# **Rare-Earth-Metal Alkylidene Chemistry**

#### DISSERTATION

der Mathematisch-Naturwissenschaftlichen Fakultät der Eberhard Karls Universität Tübingen zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.)

> vorgelegt von M. Sc. Verena M. Birkelbach aus Forchheim

> > Tübingen 2019

Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Eberhard Karls Universität Tübingen.

Tag der mündlichen Qualifikation:

Dekan:

1. Berichterstatter:

2. Berichterstatter:

20.12.2019

Prof. Dr. Wolfgang Rosenstiel Prof. Dr. Reiner Anwander Prof. Dr. Doris Kunz

# Rare-Earth-Metal Alkylidene Chemistry

Verena M. Birkelbach



In Memoriam

Ottmar Birkelbach

07.03.1954 - 11.02.2019

## Preface

The following PhD thesis consists of a survey on the chemistry of rare-earth-metal methyl and methylidene complexes, a summary of the main results, and original scientific papers. The work has been carried out at the Institut für Anorganische Chemie of the Eberhard Karls Universität Tübingen, Germany, over the period from November 2015 to November 2019 under the supervision of Prof. Dr. Reiner Anwander. Funding has been gratefully received from the Deutsche Forschungsgemeinschaft (DFG).

Parts of this thesis have been presented at international and national conferences as poster contributions.

## Acknowledgements

First would like of all. I to express my gratitude to my supervisor Prof. Dr. Reiner Anwander. Thank you for accepting me, a foreigner, in your high standard synthesis laboratory without any reservations, your helpful guidance, and the very interesting research topic for this thesis. Thank you for the opportunities to attend international and national conferences for the successful exchange with other researchers.

Special thanks go to Dr. Cäcilia (**Cili**) Maichle-Mössmer for all crystal structure determinations and her helpful discussions. Further thanks to Dr. **Dorothea** Schädle for her advice and proof reading my papers and this thesis.

My thanks also go to Dr. **Klaus** Eichele and Kristina (**Krissi**) Strohmaier for maintaining the high standard equipment, as well as their help in all aspects regarding NMR spectroscopy. Further thanks go to Wolfgang Bock (**Herr Bock**) for performing elemental analyses, even with highly fluorinated samples.

Thanks to the staff of the metal, electronics and glass workshops for manufacturing and repairing lab equipment. I further thank **Tobias** Wolf and especially **Elke** Niquet for their help, support and their friendly and always helpful nature.

Many thanks to **Sabine** Ehrlich for all her administrative work and to **Nadja** Wettering for all the desperately needed IT help.

I also would like to thank my current and former coworkers of the Anwander group. Special thanks go to **Uwe** Bayer, **Lorenz** Bock, **Alexandros** Mortis, and Dr. **Dan**iel Werner for all the funny moments with you, the nice atmosphere you create, and for all the discussions, whether chemistry related or not. Thank you, Dr. **Renita** Thim, for your support, your friendship and your words of encouragement when needed. It was a pleasure to work and share a glovebox with you! Further thanks go to **Damir** Barisic, **Martin** Bonath, **Denis** Burghardt, **Dennis** A. Buschmann, **Dominic** Diether, Dr. **Christoph** O. Hollfelder, **Markus** Katzenmayer, **Felix** Kracht, **Lars** Kuckuk, **Jakob** Lebon, Dr. **Yucang** Liang, Dr. **Leilei** Luo, **Eric** Moinet, **Theresa** Rieser, Dr. **David** Schneider, **Andrea** Sonström, **Georgios** Spiridopoulos, Dr. **Christoph** Stuhl, **Simon** Trzmiel, Dr. **Benjamin** Wolf, and **Xin** Ning for the very supportive and friendly atmosphere in the lab.

My special thanks go to **Uwe** Bayer, thank you for being both: the best colleague someone could wish for and my love. You make it so easy to spend work and private life with you because of your wonderful character. Thank you for your love and support every day!

Last but not least, gebührt meiner Familie ein ganz besonders großes Dankeschön. Vor allem will ich mich bei meinen **Eltern** (Irmgard und Ottmar) bedanken für ihre finanzielle Unterstützung, die mir mein Studium erst ermöglicht hat, aber noch viel wichtiger möchte ich mich für ihre uneingeschränkte Unterstützung und ihre aufbauenden Worte bedanken. Bei meiner Schwester **Johanna** und meinem Bruder **Benedikt** möchte ich mich für ihre lustige Art bedanken, mit der sie mich immer wieder zum Lachen bringen.

# Contents

| Pı                                                          | Preface                                              |                                                                |     |  |
|-------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------|-----|--|
| A                                                           | Acknowledgements                                     |                                                                |     |  |
| C                                                           | Contents                                             |                                                                |     |  |
| A                                                           | Abbreviations                                        |                                                                |     |  |
| Sı                                                          | ımm                                                  | lary                                                           | V   |  |
| Zı                                                          | isan                                                 | nmenfassung                                                    | VII |  |
| Pı                                                          | ıblic                                                | ations                                                         | IX  |  |
| D                                                           |                                                      | nal Contribution                                               | v   |  |
|                                                             |                                                      |                                                                | A   |  |
| 0                                                           | bjec                                                 | tive of this Thesis                                            | XI  |  |
| A. Methyl and Alkylidene Complexes of the Rare-Earth Metals |                                                      |                                                                |     |  |
|                                                             | 1                                                    | Metal Carbene vs. Alkylidene Complexes                         | 2   |  |
|                                                             | 2                                                    | Reactive Ln(III) Methyl Complexes                              | 4   |  |
|                                                             | 3                                                    | Historical Overview of Rare-Earth-Metal Alkylidenes            | 7   |  |
|                                                             | 4                                                    | Ln–C(Alkylidene) Bond Lengths                                  | 14  |  |
|                                                             | 5 Reactivity of Rare-Earth-Metal Alkylidenes         |                                                                | 17  |  |
|                                                             |                                                      | 5.1 Pincer-Type Rare-Earth-Metal Alkylidenes                   | 17  |  |
|                                                             |                                                      | 5.2 Multimetallic and TEBBE-like Rare-Earth-Metal Alkylidenes  | 18  |  |
|                                                             |                                                      | 5.3 Monometallic Donor-Stabilized Rare-Earth-Metal Alkylidenes | 22  |  |
| B. Summary of the Main Results 25                           |                                                      |                                                                |     |  |
|                                                             | 1                                                    | Rare-Earth-Metal Complexes as Precursors for Alkylidenes       | 26  |  |
|                                                             | 2                                                    | Mixed Methyl/Aryloxy Rare-Earth-Metal Complexes                | 30  |  |
|                                                             | 3                                                    | Cp-Supported Rare-Earth-Metal Methylidene Complexes            | 33  |  |
| C.                                                          | C. Unpublished Results                               |                                                                |     |  |
|                                                             | Synthesis of (CNC)-Pincer Rare-Earth-Metal Complexes |                                                                |     |  |
| D.                                                          | D. Bibliography                                      |                                                                |     |  |
| E. Publications                                             |                                                      |                                                                |     |  |

F. Appendix

# Abbreviations

| 18c6           | 1,4,7,10,13,16-                                        | Me                   | Methyl                                                                   |  |
|----------------|--------------------------------------------------------|----------------------|--------------------------------------------------------------------------|--|
|                | nexaoxacycloocladecane                                 | Mes                  | Mesityl                                                                  |  |
| Ar<br>Bn       | Aryl<br>Benzyl                                         | N-nacnac             | <i>N</i> -donor-functionalized<br>nacnac                                 |  |
| <i>n</i> -BuLi | <i>n</i> -Butyllithium                                 | N<br>H               | MeC(NDipp)CHC(Me)(NC<br>H <sub>2</sub> CH <sub>2</sub> NR <sub>2</sub> ) |  |
| <i>t</i> Bu    | tert-Butyl                                             | Nacnac               | 1,3-diketiminato                                                         |  |
| Ср             | Cyclopentadienyl                                       | NMR                  | Nuclear Magnetic                                                         |  |
| Cp*            | C <sub>5</sub> Me <sub>5</sub>                         |                      | Resonance                                                                |  |
| Cp'            | C <sub>5</sub> Me <sub>4</sub> SiMe <sub>3</sub>       | $NTf_2$              | trifluoromethanesulfonimide                                              |  |
| DEPT           | Distortionless Enhancement<br>by Polarization Transfer | OTf                  | triflato                                                                 |  |
|                |                                                        | Ph                   | Phenyl                                                                   |  |
| Dipp           | Diisopropylphenyl                                      | iPr                  | iso-Propyl                                                               |  |
| dmap           | 4-dimethylaminopyridine                                | pz                   | pyrazolyl                                                                |  |
| dmpz           | dimethylpyrazolyl                                      | RT                   | ambient (Room)                                                           |  |
| Do             | Donor                                                  |                      | temperature                                                              |  |
| DRIFT          | Diffuse Reflectance Infrared                           | thf                  | tetrahydrofuran                                                          |  |
|                | Fourier Transform                                      | TMS                  | trimethylsilyl                                                           |  |
| EA             | Elemental Analysis                                     | Tp <sup>tBu,Me</sup> | tris(3- <i>tert</i> -butyl-5-methyl-                                     |  |
| equiv.         | equivalent                                             |                      | pyrazoryr)oorato                                                         |  |
| et al.         | <i>et alii or et aliae</i>                             | HSQC                 | Heteronuclear Single<br>Quantum Coherence                                |  |
| LA             | LEWIS Acid                                             | HMBC                 | Heteronuclear Multiple                                                   |  |
| Ln             | rare-earth metal (Sc, Y, La -<br>Lu)                   |                      | Bond Correlation                                                         |  |
| М              | Metal                                                  |                      |                                                                          |  |

## **Summary**

In contrast to well-established transition metal alkylidene complexes, stabilization of rare-earthmetal alkylidene complexes is still challenging. Methylidene complexes attracted great research interest due to their reactivity in organic transformations. Despite this fact, the chemistry of the rare-earth-metal variants is still unexplored.

In a first approach for the generation of terminal rare-earth-metal methylidene complexes stabilized by a super bulky tris(pyrazolyl)borato ligand, reactive mixed methyl/triflate and methyl/alkyl complexes  $Tp^{tBu,Me}LnMe(R)$  (Ln = Y, Lu; R = OTf, NTf<sub>2</sub>, alkyl) were investigated. Reaction of  $Tp^{tBu,Me}LuMe_2$  or  $Tp^{tBu,Me}YMe(AlMe_4)$  with Me<sub>3</sub>SiOTf or Me<sub>3</sub>SiNTf<sub>2</sub> led to the successful isolation of  $Tp^{tBu,Me}LnMe(OTf)$  or  $Tp^{tBu,Me}LnMe(NTf_2)$ , respectively. Attempted reactions with the WITTIG reagent H<sub>2</sub>C=PPh<sub>3</sub> showed no reactivity towards leaving group abstraction. Further effort led to the formation of  $Tp^{tBu,Me}LnX_2$  (X = Cl, I) and especially mixed  $Tp^{tBu,Me}LuMeCl$  for its application in salt metathesis protocols with KBn and LiCH<sub>2</sub>SiMe<sub>3</sub> and the successful formation of  $Tp^{tBu,Me}LuMe(R)$  (R = CH<sub>2</sub>C<sub>6</sub>H<sub>5</sub>, CH<sub>2</sub>SiMe<sub>3</sub>). However, even at elevated temperatures no abstraction of either methane, toluene or SiMe<sub>4</sub>, but rather C–H-bond activation at the ligand backbone was observed.

Further interest in reactive terminal methyl complexes led to investigations on the stability of mixed methyl aryloxide compounds  $Tp^{tBu,Me}LnMe(OAr)$  (Ln = Y, Lu; OAr = OC<sub>6</sub>H<sub>3</sub>Me<sub>2</sub>-2,6, OC<sub>6</sub>H<sub>3</sub>*i*Pr<sub>2</sub>-2,6, OC<sub>6</sub>H<sub>2</sub>*t*Bu<sub>2</sub>-2,6-Me-4, OC<sub>6</sub>H<sub>3</sub>(CF<sub>3</sub>)<sub>2</sub>-3,5). The desired rare-earth-metal methyl complexes were obtained by applying salt metathesis as well as protonolysis approaches with  $Tp^{tBu,Me}LuMe_2$  and  $Tp^{tBu,Me}LnMe(AlMe_4)$  and the respective KOAr or HOAr.

Exchange of the ligand system led to the generation of silylamide stabilized reactive rare-earthmetal complexes  $(Me_xPh_ySi)_2NLn(AlMe_4)_2$  (Ln = Y, Lu, x = 0-2, y = 3-x) which showed intramolecular C–H-bond activation to afford rare-earth-metal complexes supported by (*CNC*)pincer ligands.

Successful isolation of various mixed trimetallic halogenido/methylidene rare-earth-metal complexes  $(Cp^R)_3Ln_3(\mu-X)_3(\mu_3-X)(\mu_3-CH_2)(thf)_3$  (Ln = Y, La; X = Cl, Br, I;  $Cp^R = C_5Me_5$ ,  $C_5Me_4SiMe_3$ ) was achieved *via* donor-induced tetramethylaluminate cleavage and further C–H-bond activation of  $[(Cp^R)Ln(AlMe_4)_y(X)_z]_x$ . Reactivity tests with carbonylic substrates revealed a behavior analogous to the TEBBE reagent and therefore those complexes can be

considered as SCHROCK-type nucleophilic carbenes. Furthermore, the methylidene rare-earthmetal complexes were active in the polymerization of  $\delta$ -valerolactone.

## Zusammenfassung

Im Gegensatz zu Übergangsmetall-Alkyliden-Komplexen ist die Stabilisierung von Seltenerdmetall-Alkylidenen immer noch eine Herausforderung. Methyliden-Komplexe fallen vor allem durch ihre Reaktivität in der Umwandlung organischer Gruppen auf. Ungeachtet dessen ist die Chemie der Seltenerdmetall-Analoga immer noch nahezu unerforscht.

In einem ersten Ansatz zur Synthese von terminalen Seltenerdmetall-Methyliden-Komplexen, stabilisiert durch einen sterisch anspruchsvollen Tris(pyrazolylborato) Liganden, wurden gemischte Methyl/Triflat und Methyl/Alkyl Komplexe Tp<sup>*t*Bu,Me</sup>LnMe(R) (Ln = Y, Lu; R = OTf, NTf<sub>2</sub>, Alkyl) untersucht. Die Reaktion von Tp<sup>*t*Bu,Me</sup>LuMe<sub>2</sub> und Tp<sup>*t*Bu,Me</sup>YMe(AlMe<sub>4</sub>) mit Me<sub>3</sub>SiOTf oder Me<sub>3</sub>SiNTf<sub>2</sub> führte zu der Isolierung von einerseits Tp<sup>*t*Bu,Me</sup>LnMe(OTf) sowie Tp<sup>*t*Bu,Me</sup>LnMe(NTf<sub>2</sub>). Versuche, diese mit dem WITTIG Reagenz H<sub>2</sub>C=PPh<sub>3</sub> umzusetzen um eine Abspaltung der Abgangsgruppe zu erzielen, zeigten keine Reaktivität dahingehend. Durch weitere Anstrengungen gelang die Synthese von Tp<sup>*t*Bu,Me</sup>LnX<sub>2</sub> (X = Cl, I) und vor allem Tp<sup>*t*Bu,Me</sup>LuMeCl. So gelang die Umsetzung mit KBn und LiCH<sub>2</sub>SiMe<sub>3</sub> in einer Salzmetathese-Reaktion zu Tp<sup>*t*Bu,Me</sup>LuMe(R) (R = CH<sub>2</sub>C<sub>6</sub>H<sub>5</sub>, CH<sub>2</sub>SiMe<sub>3</sub>). Auch erhöhte Temperaturen führten nicht zur Abstraktion des Alkans und der Bildung des anvisierten Alkylidens.

