In the first step, the (simplified) RA expression
σ
−1
sum>80output gets evaluated, yielding t12 (shown in Figure 10.2(c)). Take note that the

lineage does not include ⟨smartphones, 60⟩, because lineage is different from the inverse.
Intuitively, it is clear that the smartphones data did not contribute to t11. In the second
step, t12 is fed into α−1

article,... and yields the lineage shown in Figure 10.2(d) (being a
subset of sales).

Comparing the example directly with our work, we yield the SQL query and provenance
result listed in Figure 10.3. The data provenance contributed through the GROUP BY–
and HAVING–clauses is collected in variable gh and is not interesting for this discussion.
The main observation we draw from this example is that t2 and t5 are in the results of
both approaches.

In contrast, our approach is more fine–grained, i.e. the data provenance not just iden-
tifies rows but attributes of rows. For example, the data lineage of t11 is {t2, t5} (see
Figure 10.3(b)). Our approach yields references to cells, i.e.

{te2.revenue , t
e
5.revenue}

for the output value 90 (see Figure 10.3(b)).

Beyond the scope of this example, the two approaches differ in their supported dialects
(of RA and SQL). The SQL dialect of this work does not include set difference — we
consider this future work (see Section 13.2). Apart from this exception, we consider
our dialect considerably more expressive through features like correlated subqueries and
window functions.

10.2.1 WHIPS Implementation

An implementation of data lineage is provided by Y. Cui and J. Widom [CW00]. The
implementation uses the WHIPS data warehouse prototype by W. Labio, Y. Zhuge et
al. [LZW+97] as its backend. WHIPS integrates data from multiple sources into the
relational model, creating materialized views in the process. These views can be queried
and lineage of those queries can be derived. The Op−1 are not evaluated directly (since
they yield input tuples, no DBMS would implement them naturally) but are converted
into so–called tracing queries (details omitted). To the best of our knowledge, there are
no recent developments involving WHIPS and we consider it discontinued.

1
α... specifies grouping criteria and aggregation functions next to each other. For example, αarticle creates
groups based on article and yields one representative of each group (column name implicit).

184

10.2 Data Lineage

sales
region article revenue
North smartphones 40 t1

North laptops 40 t2

East TV sets 20 t3

West smartphones 20 t4

West laptops 50 t5

South TV sets 10 t6

(a) Input table.

output
article sum
laptops 90 t11

(b) Result of query Qlin.

lineage-σ
article sum
laptops 90 t12

(c) Intermediate lineage (result of σ−1).

lineage
region article revenue
North laptops 40 t2

West laptops 50 t5

(d) Data lineage of Qlin.

Figure 10.2: Example: data lineage according to [CWW00].

FROM sales AS s
WHERE TRUE

GROUP BY s.article
AGGREGATES THE(s.article) AS article,

SUM(s.revenue) AS sum
HAVING aggs.sum > 80

WINDOWS ()
SELECT aggs.article AS article,

aggs.sum AS sum
ORDER BY ()

DISTINCT ON ()
OFFMIT NULL NULL

(a) Query Qlin in SQL.

detached⇧
article sum

laptops, {te2.article , t
e
5.article} ∪ gh 90, {te2.revenue , t

e
5.revenue} ∪ gh

(b) Data provenance of Qlin.

Figure 10.3: The example from Figure 10.2 in the detached approach.

185

10 Related Work

sales
region article revenue
North laptops 40 t1

West laptops 50 t2

South TV sets 10 t3

(a) Database.

output
article

laptops t4

TV sets t5

(b) Query result: πarticle(sales).

Figure 10.4: Example data for the discussion of Why–provenance.

10.3 Why– and Where–Provenance

The contribution of P. Buneman, S. Khanna and W. Tan [BKT01] is a highly influential
work for the research field. They distinguish between two provenance semantics (also
called: provenance notions). One of them is called Why–provenance (discussed next)
and the second is Where–provenance (discussed below). The formalism used in [BKT01]
is based on a deterministic data model paired with a specific query language. We skip
that formalism and instead refer to [CCT09] by J. Cheney, L. Chiticariu and W. Tan
who redefine the contributions of [BKT01] using relational algebra.

10.3.1 Why–Provenance

Why–provenance can be considered a refinement of data lineage (see above). Why–
provenance and data lineage both share row–level granularity but Why–provenance
provides multiple, alternative explanations for a given output tuple. We are going to
exemplify using the data (see Figure 10.4) and query Q ≔ πarticle(sales) (in set seman-
tics). The focus is on output tuple t4. t4 is an interesting tuple, since it corresponds to
the input tuples t1 and t2.

The data lineage (using set notation according to [CCT09, p. 20, Theorem 2.1]) is

{t1, t2}

, i.e. both laptops–valued input tuples are considered relevant. This means that there is
some redundancy in tuples t1 and t2 (one of them in the input table would be sufficient
to yield t4). An important contribution of [BKT01] is to understand data provenance
as a collection of witnesses, each witness being sufficient to yield a certain output row.
In our example, the witnesses (according to [CCT09, p. 29, Definition 2.3]) are

{{t1}, {t1, t2}, {t1, t2, t3}, . . .}

186

10.3 Why– and Where–Provenance

sales
region article revenue
North□ laptops+ 40□ t1

West□ laptops− 50□ t2

South□ TV sets∗ 10□ t3

(a) Database.

output
article

laptops+,− t4

TV sets∗ t5

(b) Query result: πarticle(sales).

Figure 10.5: Example for Where–provenance: the annotations (+,−,∗) are be-
ing propagated to the output table. The □ annotations are ig-
nored.

. One of the witnesses (={t1, t2}) happens to be just the data lineage from above. Next
to it, smaller witnesses exist (e.g., {t1}) and less specific witnesses (e.g., {t1, t2, t3}). A
counter–example would be {t3} which is not a witness for t4. For this example (according
to [CCT09, p. 30, Definition 2.4])), the Why–provenance is

{{t1}, {t3}}

. In direct comparison to data lineage ({{t1}, {t3}}), Why–provenance provides more
detail, i.e. identifies the two witnesses sufficient for computing t4.

10.3.2 Where–Provenance

Where–provenance is the second provenance notion introduced in [BKT01] with the
purpose to distinguish Where–provenance from Why–provenance. The main idea of
Where–provenance is to determine where the data value of a certain output cell has been
copied from. Where–provenance has cell granularity (different from Why–provenance).
In subsequent work [BKT02, Sec.3] (of the same authors), annotation propagation rules
for RA operators are provided. Figure 10.5 exemplifies this process for the π operator (in
set semantics). The annotated output value laptops+,− indicates that two input values
(with annotations + and −) have contributed.

10.3.3 Comparison

Next, a comparison of Where– and Why–provenance (according to [BKT01]) with the
provenance semantics of this work is carried out. Since we have introduced different
semantics for Where– and Why–provenance, there is a naming conflict. For the following
discussion,

187

10 Related Work

sales⇧
region article revenue

North, {te1.reg} laptops, {te1.art} 40, {te1.rev} t1

West, {te2.reg} laptops, {te2.art} 50, {te2.rev} t2

South, {te3.reg} TV sets, {te3.art} 10, {te3.rev} t3

(a) Database.

FROM sales AS s
WHERE TRUE

GROUP BY ()
AGGREGATES ()

HAVING ()
WINDOWS ()
SELECT s.article AS article

ORDER BY ()
DISTINCT ON s.article

OFFMIT NULL NULL

(b) SQL query.

output⇧
article

laptops, {te1.art , t
y
1.art} t4

TV sets, {te3.art , t
y
3.art} t5

(c) Output table.

Figure 10.6: The running example in the detached approach.

188

10.3 Why– and Where–Provenance

• Where– and Why–provenance denote the semantics according to [BKT01] and

• e– and y–provenance denotes our definitions.

One novel aspect of our approach is that e– and y–provenance are designed to fit to-
gether. Both notions share the same granularity. The examples from above are con-
tinued in Figure 10.6 (with RA translated into SQL) and data provenance according to
the detached approach is derived. All provenance results for output value laptops are
aggregated below.

Provenance Notion Result
Where {t1.art , t2.art}
Why {{t1}, {t2}}

e and y {te1.art , t
y
1.art}

• According to [CCT09, Sec. 5.3], Where–provenance is contained inWhy–provenance.
The example confirms that. In contrast, e– and y–provenance are not.

• Where–provenance models copy operations of values. e–provenance is more general
and covers value transformations.

• Why–provenance yields multiple explanations for an output value. Therefore, it is
less susceptible to (value–equivalent) query reformulation. y–provenance yields a
single explanation and is susceptible to query reformulation.

• y–provenance cannot be computed without e–provenance. Whenever a predicate
is evaluated, the corresponding e–provenance is transformed into y–provenance. In
contrast, Why–provenance is less specific: it has row granularity and identifies all
rows which have been involved in a query evaluation.