Weiteres Interesse an der Chemie von reaktiven Methyl-Komplexen führte zu Untersuchungen über gemischte Methyl/Aryloxid Verbindungen Tp<sup>*t*Bu,Me</sup>LnMe(OAr) (Ln = Y, Lu; OAr =  $OC_6H_3Me_2-2,6, OC_6H_3iPr_2-2,6, OC_6H_2tBu_2-2,6-Me-4, OC_6H_3(CF_3)_2-3,5$ ). Um die erwünschten Verbindungen zu erhalten, wurden sowohl Salzmetathese- als auch Protonolyse-Protokolle mit Tp<sup>*t*Bu,Me</sup>LuMe<sub>2</sub> und Tp<sup>*t*Bu,Me</sup>LnMe(AlMe<sub>4</sub>) und den entsprechenden Phenolderivaten angewandt.

Durch die Verwendung eines anderen Ligandensystems gelang die Synthese von weiteren Silylamid-stabilisierten Seltenerdmetallkomplexen (Me<sub>x</sub>Ph<sub>y</sub>Si)<sub>2</sub>NLn(AlMe<sub>4</sub>)<sub>2</sub> (Ln = Y, Lu, x = 0-2, y = 3-x), die durch intramolekulare C–H-Bindungsaktivierung (*CNC*)-Pincer Komplexe generierten.

Die erfolgreiche Isolierung von verschiedenen gemischten trimetallischen Halogenid/Methyliden Komplexen  $(Cp^R)_3Ln_3(\mu-X)_3(\mu_3-X)(\mu_3-CH_2)(thf)_3$  (Ln = Y, La; X = Cl, Br, I;  $Cp^R = C_5Me_5$ ,  $C_5Me_4SiMe_3$ ) konnte durch Donor-induzierte Tetramethylaluminatspaltung gefolgt von C–H-Bindungsaktivierung erzielt werden. Reaktivitätstests mit Substraten, die eine Carbonyl-Funktionalität tragen, zeigten Reaktivitäten ähnlich dem TEBBE Reagenz, weswegen diese Methyliden-Komplexe als nukleophile Carbene des SCHROCK-Typs eingestuft werden können. Zudem wurden die Seltenerdmetall-Methyliden-Komplexe erfolgreich in der Polymerisation von  $\delta$ -Valerolacton getestet.

# **Publications**

## Publications incorporated into this thesis

| Paper I   | <ul> <li>Potential Precursors for Terminal Methylidene Rare-Earth-Metal Complexes</li> <li>Supported by a Superbulky Tris(pyrazolyl)borato Ligand</li> <li>V. M. Birkelbach, R. Thim, C. Stuhl, C. Maichle-Mössmer, R. Anwander</li> <li><i>Chem. Eur. J.</i> 2019, 25, 14711-14720</li> <li>https://doi.org/10.1002/chem.201903606</li> </ul> |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Paper II  | Mixed Methyl Aryloxy Rare-Earth-Metal Complexes Stabilized by a Superbulky<br>Tris(pyrazolyl)borato Ligand<br>V. M. Birkelbach, C. Stuhl, C. Maichle-Mössmer, R. Anwander<br><i>Organometallics</i> <b>2019</b> , <i>38</i> , 4485-4496<br>https://doi.org/10.1021/acs.organomet.9b00631                                                       |
| Paper III | Elucidation of Cyclopentadienyl-Supported Rare-Earth-Metal Methylidene<br>Complexes: Scope of Coligands and Tebbe olefination                                                                                                                                                                                                                  |

V. M. Birkelbach, H. M. Dietrich, C. Stuhl, C. Maichle-Mössmer, R. Anwander

# Poster presentations

manuscript

| Poster I   | Cp-stabilized Homometallic Rare-Earth-Metal Complexes<br>V. M. Birkelbach, C. Stuhl, C. Maichle-Mössmer, R. Anwander<br><i>XXVIII. Tage der Seltenen Erden</i> , Tübingen, Germany, <i>October 4-6</i> , <b>2017</b> .                                                                                                                                        |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Poster II  | <ul> <li>Rare-Earth-Metal Mixed Halide Methylidene Complexes: Synthesis and<br/>Reactivity</li> <li>V. M. Birkelbach, C. Stuhl, C. Maichle-Mössmer, R. Anwander</li> <li>43rd International Conference on Coordination Chemistry ICCC, Sendai, Japan,<br/>July 30-August 4, 2018.</li> </ul>                                                                  |
| Poster III | <ul> <li>Rare-Earth-Metal Mixed Halide Methylidene Complexes: Synthesis and</li> <li>Reactivity</li> <li>V. M. Birkelbach, C. Stuhl, C. Maichle-Mössmer, R. Anwander</li> <li>6th International Workshop on Transition Metal Clusters IWTMC, Tübingen,</li> <li>Germany, September 5-7, 2018.</li> </ul>                                                      |
| Poster IV  | <ul> <li>Potential Precursors for Terminal Methylidene Rare-Earth-Metal Complexes</li> <li>V. M. Birkelbach, C. Stuhl, C. Maichle-Mössmer, R. Anwander</li> <li>19. Vortragstagung f. Anorg. Chemie der Fachgruppen der Wöhler-Vereinigung</li> <li>u. Festkörperchemie u. Materialforschung, Regensburg, Germany, September</li> <li>24-27, 2018.</li> </ul> |

## **Personal Contribution**

#### Paper I:

All reactions and analyses described were planned and conducted by myself (except  $Tp^{tBu,Me}LuMeCl$ ). Analyses include one-dimensional (<sup>1</sup>H, <sup>13</sup>C{<sup>1</sup>H}, <sup>19</sup>F{<sup>1</sup>H}, <sup>11</sup>B{<sup>1</sup>H}, <sup>29</sup>Si{<sup>1</sup>H} DEPT-45), two-dimensional (<sup>1</sup>H-<sup>13</sup>C HSQC, <sup>1</sup>H-<sup>13</sup>C HMBC) NMR spectroscopic methods, and DRIFT spectroscopy. Manuscript writing was also done by me. The synthesis of  $Tp^{tBu,Me}LuMeCl$  was planned by Dr. Renita Thim.

Elemental analyses were performed by Wolfgang Bock. The structural analyses by single crystal X-ray diffraction were performed by Dr. Cäcilia Maichle-Mössmer and Dr. Christoph Stuhl.

#### Paper II:

All reactions and analyses described were planned and conducted by myself. Analyses include one-dimensional (<sup>1</sup>H, <sup>13</sup>C{<sup>1</sup>H}, <sup>11</sup>B{<sup>1</sup>H}, <sup>19</sup>F{<sup>1</sup>H}), two-dimensional (<sup>1</sup>H-<sup>13</sup>C HSQC, <sup>1</sup>H-<sup>13</sup>C HMBC, <sup>1</sup>H-<sup>89</sup>Y HSQC) NMR spectroscopic methods, and DRIFT spectroscopy. Manuscript writing was also done by me.

Elemental analyses were performed by Wolfgang Bock. The structural analyses by single crystal X-ray diffraction were performed by Dr. Cäcilia Maichle-Mössmer and Dr. Christoph Stuhl.

#### Paper III:

All reactions and analyses described were planned and conducted by myself. Analyses include one-dimensional ( ${}^{1}$ H,  ${}^{13}$ C{ ${}^{1}$ H}), two-dimensional ( ${}^{1}$ H- ${}^{13}$ C HSQC,  ${}^{1}$ H- ${}^{13}$ C HMBC,  ${}^{1}$ H- ${}^{89}$ Y HSQC) NMR spectroscopic methods, and DRIFT spectroscopy. Manuscript writing was also done by me. The synthesis of precursors [(C<sub>5</sub>Me<sub>5</sub>)Ln(AlMe<sub>4</sub>)X]<sub>2</sub> and [(C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>La<sub>3</sub>(AlMe<sub>4</sub>)<sub>2</sub>X<sub>4</sub>]<sub>2</sub> was planned by Dr. H. Martin Dietrich.

Elemental analyses were performed by Wolfgang Bock. The structural analyses by single crystal X-ray diffraction were performed by Dr. Cäcilia Maichle-Mössmer and Dr. Christoph Stuhl.

## **Objective of this Thesis**

The main emphasis of this thesis is to develop new synthesis strategies for the formation of rare-earth-metal methyl or methylidene complexes.

**Chapter A** of this thesis gives a brief overview of the classification of carbene or alkylidene complexes in general. Further emphasis is put on rare-earth-metal methyl complexes as precursors in rare-earth-metal alkylidene chemistry. The development of rare-earth-metal alkylidene complexes are given in a historical overview with all structurally characterized alkylidene complexes and their respective Ln–C(alkylidene) bond lengths. Additionally, the differences in reactivity are displayed for the afore presented rare-earth-metal alkylidene complexes.

In **Chapter B** the main results of this thesis are presented. The emphasis is put on the following aspects:

- Synthesis of Methyl Complexes as Potential Precursors for Terminal Methylidenes
- Synthesis and Reactivity of Mixed Methyl/Aryloxy Rare-Earth-Metal Complexes
- Mixed Halogenido/Methylidene Rare-Earth-Metal Complexes: Synthesis and Reactivity

Chapter C contains a manuscript with unpublished results about (*CNC*)-pincer-like rare-earthmetal complexes

Chapter E is a compilation of publications and a manuscript to be submitted.



# Methyl and Alkylidene Complexes of the Rare-Earth Metals

#### **1** Metal Carbene vs. Alkylidene Complexes

In general, carbene complexes can be best described as divalent carbon species coordinated to a metal center *via* a formal carbon metal double bond. Deeper insights into the bonding situation and the electro- or nucleophilicity of the respective carbon or metal fragment leads to the classification into three different types of transition metal carbene complexes (Scheme 1):<sup>[1]</sup>

**Nucleophilic carbene complexes**,<sup>[1d-f, 2]</sup> where the four electrons of the formal M=C double bond are solely provided by the ligand system (Scheme 1, left). R represents electron withdrawing groups to stabilize the nucleophilic carbene unit with the electron deficient metal center. Therefore, the bonding situation is best described as dative bond from a strong  $\sigma$ -donor ligand. Representatives for this class are pincer-like bis(phosphorous)-stabilized carbene complexes formed from geminal dianions and the metal cation.<sup>[1d-f, 2]</sup>

**FISCHER-type carbene complexes**,<sup>[1a, f, g, 2]</sup> or singlet carbene complexes bear an electrophilic carbon species with R representing heteroatoms (Scheme 1, middle). The double-bond situation shows a  $\sigma$ -type electron donation from the carbene and  $\pi$ -type back bonding of the d-orbitals of the metal. Mainly, such complexes are accessible for late transition metals in low oxidation states. The synthesis of FISCHER-type carbenes can be achieved through *e.g.* addition of lithium alkyls to M–CO and subsequent alkylation or protonation of acyl complexes.<sup>[1a, f, g, 2]</sup>



Scheme 1. Classification of the different carbene complexes and their bonding modes (Scheme adopted and slightly modified from ref. [1f]).

**SCHROCK-type alkylidene complexes**,<sup>[1c, g, 2]</sup> or triplet carbene complexes feature a nucleophilic  $CR_2^{2-}$  unit with R representing hydrogen and alkyl substituents and a metal center in a formal high oxidation state (Scheme 1, right). The double bond character results from the  $\sigma$ - and  $\pi$ -bonding with two single electrons each from the metal center as well as the carbene moiety. Furthermore, SCHROCK alkylidene complexes can be generated, *e.g.* from deprotonation of alkyl groups or trapping reactions of free carbenes.<sup>[1c, g, 2]</sup>

The reactivity of these different types of carbene complexes strongly varies, for example, FISCHER carbene complexes with their electrophilic carbene moiety can be utilized in *e.g.* addition reactions of nucleophiles like amines or lithium alkyls for the generation of other carbenes, synthesis of carbocycles, carbene transfer reactions, or benzanullation reactions, whereas the nucleophilic carbene unit of the SCHROCK alkylidene complex can be used in metathesis reactions or even more importantly in WITTIG-type alkylidene transfer reactions.<sup>[1g, 2]</sup>

Although the bonding situation of transition-metal alkylidene complexes cannot be directly transferred to rare-earth-metal chemistry (rare-earth metals cannot stabilize the carbonic moiety by back donation and feature a mainly ionic bonding situation which is described in the next paragraph), the analogy to transition metal alkylidene complexes is justified, due to the similarities in their reactivity.

In the following, we will mainly focus on SCHROCK-type alkylidene rare-earth-metal complexes. Interestingly, despite the numerous examples of transition-metal alkylidene complexes, lanthanide alkylidene complexes are still elusive.<sup>[3]</sup> This can mainly be attributed to an energetic orbital mismatch between the f-element metal center and the orbitals of the C-based alkylidene.<sup>[4]</sup> Rare-earth metals are most stable in the oxidation state +III (Ln<sup>3+</sup>), which is due to their electronic configuration, *e.g.* Sc [Ar] $3d^{1}4s^{2}$ , Y [Kr] $4d^{1}5s^{2}$ , La [Xe] $5d^{1}6s^{2}$ , and Lu [Xe] $4f^{14}5d^{1}6s^{2}$  and the consequence of a closed valence shell with the loss of three electrons. Due to the fact that 4f orbitals have a smaller radial extension compared to the orbitals of the Ln<sup>3+</sup> metal center, the overlap with the ligand orbitals is restricted. Therefore, the impact of this energetic orbital mismatch results in a predominantly ionic bond between the metal center and the alkylidene moiety and further the chemistry is defined by electrostatic and steric factors.

#### 2 Reactive Ln(III) Methyl Complexes

One approach for the successful synthesis of rare-earth-metal alkylidenes is the intended C-Hbond activation of reactive  $[LLnR_2]$  (R = alkyl) precursors stabilized by the ancillary monoanionic ligand L.<sup>[5]</sup> Already in the late 70s, SCHUMANN reported on the successful synthesis of Li<sub>3</sub>LnMe<sub>6</sub>(tmeda)<sub>3</sub>.<sup>[6]</sup> However, it was the discovery of WATSON and BERCAW in the 80s that Ln-CH<sub>3</sub> moieties are capable of methane activation.<sup>[7]</sup> In 2005 and later in 2019 further efforts from our group led to the discovery of very reactive homoleptic unsolvated LnMe<sub>3</sub> (Sc, Y, Ho, Lu) accessible through donor-induced aluminate-cleavage from the respective Ln(AlMe<sub>4</sub>)<sub>3</sub>.<sup>[8]</sup> Due to this very reactive nature, the synthesis of discrete rare-earthmetal methyl bonds is still challenging and especially unsolvated, non-ate rare-earth-metal complexes are considered as most reactive.<sup>[9]</sup> The reactivity of these complexes is attributed to their composition: rare-earth metals Ln(III) with large ionic radii (for six-coordinated  $Ln^{3+}$ , e.g. La<sup>3+</sup> 1.032 Å, Y<sup>3+</sup> 0.900 Å, Lu<sup>3+</sup> 0.861 Å, Sc<sup>3+</sup> 0.745 Å)<sup>[10]</sup> and the methyl ligand with its enhanced basicity causing an ionic bonding situation.<sup>[11]</sup> Despite this, different structural motifs are known for the formation of homometallic ligand-stabilized rare-earth-metal methyl complexes, for instance  $[L_2LnMe]_x$  or  $[LLnMe_2]_x$  (Scheme 2). Crucial for the accessibility of these systems is the stabilizing effect of the monoanionic ligand L or the introduction of external donors. Therefore, it is not surprising, that many homometallic  $[L_2LnMe]_n$  complexes (n = 1, n)2) have been structurally characterized, mainly supported by cyclopentadienyl derivatives, e.g.



Scheme 2. Previously reported structural motifs adapted by  $[LLnMe_2]_n$  and  $[L_2LnMe]_n$  rare-earth-metal complexes.