10.3.4 DBNotes Implementation

D. Bhagwat, L. Chiticariu et al. contributed [BCTV05] which is basically an implemen-
tation of Where–provenance in cell–level granularity. They employ a dialect called pSQL
which consists of SFW expressions

SELECT DISTINCT selectlist
FROM fromlist

WHERE wherelist
PROPAGATE options

and can combine multiple SFW expressions using UNION. Aggregates, subqueries or bag
semantics are not supported ([BCTV05, Definition 1]). The additional PROPAGATE clause

189

10 Related Work

allows the user to switch between different flavors of Where–provenance (not discussed
here). Queries formulated in pSQL get translated into SQL (enriched with logic for
annotation propagation) and delegated to a DBMS (Oracle 9i Enterprise Edition) for
execution. Basically, the annotations sit in additional columns (one annotation column
for each data column). A single annotation may consist of multiple items (comparable
to our Definition 5.1) — implemented through duplicate rows (we use SQL arrays in our
implementation).

Although not pointed out by the authors, DBNotes appears to be a non–invasive imple-
mentation regarding to the DBMS core — very much like our own contribution. There
is a more detailed figure in [CTV05, Figure 3] which clearly suggests that the DB-
Notes implementation is wrapped around the DBMS, managing the inputs and outputs
to/from the DBMS. Unlike to pSQL, the SQL dialect of our work basically allows nest-
ing anywhere (subqueries and data) and supports more recent SQL features like window
functions.

10.4 Semirings Approach

The approach of T. Green, G. Karvounarakis and V. Tannen [GKT07] annotates rows
with elements from semirings (hence row–level granularity). The concrete semiring de-
termines the provenance semantics. We are going to exemplify two concrete semirings.
The abstract notation of a semiring is (K,⊕,⊙, 0 , 1) where

• K is a set (its elements representing annotations),

• ⊕ is a binary operation with neutral element 0 and

• ⊙ is a binary operation with neutral element 1 .

[GKT07, Definition 3.2] formally specifies how concrete RA operators translate into
operations in the (abstract) semiring. The following two examples have been simplified.
Let R be an intermediate table (in set semantics) with annotated rows, in symbols
∀r ∈ R ∶ annot(r) ∈ K.

• For projections π□(R), and rows ri=1..n ∈ R equal under projection and yield r
′,

the data provenance is annot(r′) ≔ Σ i=1..nannot(ri). Σ denotes the n–ary kind
of ⊕ from above.

• For natural joins L ⋈ R and rows li=1..n ∈ L rk=1..m ∈ R, yielding (a subset of) the
joined rows lr i,k, the data provenance is annot(lr i,k) ≔ annot(li)⊙ annot(rk).

The concrete semiring determines the (provenance) semantics. Directly below, we pro-
vide two simplified examples from [GKT07].

190

10.4 Semirings Approach

• The counting semiring (N,+, ⋅, 0, 1) implements bag semantics.

• The polynomial semiring (N[T],+, ⋅, 0, 1) implements so–called How–provenance;
the elements of N[T] are polynoms and draw variables from T and coefficients
from N.

We use the example database from Figure 10.7(a) with two tables. The database contains
planets of the solar system and visits (planetary flyby maneuvers) of the voyager space
probes. Each row has (for compactness of presentation) two annotations in parallel,
corresponding to the two semirings introduced above. The initial annotations of the
counting semiring (column N) are row counts, i.e. the value 1. The polynomial semiring
(column: N[T]) has unique annotations t□ drawn from T .

The intermediate table projected (see Figure 10.7(b)) is the result of projection on id .
The counting semiring keeps track of duplicate rows (the rows with id=5 and id=6 would
appear twice in bag semantics). The provenance semiring (column N[T]) lists the actual
input tuples used in the projection.

The final table joined is the result of πid(visits) ⋈ planets. The annotations of the count-
ing semiring are not interesting (tuple counts did not change) but the provenance semir-
ing yields real insight.

Intuitively, “+” corresponds to alternative use of data in producing a query
result, while “·” corresponds to joint use. [KG12, p. 5]

For the output row containing Jupiter, the data provenance is (t11+t13)⋅t5 which implies
that t5 is mandatory but one of t11 or t13 would be sufficient.

Hence, the polynom representation of data provenance not only lists the contributing
input tuples but also provides insight regarding to how these input tuples have been
combined. In [GKT07], the term How–provenance has been suggested to denote this
new kind of data provenance. In [CCT09, Sec. 5.1] it has been shown that the semirings
approach generalizes both data lineage ([CWW00]) and Why–provenance ([BKT01]). In
[KG12, Sec. 4.1] G. Karvounarakis and T. Green relate even more provenance semantics
to each other with the polynomial semiring sitting on top of the hierarchy.

10.4.1 Comparison of Data Provenance

Figure 10.8(a) lists the query from above in SQL and Figure 10.8(b) shows the output
table with data provenance computed in the detached approach. In comparison,

• the detached approach yields data provenance in (sub–) cell–level granularity and is
more insightful in this aspect. For example, the result Jupiter, {te5.planet , t

y
13.id , t

y
5.id}

exposes exactly the values ty13.id and ty5.id having been inspected in predicates.

191

10 Related Work

planets
id planet N N[T]
1 Mercury 1 t1

2 Venus 1 t2

3 Earth 1 t3

4 Mars 1 t4

5 Jupiter 1 t5

6 Saturn 1 t6

7 Uranus 1 t7

8 Neptune 1 t8

visits
id probe year N N[T]
5 Voyager 1 1979 1 t11

6 Voyager 1 1980 1 t12

5 Voyager 2 1979 1 t13

6 Voyager 2 1981 1 t14

7 Voyager 2 1986 1 t15

8 Voyager 2 1989 1 t16

(a) Input tables.

projected
id N N[T]
5 2 t11 + t13

6 2 t12 + t14

7 1 t15

8 1 t16

(b) πid(visits)

joined
id planet N N[T]
5 Jupiter 2 (t11 + t13) ⋅ t5
6 Saturn 2 (t12 + t14) ⋅ t6
7 Uranus 1 t15 ⋅ t7
8 Neptune 1 t16 ⋅ t8

(c) πid(visits) ⋈ planets

Figure 10.7: Example: space probes and the semirings approach.

• On the other hand, the semirings approach provides insight in how tuples have been
combined (i.e., (t11 + t13) ⋅ t5) to produce the result. Accordingly, the semirings
approach also provides more insight.

• Take note that t13 and t5 appear in both results but t11 does not. This is because
only one of the two tuples (t13 or t11) is sufficient to produce the result. The
provenance derived by the detached approach exposes the decision of the DBMS
while the semirings unwraps all alternative ways of computation. If implemented
using a DBMS backend, we expect a lower runtime overhead for the detached
approach.

Comparison of the Language Dialects Our SQL dialect is considerably more expressive
than the RA dialect of the semirings approach. The original contribution ([GKT07]) is
based on an RA dialect called positive relational algebra (RA+), basically consisting of
union, projection, selection and natural join. For this dialect, the semirings approach

192

10.4 Semirings Approach

FROM visits AS v,
planets AS p

WHERE v.id=p.id
GROUP BY ()

AGGREGATES ()
HAVING TRUE

WINDOWS ()
SELECT v.id AS id,

v.planet AS planet
ORDER BY ()

DISTINCT ON v.id
OFFMIT NULL NULL

(a) SQL query.

joined⇧
id planet

5, {te13.id , t
y
13.id , t

y
5.id} Jupiter, {te5.planet , t

y
13.id , t

y
5.id}

6, {te14.id , t
y
14.id , t

y
6.id} Saturn, {te6.planet , t

y
14.id , t

y
6.id}

7, {te15.id , t
y
15.id , t

y
7.id} Uranus, {te7.planet , t

y
15.id , t

y
7.id}

8, {te16.id , t
y
16.id , t

y
8.id} Neptune, {te8.planet , t

y
16.id , t

y
8.id}

(b) Resulting data provenance.

Figure 10.8: Example: space probes and the detached approach.

193

10 Related Work

is very elegant (allowing to switch easily between different provenance notions) and can
deliver very insightful results (exemplified above for the polynomial semiring). However,
the expressiveness of RA+ is very limited. In subsequent work, the boundaries of RA+

got extended.

• In [GP10], F. Geerts and A. Poggi have introduced m–semirings (=semirings with
monus ⊖) making it possible to add difference to the RA dialect. Not all semirings
can be converted into m–semirings.

• In [ADT11], Y. Amsterdamer, D. Deutch and V. Tannen have concluded that
row–level annotations are not sufficient for (sensible) support of aggregation and
propose additional annotations for individual values.

10.4.2 ProvSQL

Recent work by P. Senellart et al. [SJMR18] implements the semirings approach and
integrates additional features like Where–provenance and m–semirings. The SQL dialect
is limited. For example, aggregations are not supported but UNION and EXCEPT are.

10.5 Traces Approach

J. Cheney, A. Ahmed and U. Acar [CAA14] introduce a two–step approach in deriving
data provenance for NRC queries with bag semantics. In the first step, the query Q

(accessing database ∆) is executed. In an augmented evaluation (defined for each ex-
pression of the NRC), Q yields an output table v and a trace T . T basically is a record
of all evaluation steps and data being accessed for turning ∆ into v. Accordingly, the
size of T can be considerable since it may contain the entire database ∆. In the second
step, a (user–defined) pattern p is applied to T . The pattern denotes the user’s desire
in which part of v is of interest. Applying p to T is similar to a filter operation. The
result of this second step are a ∆′ and T ′, capturing the relevant input data and relevant
query expressions for evaluating v. The purpose of traces is considerably different from
the logs we employ in the detached approach. Logs basically contain predicate decisions
but traces contain payload data.

10.6 Smoke Approach

F. Psallidas and E. Wu recently contributed [PW18a] (and the technical report [PW18b]).
Smoke is a prototype of a query processor with built–in support for provenance analysis.
Their work provides a contrast to our own research focus.

194

10.7 The Detached Approach and Imperative Languages

1 xs = [-2, -1, 42]
2
3 res = []
4 foreach x in xs do
5 if writeLog(x >= 0) then
6 append(res , x)
7 fi
8 od
9

10 // res: [42]

(a) Phase 1.

1 xs = [p1, p2, p3]
2
3 res = []
4 foreach x in xs do
5 if readLog() then
6 append(res , x)
7 fi
8 od
9
10 // res: [p3]

(b) Phase 2.

Figure 10.9: Example: detached provenance analysis for imperative programs.

• In Smoke, provenance support is built directly into physical operators. If their
approach should be adopted for an existing DBMS, it would require modifications
to the DBMS kernel. The focus of our work is to enable provenance analysis for
existing, unmodified DBMS implementations.

• The language features are limited. The focus of their optimization is on SPJA
queries. More operators are provided in the technical report. Their experimental
evaluation covers 4 uncorrelated and simplified TPC-H queries (omission of the
clauses ORDER BY and LIMIT). The focus of our work is on a feature–rich SQL
dialect.

One distinct feature of the Smoke approach is that it uses indices to speed up provenance
computation. The fundamental idea is that each concrete RA operator (together with
concrete payload data) maintains an index which maps the relationship of input rows to
output rows. Conceptually, this makes the first evaluation of an operator more expensive
but follow–up evaluations cheap. Hence, [PW18a] promotes interactive visualizations of
data provenance as a use case. Also, these indices may be considered a generic form
of data provenance and allow for a refinement in a second stage. [PW18b][Appendix
E.] provides examples for how to switch between lineage, Why–provenance and How–
provenance.

10.7 The Detached Approach and Imperative Languages

Originally, the detached provenance analysis has been developed for imperative lan-
guages. T. Müller and T. Grust contributed a demonstration [MG15] which involved a

195

10 Related Work

(very basic) prototype of a query–compiling DBMS2. First, the SQL query gets translated
into an imperative program P and then, the two phases are carried out.

• Phase 1 evaluates P and creates a log.

• Phase 2 inspects the log and propagates provenance annotations.

On this high–level perspective, the two phases for analyzing an imperative program are
identical with the detached provenance analysis on SQL level (see Chapter 8).

We are going to exemplify their approach for a simple, imperative program in Python–
inspired [Pyt] pseudocode. The program listed in Figure 10.9(a) (phase 1) iterates
through a list and applies a filter (comparable to a simple SFW expression). Input
data is provided on line 1 and the append(res , x) function inserts the qualified list
element(s) x at the end of the resulting list res. On line 5, a logging function has been
inserted. The predicate gets evaluated and writeLog(x >= 0) records the stream of
booleans

[false , false , true]

required for phase 2. After logging, the boolean is forwarded to the surrounding if
(from if perspective, the logging function behaves like the identity).

In phase 2 (see Figure 10.9(b)), the very same log gets inspected (see line 5) and is being
used to filter the provenance annotations p□ without looking at the original values. In
comparison to the detached approach for SQL, the log is ordered and gets read/written
from left to right. The example presented here is very basic and only logs a (compact)
stream of bits. While very appealing at first sight, in our publications (also see [Mül16]
which uses more formalism and a bigger dialect) the logs require other data types as
well. In the end, p3 is found as the data provenance of list element 42 (see the lines 10
of both phases).

Comparison

• Implementing the provenance analysis on SQL level is more flexible. In theory,
rewritten SQL queries can be fed to any DBMS which supports SQL. (In practice,
each DBMS implements a slightly different SQL dialect.)

• Compiled queries are optimized already. Modifications (e.g. log reading and writ-
ing) would not be able to profit from optimization. Also, the modifications of
phase 2 (change of data types into provenance annotations) would interfere with
planned cache sizes.

2Query compilation is a design principle for databases ([Neu11]) and the opposite of query interpreta-
tion.

196

10.8 GProM

• The research sketched above (detached provenance analysis using query compila-
tion) is still at an early stage, involving prototypes without any query optimization.
In comparison, the detached provenance analysis on SQL level just forwards the
rewritten queries to a backend DBMS and gets the query optimization for free.

10.8 GProM

GProM (Generic Provenance Middleware) by B. Arab, S. Feng et al. [AFG+18] is
termed middleware for its low–invasive implementation approach. GProM connects to
a DBMS backend and carries out query rewriting in order to derive data provenance. In
that consideration, GProM is very similar to our own approach. Additional features of
GProM are provenance analysis for transactional updates and Why–not provenance.

In our experimental comparison, we focus on PERM which may be considered a prede-
cessor of GProM . However, only PERM has support for correlated subqueries.

197

11 Comparison with PERM

This chapter consists of two parts. We discuss

• how to implement a provenance analysis in row granularity using the detached
approach and

• present an experimental comparison with PERM [GA09a].

11.1 Implementation of Row–Level Granularity

In Section 9.1, we outlined an implementation of the detached provenance analysis in
cell granularity. With a few changes, a provenance analysis in row granularity can be
implemented. Phase 1 stays entirely the same (logs can be used for both granularities)
while phase 2 requires changes to its base tables and queries. The main idea is to restrict
any (intermediate) table to two columns.

11.1.1 Tables of Phase 2

• In cell granularity, base tables have one ρ column and n columns with n provenance
annotations.

• In row granularity, base tables have one ρ column and a single column with prove-
nance annotations. This makes two columns per table.

The table definition for lineitem2_row is exemplified in Figure 11.1. This definition is
analogous to Figure 9.10. The original lineitem table (specified by the benchmark) has
16 columns. The new table lineitem2_row has only two columns and saves an according
amount of disk space. Table lineitem1 is kept.

11.1.2 Queries of Phase 2

Consistent with the updated base tables, the phase 2 queries produce result tables with
two columns. As an example, Figure 11.2(a) lists a subquery of Q19 which specifies the
columns ρ and prov on lines 2-5. Where– and Why–provenance share a common domain

199

11 Comparison with PERM

1 -- initialize a sequence for provenance annotations
2 CREATE SEQUENCE Aseq;
3
4 -- phase 2 tables
5 CREATE TABLE lineitem2_row AS
6 SELECT
7 ρ AS ρ,
8 ARRAY[nextval(’Aseq’)::int] AS prov
9 FROM

10 lineitem1;
11
12 -- phase 2 indices
13 ALTER TABLE lineitem2_row ADD PRIMARY KEY(ρ);

Figure 11.1: Excerpt: definition and population of tables for row granularity
provenance analysis.

(do not employ towhy()) and cannot be distinguished from each other in the final result.
This makes the resulting data provenance better comparable to PERM .

11.1.3 Conclusion

Switching to row–level granularity is straightforward for phase 2. It may appear wrong
to just drop some columns of base tables but all predicates get evaluated in phase 1. In
phase 2, evaluation of predicates is replaced with log inspection.

11.2 PERM

We put our work in the perspective of the PERM approach by B. Glavic and G. Alonso
[GA09a, GA09b] . Its implementation (also called PERM) is available as a modified
PostgreSQL server [Gla]. To the best of our knowledge, only PERM and the detached
approach can analyze correlated SQL queries. The experimental evaluation covers all 22
queries of the TPC-H benchmark [TPC].

11.2.1 Introductory Example

Like our own approach, PERM employs annotation propagation and query rewriting
in order to derive data provenance. Annotations are represented as additional columns
and rows. Per convention, columns containing provenance are prefixed with prov_. The
next example is based on table part from the TPC-H benchmark. The table part+ (the

200

11.2 PERM

1 SELECT
2 log.ρ AS ρ,
3 l.prov ∪ -- Where-provenance
4 l.prov ∪ p.prov -- Why-provenance
5 AS prov
6 FROM
7 lineitem2_row AS l,
8 part2_row AS p,
9 readjoin(1, l.ρ, p.ρ) AS log(ρ)

(a) Row granularity.