I 
$$[Cp_2LnCl(thf)_x]_n$$
  $\xrightarrow{+ MeLi}$   $[Cp_2LnMe(thf)_x]_n$   
II  $Cp_2Ln(AlMe_4)$   $\xrightarrow{+ do}$   $[Cp_2LnMe(do)_x]_n$ 

Scheme 3. Synthesis pathway to methyl complexes with the general composition [Cp<sub>2</sub>LnMe].

unsubstituted [Cp<sub>2</sub>LnMe]<sub>2</sub> (Ln = Y, Yb; Cp = C<sub>3</sub>H<sub>5</sub>),<sup>[12]</sup> monomeric (*n* = 1) Cp<sub>2</sub>YbMe(thf),<sup>[13]</sup> or alkyl-substituted Cp complexes [Cp<sup>Me</sup><sub>2</sub>YMe]<sub>2</sub> (Cp<sup>Me</sup> = C<sub>5</sub>H<sub>3</sub>(Me)<sub>2</sub>-1,3),<sup>[14]</sup> [Cp\*<sub>2</sub>LnMe]<sub>*x*</sub> (*n* = 1 for Sc, *n* = 2 for Lu; Cp\* = C<sub>5</sub>Me<sub>5</sub>),<sup>[15]</sup> [Cp<sup>*i*Pr</sup><sub>2</sub>LuMe]<sub>2</sub> (Cp<sup>*i*Pr</sup> = C<sub>5</sub>Me<sub>4</sub>*i*Pr),<sup>[16]</sup> [Cp<sup>*i*Bu</sup><sub>2</sub>LnMe]<sub>2</sub> (Ln = Ce, Nd, Tb; Cp<sup>*i*Bu</sup> = C<sub>5</sub>Me<sub>4</sub>*t*Bu),<sup>[17]</sup> as well as various silyl derivatives [Cp'<sub>2</sub>LnMe]<sub>2</sub> (Ln = Y, Sm; Cp' = C<sub>5</sub>Me<sub>4</sub>SiMe<sub>3</sub>),<sup>[18]</sup> [Cp<sup>SiMe3</sup><sub>2</sub>LnMe]<sub>2</sub> (Ln = Nd, Sm; Cp<sup>SiMe3</sup> = C<sub>5</sub>Me<sub>3</sub>(SiMe<sub>3</sub>)<sub>2</sub>-1,3),<sup>[18a]</sup> [Cp<sup>SiEt3</sup><sub>2</sub>LnMe]<sub>2</sub> (Ln = Y, Sm, Lu; Cp<sup>SiEt3</sup> = C<sub>5</sub>Me<sub>3</sub>(SiEt<sub>3</sub>)<sub>2</sub>-1,3).<sup>[19]</sup> Two different synthesis pathways are known for the generation of these [Cp<sub>2</sub>LnMe]<sub>*n*</sub> derivatives (Scheme 3): Path **I** is widely used and displays a salt-metathesis approach utilizing a [Cp<sub>2</sub>LnCl]<sub>*n*</sub> precursor for the reaction with a methylating agent like MeLi. Path **II** shows the donor-cleavage of Cp<sub>2</sub>Ln(AlMe<sub>4</sub>), a so-called "alkyl in disguise" due to the stabilizing effect on the methyl group from the trimethylaluminum.<sup>[20]</sup> The introduced donor solvent then forms the LEWIS acid-base pair AlMe<sub>3</sub>· do to generate the terminal methyl group.

Particular challenging is the kinetic stabilization of discrete dimethyl Ln(III) derivatives of the type [LLnMe<sub>2</sub>]<sub>n</sub> which strongly depends on the steric bulk of the ancillary ligand L.<sup>[11]</sup> Mainly, Cp-based dimethyl complexes display methyl-bridged dimerized and oligomerized solid-state structural motifs, e.g.  $[Cp'ScMe_2]_2$ ,  $[Cp'LnMe_2]_3$  (Ln = Tm, Lu), [5b] and  $[Cp*LnMe_2]_3$  (Ln = Y, Ho, Dy, Tb, Lu).<sup>[9a, 22]</sup> In contrast to this, sterically demanding *N*-coordinating ligands gave access to monometallic complexes [LLnMe2] evidenced by X-ray structure analysis, for example {(Dipp)NC(*t*Bu)CHC(*t*Bu)N(Dipp)}ScMe<sub>2</sub> (Dipp =  $C_6H_3iPr_2-2,6$ ), <sup>[23]</sup> {1-(NDipp)-2- $(PPh_2=NAr)C_6H_4$  ScMe<sub>2</sub>,<sup>[24]</sup> Tp<sup>tBu,Me</sup>LnMe<sub>2</sub> (Ln = Ho, Lu; Tp<sup>tBu,Me</sup> = tris(pyrazolyl-tBu-3-Me-5)borato).<sup>[11,</sup> 25] Nand further or *P*-donor supported 2-{NDippC(Ph)NC<sub>6</sub>H<sub>4</sub>CH=NDipp}ScMe<sub>2</sub>.<sup>[26]</sup>  $N(2-PiPr_2-4-methylphenyl)_2ScMe_2$ <sup>[27]</sup> and {MeC(NDipp)CHC(Me)N(CH<sub>2</sub>)<sub>2</sub>N(Me)(CH<sub>2</sub>)<sub>2</sub>NMe<sub>2</sub>}YMe<sub>2</sub>.<sup>[28]</sup> If the coordination sphere is not completely saturated from the bulky ancillary ligand, introduction of external donors can  $Cp*ScMe_2(OPtBu_3)$ ,<sup>[29]</sup> give rise to monometallic complexes as {N(SiMe<sub>3</sub>)(Dipp)}LuMe<sub>2</sub>(thf)<sub>2</sub>,<sup>[5c]</sup> and {(Dipp)NC(Me)CHC(Me)N(Dipp)}ScMe<sub>2</sub>(thf).<sup>[23]</sup> In addition to synthesis strategies I and II toward [Cp<sub>2</sub>LnMe]<sub>n</sub> complexes, [LLnMe<sub>2</sub>]<sub>n</sub> complexes can also be accessed from the donor-cleavage of a weaker LEWIS acid stabilizing the alkyl (Scheme 4, Path II, Ga) and further, *via* protonolysis reactions of  $[LnMe_3]_n$  precursors with HL (Scheme 4, Path III). With respect to rare-earth-metal alkylidene formation, monometallic<sup>[5c]</sup> or trimetallic<sup>[5b, 22b]</sup> [LLnMe<sub>2</sub>(do)<sub>*x*</sub>]<sub>*n*</sub> were already proven to be suitable starting materials.

I 
$$[LLnCl_2(thf)_x]_n$$
  $\xrightarrow{+2 \text{ MeLi}}$   $[LLnMe_2(do)_x]_n$   
II  $LLnMe(MMe_4)$   $\xrightarrow{+ do}$   $[LLnMe_2(do)_x]_n$   $M = AI, Ga$   
II  $LLn(MMe_4)_2$   $\xrightarrow{+ HL}$   $[LLnMe_2(do)_x]_n$   $M = AI, Ga$   
III  $[LnMe_3]_n$   $\xrightarrow{+ HL}$   $[LLnMe_2(do)_x]_n$ 

Scheme 4. Synthesis pathway to methyl complexes with the general composition [LLnMe<sub>2</sub>].

#### **3** Historical Overview of Rare-Earth-Metal Alkylidenes

Already in the late 70s, SCHUMANN reported on the synthesis of lutetium and erbium alkylidenes  $[Li(do)_x][Ln(CH_2SiMe_3)_2(CHSiMe_3)]_n$  via a silane elimination protocol.<sup>[30]</sup> He substantiated his findings with NMR spectroscopic analysis as well as elemental analysis, however, there was no structural elucidation. Despite this great achievement, it lasted almost 30 years until CAVELL in 2000 succeeded in the formation of the first structurally characterized rare-earth-metal alkylidene {C(Ph<sub>2</sub>P=NSiMe<sub>3</sub>)<sub>2</sub>}Sm(NCy<sub>2</sub>)(thf) 1 with a pincer-like structural motif by reacting the protonated ligand (NCN)-H<sub>2</sub> with the homoleptic samarium amide precursor (Scheme 5).<sup>[31]</sup> Crystal structure analysis revealed a very short bond length for the Sm-C(alkylidene) bond with 2.467(4) Å (all bond lengths mentioned in this chapter are given in Table 1 in chapter 4). Shortly after this discovery, similar samarium and thulium alkylidene complexes such as  $[{(Ph_2P=S)_2C}LnI]_2$  (Ln = Sm, Tm) were found from the dilithiated (SCS)-pincer-type ligand and  $LnI_3(thf)_x$  with bond lengths for Ln-C(alkylidene) of 2.371(6) Å and 2.325(5) Å, respectively. Further efforts led to ionic  $[{(Ph_2P=S)_2C_2Ln}][Li(thf)_4]$  bis(carbene) complexes with bond lengths of 2.491(5) and 2.507(5) Å for samarium as well as 2.368(3) and 2.423(9) Å for thulium developed by LE FLOCH.<sup>[32]</sup> Even though comparison of these complexes with a hypervalent geminal dianionic P-stabilized ligand set and a trivalent metal center to other rareearth-metal complexes bearing a nucleophilic CH<sub>2</sub><sup>2-</sup> moiety seems difficult, reactivity studies have proven similar trends toward carbonylic functionalities. So the analogy to SCHROCK alkylidene complexes allows for their position in this chapter. Further details on their reactivity will be given in chapter 5.



Scheme 5. Synthesis of the first structurally characterized bis(iminophosphorano) samarium complex.

In 2006, our group successfully utilized the donor-induced aluminate-cleavage and C–H-bond activation of a Cp-stabilized heterobimetallic precursor  $[Cp*Ln(AlMe_4)_xCl_y]_z$  (Ln = Y: z = 2, y = x; Ln = La: z = 6, y = 2x) for the synthesis of a trimetallic rare-earth-metal nucleophilic methylidene complexes  $Cp^*_3Ln_3(\mu$ -Cl) $_3(\mu_3$ -Cl) $(\mu_3$ -CH $_2)$ (thf) $_3$  (Ln = Y, La) **2** with bridging

chlorido ligands (Scheme 6).<sup>[33]</sup> The core of this methylidene cluster adopts a distorted hexagonal bipyramidal geometry with the striking methylidene unit bridging the three lanthanide metal centers. Bond lengths for the methylidene and the rare-earth-metal centers range from 2.424(2) to 2.450(2) Å for yttrium and 2.537(3) to 2.635(3) Å for lanthanum.<sup>[33]</sup>



Scheme 6. Synthesis of the first trimetallic rare-earth-metal methylidene complexes.

Only two years later in 2008, a new structural motif was discovered independently from our group and MINDIOLA and coworkers, namely LEWIS-acid stabilized rare-earth-metal complexes of the type [LLn(CH<sub>2</sub>)(AlMe<sub>3</sub>)<sub>2</sub>] (Scheme 7). The striking feature of these complexes is the similarity to the TEBBE reagent Cp<sub>2</sub>Ti(CH<sub>2</sub>)ClAlMe<sub>2</sub>. The group of MINDIOLA utilized a (PNP)pincer ligand  $(PNP = N[2-PiPr_2-4-methylphenyl]_2)$  for the reaction of the rare-earth-metal precursor (PNP)ScMe<sub>2</sub> with trimethylaluminum to form 3 featuring a Sc-C(alkylidene) bond length of 2.317(2) Å.<sup>[27]</sup> Our group showed that the reaction of the superbulky tris(pyrazolyl)borato ligand KTp<sup>tBu,Me</sup> in a salt-metathetical approach with La(AlMe<sub>4</sub>)<sub>3</sub> also led to a TEBBE-like lanthanum complex 4 with a La-C(methylidene) bond of 2.519(2) Å.<sup>[34]</sup> Another LEWIS-acid stabilized methylidene was also achieved by our group from the HTp<sup>tBu,Me</sup> protonolysis of  $Y(AlMe_4)_3$ reaction with and ionic gave [Tp<sup>/Bu,Me</sup>AlMe][Y(AlMe<sub>4</sub>){(CH<sub>2</sub>)AlMe<sub>3</sub>}<sub>2</sub>(AlMe<sub>2</sub>)] 5 (Y-CH<sub>2</sub>: 2.344(8), 2.411(9) Å).<sup>[20]</sup>



Scheme 7. TEBBE-like rare-earth-metal methylidene complexes.

On the way to donor-solvent free complexes  $[LnMe_3]_n$  via the reaction of La(AlMe\_4)\_3 with donors as PMe\_3, our group observed lanthanum clusters containing, amongst methylidyne and carbide also methylidene moieties (Scheme 8).<sup>[35]</sup> This occurred through multiple C–H-bond activations by implementation of donors and gave methylidene cluster compounds **6** and **7** with La–C(CH<sub>2</sub>) bond lengths between 2.549(7) and 2.889(7) Å.

$$[La(AIMe_{4})_{3}] \xrightarrow{+ PMe_{3}} La_{4}AI_{8}(CH)_{4}(CH_{2})_{2}(CH_{3})_{20}(PMe_{3}) \qquad 6$$

$$La_{4}AI_{8}(C)(CH)_{2}(CH_{2})_{2}(CH_{3})_{22}(toluene) \qquad 7$$

$$[La_{5}AI_{9}(CH)_{6}(CH_{3})_{24}][(CH_{3})_{3}AI(P(CH_{3})_{2})] + other products$$

Scheme 8. Snapshots of the stepwise aluminate cleavage of [La(AlMe<sub>4</sub>)<sub>3</sub>].

In 2008 and up to now follow-up chemistry on CAVELLS discoveries led to similar alkylidene complexes found by LIDDLE and LE FLOCH (Scheme 9, 8-11) implementing a (*NCN*)-pincer system with N–SiMe<sub>3</sub> (*NCN*<sup>SiMe3</sup>) or N–*i*Pr (*NCN*<sup>*i*Pr</sup>) groups.<sup>[36]</sup> Several structural motifs containing (*NCN*)-supported rare-earth-metal alkyl (Ln–C: 8-Y<sup>CH2Ph</sup> 2.357(3) Å, 8-Y<sup>CH2SiMe3</sup> 2.406(3) Å, 8-Y<sup>N(Si/BuMe2)2</sup> 2.357(3) Å, 8-Er<sup>CH2Ph</sup> 2.339(4) Å), di(pincer) (Ln–C: 9-La<sup>SiMe3</sup> 2.512(2) Å, 9-Ce<sup>SiMe3</sup> 2.472(4) Å, 9-Pr<sup>SiMe3</sup> 2.458(5) Å, 9-Sm<sup>SiMe3</sup> 2.40(2) Å, 9-Gd<sup>SiMe3</sup> 2.406(2) Å, 9-Nd<sup>*i*Pr</sup> 2.592(3) Å) and halide complexes (Ln–C: 10-Y<sup>SiMe3</sup> 2.356(3) Å, 10-La<sup>Mes</sup> 2.5284 Å, 10-Er<sup>SiMe3</sup> 2.322(2) Å) were elucidated.<sup>[36]</sup>



Scheme 9. Structural motifs of rare-earth-metal pincer-type alkylidene complexes.

In 2013, LIDDLE and coworkers found the Ce(IV)-alkylidene **11** (2.441(5) Å) through oxidation of the respective Ce(III)-di(alkoxy) precursor and further Ce(IV) di(carbene)  ${(Ph_2P=NSiMe_3)_2C}_2Ce$  (2.385(2)-2.399(3) Å) *via* oxidation with AgBPh<sub>4</sub>.<sup>[36h, 37]</sup> Structurally elucidated complexes for Sc with the (*SCS*)-pincer ligand set were found by MÉZAILLES in 2015 with  ${(Ph_2P=S)_2C}Sc(R)(do)_x$  **12** and complex  ${(Ph_2P=S)_2C}Sc{CH(S=PPh_2)_2}$  similar to **9** with Sc–C(alkylidene) bond lengths between 2.200(3)-2.225(3) Å.<sup>[38]</sup> Furthermore, rare ionic bis(methandiide) complexes [ ${(Ph_2P=S)_2C}_2Sc$ ][Li(thf)<sub>2</sub>] **13** (2.212(8)-2.243(8) Å) and [ ${(Ph_2P=S)_2C}_2Ln$ ][K(18c6)(thf)<sub>2</sub>] **14** (Ce: 2.385(2), 2.399(3) Å; Dy: 2.433(6), 2.434(6) Å) expanded the series of di(carbene) complexes found by LE FLOCH in the early 21<sup>st</sup> century (Scheme 10).<sup>[37-39]</sup>



Scheme 10. Ionic bis(methanediide) complexes.