1 SELECT
2 log.ρ AS ρ,
3 y.why ∪ l.l_extendedprice AS l_extendedprice,
4 y.why ∪ l.l_discount AS l_discount
5 FROM
6 lineitem2 AS l,
7 part2 AS p,
8 readjoin(1, l.ρ, p.ρ) AS log,
9 towhy(p.p_partkey

10 ∪ l.l_partkey
11 ∪ p.p_brand
12 ∪ p.p_container
13 ∪ l.l_quantity
14 ∪ p.p_size
15 ∪ l.l_shipmode
16 ∪ l.l_shipinstruct
17) AS y(why)

(b) Cell granularity.

Figure 11.2: Excerpts of Q19, phase 2: provenance analysis in different gran-
ularities.

part+

p_partkey prov_p_partkey p_name prov_p_name ...
1 1 goldenrod... goldenrod...

Figure 11.3: Example: an annotated table in PERM .

201

11 Comparison with PERM

+ denotes provenance derivation) listed in Figure 11.3 has the additional provenance
columns prov_p_partkey and prov_p_name. Data provenance is represented literal and in
the example (a base table) the provenance is just a copy of the existing columns. During
query evaluation, the data provenance gets propagated towards the result table.

Q19 in PERM The PERM approach provides rewrite rules for relational algebra sup-
porting both set and bag semantics. Q19’s simplified RA expression is listed below. It
consists of base tables, a theta join and an aggregation.

Q19 = αsum(...)(lineitem ⋈p part)

Using the rewrite rules R1 (base table), R4 (cross join) and R5 (aggregation) provided
in [GA09a][III.C], the (simplified) RA expression

Q19+ = (αsum(...)(lineitem ⋈p part)) d|><|true (πprov_*(lineitem
+
⋈p part

+))

is derived. The expression on the left–hand side of the left outer join (d|><|true) is a copy
of the input expression Q19 and evaluates to the same (value–only) result. On the
right–hand side, the data provenance is evaluated.

• lineitem+ and part+ are the provenance–augmented base tables. part+ is exem-
plified in Figure 11.3.

• The theta join of Q19 is basically kept, however its subexpressions are rewritten.
This yields the expression (lineitem+ ⋈p part+).

• The right–hand side of the left outer join is supposed to produce nothing but data
provenance. For this purpose, the projection πprov_*(⋅) removes all non–provenance
columns.

When the outer join is evaluated, the result value and its data provenance get joined
together. Q19 produces a single result cell (see Figure 11.4(a)) while Q19+ has 1 +
16 + 9 columns. These columns contain the value (1), the data provenance regarding
to lineitem (16) and the data provenance regarding to part (9). A fragment of the
output table is listed in Figure 11.4(b). The full table has 121 rows and 26 columns.
The result value 3083843.0578 is repeated 120 times in order to yield a normalized table.
The difference in cell counts between Q19 and Q19+ is calculated in rows ⋅ columns and
we find (121 ⋅ 26) − (1 ⋅ 1) = 3145. This is called the provenance representation size of
PERM .

202

11.2 PERM

output
revenue

3083843.0578

(a) The value–only result of Q19.

output+

revenue prov_p_name ...
3083843.0578 □ ...
3083843.0578 □ ...

⋮ ⋮ ⋮

(b) The provenance result of Q19+ (ex-
cerpt).

Figure 11.4: Q19’s result in the PERM approach.

output1
ρ revenue
1 3083843.0578

(a) Phase 1.

output2
ρ prov
1 [□,□, . . .]

(b) Phase 2.

Figure 11.5: Q19’s result in the detached approach.

Q19 in the Detached Approach In the row granularity version of the detached ap-
proach (introduced in Section 11.1), the two output tables of Figure 11.5 are produced.

• The provenance result is aggregated in a single array value. PERM grows the
output table in rows and columns instead.

• A single provenance identifier □ (we implemented it as 4–byte integer values) refers
to an entire tuple in the input table. PERM literally copies the entire input tuple.

• For Q19, the array length (in elements) is 224. We call this the provenance rep-
resentation size in the detached approach. (We do not integrate the ρ columns
in the provenance representation size. For TPC-H, they are typically orders of
magnitude smaller than the array sizes.)

• The table cardinality of Q19+ in PERM is 121. Each row references two tuples,
one of each base table (modeling a two–way–join). This corresponds to a total of
121 ⋅ 2 = 242 referenced tuples. The detached approach uses duplicate elimination,
therefore duplicates in join partners are removed (224 < 242).

11.2.2 Provenance Semantics

Both approaches (PERM and the detached approach) support multiple provenance se-
mantics. We configured PERM with the default PI-CS setting (short for: PERM influ-
ence contribution semantics).

203

11 Comparison with PERM

[...] we developed Perm-Influence contributions semantics (PI-CS), a new
type of contribution semantics based on Lineage, that uses a different rep-
resentation of provenance and solves the problems of Lineage concerning
negation and nested sub-queries. [Gla10, Sec. 1.2.1]

In turn, the detached provenance analysis got adapted to row granularity (the same gran-
ularity as PI-CS) and the transformation of Where–provenance into Why–provenance is
omitted (exemplified in Figure 11.2). We consider the two provenance semantics unequal
but related. The example involving Q19 (see directly above) confirms the relationship
between the two provenance semantics. More examples get discussed below. It is not
feasible to carry out a formal comparison of the two semantics in the context of this
work.

11.3 Experiments

11.3.1 Setup

Both experiments (detached approach and PERM) were carried out in the very same
environment of hardware and operating system (described in Section 9.2). The source
code of PERM was retrieved from [Gla] (last updated on December, 9th 2017) and
compiled with optimization level -O2. PERM is based on a PostgreSQL 8.3 DBMS. We
took care in a fair configuration of the PostgreSQL servers (despite different versions) and
table schemas (with indices). PERM–specific optimization flags (suggested B. Glavic)
were set.

11.3.2 Comparison of Provenance Representation Sizes

Figure 11.6 shows the results for the provenance representation sizes in both approaches.
The detached approach in row granularity () consistently has a smaller representation
size than perm (). For example, the sizes of Q19 (discussed above) have the ratio
3, 145/224 = 14.0. The geometric mean for the ratios of all queries (except Q17 and Q20
which did not finish) is 37.2.

11.3.2.1 Discussion of Q22

The experiments identify the biggest gap between representation sizes for Q22. In ab-
solute numbers, PERM yields a representation size of ≈ 7 billion while the detached
approach only yields ≈ 300, 000. This constitutes a factor of ≈ 23, 300 between the two
representation sizes. We have identified two reasons (i.e., 27 ⋅ 850 ≊ 23, 300) for this
outcome. Factor 27 corresponds (roughly) to the 25 additional result columns used for

204

11.3 Experiments

Representation Size

102

103

104

105

106

107

108

109

1010

Q14Q10 Q6 Q1Q5 Q12Q8 Q7Q19Q3 Q9Q21 Q4Q18 Q13 Q11Q15Q16 Q22Q2 Q20Q17

Figure 11.6: Provenance representation sizes in the detached approach () and
PERM ().

205

11 Comparison with PERM

customer

Uncorrelated subquery:
40, 000 rows (∧= pconst)
of data provenance

6, 000 ⋅ 40, 000 6, 000 ⋅ 40, 000

WHERE filter
(6, 000 rows)

GROUP BY
(7 groups)

Figure 11.7: Abstract perspective of provenance computation for Q22 in
PERM .

provenance representation in PERM ’s result table. In contrast, the detached approach
represents data provenance in a single column (see the example of Q19 from above).

The reasoning for factor 850 is sketched in Figure 11.7. Starting out from a scan of
customer (cardinality: 1, 500, 000), a WHERE–filter is applied. The relevant part of the
predicate is an uncorrelated subquery which yields a data provenance of ≈ 40, 000 rows
— a single annotation pconst in the detached approach. When the WHERE–filter is ap-
plied, each of the qualified 6, 000 tuples from customer gets annotated with the sub-
query’s provenance, which makes 6, 000 ⋅ 40, 000 = 240, 000, 000 rows in total. In the
last processing step, GROUP BY and aggregation functions are applied which affect the
value semantics while the data provenance is just being forwarded. In the end, there are
≈ 240, 000, 000 rows (= 7 billion representation size). In each of the 7 groups, the 40, 000
annotations are now represented

6, 000
7 = 850

times. The detached approach considers this as redundancy. Each group gets aggregated
into a single provenance annotation and duplicates are eliminated. The 850 pconst (per
group) are then combined according to

850
⋃
i=1

pconst = pconst

because of duplicate elimination. Altogether, the representation size in the detached
approach is ≈ 23, 300 times smaller for Q22. On top of that, our translation of Q22
implements the phase 2 optimization described in Section 9.6.1 and adds pconst only
once to each group beforehand.