Similar to our approach in 2008, MITZEL found methylidene clusters through the reaction of homoleptic tris(tetramethylaluminates) Ln(AlMe<sub>4</sub>)<sub>3</sub> with different bulky neutral *N*-donor ligands L.<sup>[40]</sup> Here, through steric pressure the system was forced to release methane and to generate **15**, **16**, and **17** amongst other methyl and methylidyne complexes. Despite the different ligand systems, the bond lengths for each metal center, respectively, are all in the same range, namely for yttrium 2.367(5)-2.452(5) Å, for lanthanum 2.491(3)-2.549(2) Å, for praseodymium 2.436(3)-2.489(5) Å, and for samarium 2.408(4)-2.515(4) Å.

$$LLn{Al(CH_3)_4}{(CH_2)[Al(CH_3)_3]_2} Ln = Y, La$$

$$LLn{Al(CH_3)_4}{(CH_2)[Al(CH_3)_3]_2} Ln = Y, La$$

$$LLn(Me_3AlCH_2AlMe_2CH_2AlMe_3) Ln = La, Pr, Sm$$

$$LLn{Ln_2(CH_3)}{(C)[Al(CH_3)_3]_3}{(CH_2)Al(CH_3)_3} Ln = Y, Sm$$

$$+ other products$$

$$I5$$

 $L = (R)NCH_2N(R)CH_2N(R)CH_2$  with R = Me (TMTAC), *i*Pr (T*i*PTAC) or *t*Bu (T*t*BTAC)



Isochronal to these discoveries, the working group of HoU succeeded in the synthesis of the first heterobimetallic rare-earth-metal transition-metal complex.<sup>[41]</sup> They utilized an yttrium polyhydride complex for the reaction with  $Cp*Ir(CO)_2$  and generated  $Cp'_4Y_4(H)_2(O)_2(CH_3)(CH_2)HIr(Cp*)$  with a bridging methylidene Ir– $CH_2$ –Y moiety. The Y– $C(CH_2)$  bond lengths are 2.520(1) and 2.567(1) Å, slightly elongated compared to yttrium alkylidene complexes presented so far.

Between 2010 and 2019 several trimetallic mixed methyl/methylidene complexes  $L_3Ln_3(\mu-Me)_3(\mu_3-Me)(\mu_3-CH_2)(thf)_n$  with different stabilizing *C*- or *N*-coordinating monoanionic ancillary ligands L were found. As mentioned in Chapter 2, those complexes **18-21** were obtained by utilizing C–H-bond activation protocols of [LLnMe<sub>2</sub>]<sub>n</sub> precursors (complexes depicted in Scheme 12).<sup>[5, 22b, 42]</sup> This structural motif is isostructural to complexes **2** with bond lengths for the rare-earth-metal center and the bridging methylidene between 2.283(4) (shortest bond length for **21-Y**) and 2.505(8) Å (longest distance for **18-Nd**).<sup>[5, 22b, 42]</sup> Complex **19-Y** is not structurally characterized, but is mentioned for completeness.



Scheme 12. Mixed methyl/methylidene rare-earth-metal complexes.

Further heating of complex **20** then led to tetrametallic cubane-like rare-earth-metal methylidenes **22** with four "Cp'Ln( $\mu_3$ -CH<sub>2</sub>)" units (Scheme 13). Additionally, these clusters can be generated from the [Cp'Lu( $\mu$ -Me)<sub>2</sub>]<sub>3</sub> precursors *via* multiple C–H-bond activation and release of methane. In comparison to **20** (av. 2.49(1) Å), the Lu–C(CH<sub>2</sub>) bond lengths are slightly decreased for cubane-like **22-Lu**<sup>Cp'</sup> (2.32(1)-2.41(1) Å) and **22-Lu**<sup>Cp\*</sup> (2.333(4)-2.396(4) Å).<sup>[5b, 43]</sup> The same trend can be found for the thulium congener (**20-Tm**: 2.330(5)-2.365(5) Å, **22-Tm**<sup>Cp'</sup>: 2.319(5)-2.424(5) Å).<sup>[5b]</sup> It is noteworthy, that similarly to heating [Cp\*LuMe<sub>2</sub>]<sub>3</sub> for the formation of **22-Lu**<sup>Cp\*</sup>, the thermolysis of complex [Cp\*YMe<sub>2</sub>]<sub>3</sub> led to hexametallic mixed methyl/methylidene complex Cp\*<sub>6</sub>Y<sub>6</sub>Me<sub>4</sub>(CH<sub>2</sub>)<sub>4</sub> with a wide range of Y–C bond lengths (2.46(1)-2.61(1) Å). This is due to issues in differentiation between methyl and methylidene units in the solid state structure determination.<sup>[22b]</sup>



Scheme 13. Synthesis pathways for cubane-like rare-earth-metal complexes.

Also in 2011, DIACONESCU and coworkers found a ferrocenediamine-stabilized scandiumaluminum methylidene from the reaction of the scandium precursor ( $NN^{fc}$ )Sc(L) with AlMe<sub>3</sub> ( $NN^{fc} = 1,10$ -fc( $NSitBuMe_2$ )<sub>2</sub>) with L as the tridentate imidazole-imine-amido ligand and a Sc– C(alkylidene) bond length of 2.692(2) Å.<sup>[44]</sup> This bond length is slightly elongated in comparison to other Sc–alkylidene bonds (*cf.* **3**, **19-Sc**), a trend which was also observed for heterobimetallic Cp'<sub>4</sub>Y<sub>4</sub>(H)<sub>2</sub>(O)<sub>2</sub>(CH<sub>3</sub>)(CH<sub>2</sub>)HIr(Cp\*).<sup>[41]</sup>

Some years later, CUI successfully brought back the chemistry of SCHUMANN from the 70s: Through application of a thermolysis protocol on Lu(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>3</sub>(thf)<sub>2</sub> and the efficient  $\alpha$ -H abstraction, the first four-coordinate methandiide alkyl lutetium complex **23** was obtained.<sup>[45]</sup> Accordingly, Lu(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>3</sub>(thf)<sub>2</sub> was reacted with a protonated  $\beta$ -oxo- $\delta$ -diimino ligand (BODDI-H<sub>2</sub> = (Dipp)NC(Me)CHCOCHC(Me)N(Dipp)) for the release of silane (Scheme 14). XRD measurements revealed a relatively short bond length for the Lu–CH(SiMe<sub>3</sub>) moiety with 2.309(6) Å.



Scheme 14. Synthesis of four-coordinate methanediide lutetium complex.

Shortly after, CHEN and coworkers found that dimerization and thermal decomposition of a diphosphide scandium methyl phosphide precursor led to complex (Dippnacnac)Sc{PH(Dipp)} and the mixed methylidene/phosphinidene complex 24 with Sc–C(CH<sub>2</sub>) bond lengths of 2.193(3) and 2.232(3) Å (Scheme 15).<sup>[46]</sup> Similar to the achievements of CUI (complex 23), the working group of CHEN also synthesized an alkylidene bridged bimetallic bearing neutral tris(pyrazolyl)methanide ligand, complex a (CTp) namely (CTp<sup>Me,Me</sup>)<sub>2</sub>Lu<sub>2</sub>(CHSiMe<sub>3</sub>)(dmpz)<sub>2</sub> with a Lu–C(alkylidene) bond length of 2.300(6) Å.<sup>[47]</sup>



Scheme 15. Synthesis of mixed methylidene/phosphinidene complex 24.

In 2017, the group of ZHANG reported on the synthesis of the first bridged scandium bis(alkylidene) **25** from 1,4-dilithio-1,3-butadienes and ScCl<sub>3</sub> *via* scandacyclopentadiene and scandacyclopropene (Scheme 16).<sup>[48]</sup>



**Scheme 16**. Formation of bridged bis(alkylidene) scandium complexes. For the sake of readability only one alkylidene moiety is highlighted.

Only recently, a series of different monometallic phosphinoalkylidenes 26, 27, and 28, as well as silyl-thiophosphinoyl-alkylidene rare-earth-metal complexes 29 were discovered through stabilization by  $\beta$ -ketiminato ligands as Dipp-nacnac or tridentate *N*-nacnac (Scheme 17).<sup>[49]</sup> Some of these complexes display the shortest bond lengths for a Ln–C(alkylidene) for the respective metal known up to now, *e.g.* 26-Sc<sup>I</sup> with 2.044(5) Å, 29-La<sup>Ph</sup> with 2.465(2) Å, 29-Sm<sup>Me</sup> with 2.296(2) Å, and 27-Lu with 2.19(1) Å. Complex 29-Sc<sup>Me</sup> (with R' = *i*Pr) is not structurally characterized, however it is mentioned for completeness and discussions about its reactivity in chapter 5.3.



Scheme 17. Different monometallic alkylidene rare-earth-metal complexes.

# 4 Ln–C(Alkylidene) Bond Lengths

Table 1 shows an overview of structurally characterized rare-earth-metal alkylidene complexes and their corresponding Ln–C(alkylidene) bond lengths.

Table 1. Rare-earth-metal alkylidene complexes and their corresponding Ln–C(alkylidene) bond lengths [Å].

| Alkylidene Complex                                                                                            | Ln–<br>C(alkylidene)<br>bond length [Å] | ref.  |
|---------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------|
| Sc                                                                                                            | •                                       |       |
| (PNP)Sc(CH <sub>2</sub> )(AlMe <sub>3</sub> ) <sub>2</sub> <b>3</b>                                           | 2.317(2)                                | [27]  |
| (SCS)Sc[N(SiMe <sub>3</sub> ) <sub>2</sub> ](thf) <b>12-Sc</b> <sup>N(SiMe3)2</sup>                           | 2.247(2)                                | [38]  |
| (SCS)Sc[P(SiMe <sub>3</sub> ) <sub>2</sub> ](py) <sub>2</sub> <b>12-Sc</b> <sup>P(SiMe3)2</sup>               | 2.200(3), 2.225(3)                      | [38]  |
| (SCS)Sc[CH(S=PPh <sub>2</sub> ) <sub>2</sub> ](thf)                                                           | 2.204(4)                                | [38]  |
| [( <i>SCS</i> ) <sub>2</sub> Sc][Li(thf) <sub>2</sub> ] <b>13</b>                                             | 2.212(8)-2.243(8)                       | [38]  |
| $(PhC(NDipp)_2)_3Sc_3(\mu-Me)_3(\mu_3-Me)(\mu_3-CH_2)(thf)_3$ <b>19-Sc</b>                                    | av. 2.367                               | [42a] |
| fc(Me <sub>2</sub> Al) <sub>2</sub> CH <sub>2</sub> Sc(NSitBuMe <sub>2</sub> ) <sub>2</sub> AlMe <sub>2</sub> | 2.692(2)                                | [44]  |
| (Dipp-nacnac)Sc(CH <sub>2</sub> )(PDipp)Sc(Dipp-nacnac) 24                                                    | 2.193(3)-2.232(3)                       | [46]  |
| (Dipp-nacnac)Sc(CHPPh <sub>3</sub> )Me <b>26-Sc</b> <sup>Me</sup>                                             | 2.105(2)                                | [49a] |
| (Dipp-nacnac)Sc(CHPPh <sub>3</sub> )I 26-Sc <sup>I</sup>                                                      | 2.044(5)                                | [49a] |
| (Dipp-nacnac)Sc(CHPPh <sub>3</sub> )(OTf) 26-Sc <sup>OTf</sup>                                                | 2.060(3)                                | [49a] |
| (Dipp-nacnac)ScC(SiMe <sub>3</sub> )(PPh <sub>2</sub> ) 28-Sc                                                 | 2.089(3)                                | [49b] |
| Y                                                                                                             |                                         |       |
| $Cp^*_{3}Y_{3}(\mu-Cl)_{3}(\mu_{3}-Cl)(\mu_{3}-CH_{2})(thf)_{3}$ <b>2-</b> Y                                  | 2.424(2)-2.450(2)                       | [33]  |
| $[Tp'^{Bu,Me}AlMe][Y(AlMe_4)\{(CH_2)AlMe_3\}_2(AlMe_2)]_2 5$                                                  | 2.344(8), 2.411(9)                      | [20]  |
| $(NCN^{SiMe3})Y(CH_2Ph)(thf)$ 8- $Y^{CH2Ph}$                                                                  | 2.357(3)                                | [36a] |
| (NCN <sup>SiMe3</sup> )Y(CH <sub>2</sub> SiMe <sub>3</sub> )(thf) 8-Y <sup>CH2SiMe3</sup>                     | 2.406(3)                                | [36d] |
| $(NCN^{SiMe3})Y(N(SitBuMe_2)_2)(thf)$ 8- $Y^{N(SitBuMe2)_2}$                                                  | 2.357(3)                                | [36f] |
| $(NCN^{SiMe3})$ Y(I)(thf) <sub>2</sub> <b>10-Y<sup>SiMe3</sup></b>                                            | 2.356(3)                                | [36e] |
| $(TiPTAC)Y \{Al(CH_3)_4\} \{(CH_2)[Al(CH_3)_4]_2\} 15-Y^{iPr}$                                                | 2.376(3)                                | [40b] |
| $(TMTAC)Y \{Y_{2}(CH_{3})\} \{C[Al(CH_{3})_{3}]_{3}\} \{CH_{2}Al(CH_{3})_{3}\}_{2} 17-Y^{Me}$                 | 2.367(5), 2.452(5)                      | [40a] |
| ${Cp'_4Y_4(H)_2(O)_2}(CH_3)(CH_2)HIr(Cp^*)$                                                                   | 2.520(1), 2.567(1)                      | [41]  |
| $[SiMe_3(Dipp)N]_3Y_3(\mu-Me)_3(\mu_3-Me)(\mu_3-CH_2)(thf)_3$ <b>18-</b> Y                                    | 2.345(5)-2.424(4)                       | [5a]  |
| $Cp^*_{3}Y_{3}(\mu-Me)_{3}(\mu_{3}-Me)(\mu_{3}-CH_{2})(thf)_{2}$ <b>21-Y</b>                                  | 2.283(4)-2.477(3)                       | [22b] |
| Cp* <sub>6</sub> Y <sub>6</sub> Me <sub>4</sub> (CH <sub>2</sub> ) <sub>4</sub>                               | 2.46(1)-2.61(1)                         | [43]  |
| (N-nacnac)Y[C(SiMe <sub>3</sub> )(SPPh <sub>2</sub> )] <b>29-Y<sup>Me</sup></b>                               | 2.256(3)                                | [49c] |
| $(N-\text{nacnac})Y[C(SiPh_3)(SPPh_2)]$ <b>29-Y</b> <sup>Ph</sup>                                             | 2.316(2)                                | [49c] |

-

| La                                                                                                                                             |                    |       |  |
|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------|--|
| $Cp^*_{3}La_{3}(\mu-Cl)_{3}(\mu_{3}-Cl)(\mu_{3}-CH_{2})(thf)_{3}$ <b>2-La</b>                                                                  | 2.537(3)-2.635(3)  | [33]  |  |
| $Tp'^{Bu,Me}La(CH_2)(AlMe_3)_2$ 4                                                                                                              | 2.519(2)           | [34]  |  |
| La <sub>4</sub> Al <sub>8</sub> (CH) <sub>4</sub> (CH <sub>2</sub> ) <sub>2</sub> (CH <sub>3</sub> ) <sub>20</sub> (PMe <sub>3</sub> ) 6       | 2.588(4)-2.629(4)  | [35]  |  |
| $La_4Al_8(C)(CH)_2(CH_2)_2(CH_3)_{22}$ (toluene) 7                                                                                             | 2.549(7)-2.889(7)  | [35]  |  |
| $(NCN^{SiMe3})La[CH(Ph_2P=NSiMe_3)_2]$ 9-La <sup>SiMe3</sup>                                                                                   | 2.512(2)           | [36b] |  |
| (NCN <sup>Mes</sup> )LaI(thf) <sub>3</sub> 10-La <sup>Mes</sup>                                                                                | 2.5284             | [36g] |  |
| $(TMTAC)La{Al(CH_3)_4}{(CH_2)[Al(CH_3)_4]_2} 15-La^{Me}$                                                                                       | 2.549(2)           | [40a] |  |
| (T <i>i</i> PTAC )La(Me <sub>3</sub> AlCH <sub>2</sub> AlMe <sub>2</sub> CH <sub>2</sub> AlMe <sub>3</sub> ) <b>16-La<sup><i>i</i>Pr</sup></b> | 2.521(4), 2.542(4) | [40d] |  |
| (TtBTAC)La(Me <sub>3</sub> AlCH <sub>2</sub> AlMe <sub>2</sub> CH <sub>2</sub> AlMe <sub>3</sub> ) 16-La <sup>tBu</sup>                        | 2.491(3), 2.502(3) | [40d] |  |
| (N-nacnac)La[C(SiPh <sub>3</sub> )(SPPh <sub>2</sub> )] <b>29-La<sup>Ph</sup></b>                                                              | 2.465(2)           | [49c] |  |
| Ce                                                                                                                                             |                    |       |  |
| $(NCN^{SiMe3})Ce[CH(Ph_2P=NSiMe_3)_2]$ 9-Ce <sup>SiMe3</sup>                                                                                   | 2.472(4)           | [36b] |  |
| $(NCN^{SiMe3})Ce(ODipp)_2$ 11                                                                                                                  | 2.441(5)           | [36h] |  |
| ${(Ph_2P=NSiMe_3)_2C}_2Ce$                                                                                                                     | 2.385(2)-2.399(3)  | [37]  |  |
| $[{(Ph_2P=S)_2C}_2Ce][K(18c6)(thf)_2]$ 14-Ce                                                                                                   | 2.385(2), 2.399(3) | [37]  |  |
| Pr                                                                                                                                             |                    |       |  |
| $(NCN^{SiMe3})Pr[CH(Ph_2P=NSiMe_3)_2]$ 9-Pr <sup>SiMe3</sup>                                                                                   | 2.458(5)           | [36b] |  |
| (TMTAC)Pr(Me <sub>3</sub> AlCH <sub>2</sub> AlMe <sub>2</sub> CH <sub>2</sub> AlMe <sub>3</sub> ) <b>16-Pr<sup>Me</sup></b>                    | 2.456(6), 2.489(5) | [40d] |  |
| $(TtBTAC)Pr(Me_3AlCH_2AlMe_2CH_2AlMe_3)$ <b>16-Pr<sup>tBu</sup></b>                                                                            | 2.436(3), 2.459(3) | [40d] |  |
| Nd                                                                                                                                             |                    |       |  |
| $(NCN^{iPr})Nd[CH(Ph_2P=NiPr)_2]$ 9-Nd <sup>iPr</sup>                                                                                          | 2.592(3)           | [36c] |  |
| ${SiMe_3(Dipp)N}_3Nd_3(\mu-Me)_3(\mu_3-Me)(\mu_3-CH_2)(thf)_3$ <b>18-Nd</b>                                                                    | 2.425(7)-2.505(8)  | [5c]  |  |
| Sm                                                                                                                                             |                    |       |  |
| $(NCN^{SiMe3})Sm(NCy_2)(thf)$ 1                                                                                                                | 2.467(4)           | [31]  |  |
| $[(SCS)SmI]_2$                                                                                                                                 | 2.371(6)           | [32a] |  |
| $[(SCS)_2Sm][Li(thf)_4]$                                                                                                                       | 2.491(5), 2.507(5) | [32a] |  |
| $(NCN^{SiMe3})Sm[CH(Ph_2P=NSiMe_3)_2]$ 9-Sm                                                                                                    | 2.40(2)            | [36b] |  |
| (TMTAC)Sm(Me <sub>3</sub> AlCH <sub>2</sub> AlMe <sub>2</sub> CH <sub>2</sub> AlMe <sub>3</sub> ) <b>16-Sm<sup>Me</sup></b>                    | 2.426(5), 2.441(5) | [40a] |  |
| (T <i>i</i> PTAC )Sm(Me <sub>3</sub> AlCH <sub>2</sub> AlMe <sub>2</sub> CH <sub>2</sub> AlMe <sub>3</sub> ) <b>16-Sm<sup><i>i</i>Pr</sup></b> | 2.464(8)           | [40c] |  |
| $ (TMTAC)Sm\{Sm_2CH_3\}\{C[Al(CH_3)_3]_3CH_2Al(CH_3)_3\}_2 \\ 17\text{-}Sm^{Me} $                                                              | 2.408(4), 2.515(4) | [40a] |  |
| ( <i>N</i> -nacnac)Sm[C(SiMe <sub>3</sub> )(SPPh <sub>2</sub> )] <b>29-Sm<sup>Me</sup></b>                                                     | 2.296(2)           | [49c] |  |
| (N-nacnac)Sm[C(SiPh <sub>3</sub> )(SPPh <sub>2</sub> )] <b>29-Sm<sup>Ph</sup></b>                                                              | 2.357(4)           | [49c] |  |
| Gd                                                                                                                                             |                    |       |  |
| $(NCN^{SiMe3})Gd[CH(Ph_2P=NSiMe_3)]$ 9-Gd <sup>SiMe3</sup>                                                                                     | 2.406(2)           | [36b] |  |
|                                                                                                                                                |                    |       |  |

\_

| Dy                                                                                                                                                                |                    |       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------|
| $[{(Ph_2P=S)_2C}_2Ce][K(18c6)(thf)_2]$ <b>14-Dy</b>                                                                                                               | 2.434(6), 2.433(6) | [39]  |
| Но                                                                                                                                                                |                    |       |
| ${SiMe_3(Dipp)N}_{3}Ho_3(\mu-Me)_3(\mu_3-Me)(\mu_3-CH_2)(thf)_3$ <b>18-Ho</b>                                                                                     | 2.36(1)-2.43(1)    | [5c]  |
| $Cp^{*}_{3}Ho_{3}(\mu-Me)_{3}(\mu_{3}-Me)(\mu_{3}-CH_{2})(thf)_{2}$ <b>21-Ho</b>                                                                                  | 2.275(4)-2.468(4)  | [22a] |
| Er                                                                                                                                                                |                    |       |
| $(NCN^{SiMe3})$ Er(CH <sub>2</sub> Ph)(thf) <b>8-Er</b> <sup>CH2Ph</sup>                                                                                          | 2.339(4)           | [36b] |
| $(NCN^{SiMe3})$ ErI(thf) <sub>2</sub> <b>10-Er</b> <sup>SiMe3</sup>                                                                                               | 2.322(2)           | [36e] |
| Tm                                                                                                                                                                |                    | •     |
| [(SCS)TmI] <sub>2</sub>                                                                                                                                           | 2.325(5)           | [32b] |
| $[(SCS)_2 \text{Tm}][\text{Li}(\text{thf})_4]$                                                                                                                    | 2.423(9), 2.368(3) | [32b] |
| $Cp'_{3}Tm_{3}(\mu-Me)_{3}(\mu_{3}-Me)(\mu_{3}-CH_{2})(thf)_{3}$ <b>20-Tm</b>                                                                                     | 2.330(5)-2.365(5)  | [5b]  |
| $[Cp'Tm(\mu_3-CH_2)]_4$ <b>22-Tm<sup>Cp'</sup></b>                                                                                                                | 2.319(5)-2.424(5)  | [5b]  |
| Lu                                                                                                                                                                |                    |       |
| ${SiMe_3(Dipp)N}_3Lu_3(\mu-Me)_3(\mu_3-Me)(\mu_3-CH_2)(thf)_3$ <b>18-Lu</b>                                                                                       | 2.310(5)-2.383(5)  | [5a]  |
| (PhC(NDipp) <sub>2</sub> ) <sub>3</sub> Lu <sub>3</sub> (µ-Me) <sub>3</sub> (µ <sub>3</sub> -Me)(µ <sub>3</sub> -CH <sub>2</sub> )(thf) <sub>3</sub> <b>19-Lu</b> | 2.371(9)-2.381(8)  | [42a] |
| $Cp'_{3}Lu_{3}(\mu-Me)_{3}(\mu_{3}-Me)(\mu_{3}-CH_{2})(thf)_{3}$ <b>20-Lu</b> <sup>Cp'</sup>                                                                      | av. 2.49(1)        | [5b]  |
| $[Cp*Lu(\mu_3-CH_2)]_4$ <b>22-Lu</b> <sup>Cp*</sup>                                                                                                               | 2.333(4)-2.396(4)  | [43]  |
| $[Cp'Lu(\mu_3-CH_2)]_4$ <b>22-Lu<sup>Cp'</sup></b>                                                                                                                | 2.32(1)-2.41(1)    | [5b]  |
| (BODDI)Lu <sub>2</sub> (CH <sub>2</sub> SiMe <sub>3</sub> ) <sub>2</sub> (CHSiMe <sub>3</sub> )(thf) <sub>2</sub> 23                                              | 2.309(6)           | [45]  |
| (CTp <sup>Me, Me</sup> ) <sub>2</sub> Lu <sub>2</sub> (CHSiMe <sub>3</sub> )(dmpz) <sub>2</sub>                                                                   | 2.300(6)           | [47]  |
| (Dipp-nacnac)Lu(CHPPh <sub>3</sub> )(CH <sub>2</sub> SiMe <sub>3</sub> ) 27-Lu                                                                                    | 2.19(1)            | [49a] |
| (N-nacnac)Lu[C(SiMe <sub>3</sub> )(SPPh <sub>2</sub> )] <b>29-Lu<sup>Me</sup></b>                                                                                 | 2.204(3)           | [49c] |
| (N-nacnac)Lu[C(SiPh <sub>3</sub> )(SPPh <sub>2</sub> )] <b>29-Lu</b> <sup>Ph</sup>                                                                                | 2.245(3)           | [49c] |

### 5 Reactivity of Rare-Earth-Metal Alkylidenes

The reactivity of rare-earth-metal alkylidenes is a result of the highly nucleophilic character of the R'RC<sup>2-</sup> unit. For better comparison of the different types of rare-earth-metal alkylidene complexes and thereof the various reactivity observed, the alkylidenes mentioned in chapter 3 will be subclassified in three different categories, according to their reactivity towards different substrates. This chapter will solely focus on reactivity of alkylidene complexes, excluding *e.g.* ligand-based reduction as observed for complex **25**.<sup>[48]</sup>



Scheme 18. Subclassification of the different alkylidene rare-earth-metal complexes according to their reactivity.

#### 5.1 Pincer-Type Rare-Earth-Metal Alkylidenes

Since the rare-earth-metal alkylidene chemistry was still in its infancy when CAVELL made his discoveries about pincer-like rare-earth-metal alkylidenes in 2000, the electronic nature and the reactivity of the alkylidene still needed to be evaluated. Naturally, first attempts wanted to point out reactivity similar to transition metal based SCHROCK-type nucleophilic carbene complexes and therefore, LE FLOCH attempted the reaction of [ ${(Ph_2P=S)_2C}SmI_2$  with benzophenone and succeeded in the formation of the respective olefin representing WITTIG-type reactivity.<sup>[32a]</sup>



Scheme 19. WITTIG-type reactivity of pincer-like rare-earth-metal complexes.

Since then, it appeared, that the reactivity of a hypervalent phosphorus-stabilized geminal dianion coordinated to a metal center is comparable to other, *e.g.* multimetallic rare-earth-metal alkylidene complexes and their reactivity similar to the TEBBE reagent. Later, MÉZAILLES also proved this reactivity for the thulium congener [ $\{(Ph_2P=S)_2C\}TmI]_2$ .<sup>[32b]</sup> Furthermore, **10**- $Y^{SiMe3}$  was shown to convert SCN*t*Bu into the respective olefin (Ph\_2P=NSiMe\_3)\_2C=CN*t*Bu, however, amines as DippNH<sub>2</sub> revealed only addition to the Y–C double bond.<sup>[50]</sup> It is noteworthy that complexes with alkyl groups R instead of the halogenido ligand did not undergo these displacement reactions with the alkylidene moiety, however, they add Ph\_2CO to the respective alkyl R. The same reactivity was observed with azoderivatives RN=NR.<sup>[36a, 51]</sup> Similar to [ $\{(Ph_2P=S)_2C\}SmI$ ]<sub>2</sub>, the tetravalent cerium analog { $(Ph_2P=NSiMe_3)_2C\}C$ (ODipp)<sub>2</sub> **11** was found to undergo also WITTIG-type reactions with carbonyl functionalities as in benzaldehyde, and others.<sup>[36h]</sup> As the reactivity of pincer-like rare-earth-metal alkylidene complexes is not the main emphasis of this thesis, we like to refer to other references for further interests in this particular chemistry.<sup>[50, 52]</sup>

#### 5.2 Multimetallic and TEBBE-like Rare-Earth-Metal Alkylidenes

Since the reactivity of the rare-earth-metal alkylidenes is mainly controlled by the nucleophilic character and the expected double bond character of the M=CRR' moiety, reagents with polarized unsaturated bonds like R'RC=O seemed promising for proving reactivity according to SCHROCK-type alkylidenes. Interestingly, complexes mentioned in chapter 3 undergo olefination reactions with various carbonyl compounds (*e.g.* 9-fluorenone, benzophenone, benzaldehyde, and cyclohexanone). For instance, TEBBE-like rare-earth-metal complexes **3**,<sup>[27]</sup>



Scheme 20. Protonolysis and olefination reactivity of rare-earth-metal alkylidene complexes. For the sake of readability, a methylidene moiety is shown, although also alkylidene moieties as in complex 23 are known to convert for example, carbonylic substrates.

**4**,<sup>[34]</sup> trimetallic complexes with  $\mu_3$ -bridging CH<sub>2</sub><sup>2–</sup> such as **2-Ln**,<sup>[33]</sup> **18-Ln**,<sup>[5a, c]</sup> **19-Ln**,<sup>[42]</sup> cubane-like **22-Ln**,<sup>[5b]</sup> and also the methandiide lutetium complex **23**<sup>[45]</sup> showed good conversion of the carbonylic functionality to the respective olefin (Scheme 20, top right). Different to this, no C=O bond cleavage was observed for the addition of benzophenone to **20-Tm** but the selective addition to the methylidene moiety and further double C–H-bond activation of the phenyl groups of the benzophenone (Scheme 21).<sup>[5b]</sup>



Scheme 21. Addition reaction of benzophenone to 20-Tm.

It is only plausible that rare-earth-metal methylidene complexes were tested in the cleavage of other unsaturated bonds as C=N and N=N. The investigation into the olefination capability of **19-Ln** showed conversion of azobenzene to ethene *via* N=N- followed by C=N-bond cleavage (Scheme 22).<sup>[53]</sup> Furthermore, these complexes are capable of converting *N*-methyleneaniline to the respective rare-earth-metal imide complexes (Scheme 20, bottom right). The bimetallic lutetium methandiide complex (BODDI)Lu<sub>2</sub>(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>2</sub>(CHSiMe<sub>3</sub>)(thf)<sub>2</sub> **23** was also treated with PhN=C=O and insertion into the Lu–CH<sub>2</sub> bond was observed.<sup>[45]</sup> The same Lu–C bond cleavage was also found for complexes **23** and **24** reacted with triple bonds as in isocyanide *t*BuNC as isoelectronic analog to CO.<sup>[45-46]</sup>



**19-Ln**, Ln = Y, Lu; L = PhC(NDipp)<sub>2</sub>

Scheme 22. N=N-bond cleavage of azobenzene with 19-Ln.

Scandium complex **24** is further capable of nucleophilic addition reactions with benzonitrile for the monoaddition product (Scheme 23, right), activation of two  $CO_2$  molecules for a  $[CH_2(CO_2)_2]^{2-}$  anion bridging the metal centers, as well as the reaction with  $CS_2$  forming a ethene dithiolate scandium complex (Scheme 23, left).



Scheme 23. Reactivity of complex 24 towards CO<sub>2</sub>, CS<sub>2</sub>, and benzonitrile.

It is noteworthy that rare-earth-metal Ln=S bonds can also be achieved with complexes **19-Ln**, however, a two-step reaction is involved:  $CH_2^{2-} \rightarrow O^{2-} \rightarrow S^{2-[42b]}$  or  $CH_2^{2-} \rightarrow P^{2-} \rightarrow S^{2-[54]}$ (Scheme 24).