206

11.3 Experiments

11.3.3 Comparison of Performance

Both approaches use PostgreSQL as a backend and derive their provenance through
query execution by the DBMS. The performance comparison is based on the wall clock
times T□ for query execution. The wall clock times are then turned into a slowdown
factor using the following formulae.

Detached Provenance Analysis For the detached approach and TPC-H query i, the
slowdown is

T
1
i + T

2
i

T user
i

where T user
i is the runtime for the unmodified TPC-H query. The two runtimes T 1i and

T
2
i correspond to the runtimes of the two phases of the detached approach. The log sizes

(and runtimes) of phase 1 are the same as in Chapter 9. Be aware that this phase 2
derives data provenance in row granularity, resulting in an improved performance.

PERM For PERM and TPC-H query i, the slowdown is

T
perm
i

T
user .p
i

where T user .p
i is the runtime for the unmodified TPC-H query and T perm

i is the runtime
for the rewritten query.

Results The slowdowns of both approaches are plotted in Figure 11.8. The queries are
grouped according to their nesting complexity. On the left–hand side (basic queries),
most queries consist of a single SFW–expression. On the right–hand side, nesting–heavy
queries are grouped together. The geometric means for each approach and group of
queries are listed in Figure 11.9. The detached approach massively outperforms PERM
when it comes to nested queries. These results are consistent with the working principles
of the two approaches. PERM uses normalization to carry along provenance annotations.
The more nested a query is, the more normalization overhead is induced. The detached
approach however is based on two phases connected through logging. The associated
write/read UDFs can be called directly from within any subquery without routing data
through the surrounding queries. The experiments confirmed this intuition from the
quantitative perspective. For the basic queries (on the left–hand side of Figure 11.8),

207

11 Comparison with PERM

slowdown

0.2
0.5
1
2
5

10
20
50
100
200
500

1000
2000
5000
10000

Basic Queries Nesting–Heavy Queries

Q14 Q10 Q6 Q1 Q5 Q12 Q8 Q7 Q19 Q3 Q9 Q21 Q4 Q18 Q13 Q11 Q15 Q16 Q22 Q2 Q20 Q17

Figure 11.8: Performance comparison: the detached approach and PERM .

Detached Approach PERM Approach
Basic Queries 3.8 3.7
Nesting–Heavy Queries 6.8 477

Figure 11.9: Geometric means of slowdowns for the two approaches and
TPC-H. Q20 and Q17 are not included.

PERM shows a slightly better performance. We presume that the logging overhead does
not pay off for basic queries.

11.3.4 Basic Queries

The 11 basic queries are listed one the left–hand side of Figure 11.8. Most of them consist
of a single SFW expression. Q7, Q8 and Q9 have another SFW expression nested in
their respective FROM–clause. The slowdown ratios between the two approaches reside in
between of Q14 and Q9.

• Q14 has a slowdown of 2.6 in PERM and 16 in the detached approach.

• Q9 has a slowdown of 95 in PERM and 5.2 in the detached approach.

208

11.3 Experiments

The slowdown of 95 for Q9 in PERM is remarkably high. This result is consistent with
the observation in [GA09a][Sec. V.A].

Q8, Q12 and Q14 contain CASE expressions. These expressions utilize logging in order
to make provenance analysis of CASE in cell granularity possible. For row granularity
however, this logging is superfluous and induces (useless) overhead. In fact, each query
of the group of basic queries spends more time in phase 1 than in phase 2. If we would
strip the logging of CASE expressions, the aforementioned queries might improve.

Looking closer at Q10, the detached approach has a bigger slowdown than PERM (7.3 >
2.1). In absolute numbers, log writing alone costs the detached approach 5.3s while
PERM carries out the entire provenance analysis in 3.8s. A comparison of log sizes, the
time overhead per log row or an inspection of the query plans provided no additional
insight. To the best of our knowledge, the evaluation of Q10 was reasonably fast in
the detached approach. We assume that the PERM approach is better suited for this
workload. PERM does not write logs and it is reasonable that this advantage shows in
unnested queries like Q10.

11.3.5 Nesting–Heavy Queries

The nesting–heavy queries according to Figure 11.8 make (more) use of nested sub-
queries. Q2, Q4, Q17, Q20, Q21 and Q22 have correlated subqueries. Q13 has two
nested SFW expressions, plus a left outer join. Q11, Q15, Q16 and Q18 have nested
SFW–expressions in a WHERE– or HAVING–clause. Additionally, Q15 has a view definition
which is referenced twice. We found the slowdown ratios between the two approaches
reside in between of Q21 and Q2.

• Q21 had a slowdown of 14 in PERM and 7.0 in the detached approach.

• Q2 had a slowdown of 10, 070 in PERM and 0.25 in the detached approach.

All queries performed better in the detached approach and always terminated. The
provenance analysis of Q20 and Q17 exceeded 15 hours using PERM . They are not
considered in the comparison.

11.3.5.1 Discussion of Q2

We determined the single biggest difference in the slowdowns for Q2, i.e. 0.25 < 10, 070.

Speedup in the Detached Approach Q2 in the detached approach had a substantially
better query runtime than the original query — the slowdown is 0.25 which corresponds

209

11 Comparison with PERM

1 AND ps_supplycost = (
2 SELECT
3 MIN(ps_supplycost)
4 FROM
5 partsupp,
6 supplier,
7 nation,
8 region
9 WHERE

10 p_partkey = ps_partkey
11 and ...
12)

Figure 11.10: Excerpt of Q2: p_partkey is correlated.

to a speedup factor of 4.0. This observation is consistent with the performance of Q2 in
cell–level granularity where Q2 experienced a speedup in both phases.

Slowdown in PERM The comparably high runtime in PERM is not due to prove-
nance representation size. In numbers, the representation sizes are 605 in the detached
approach and 6, 845 in PERM — a ratio of ≈ 11. Accordingly, Q2 is listed on the very
left side of Figure 11.6. In fact, PERM yielded one of the smallest provenance results
for Q2, both in absolute numbers and relative to the detached approach.

The main issue can be narrowed down to the correlated subquery of Q2, listed in Fig-
ure 11.10. According to the query plan, PERM employed the JA rewrite strategy which
is a method for query decorrelation in context of aggregates.

The rewrite rules of the JA strategy apply de-correlation and un-nesting to
transform correlated sublink expressions into joins [...]. [Gla10, Sec. 5.2.6.2]

One of those joins is very expensive. The join predicate is not three–valued (i.e., a=b
with NULL=NULL yields null) but two–valued (i.e., NOT (a IS DISTINCT FROM b) where NULL
comparison yields true). According to a short experiment, the three–valued predicate
gets planned as a hash join but the two–valued predicate gets planned as a nested loop
join. The difference in query runtimes is ≈ 5, 000.

We conclude that the detached approach can deal with correlated subqueries in a more
natural way. Basically, the rewritten queries for phases 1 and 2 are still correlated
and the DBMS deals with the problem. However, the rewrite rules must be aware
of correlated tuple variables and include them in the logging procedure (discussed in
Section 8.3.2).

210

12 Summary

∼Prov(∆, Q)
= P

≡

(∆, Q)

Phase 1 Phase 2

P

Figure 12.1: Provenance analysis (left) turned into a detached provenance anal-
ysis (right).

In this work, we have studied the problem of provenance analysis for SQL queries. First,
we provided definitions for

• a relational model with embedded provenance annotations and

• the data provenance for a feature–rich SQL dialect. For example, the dialect covers
correlated subqueries and window functions.

This thorough problem statement features arbitrarily deep nesting of data structures
(namely, rows and arrays) and data provenance in sub–cell granularity. The provenance
semantics is based on adapted notions of Where– and Why–provenance (originally de-
fined in [BKT01]) with the computation of Why–provenance being optional. In symbols,
we stated the problem ∼Prov(∆, Q) = P with ∆ being a (read–only) database and Q

a SQL query1. P is the according output table, consisting of output values annotated
with data provenance.

The main part of this work put its focus on the provenance computation. In theory,
an implementation of ∼Prov(⋅, ⋅) from scratch is possible. However, any such prototype

1For presentation reasons, we approximate Prov(⋅, ⋅, ⋅) with ∼Prov(⋅, ⋅).

211

12 Summary

would have to face the issue of implementing a table storage, a query processor and other
components. These components already exist in form of DBMS implementations. On top
of that, a modern DBMS is a highly optimized software product, constituting the result
of decades of research. In this work, we have contributed an approach called detached
provenance analysis which leverages existing DBMS implementations for provenance
analysis.