Scheme 24. Schematic presentation of the two-step-reaction for the generation of Ln=S bonds.

Additionally, rare-earth-metal methylidene complexes can also be utilized in protonolysis reactions with H<sub>2</sub>NR or H<sub>2</sub>PR for the generation of imide or phosphinidene compounds (Scheme 20, left). The H–N-bond cleavage of complexes **19-Ln** (Ln = Y, Lu) and **23** *e.g.* with H<sub>2</sub>NDipp were successful.<sup>[45, 53]</sup> Attempting protonolysis reactions with **3** and H<sub>2</sub>NDipp, however, did not lead to the respective imide but gave the addition product, a methyl/amine complex.<sup>[27]</sup> Reactivity studies involving **19-Ln** (Ln = Y, Lu) and PhPH<sub>2</sub> showed good conversion to a rare mixed methyl phosphinidene complex (PhC(NDipp)<sub>2</sub>)<sub>3</sub>Ln<sub>3</sub>( $\mu$ -Me)<sub>3</sub>( $\mu$ <sub>3</sub>-Me)( $\mu$ <sub>3</sub>-PPh).<sup>[54]</sup>
In addition to the reactivity discussed already, the unique reactivity of cubane-like 22-Lu as a rare-earth-metal representative with solely "LLn=CH<sub>2</sub>" units is of major interest. As mentioned before, complexes 22-Ln are capable of WITTIG-type olefinations (Scheme 20, top right). Further, the lutetium complex also exhibits reactivity toward CO (insertion of CO into the Lu-CH<sub>2</sub> bond) for the formation of an intermediate acyl species and further rearrangement to a bis(ketene dianion) lutetium methylidene complex (Scheme 25, top right, the structure of the CO-inserted complex as well as the newly generated CH<sub>2</sub>CO<sup>2-</sup> unit is depicted).<sup>[55]</sup> The reaction of 22-Lu with one equivalent of a carbodiimide favors the formation of ethylene diamido lutetium complex in an addition reaction (Scheme 25, bottom right).<sup>[55]</sup> Similarly, the reaction toward unsaturated C=S bonds as in phenylisothiocyanate yielded in an ethylene amido thiolate (Scheme 25, bottom left).<sup>[55]</sup> Reaction of **22-Lu** with four equivalents of phenylisocyanate led to a malonodiimidate lutetium methylidene complex with two equivalents of the C=O unsaturated substrate added to the CH<sub>2</sub><sup>2-</sup> unit (Scheme 25, top left).<sup>[55]</sup> Hydrogenolysis attempts showed conversion to the respective hydride/methyl complex [Cp'LnHMe]<sub>4</sub> as one of the few examples of mixed methyl/hydride rare-earth-metal complexes (Scheme 25, middle left). Here, also the selective protonolysis of solely one methylidene group was achieved.<sup>[56]</sup>



**Scheme 25**. Reactivity of **22-Lu** toward phenylisocyanate, CO, carbodiimide *i*PrNCN*i*Pr, phenylisothiocyanate, and dihydrogen. For improved readability only the generated organic fragment is depicted.

For all pathways showing reactions with unsaturated bonds in Scheme 25, one or respectively two (for CO and PHNCO) methylidene moieties react with the introduced substrate, however,

the cluster integrity of the remaining "LLn=CH<sub>2</sub>" units with the four rare-earth metal centers and the remaining bridging methylidene units is retained.

### 5.3 Monometallic Donor-Stabilized Rare-Earth-Metal Alkylidenes

Different to the typically observed WITTIG-type reactivity of the rare-earth-metal alkylidene complexes (chapter 5.2), the recently developed monometallic rare-earth-metal alkylidenes **26-29** do not show olefination reactions with unsaturated C=O bonds, however, addition reactions were observed for **28** (Scheme 26, top right).<sup>[57]</sup> Reaction of **28** with benzylidenemethanamine led to insertion into the Sc–P bond and addition of the amine (Scheme 26, bottom right).<sup>[57]</sup> The reaction with different sterically demanding alkynes gave scandacylcoalkenes in a cycloaddition reaction (Scheme 26, left bottom).<sup>[57]</sup> Additionally, the reaction of propylene oxide (Scheme 26, top left) as well as 3,5-dimethylisoxazole or pinacolborane (not depicted but analogous) with complex **28** led to C–O-, C–N-, and C–B-bond cleavage, respectively, and to Sc–O-bond formation due to the high oxophilicity of the rare-earth metal.<sup>[57]</sup>



**Scheme 26**. Exemplary reactivity of **28** towards propylene oxide, cyclohexanone, benzylidenemethanamine, and alkynes. The Dipp-nacnac ligand is abbreviated in the products for better readability.

Supplemental to the reactivity shown in Scheme 26, complex **28** also undergoes C–H-bond activation of pyridine derivatives, and pyrazoles (Scheme 27).<sup>[49b]</sup>



Scheme 27. Reactivity of complex 28 with pyridine derivatives and pyrazoles.

It is noteworthy that contrary to the reactivity of complex **28**, monometallic complex **27** reacts with benzylidenemethanamine under addition to the Lu–C bond including C–H-bond activation of one phenyl group (Scheme 28).<sup>[49a]</sup>



Scheme 28. Reactivity observed for complex 27 with benzylidenemethanamine.

Further, heterobimetallic complexes with copper and silver (M) were achieved by the reaction of **29-Ln** with MI as well as different motifs for the cycloaddition of benzonitril (Scheme 29).<sup>[49c, d]</sup>



**Scheme 29**. Generation of heterobimetallic rare-earth-metal transition-metal complexes (left) and different cycloaddition reactions with benzonitrile (right). For better readability the *N*-nacnac ligand is shown as L.

# B

# **Summary of the Main Results**

## **1** Rare-Earth-Metal Complexes as Precursors for Alkylidenes

In transition-metal chemistry, common protocols for the formation of alkylidenes are the abstraction of a leaving group followed by deprotonation of a hydrocarbyl fragment as it was found for the generation of  $(PN)_2Ti(CH_2)$  (PN = (N-(2-(di iso propylphosphino)-4-methylphenyl)-2,4,6-trimethylanilide)) by MINDIOLA and co-workers<sup>[58]</sup> and moreover, thermolysis and alkane elimination, *e.g.* for PETASIS' reagent Cp<sub>2</sub>Ti(CH<sub>3</sub>)<sub>2</sub> as well as Cp<sub>2</sub>Ti(R)(CH<sub>2</sub>SiMe<sub>3</sub>) (R = Me, CH<sub>2</sub>SiMe<sub>3</sub>).<sup>[59]</sup> Here, the reactive alkylidene moiety Cp<sub>2</sub>Ti(CHR) is generated *in situ* at elevated temperatures. Heteroleptic rare-earth-metal complexes suitable to adopt this concept still need to be developed.

Similar to the above mentioned PN ligand, the Tp<sup>*t*Bu,Me</sup> ligand (Tp<sup>*t*Bu,Me</sup> = tris(3-tert-butyl-5methyl-pyrazolyl)borato) represents a very bulky tridentate ligand potentially suitable for the stabilization of terminal alkylidene complexes and their reactive precursors. Mixed Me/OTf complexes **A**<sub>Ln</sub> and **C**, as well as bis(triflate) complexes **B** and **D** were synthesized from Tp<sup>*t*Bu,Me</sup>LnMe(AlMe<sub>4</sub>)<sup>[20]</sup> (Ln = Y, Lu) or Tp<sup>*t*Bu,Me</sup>LuMe<sub>2</sub><sup>[25]</sup> by applying a silane-elimination protocol (Figures S1 and S2).<sup>[60]</sup> It is noteworthy that all obtained yttrium complexes show decomposition at ambient temperature, however, the lutetium analogs withstand even temperatures up to 50 °C. Treatment of all heteroleptic complexes **A**<sub>Ln</sub> and **C** with the WITTIG reagent H<sub>2</sub>C=PPh<sub>3</sub> did not give reactivity analogous to transition-metal chemistry, however, elevated temperatures only led to C–H-bond activation of the *t*Bu moieties of the ancillary



Figure S1. Heteroleptic methyl, triflate, and triflimide rare-earth-metal complexes stabilized by Tp<sup>*i*Bu,Me</sup>.



Figure S2. Solid-state structures of Tp<sup>*t*Bu,Me</sup>LuMeOTf (A<sub>Lu</sub>) and Tp<sup>*t*Bu,Me</sup>LuMeNTf<sub>2</sub> (C).

ligand. Nonetheless, these very reactive mixed Me/OTf or Me/NTf<sub>2</sub> structural motives have not yet been found for Tp-supported rare-earth-metal complexes (**Paper I**).<sup>[61]</sup>

As described before, another concept of targeting alkylidenes originates from mixed methyl/alkyl complexes capable of intramolecular elimination of methane or alkanes by thermolysis or treatment with strong donor ligands.<sup>[59]</sup> Therefore, mixed precursors were established by treatment of  $Tp^{tBu,Me}LnMe(AlMe_4)$  as well as  $Tp^{tBu,Me}LuMe_2$  with mild halogenido transfer reagents SiMe<sub>3</sub>X (X = Cl, I) for the generation of bis(halide) and mixed methyl/halide complexes. Hence, the isolation of mixed methyl/chloride complex **F** succeeded (Scheme S1).



**Scheme S1.** Heteroleptic methyl, triflato, triflimido, and halogenido rare-earth-metal complexes stabilized by the Tp<sup>*t*Bu,Me</sup> ligand.

Additionally, other mixed methyl/halogenido combinations were found to undergo ligand scrambling and therefore bis(halide) complexes  $E_{Ln}^X$  could be isolated (**Paper I**). It is noteworthy that the isolation of heteroleptic halide complexes with the tris(pyrazolyl)borato ligand is known to be complicated due to B–N-bond cleavage.<sup>[62]</sup> Additionally, tests for TEBBE-like complexes with  $E_{Ln}^{Cl}$  and two equiv. of AlMe<sub>3</sub> led to unidentified complicated reaction mixtures, mainly followed by ligand degradation.

Aiming at rare-earth-metal complexes similar to the PETASIS reagent, the reactivity of  $Tp^{tBu,Me}LuMe_2$  in olefination reactions with 9-fluorenone at 50 °C was assessed, however, only the respective alkoxide species was found. In another approach, mixed alkyl complexes were synthesized by utilizing **F** in salt-metathesis reactions with LiCH<sub>2</sub>SiMe<sub>3</sub> and KCH<sub>2</sub>Ph to afford complexes **G** and **H** (Scheme S2, Figure S3). Here, careful adjustment of the reaction conditions is crucial, since especially the reaction of **F** in combination with lithium salts at ambient temperatures favors the undesired formation of LiTp<sup>tBu,Me</sup>. In contrast to this, the formation of **H** needed prolonged reaction times.



Scheme S2. Synthesis of Tp<sup>*t*Bu,Me</sup>LuMe(CH<sub>2</sub>SiMe<sub>3</sub>) (G, left) and Tp<sup>*t*Bu,Me</sup>LuMe(CH<sub>2</sub>Ph) (H, right).

The examination of the thermolysis capability of the di(alkyl) complexes **G** and **H** revealed that **G** is already slowly decomposing at ambient temperature. Unfortunately, an intramolecular C–H-bond activation of the ancillary ligand was observed.<sup>[63]</sup> Regardless, complex **H** is more stable at ambient temperature, but shows the same degradation process at 40 °C. The attempted

donor-induced alkane elimination with the introduction of *N*- or *O*-donors (DMAP or THF) under mild conditions, however, failed.



Figure S3. Crystal structures of Tp<sup>tBu,Me</sup>LuMe(CH<sub>2</sub>SiMe<sub>3</sub>) (G, left) and Tp<sup>tBu,Me</sup>LuMe(CH<sub>2</sub>Ph) (H, right).

The successful isolation of these heteroleptic methyl/triflato, methyl/triflimido, bis(halide), methyl/chlorido, and mixed alkyl complexes supported by the Tp<sup>*t*Bu,Me</sup> ligand spurred the interest in the steric effects of this ligand set and its flexibility to bear sterically demanding co-ligands. In order to determine the steric shielding by the bulky tris(pyrazolyl)borato ligand, the mathematically exact cone angles were calculated for structurally characterized heteroleptic lutetium complexes as depicted in Table S1 (**Paper I**).<sup>[64]</sup> It was found that the very exclusive trigonal bipyramidal geometry around the metal centers gave similar cone angles. This finding revealed that the scorpionate ligand adapts only slightly to the steric demand of the co-ligands.

Table S1. Overview of mathematically exact calculated cone angles  $\mathcal{O}[^{\circ}]$  of  $A_{Lu}$ , C,  $E_{Lu}^{I}$ , F, G, and H.

|   | ALu           | С     | ELuI  | F     | G     | Н     |
|---|---------------|-------|-------|-------|-------|-------|
| Θ | 278.0 / 280.9 | 280.4 | 278.2 | 278.9 | 277.1 | 277.3 |

Nevertheless, the calculated cone angles show a noticeable trend where the mixed alkyl complexes **G** and **H** involve the smallest cone angle, followed by the halogenido-containing complexes  $E_{Lu}$  and **F**. Moreover, the most flexible and most weakly coordinating triflato and triflimido ligands allow for the largest cone angles of the ancillary ligand.

## 2 Mixed Methyl/Aryloxy Rare-Earth-Metal Complexes

The chemistry of rare-earth-metal methyl or alkyl compounds is considered to be extremely challenging due to the very reactive nature of the Ln–C(alkyl) (R = alkyl) bond, which is indicated by the large orbital energy mismatch between the rare-earth metals and the alkyl fragment.<sup>[9c, 11, 15a, 65]</sup> One objective of this work was to investigate these very reactive and elusive compounds with the introduction of a stabilizing environment and consequently the formation of heteroleptic rare-earth-metal compounds bearing one methyl group. This could be achieved through the utilization of the very bulky monoanionic Tp ligand as well as the introduction of various aryloxy ligands.

First, examination of the performance of the reactive precursor  $Tp^{tBu,Me}LuMe_2^{[25]}$  in protonolysis reactions toward HOAr (Ar = C<sub>6</sub>H<sub>3</sub>Me<sub>2</sub>-2,6; C<sub>6</sub>H<sub>3</sub>*i*Pr<sub>2</sub>-2,6; C<sub>6</sub>H<sub>3</sub>(CF<sub>3</sub>)<sub>2</sub>-3,5, C<sub>6</sub>H<sub>3</sub>*t*Bu<sub>2</sub>-2,6-Me-4) was elucidated (Figures S4-S6). Interestingly, the steric demand of the



Figure S4. Mononuclear Tp<sup>rBu,Me</sup>Ln(OAr)<sub>2</sub> (I, J, K, left) and mixed methyl/aryloxy Tp<sup>rBu,Me</sup>LuMe(OAr) (L<sub>Ln</sub>, M<sub>Ln</sub>, N<sub>Ln</sub>, O<sub>Ln</sub>, middle and right).



**Figure S5.** Crystal structures of  $Tp^{tBu,Me}$ YMe(OC<sub>6</sub>H<sub>3</sub>Me<sub>2</sub>-2,6) (**M**<sub>Y</sub>, left) and  $Tp^{tBu,Me}$ LuMe(OC<sub>6</sub>H<sub>3</sub>*i*Pr<sub>2</sub>-2,6) (**N**<sub>Lu</sub>, right).

introduced aryloxo ligand controls the formation of either bis(aryloxy) compounds **I**, **J**, and **K** or, with increased steric bulk in 2- and 6-position, the mixed methyl/aryloxy complex  $L_{Ln}$ . Subsequently, a salt-metathetical approach was chosen starting with  $Tp^{IBu,Me}LnMe(AlMe_4)^{[20]}$  (Ln = Y, Lu) to access smaller aryloxides and yttrium analogs (**Paper II**).<sup>[66]</sup> It was found that optimization of the reaction conditions is crucial and fast degradation proceeds with B–N-bond cleavage of the ancillary Tp ligand, if not prevented by lower temperature (especially for  $L_Y$  and  $O_Y$ , the latter with the electron-deficient aryloxo ligand), underlining the reactive nature of the Ln–Me bond. Interestingly, the striking structural similarities between  $L_{Lu}$ ,  $M_{Ln}$ ,  $N_{Ln}$ , and  $O_{Ln}$  determined by XRD mainly result from the  $\kappa_3$ -coordination of the Tp ligand causing the routinely observed distorted trigonal bipyramidal geometry around the different metal centers (Figures S5 and S6).



Figure S6. Crystal structures of  $Tp^{tBu,Me}LuMe(OC_6H_2tBu_2-2,6-CH_3-4)$  (L<sub>Lu</sub>, left) and  $Tp^{tBu,Me}LuMe\{OC_6H_3(CF_3)_2-3,5\}$  (O<sub>Y</sub>, right).

To gain further insight into the reactivity of these terminal methyl moieties, the performance of  $L_{Ln}$  in isoprene polymerization was exemplarily examined as well as its thermal stability. Noteworthy, the addition of DMAP during the protonolysis reaction of the precursor

Tp<sup>*t*Bu,Me</sup>LnMe(AlMe4) and HOC<sub>6</sub>H<sub>3</sub>*t*Bu<sub>2</sub>-2,6-Me-4, the ionic species **P**<sub>Ln</sub> is formed (Figure S7). Unfortunately, complexes **P**<sub>Ln</sub> are not active as single-component catalyst in isoprene polymerization. The thermal stability of **L**<sub>Y</sub> was examined, revealing that the heteroleptic complex decomposes at ambient temperatures to an ill-defined product mixture *via* B–N-bond cleavage of the ancillary ligand. Interestingly, the Lu congener **L**<sub>Ln</sub> is inert up to 60 °C however, at elevated temperatures intramolecular C–H-bond activation of the ligand *t*Bu groups with the Lu–Me moiety occurs. To conclude, the feasibility to isolate heteroleptic methyl/aryloxy complexes strongly depends on the precursor. Furthermore, the thermal stability of all generated complexes depends on the rare-earth metal (lutetium more stable than yttrium) as well as on the introduced aryloxo ligand: C<sub>6</sub>H<sub>3</sub>Me<sub>2</sub>-2,6 with the most stabilizing effect, whereas very bulky and electron-deficient methyl/aryloxy complexes decompose readily at elevated temperatures (**Paper II**).



**Figure S7.** Crystal structures of  $[Tp^{tBu,Me}YMe][Me_3AlOC_6H_3tBu_2-2,6-Me-4]$  (**P**<sub>Y</sub>, left) and  $(Tp^{(tBu-H)/(tBu)2,Me})Lu(OC_6H_2tBu_2-2,6-Me-4)$  ( $Tp^{(tBu-H)/(tBu)2,Me}$ ) = hydrobis(3-Me-5-tBu-pyrazolyl){ $\mu$ -(3-Me-5-Me\_2C-CH<sub>2</sub> pyrazolyl)}borato) (**Q**<sub>Lu</sub>, right).

Subsequently, the sterical aspects of the introduced aryloxo ligand *via* calculation of the mathematically exact cone angle accessible *via* X-ray structure analyses were investigated.<sup>[64]</sup> The Tp<sup>*t*Bu,Me</sup> complexes adopt a trigonal bipyramidal geometry and hence, similar cone angles were determined with regard of the metal center (Table S2, **Paper II**). Interestingly, for the Y complexes methyl groups in 2- and 6-position of the aryl ligand demand the cone to open more than *i*Pr groups or the CF<sub>3</sub> groups in 3- and 5-position ( $M_Y < N_Y < O_Y$ ). A similar trend was observed for the Lu congener ( $M_{Lu} < L_{Lu} < N_{Lu} < O_{Lu}$ ).

Table S2. Overview of mathematically exact calculated cone angles  $\mathcal{O}[^{\circ}]$  of I, J, K, L<sub>Ln</sub>, M<sub>Ln</sub>, N<sub>Ln</sub>, O<sub>Ln</sub>, P<sub>Y</sub>, and Q<sub>Ln</sub>.

|   |    | Ι     | J     | K     | L <sub>Ln</sub> | M <sub>Ln</sub> | N <sub>Ln</sub> | OLn   | Py    | QLn   |
|---|----|-------|-------|-------|-----------------|-----------------|-----------------|-------|-------|-------|
| Θ | Y  |       |       |       |                 | 273.9           | 276.1           | 278.6 | 276.8 |       |
|   | Lu | 276.1 | 272.5 | 280.4 | 278.1           | 276.1           | 279.2           | 280.3 |       | 286.3 |

## **3** Cp-Supported Rare-Earth-Metal Methylidene Complexes

In comparison to transition-metal-alkylidene chemistry, the chemistry of rare-earth-metal variants has been only scarcely explored.<sup>[3a, c]</sup> Despite this, alkylidene chemistry increasingly gained interest due to its importance in synthetic organic chemistry for the olefination of carbonylic substrates as featured by the WITTIG or the TEBBE reagent.<sup>[67]</sup> Further utilization of the nucleophilic  $CH_2^{2-}$  unit allows for successful metathesis reactions.<sup>[67d, 68]</sup> Nonetheless, the synthesis of rare-earth-metal alkylidenes represents a particular challenge and requires a stabilizing environment by the chosen ligand system, *e.g.* as it is provided by Cp ligands. In previous studies the syntheses of rare-earth-metal methylidene complexes from X<sup>-</sup>/AlMe<sub>4</sub><sup>-</sup> cluster compounds by donor-induced alkylaluminate cleavage followed by alkane elimination have been elaborated.<sup>[33, 69]</sup>

A rational approach toward these mixed  $X^{-}/AlMe_{4}^{-}$  clusters is the reaction of different  $(Cp^{R})Ln(AlMe_{4})_{2}^{[70]}$  (Ln = Y, La, Nd, Lu;  $Cp^{R} = C_{5}Me_{5}$ ,  $C_{5}Me_{4}SiMe_{3}$ ) with mild halogenido transfer reagents SiMe<sub>3</sub>X (X = Cl, Br, I). It is noteworthy that the nuclearity of the clusters is metal-size dependent.



Scheme S3. Synthesis of mixed halogenido/aluminato rare-earth-metal clusters ( $\mathbf{R}_{Ln}^X$ ,  $\mathbf{S}_{Ln}^X$ ,  $\mathbf{T}_{Ln}^X$ ,  $\mathbf{U}_{Ln}^X$ ,  $\mathbf{V}^X$ ,  $\mathbf{W}^X$ ,  $\mathbf{X}^X$ ,  $\mathbf{Y}^X$ ).

More precisely, tetrametallic complexes  $[(Cp^R)Ln(AlMe_4)(\mu-X)]_2 (\mathbf{R_{Ln}}^X, \mathbf{S_{Ln}}^X, \mathbf{T_{Ln}}^X, \mathbf{U_{Ln}}^X)$  are formed for smaller rare-earth metals as yttrium and lutetium, as well as hexa- or decametallic cluster compounds of the type  $(Cp^R)_5Nd_5(AlMe_4)(\mu_3-X)_3(\mu-X)_6$  ( $\mathbf{V}^X$ ,  $\mathbf{W}^X$ ) and  $[(Cp^R)_3La_3(AlMe_4)_2(\mu-X)_4]_2 (\mathbf{X}^X, \mathbf{Y}^X)$  for larger rare-earth metals, respectively (Scheme S3, Figure S8 left). The intended introduction of pseudo-halogenido ligands as the triflato ligand did not lead to decametallic clusters for lanthanum due to the different coordination possibilities of the triflato moiety, however, complex  $(C_5Me_5)_3La_3(\mu-OTf)_3(\mu_3-OTf)_2(AlMe_4)(thf)_2 \mathbf{Z}$  with  $\mu^2$ - as well as  $\mu^3$ -bridging triflato ligands was observed.



**Figure S8.** Crystal structures of  $[(C_5Me_4SiMe_3)_3La_3(AlMe_4)_2(\mu-Cl)_4]_2$  (**Y**<sup>Cl</sup>, left) and  $(C_5Me_5)_3La_3(\mu-OTf)_3(\mu_3-OTf)_2(AlMe_4)(thf)_2$  (**Z**, right).



**Figure S9.** Solid-state structure of (C<sub>5</sub>Me<sub>5</sub>)LaI<sub>2</sub>(thf)<sub>3</sub> (AA).

The THF-induced cleavage of the yttrium and lanthanum complexes led to the formation of trimetallic cluster compounds and **CC** with three  $\mu_2$ -bridging BB halogenido ligands,  $\mu_3$ -bridging one halogenido and one  $\mu_3$ -bridging methylidene in apical positions (Scheme S4, Figure S10). Similar complexes  $(L)_{3}Ln_{3}(\mu-Me)_{3}(\mu_{3}-Me)(\mu_{3}-CH_{2})(thf)_{3}$ developed by our group showed the same

striking trimetallic structural motif.<sup>[5a, c]</sup> It is noteworthy that careful adjustment of the reaction conditions is crucial, and temperatures below ambient temperature



Scheme S4. Low-temperature product  $Cp^{R}LnX_{2}(thf)_{3}$  (AA) and mixed halogenido/methylidene rare-earth-metal complexes (BB<sub>Ln</sub><sup>X</sup>, CC<sub>Ln</sub><sup>X</sup>).

can lead to formation of bis(halogenido) rare-earth-metal complexes  $(Cp^R)LnX_2(thf)_3$  (*e.g.* AA in Scheme S4, Figure S9). Additionally, mixed methyl/methylidene yttrium complexes<sup>[22b]</sup> can undergo a Me/X exchange when reacted with the halogenido transfer reagent SiMe<sub>3</sub>X. However, reaction with HOCH<sub>2</sub>*t*Bu showed protonolysis of the methylidene as well as the methyl groups and therefore, bimetallic complex  $[(C_5Me_5)Y(OCH_2tBu)_2]_2$  (DD) (Figure S11) was obtained.



**Figure S10.** Crystal structures of  $(C_5Me_5)_3Y_3(\mu-Br)_3(\mu_3-Br)(\mu_3-CH_2)(thf)_3$  (**BB**<sub>Y</sub><sup>Br</sup>, left) and  $(C_5Me_5)_3La_3(\mu-Br)_3(\mu_3-Br)(\mu_3-CH_2)(thf)_3$  (**BB**<sub>La</sub><sup>Br</sup>, right).

Unfortunately, complexes with yttrium as metal center and bridging iodido ligands cannot be obtained. Our strong interest to examine the performance of the isolated complexes in olefination reactions gave rise to tests with various carbonylic substrates (Table S3, **Paper III**). NMR spectroscopic investigations of the reaction between the methylidene complexes  $BB_{Ln}^X$ 

or  $CC_{Ln}^X$  and 9-fluorenone, benzaldehyde, and cyclohexanone proved that the complexes showed performance in WITTIG-type reactions, however the sterical demand of iodido-bridging complexes affects the conversion of the sterically more demanding carbonylic derivatives. Nonetheless, the reactivity of *e.g.*, **BB**<sub>Y</sub><sup>X</sup> and **CC**<sub>Y</sub><sup>X</sup> were found to be as efficient as the TEBBE reagent. Although the structural elucidation of the TEBBE reagent Cp<sub>2</sub>Ti( $\mu$ -CH<sub>2</sub>)( $\mu$ -Cl)AlMe<sub>2</sub> co-crystallized with 48 % of side product Cp<sub>2</sub>Ti( $\mu$ -Cl)<sub>2</sub>AlMe<sub>2</sub> was already accomplished by MINDIOLA and Co-workers,<sup>[71]</sup> successful solid-state structure determination showed decreasing amount of side product to solely 6 % (Figure S11).



**Figure S11.** Crystal structures of complex  $[(C_5Me_5)Y(OCH_2tBu)_2]_2$  (**DD**, left) and the TEBBE reagent Cp<sub>2</sub>Ti( $\mu$ -CH<sub>2</sub>)( $\mu$ -Cl)AlMe<sub>2</sub> co-crystallized with side product Cp<sub>2</sub>Ti( $\mu$ -Cl)<sub>2</sub>AlMe<sub>2</sub> (right).

Additionally, most mixed halogenido/methylidene rare-earth-metal complexes showed reactivity in the polymerization  $\delta$ -valerolactone for the formation of biodegradable poly(valerolactone) in moderate to high yields.

**Table S3.** Methylidene-transfer and reactivity in the polymerization of  $\delta$ -valerolactone of rare-earth-metal methylidene complexes **BB**<sub>Ln</sub><sup>X</sup>, and **CC**<sub>Ln</sub><sup>X</sup> in comparison to the methylidene transfer of the TEBBE reagent [%]. <sup>[P]</sup> yields of polymerization; **A**: 9-fluorenone, **B**: benzaldehyde, **C**: cyclohexanone, **D**:  $\delta$ -valerolactone

|   | Y                                                                               |                   |                   |                                | La                                       |                   |                   |                                                  |                   |                   | Ti    |
|---|---------------------------------------------------------------------------------|-------------------|-------------------|--------------------------------|------------------------------------------|-------------------|-------------------|--------------------------------------------------|-------------------|-------------------|-------|
|   | C <sub>5</sub> Me <sub>5</sub> C <sub>5</sub> Me <sub>4</sub> SiMe <sub>3</sub> |                   |                   | C <sub>5</sub> Me <sub>5</sub> |                                          |                   |                   | C <sub>5</sub> Me <sub>4</sub> SiMe <sub>3</sub> |                   |                   |       |
|   | <b>BB</b> Y <sup>X</sup>                                                        |                   | CCYX              |                                | $\mathbf{BB}_{\mathbf{La}}^{\mathbf{X}}$ |                   |                   | CC <sub>La</sub> <sup>X</sup>                    |                   |                   | TEBBE |
|   | Cl                                                                              | Br                | Cl                | Br                             | Cl                                       | Br                | Ι                 | Cl                                               | Br                | Ι                 |       |
| A | >99                                                                             | >99               | >99               | >99                            | 62                                       | 95                | 0                 | 62                                               | 44                | 0                 | >99   |
| B | >99                                                                             | >99               | >99               | >99                            | 53                                       | 57                | 59                | 64                                               | 72                | 78                | >99   |
| С | >99                                                                             | >99               | >99               | >99                            | 62                                       | 85                | 55                | >99                                              | >99               | >99               | >99   |
| D | 76 <sup>[P]</sup>                                                               | 86 <sup>[P]</sup> | 60 <sup>[P]</sup> | 51 <sup>[P]</sup>              | 67 <sup>[P]</sup>                        | 87 <sup>[P]</sup> | 23 <sup>[P]</sup> | 88 <sup>[P]</sup>                                | 85 <sup>[P]</sup> | 70 <sup>[P]</sup> | >99   |

# C

## **Unpublished Results**

## Synthesis of (CNC)-Pincer Rare-Earth-Metal Complexes

## Introduction

Typically, tridentate (*CNC*)-pincer complexes are bis(NHC)-incorporated (NHC = N-heterocyclic carbene) monoanionic ligand systems with strong electron-donating ylidene carbon atoms for the stabilization of the Ln(III) metal center.<sup>[72]</sup> The synthesis of (*CNC*)-pincer rare-earth-metal complexes from Ln alkyl complexes supported by bulky silylamido ligands through double intramolecular C–H-bond activation to afford "naked" (*CNC*)Ln(thf)<sub>x</sub> as potential pincer-like analogue has gained less attention. Moreover, those complexes could reveal interesting reactivity in alkylidene and imide chemistry as well as their utilization in polymerization reactions.

## **Results and Discussion**

We entered this research field with the synthesis of a silylamido-stabilized bis(neosilyl) complex (MePh<sub>2</sub>Si)<sub>2</sub>NLu(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>2</sub>(thf) **EE**. This was achieved from the respective neosilyl precursor Lu(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>3</sub>(thf)<sub>2</sub> by application of a SiMe<sub>4</sub>-elimination protocol. XRD analysis of **EE** revealed a tetrahedral coordination geometry around the metal with coordination of one THF molecule to saturate the coordination sphere (Scheme UPR1). The Lu–N(amido) distance is 2.215(6) Å and is slightly elongated compared to homoleptic Lu[N(SiMe<sub>3</sub>)<sub>2</sub>]<sub>3</sub> (2.191(5) Å).<sup>[73]</sup> The Lu–C(neosilyl) bond lengths (2.330(6) Å, 2.323(7) Å) are in the same range as for the precursor Lu(CH<sub>2</sub>SiMe<sub>3</sub>)(thf)<sub>2</sub> (2.314(18)-2.344(18) Å)<sup>[74]</sup> and complex Tp<sup>*t*Bu,Me</sup>LuMe(CH<sub>2</sub>SiMe<sub>3</sub>) (2.372(2) Å)<sup>[60]</sup> (**G**, Paper I).