Figure 12.1 depicts how the provenance definition and the detached provenance analysis
correspond to each other. The basic idea is to evaluate the two aspects of P (i.e., values
and provenance annotations) in two separate computation steps, termed phase 1 and
phase 2. We have provided a ruleset which carries out the translation Q ↝ (Q1

, Q
2).

The two resulting queries drive the two phases.

In the experimental part of this work, we have determined the overhead of provenance
analysis in our approach (based on the TPC-H benchmark and the PostgreSQL DBMS).
In a second set of experiments, we adapted the provenance granularity to row granularity
and compared our approach to PERM [GA09a]. PERM is an extended PostgreSQL
server with support for provenance analysis. Unlike to our approach, the provenance
support is built into the DBMS itself. We distinguished between two sets of queries: (i)
basic (for example, aggregating queries) and (ii) nesting–heavy (for example, correlated
subqueries). For set (i), PERM showed a slightly better performance and for set (ii),
the detached approach outperformed PERM .

212

13 Future Work

13.1 WITH RECURSIVE

WITH RECURSIVE
rtable AS (

e
table
b

UNION ALL

e
table
r

)
...

(a) User query.

1 WITH RECURSIVE
2 rtable1 AS (
3

4 e
table,1
b

5 UNION ALL
6 SELECT ...
7 FROM (...δ+1...) AS v(ρ),

8 LATERAL e
table,1
r AS ...

9)
10 ...

(b) Phase 1.

Figure 13.1: Provenance analysis for recursive queries (pseudocode).

Let Figure 13.1(a) be a recursive query with recursive table definition rtable. The ex-
pression e

table
r gets evaluated repeatedly until it yields an empty table. The difficulty

regarding to a detached provenance analysis is this repeated evaluation. Each evaluation
is similar but different rows are involved. Any logging carried out within etable

r needs to
be aware of this repetition (as argued in Section 8.3.2).

Our idea is exemplified in Figure 13.2. After three evaluations of etable
r , the empty table

is found (denoted ∅). On the right–hand side of the figure, the rtable1 get collected
using UNION ALL and constitute the result table (also bound to rtable1). Column ρ holds
row identifiers (already known from Section 8.3.1). The new feature is column δ which is
used as a counter for recursion depth. In Figure 13.1(b), we present the according query.
On line 7, column δ is being accessed and bound to v(ρ). Using LATERAL on line 8, this
makes v a tuple variable which can be referenced from anywhere within the recursive
query etable,1

r . Then, v can be understood as a correlated tuple variable and included in
the logging procedures carried out within e

table,1
r . Thus, all logs can be qualified with

the recursion depth v(ρ). Log ambiguity (because of repeated evaluation of etable,1
r) is

avoided.

213

13 Future Work

∆1

rtable1
ρ δ . . .

10 1 . . .

11 1 . . .

rtable1
ρ δ . . .

12 2 . . .

13 2 . . .

14 2 . . .

⋮ ⋮ ⋮

rtable1
ρ δ . . .

15 3 . . .

∅

e
table,1
b

e
table,1
r

e
table,1
r

e
table,1
r

UNION ALL

UNION ALL

rtable1

Figure 13.2: Recursive evaluation at runtime.

214

13.2 Set Operations

A1
ρ mycol
1 foo
2 bar

B1
ρ mycol
3 foo
4 baz

(a) Input tables.

output1
ρ mycol
2 bar

(b) A EXCEPT B in phase 1.

1 SELECT
2 a.ρ,
3 a.mycol
4 FROM
5 A1 AS a,
6 (
7 SELECT a.mycol FROM A1 AS a
8 EXCEPT
9 SELECT b.mycol FROM B1 AS b

10) AS diff
11 WHERE
12 a.mycol = diff.mycol

(c) Query in pseudocode.

Figure 13.3: Example: EXCEPT in phase 1.

The support of recursive UNION DISTINCT is more difficult. Additional columns would be
considered in the process of duplicate elimination and therefore, would interfere with
the query semantics.

13.2 Set Operations

The detached approach consistently augments all tables with an additional column of
row identifiers. A straightforward duplicate elimination using the SQL DISTINCT keyword
is not possible since the additional column would interfere with the query semantics. In
the main part of our work, we employed DISTINCT ON instead (which allows to specify
the columns being compared). Typical SQL dialects support additional set operations.
In this discussion, we focus on EXCEPT (set difference \ in relational algebra).

Phase 1 Figure 13.3(a) lists two example tables A1 and B1 (in phase 1). Column
mycol contains regular data (the payload). What we desire to evaluate is A EXCEPT B
and yield the output table shown in Figure 13.3(b) (extended with ρ column). That

215

13 Future Work

means, the two ρ columns are to be ignored by the EXCEPT operator but nonetheless, an
according ρ column hast to show up in the table. A possible query rewriting strategy is
exemplified in Figure 13.3(c). The idea is to

• project the ρ columns away (lines 7,9),

• carry out the set operation (line 8) and

• re–attach the ρ column through a join on the payload column(s).

13.3 Slicing–Based How–Provenance

How–provenance introduced by T. Green, G. Karvounarakis and V. Tannen [GKT07]
features a mapping of relational operators (e.g., join and union) to operations in a
semiring (i.e., ⊕ and ⊙). However, in the upcoming discussion, we ignore the semirings
aspect. Instead, we sketch an alternative approach to How–provenance.

Figure 13.4(a) lists a short SQL query fragment which consists of UNION ALL and the
constant expressions ’Sol’ and ’plasmic’. The two subexpressions of the UNION ALL and
both constants are annotated with (our adapted) How–provenance. The annotations
are singleton sets with unique identifiers. Using the detached provenance analysis (we
omit logging and phase 1), the rewrite could yield the phase 2–query provided in Fig-
ure 13.4(b). The rewrite of query constants is straight–forward (replacing them with
their annotations) and the two subexpressions of UNION ALL make use of Ψ2(⋅, ⋅) (see
Definition 8.7), i.e. the according annotations get distributed. The How–provenance for
this example is presented in Figure 13.4(c): the annotation {10o, 20o} (for value: Sol)
exhibits a contribution of the corresponding query constant and the specific branch of
UNION ALL to that result value. The How–provenance exemplified here has cell granu-
larity. In comparison to [GKT07], our adapted approach to How–provenance would be
able to uniquely identify each single expression of the input query.

Related work by D. O’Grady, T. Müller and T. Grust [OMG18] has a very similar
understanding of How–provenance and also employs the detached approach. However,
the approach of [OMG18] utilizes query compilation instead of SQL rewrites.

Our adaption of How–provenance is related to program slicing [Wei84] by M. Weiser.
The goal of program slicing is to identify the program fragment which has been involved
in computing a certain output. Looking again at Figure 13.4(c), the How–provenance
of output value Sol exactly identifies the expressions required for computing that value.
Hence, query debugging could be a direct application. J. Cheney [Che07] already found
a connection between program slicing and data provenance. However, the discussion in
[Che07] focuses on the relationship of input data to output data (rather than query text

216

13.4 Parallel Query Execution

{10o}
{20o}

{30o}

{40o}

SELECT
’Sol’ AS body,
’plasmic’ AS density

UNION ALL
...

(a) User query with annotations.

Ψ2
⎛
⎜⎜⎜
⎝

SELECT 1 AS ρ,
{20o} AS body,
{30o} AS density

, {10o}
⎞
⎟⎟⎟
⎠

UNION ALL

Ψ2(. . . , {40o})

(b) Rewritten query (phase 2).

output⇧
body density

Sol, {10o, 20o} plasmic, {10o, 30o}
⋮ ⋮

(c) Output table with How–provenance.

Figure 13.4: Example: How–provenance.

to output data, as sketched above).

An important open question is if computation of (meaningful) How–provenance is pos-
sible in the context of query normalization (see Chapter 7).

13.4 Parallel Query Execution

Parallel query execution was not in the scope of this work. We expect that phase 1
and the log–writing UDFs are an issue for parallelization. On the other hand, queries of
phase 2 are read–only and make heavy use of set union. The union operator is commu-
tative and associative (as discussed in Section 9.6). The PostgreSQL DBMS we used in
the experiments is however totally unaware of this optimization potential. In [MDG18b,
Appendix D.], we present an additional set of experiments in which provenance annota-
tions are not represented as arrays but as actual sets (using a handcrafted PostgreSQL
plugin). That research could be continued and we may be able to teach PostgreSQL
additional optimization rules for set union.

217

Bibliography

[ADT11] Yael Amsterdamer, Daniel Deutch, and Val Tannen. Provenance for Aggre-
gate Queries. In Proceedings of the 30th ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, PODS 2011, June 12-16,
2011, Athens, Greece, pages 153–164, 2011.

[AFG+18] Bahareh Sadat Arab, Su Feng, Boris Glavic, Seokki Lee, Xing Niu, and Qitian
Zeng. Gprom - A Swiss Army Knife for Your Provenance Needs. IEEE Data
Engineering Bulletin, 41(1):51–62, 2018.

[BCTV05] Deepavali Bhagwat, Laura Chiticariu, Wang Chiew Tan, and Gaurav Vi-
jayvargiya. An Annotation Management System for Relational Databases.
VLDB Journal, 14(4):373–396, 2005.

[BKT01] Peter Buneman, Sanjeev Khanna, and Wang Chiew Tan. Why and Where:
A Characterization of Data Provenance. In Database Theory - ICDT 2001,
8th International Conference, London, UK, January 4-6, 2001, Proceedings.,
pages 316–330, 2001.

[BKT02] Peter Buneman, Sanjeev Khanna, and Wang Chiew Tan. On Propagation of
Deletions and Annotations Through Views. In Proceedings of the Twenty-first
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, June 3-5, Madison, Wisconsin, USA, pages 150–158, 2002.

[BMT07] Gavin M. Bierman, Erik Meijer, and Mads Torgersen. Lost In Translation:
Formalizing Proposed Extensions to C#. In Proceedings of the 22nd An-
nual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2007, October 21-25, 2007, Montreal,
Quebec, Canada, pages 479–498, 2007.

[CAA14] James Cheney, Amal Ahmed, and Umut A. Acar. Database Queries that
Explain their Work. In Proceedings of the 16th International Symposium
on Principles and Practice of Declarative Programming, Kent, Canterbury,
United Kingdom, September 8-10, 2014, pages 271–282, 2014.

[CB74] Donald D. Chamberlin and Raymond F. Boyce. SEQUEL: A Structured
English Query Language. In Proceedings of 1974 ACM-SIGMOD Workshop

219

Bibliography

on Data Description, Access and Control, Ann Arbor, Michigan, USA, May
1-3, 1974, 2 Volumes, pages 249–264, 1974.

[CCT09] James Cheney, Laura Chiticariu, and Wang Chiew Tan. Provenance in
Databases: Why, How, and Where. Foundations and Trends in Databases,
1(4):379–474, 2009.

[Che07] James Cheney. Program Slicing and Data Provenance. IEEE Data Engineer-
ing Bulletin, 30(4):22–28, 2007.

[Cod70] E. F. Codd. A Relational Model of Data for Large Shared Data Banks.
Communications of the ACM, 13(6):377–387, 1970.

[CTV05] Laura Chiticariu, Wang Chiew Tan, and Gaurav Vijayvargiya. DBNotes: A
Post-It System for Relational Databases based on Provenance. In Proceedings
of the ACM SIGMOD International Conference on Management of Data,
Baltimore, Maryland, USA, June 14-16, 2005, pages 942–944, 2005.

[CW00] Yingwei Cui and Jennifer Widom. Lineage Tracing in a Data Warehousing
System. In Proceedings of the 16th International Conference on Data Engi-
neering, San Diego, California, USA, February 28 - March 3, 2000, pages
683–684, 2000.

[CWW00] Yingwei Cui, Jennifer Widom, and Janet L. Wiener. Tracing the Lineage
of View Data in a Warehousing Environment. ACM TODS, 25(2):179–227,
2000.

[DMG16] Benjamin Dietrich, Tobias Müller, and Torsten Grust. The Best Bang for
Your Bu(ck)g. In Proceedings of the 19th International Conference on Ex-
tending Database Technology, EDBT 2016, Bordeaux, France, March 15-16,
2016, Bordeaux, France, March 15-16, 2016., pages 674–675, 2016.

[GA09a] Boris Glavic and Gustavo Alonso. PERM: Processing Provenance and Data
on the Same Data Model through Query Rewriting. In Proceedings of the
25th International Conference on Data Engineering, ICDE 2009, March 29
2009 - April 2 2009, Shanghai, China, pages 174–185, 2009.

[GA09b] Boris Glavic and Gustavo Alonso. Provenance for Nested Subqueries. In
EDBT 2009, 12th International Conference on Extending Database Technol-
ogy, Saint Petersburg, Russia, March 24-26, 2009, Proceedings, pages 982–
993, 2009.

[GKT07] Todd J. Green, Gregory Karvounarakis, and Val Tannen. Provenance Semir-
ings. In Proceedings of the Twenty-Sixth ACM SIGACT-SIGMOD-SIGART

220

Bibliography

Symposium on Principles of Database Systems, June 11-13, 2007, Beijing,
China, pages 31–40, 2007.

[Gla] Boris Glavic. PERM. https://github.com/IITDBGroup/perm.

[Gla10] Boris Glavic. Perm: Efficient Provenance Support for Relational Databases.
PhD thesis, University of Zürich, 2010.

[GP10] Floris Geerts and Antonella Poggi. On Database Query Languages for k-
Relations. Journal of Applied Logic, 8(2):173–185, 2010.

[JC94] C. Barry Jay and J. Robin B. Cockett. Shapely Types and Shape Polymor-
phism. In Programming Languages and Systems - ESOP’94, 5th European
Symposium on Programming, Edinburgh, UK, April 11-13, 1994, Proceedings,
pages 302–316, 1994.

[Kah87] Gilles Kahn. Natural Semantics. In STACS 87, 4th Annual Symposium on
Theoretical Aspects of Computer Science, Passau, Germany, February 19-21,
1987, Proceedings, pages 22–39, 1987.

[KG12] Grigoris Karvounarakis and Todd J. Green. Semiring-Annotated Data:
Queries and Provenance. SIGMOD Record, 41(3):5–14, 2012.

[KN10] Alfons Kemper and Thomas Neumann. One Size Fits all, Again! the Ar-
chitecture of the Hybrid OLTP&OLAP Database Management System Hy-
Per. In Enabling Real-Time Business Intelligence - 4th International Work-
shop, BIRTE 2010, Held at the 36th International Conference on Very Large
Databases, VLDB 2010, Singapore, September 13, 2010, Revised Selected Pa-
pers, pages 7–23, 2010.

[LZW+97] Wilburt J. Labio, Yue Zhuge, Janet L. Wiener, Himanshu Gupta, Hector
Garcia-Molina, and Jennifer Widom. The WHIPS Prototype for Data Ware-
house Creation and Maintenance. In SIGMOD 1997, Proceedings ACM SIG-
MOD International Conference on Management of Data, May 13-15, 1997,
Tucson, Arizona, USA., pages 557–559, 1997.

[MDG18a] Tobias Müller, Benjamin Dietrich, and Torsten Grust. You Say ’What’, I
Hear ’Where’ and ’Why’? (Mis-)Interpreting SQL to Derive Fine-Grained
Provenance. PVLDB, 11(11):1536–1549, 2018.

[MDG18b] Tobias Müller, Benjamin Dietrich, and Torsten Grust. You Say ’What’, I
Hear ’Where’ and ’Why’? (Mis-)Interpreting SQL to Derive Fine-Grained
Provenance. arXiv e-prints, page arXiv:1805.11517, May 2018.

[MG15] Tobias Müller and Torsten Grust. Provenance for SQL through Abstract
Interpretation: Value-less, but Worthwhile. PVLDB, 8(12):1872–1875, 2015.

221

https://github.com/IITDBGroup/perm

Bibliography

[Mül15] Tobias Müller. Where- und Why-Provenance für syntaktisch reiches SQL
durch Kombination von Programmanalysetechniken. In Proceedings of the
27th GI-Workshop Grundlagen von Datenbanken, Gommern, Germany, May
26-29, 2015., pages 84–89, 2015.

[Mül16] Tobias Müller. Have Your Cake and Eat it, Too: Data Provenance for Turing-
Complete SQL Queries. In Proceedings of the VLDB 2016 PhD Workshop
co-located with the 42nd International Conference on Very Large Databases
(VLDB 2016), New Delhi, India, September 9, 2016., 2016.

[Neu11] Thomas Neumann. Efficiently Compiling Efficient Query Plans for Modern
Hardware. PVLDB, 4(9):539–550, 2011.

[NK15] Thomas Neumann and Alfons Kemper. Unnesting Arbitrary Queries. In
Datenbanksysteme für Business, Technologie und Web (BTW), 16. Fachta-
gung des GI-Fachbereichs "Datenbanken und Informationssysteme" (DBIS),
4.-6.3.2015 in Hamburg, Germany. Proceedings, pages 383–402, 2015.

[OMG18] Daniel O’Grady, Tobias Müller, and Torsten Grust. How "How" Explains
What "What" Computes — How-Provenance for SQL and Query Compilers.
In 10th USENIX Workshop on the Theory and Practice of Provenance, TaPP
2018, London, UK, July 11-12, 2018., 2018.

[Pos] The PostgreSQL Relational Database System. postgresql.org.

[PW07] Simon Peyton Jones and Philip Wadler. Comprehensive Comprehensions.
In Proceedings of the ACM SIGPLAN Workshop on Haskell, Haskell 2007,
Freiburg, Germany, September 30, 2007, pages 61–72, 2007.

[PW18a] Fotis Psallidas and Eugene Wu. Smoke: Fine-grained Lineage at Interactive
Speed. PVLDB, 11(6):719–732, 2018.

[PW18b] Fotis Psallidas and Eugene Wu. Smoke: Fine-grained Lineage at Interactive
Speed. arXiv e-prints, page arXiv:1801.07237, January 2018.

[Pyt] The Python Programming Language. python.org.

[SJMR18] Pierre Senellart, Louis Jachiet, Silviu Maniu, and Yann Ramusat. ProvSQL:
Provenance and Probability Management in PostgreSQL. PVLDB,
11(12):2034–2037, 2018.

[SQL16] Database Languages–SQL–Part 2: Foundation, 12 2016. ISO/IEC 9075-
2:2016.

[TPC] The TPC Benchmark H. tpc.org/tpch.

222

postgresql.org
python.org
tpc.org/tpch

Bibliography

[Wei84] Mark Weiser. Program Slicing. IEEE Transactions on Software Engineering,
10(4):352–357, 1984.

[WM90] Y. Richard Wang and Stuart E. Madnick. A Polygen Model for Heteroge-
neous Database Systems: The Source Tagging Perspective. In 16th Interna-
tional Conference on Very Large Data Bases, August 13-16, 1990, Brisbane,
Queensland, Australia, Proceedings., pages 519–538, 1990.

[WS97] Allison Woodruff and Michael Stonebraker. Supporting Fine-grained Data
Lineage in a Database Visualization Environment. In Proceedings of the
Thirteenth International Conference on Data Engineering, April 7-11, 1997,
Birmingham, UK, pages 91–102, 1997.

223

Acknowledgements

First of all, I want to thank my advisor Torsten Grust. He guided me throughout the
entire process of being a doctoral candidate. His strong support started out with the
bare essentials like funding and providing generous office space. I felt very welcome in
Torsten’s research group. Torsten carefully guided me through the research process but
without pushing me towards results. Instead, he kept asking sensible questions which
lead to valuable results.

Benjamin Dietrich and Daniel O’Grady were two other doctoral candidates of Torsten
and the four of us published a number of papers together. I want to thank all of you for
the enjoyable cooperation in the research and publication process. At time of writing,
additional members of Torsten’s group are Christian Duta and Denis Hirn. Former
members I collaborated with are Alexander Ulrich, Dennis Butterstein, Jeroen Weijers,
Noah Doersing and Tom Schreiber. Thank you for the pleasant collaboration and the
fruitful discussions.

A substantial part of my funding came from theWissenschaftscampus Tübingen (Bildung
in Informationsumwelten). The interdisciplinary cooperation with scientists from the
fields of economy and psychology has lead me to the topic of my dissertation. My
thanks go to my direct collaborators Iassen Halatchliyski, Michael Kummer and Olga
Slivkó and the organizers of the Wissenschaftscampus.

Finally, I want to thank my professors. Torsten Grust and Boris Glavic were the re-
viewers of my dissertation. The oral exam was conducted by Torsten, Boris, Wolfgang
Küchlin and Klaus Ostermann. Thank you for giving me the opportunity to graduate.

225

	Introduction
	Data Provenance
	Data Provenance for SQL

	Research Focus and Contribution
	Publications

	Fundamentals
	Notation
	Relational Model
	Introductory Example
	RM Types
	RM Values
	Base Domains
	Array Domains
	Row Domains
	Table Domains
	Database Domains

	Provenance Representation
	Motivating Example
	Provenance Annotations
	Union Operators and
	Where–Provenance
	Why–Provenance

	Lifted Relational Model (LRM)
	Integration of Provenance Annotations
	LRM Types
	LRM Values
	liftrm
	Push ,
	Collect

	SQL and its Provenance Semantics
	Cell Expressions
	Literals
	Row Constructors [style=sqlRawStyle]|ROW|
	Column References [style=sqlRawStyle]|.|col
	Comparison of Row Values
	Generic Operators
	[style=sqlRawStyle]|ISNULL|
	Variable References var
	Array Constructors [style=sqlRawStyle]|ARRAY|
	[style=sqlRawStyle]|CASE|
	[style=sqlRawStyle]|EQCASE|
	[style=sqlRawStyle]|TOROW|
	[style=sqlRawStyle]|EXISTS|

	Table Expressions
	Table References tab
	[style=sqlRawStyle]|VALUES|
	[style=sqlRawStyle]|WITH|
	[style=sqlRawStyle]|UNION ALL|
	Table–Valued UDFs

	SFW Expression
	Decomposition
	Joined Tables
	Formalized Decomposition
	eclause Expressions

	Aggregations and Window Functions
	Aggregations in the Backend Dialect
	[style=sqlRawStyle]|groupagg|

	Aggregation Functions
	[style=sqlRawStyle]|SUM|
	[style=sqlRawStyle]|SUM|–Like Provenance Semantics
	[style=sqlRawStyle]|THE|
	[style=sqlRawStyle]|COUNTSTAR()|

	Window Functions
	Introductory Example
	[style=sqlRawStyle]|windows|
	Window Functions ewin

	Data Provenance for SQL

	Provenance Analysis
	Normalization
	Definition
	UDF Inlining
	Correlation Normalization
	SFW Normalization
	Motivation and Example
	Overview
	[style=sqlRawStyle]|FROM| and [style=sqlRawStyle]|WHERE|
	[style=sqlRawStyle]|GROUP BY|, [style=sqlRawStyle]|AGGREGATES| and [style=sqlRawStyle]|HAVING|
	[style=sqlRawStyle]|WINDOWS|
	[style=sqlRawStyle]|ORDER BY|, [style=sqlRawStyle]|DISTINCT ON| and [style=sqlRawStyle]|OFFMIT|
	The Fully Normalized SFW Expression

	Detached Provenance Analysis
	Overview
	Introductory Example
	One Table Detached
	All Tables Detached
	Phase 1
	Phase 2

	Formalization
	Row Identifiers
	Logging and Nested Loops
	Logging Locations bold0mu mumu subsection and UDFs
	RM1
	RM2
	SQL
	Detached Provenance Analysis

	Provenance Annotation Operators
	Definitions

	Rewrite of Cell Expressions
	Literals
	Row Constructors [style=sqlRawStyle]|ROW|
	Column References [style=sqlRawStyle]|.|col
	Comparison of Row Values
	Generic Operators
	[style=sqlRawStyle]|ISNULL|
	Variable Reference var
	Array Constructor [style=sqlRawStyle]|ARRAY|
	Array Length
	[style=sqlRawStyle]|CASE|
	[style=sqlRawStyle]|TOROW|
	[style=sqlRawStyle]|EXISTS|

	Rewrite of Table Expressions
	Table References tab
	[style=sqlRawStyle]|VALUES|
	[style=sqlRawStyle]|WITH|
	[style=sqlRawStyle]|UNION ALL|

	Rewrite of the SFW Expression
	Normalized [style=sqlRawStyle]|SELECT|
	Normalized Join
	Normalized [style=sqlRawStyle]|ORDER BY|
	Normalized [style=sqlRawStyle]|AGGREGATES|
	Normalized [style=sqlRawStyle]|WINDOWS|

	Experimental Evaluation
	Implementation in PostgreSQL
	Query Rewrites
	Implementation of Provenance Annotations
	Implementation of Logging: Overview
	Implementation of Logging: Example

	Setup
	Hard– and Software
	Database

	Normalization Overhead
	Speedup of Q9
	Speedup of Q21
	Slowdown of Q16

	Phase 1 Overhead
	Results
	Speedup of Q2
	Slowdown of Q18
	Slowdown of Q17
	Optimization

	Phase 2 Overhead
	Provenance Size
	Absolute Performance
	Performance Relative to Provenance Size
	Speedup of Q19
	Slowdown of Q10

	Optimization of Phase 2
	 Optimization

	Conclusion
	Related Work
	Fine–Grained Data Lineage
	Data Lineage
	WHIPS Implementation

	Why– and Where–Provenance
	Why–Provenance
	Where–Provenance
	Comparison
	DBNotes Implementation

	Semirings Approach
	Comparison of Data Provenance
	ProvSQL

	Traces Approach
	Smoke Approach
	The Detached Approach and Imperative Languages
	GProM

	Comparison with PERM
	Implementation of Row–Level Granularity
	Tables of Phase 2
	Queries of Phase 2
	Conclusion

	PERM
	Introductory Example
	Provenance Semantics

	Experiments
	Setup
	Comparison of Provenance Representation Sizes
	Comparison of Performance
	Basic Queries
	Nesting–Heavy Queries

	Summary
	Future Work
	[style=plainlst]|WITH RECURSIVE|
	Set Operations
	Slicing–Based How–Provenance
	Parallel Query Execution

	Bibliography
	Acknowledgements