**Scheme UPR1.** Silylamido-supported rare-earth-metal bis(neosilyl) complexes (left) and crystal structure of **EE** (right).

Due to the highly reactive nature of the CH<sub>2</sub>SiMe<sub>3</sub> moiety, fast decomposition proceeded concomitant with the release of SiMe<sub>4</sub>. Therefore, lutetium complexes form only under mild reaction conditions with temperatures below ambient temperature. Similar approaches towards the yttrium congener were not successful, however, lower temperatures might guide the way to bis(neosilyl) complexes of yttrium.

The next target was the synthesis of different silylamido-supported rare-earth-metal bis(aluminate) complexes (Scheme UPR2,  $FF_{Ln}$ ,  $GG_{Ln}$ ). A salt-metathesis approach was successfully utilized, starting from the homoleptic rare-earth-metal aluminate and the respective potassium silylamide. It is noteworthy that reactions involving the sterically most demanding ligand KN(SiPh<sub>3</sub>)<sub>2</sub> did not show any conversion with Ln(AlMe<sub>4</sub>)<sub>3</sub>. With addition of donors like Et<sub>2</sub>O to  $FF_{Ln}$  and  $GG_{Ln}$ , [LLnMe<sub>2</sub>] was observed in NMR-scale-reactions for lutetium and yttrium complexes, however no di(methyl) complex could be isolated. As further interest lies in the generation of these reactive rare-earth-metal methyl complexes, treatment of LnMe<sub>3</sub> with the sterically most demanding HN(SiPh<sub>3</sub>)<sub>2</sub> in THF was accomplished. Instant gas formation was observed and NMR-spectroscopic analysis showed C–H-bond activation, however, the absence of peaks for the expected Ln–CH<sub>3</sub> moieties. Further investigations led to the conclusion, that double C–H-bond activation of both phenyl groups occurred (Scheme UPR2, HH<sub>Ln</sub>). Most presumably, complex [(Ph<sub>3</sub>Si)<sub>2</sub>NLnMe<sub>2</sub>] is formed *in situ*, and the proximity of the methyl groups allowed for instant *ortho*-metalation of the phenyl ligand back bone and to the unintended but serendipitous formation of a rare-earth-metal (*CNC*)-pincer-like system.



Scheme UPR2. Synthetic approaches toward amido-supported and (*CNC*)-pincer rare-earth-metal complexes FF<sub>Ln</sub>, GG<sub>Ln</sub>, and HH<sub>Ln</sub>.



Figure UPR2. Crystal structures of HHy and HHLu.

X-ray structure analysis of  $HH_{Ln}$  revealed a distorted octahedral coordination geometry around the rare-earth-metal centers accomplished by the (*CNC*)-pincer ligand and three additional THF molecules. The Ln–N bond lengths are elongated compared to **EE** (**HH**<sub>Y</sub>: 2.303(2) Å; **HH**<sub>Lu</sub> 2.236(1) Å). For **HH**<sub>Y</sub> this can be explained as a metal-size effect, for **HH**<sub>Lu</sub> it nicely demonstrates the constraint geometry for the lutetacycle and how the ligand system adapts. The Ln–O distances are similar in accordance with the different ionic radii of the rare-earth metals (**HH**<sub>Y</sub>: 2.336(2)-2.392(2) Å; **HH**<sub>Lu</sub>: 2.2757(12)-2.3450(12) Å). The same trend is observed for the Ln–C bond lengths (**HH**<sub>Y</sub>: 2.485(3), 2.487(3) Å; **HH**<sub>Lu</sub>: 2.433(2), 2.436(2) Å).

First approaches toward terminal monometallic rare-earth-metal imido complexes by reacting  $HH_Y$  with aniline H<sub>2</sub>NC<sub>6</sub>H<sub>3</sub>-Me-2,6 showed conversion to the respective amide complex. Therefore, further investigations and thermolysis or LEWIS-base induced protonolysis might give access to scarce rare-earth-metal imide complexes.

## **Experimental Section**

**General Considerations.** All operations were performed with rigorous exclusion of air and water by using standard Schlenk, high-vacuum, and glovebox techniques (MBraun 200B; <0.1 ppm O<sub>2</sub>, <0.1 ppm H<sub>2</sub>O). Solvents were purified by using Grubbs columns (MBraun SPS, solvent purification system) and stored inside a glovebox. [D<sub>6</sub>]benzene was obtained from Sigma-Aldrich, degassed and dried over NaK alloy for two days and filtered prior to use. [D<sub>8</sub>]thf was obtained from Sigma-Aldrich, stirred over NaK alloy, and distilled. The NMR spectra of air-and moisture-sensitive compounds were recorded by using J. Young valve NMR tubes on a Bruker AVII+500 spectrometer (<sup>1</sup>H, 500.00 MHz, <sup>13</sup>C, 125.72 MHz, <sup>89</sup>Y 24.496 MHz), a Bruker AVII+400 spectrometer (<sup>1</sup>H, 400.13 MHz, <sup>13</sup>C, 100.61 MHz) and on a Bruker AVII+300 spectrometer (<sup>1</sup>H, 300.00 MHz, <sup>29</sup>Si, 59.59 MHz). DRIFT spectra were recorded on a Thermo Fisher Scientific NICOLET 6700 FTIR spectrometer using a DRIFT chamber with dry KBr/sample mixture and KBr windows; IR (DRIFT) data were converted by using the Kubelka-Munk refinement. Elemental analyses were performed on an Elementar Vario MICRO Cube.

(MePh<sub>2</sub>Si)<sub>2</sub>NLu(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>2</sub>(thf) (EE): A solution of Lu(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>3</sub>(thf)<sub>2</sub> (50.0 mg, 0.0861 mmol) in *n*-hexane (1 mL) was added to a stirred solution of HN(SiPh<sub>2</sub>Me)<sub>2</sub> (35.0 mg, 0.0861 mmol) in *n*-hexane (1 mL). The reaction mixture was stirred for 2 h at 0 °C and concentrated *in vacuo*. Colorless crystals were obtained from a saturated solution at -40 °C (42.0 mg, 0.0506 mmol, 59 %). <sup>1</sup>H NMR (400 MHz, [D<sub>6</sub>]benzene, 26 °C):  $\delta$  = 7.85-7.82 (m,

8H, Ar-*H*), 7.25-7.21 (m, 8H, Ar-*H*), 7.18-7.12 (m, 4H, Ar-*H*), 3.21 (br s, 4H, thf), 0.89 (m, 4H, thf), 0.70 (s, 6H, Si–*CH*<sub>3</sub>), 0.26 (s, 18H, CH<sub>2</sub>Si(*CH*<sub>3</sub>)<sub>3</sub>), –0.73 (s, 4H, *CH*<sub>2</sub>Si(*CH*<sub>3</sub>)<sub>3</sub>) ppm. IR (KBr):  $\tilde{\nu}$  = 3388 (vw), 3130 (vw), 3062 (w), 3019 (vw), 3008 (vw), 2995 (vw), 2950 (w), 2890 (vw), 2846 (vw), 2806 (vw), 1959 (vw), 1903 (vw), 1889 (vw), 1824 (vw), 1587 (vw), 1482 (vw), 1454 (vw), 1427 (m), 1406 (vw), 1377 (vw), 1326 (vw), 1303 (vw), 1259 (w), 1249 (w), 1237 (w), 1185 (vw), 1163 (w), 1153 (w), 1105 (s), 1065 (vw), 1030 (w), 1000 (w), 980 (s), 927 (m), 885 (m), 800 (vs), 787 (m), 738 (vs), 718 (m), 703 (s), 676 (w), 665 (vw), 647 (vw), 507 (w), 500 (w), 483 (w), 470 (w), 460 (m), 429 (vw), 424 (vw), 418 (w), 406 (vw) cm<sup>-1</sup>; elemental analysis calcd (%) for C<sub>38H56</sub>LuNOSi<sub>4</sub>: C 54.98, H 6.80, N 1.69; C 55.28, H 6.01, N 2.26.

(Me<sub>2</sub>PhSi)<sub>2</sub>NY(AlMe<sub>4</sub>)<sub>2</sub> (FF<sub>Y</sub>): A solution of Y(AlMe<sub>4</sub>)<sub>3</sub> (200 mg, 0.571 mmol) in *n*-hexane (5 mL) was added to a stirred suspension of KN(SiPhMe<sub>2</sub>)<sub>2</sub> (185 mg, 0.572 mmol) in *n*-hexane (10 mL). The reaction mixture was stirred overnight at ambient temperatures. The precipitate was allowed to settle and the solution was separated *via* filtration. The solid was washed with *n*-hexane (3 x 5 ml), the collected solutions were combined, and concentrated *in vacuo*. Colorless crystals were obtained from a saturated solution at –40 °C (200 mg, 0.365 mmol, 64 %). <sup>1</sup>H NMR (400 MHz, [D<sub>6</sub>]benzene, 26 °C):  $\delta$  = 7.63-7.61 (m, 4H, Ar-*H*), 7.21-7.17 (m, 4H, Ar-*H*), 7.11-7.07 (m, 2H, Ar-*H*), 0.36 (s, 12H, Si–CH<sub>3</sub>), –0.37 (d, <sup>2</sup>*J*(YH) = 2.5 Hz, 24H, Al–CH<sub>3</sub>) ppm. <sup>13</sup>C{<sup>1</sup>H}c NMR (101 MHz, [D<sub>6</sub>]benzene, 26 °C):  $\delta$  137.8 (Ar-C1), 136.7 (Ar-C3,5), 131.9 (Ar-C4), 130.2 (Ar-C2,5), 3.2 (Si–CH<sub>3</sub>), 2.1 (Al–CH<sub>3</sub>) ppm. <sup>29</sup>Si{<sup>1</sup>H} dept45 NMR (60 MHz, [D<sub>6</sub>]benzene, 26 °C):  $\delta$  –13.3 ppm. <sup>89</sup>Y NMR (from <sup>1</sup>H-<sup>89</sup>Y HSQC, 25 MHz, [D<sub>6</sub>]benzene, 26 °C):  $\delta$  = 451 ppm; IR (KBr):  $\tilde{\nu}$  = 3085 (vw), 3067 (vw), 3050 (vw), 3017 (vw), 3006 (vw), 2997 (vw), 2947 (w), 2927 (w), 2888 (w), 2819 (vw), 2795 (vw), 1583 (vw), 1560 (vw), 1486 (vw), 1425 (w), 1315 (vw), 1305 (vw), 1291 (vw), 1254 (m), 1214 (w), 1188 (m), 1109 (m), 1094 (m), 937 (w), 845 (s), 824 (s), 791 (s), 776 (s), 745 (s), 730 (vs), 715 (vs), 702 (vs), 692 (vs), 648 (w), 632 (w), 608 (w), 575 (s), 557 (m), 547 (m), 540 (m), 486 (m), 474 (m), 460 (w), 450 (w), 402 (s) cm<sup>-1</sup>; elemental analysis calcd (%) for C<sub>24</sub>H<sub>46</sub>Al<sub>2</sub>NSi<sub>2</sub>Y: C 52.63, H 8.47, N 2.56; C 52.86, H 8.75, N 2.63.

(Me<sub>2</sub>PhSi)<sub>2</sub>NLa(AlMe<sub>4</sub>)<sub>2</sub> (FF<sub>La</sub>): A solution of La(AlMe<sub>4</sub>)<sub>3</sub> (200 mg, 0.500 mmol) in *n*-hexane was added to a stirred suspension of KN(SiPhMe<sub>2</sub>)<sub>2</sub> (162 mg, 0.501 mmol) in *n*-hexane. The reaction mixture was stirred overnight at ambient temperatures. The precipitate was allowed to settle and the solution was separated *via* filtration. The solid was washed with *n*-hexane (3 x 5 ml), the collected solutions were combined, and concentrated *in vacuo*. Colourless crystals were obtained from a saturated solution at –40 °C (160 mg, 0.292 mmol, 58 %). <sup>1</sup>H NMR (400 MHz, [D<sub>6</sub>]benzene, 26 °C):  $\delta$  = 7.64-7.62 (m, 4H, Ar-*H*), 7.23-7.19 (m, 4H, Ar-*H*), 7.10-7.05 (m, 2H, Ar-*H*), 0.29 (s, 12H, Si–CH<sub>3</sub>), –0.41 (s, 24H, Al–CH<sub>3</sub>) ppm. <sup>13</sup>C {<sup>1</sup>H} NMR (63 MHz, [D<sub>6</sub>]benzene, 26 °C):  $\delta$  = 15.4 ppm; IR (KBr):  $\tilde{v}$  = 3067 (vw), 2999 (vw), 2949 (w), 2921 (w), 2885 (w), 2883 (w), 2779 (w), 1585 (vw), 1485 8vw), 1446 (vw), 1426 (w), 1309 (vw), 1252 (m), 1202 (w), 1191 (w), 1104 (m), 1030 (vw), 999 (m), 987 (m), 844 (s), 823 (m), 790 (s), 776 (s), 725 (vs), 705 (vs), 692 (vs), 600 (s), 581 (s), 546 (m), 518 (w), 487 (m), 482 (m), 473 (s), 447 (m), 419 (w), 410 (vw) cm<sup>-1</sup>; elemental analysis calcd (%) for C<sub>24</sub>H<sub>46</sub>Al<sub>2</sub>LaNSi<sub>2</sub>: C 48.23, H 7.76, N 2.34; C 48.61, H 7.83, N 2.44.

(Me<sub>2</sub>PhSi)<sub>2</sub>NLu(AlMe<sub>4</sub>)<sub>2</sub> (FF<sub>Lu</sub>): A solution of Lu(AlMe<sub>4</sub>)<sub>3</sub> (200 mg, 0.458 mmol) in *n*-hexane was added to a stirred suspension of KN(SiPhMe<sub>2</sub>)<sub>2</sub> (149 mg, 0.460 mmol) in *n*-hexane. The reaction mixture was stirred overnight at ambient temperatures. The precipitate was allowed to settle and the solution was separated *via* filtration. The solid was washed with *n*-hexane (3 x 5 ml), the collected solutions were combined, and concentrated *in vacuo*. Colorless crystals were obtained from a saturated solution at –40 °C (180 mg, 0.284 mmol, 62 %). <sup>1</sup>H NMR (400 MHz, [D<sub>6</sub>]benzene, 26 °C):  $\delta$  =7.63-7.61 (m, 4H, Ar-*H*), 7.21-7.17 (m, 4H, Ar-*H*), 7.11-7.07 (m, 2H, Ar-*H*), 0.36 (s, 12H, Si–CH<sub>3</sub>), –0.37 (s, 24H, Al–CH<sub>3</sub>) ppm. <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, [D<sub>6</sub>]benzene, 26 °C):  $\delta$  =11.5 ppm; IR (KBr):  $\tilde{v}$  = 3067 (vw), 3050 (vw), 3016 (vw), 2926 (w), 2891 (w), 1583 (vw), 1485 (vw), 1425 (w), 1315 (vw), 1253 (m), 1218 (w), 1191 (w), 1109 (w), 1094 (w), 1029 (vw), 954 (m), 950 (m), 937 (m), 841 (m), 823 (s), 792 (s), 783 (s), 770 (m), 751 (s), 742 (s), 727 (vs), 719 (vs), 710 (s), 696 (vs), 686 (s), 678 (m), 659 (w), 646 (w), 608 (w), 594 (m), 575 (m), 542 (m), 530 (m), 518 (m), 488 (vw), 476 (m), 463 (m), 446 (m), 434 (s), 414 (m), 407 (vw) cm<sup>-1</sup>; elemental analysis calcd (%) for C<sub>24</sub>H<sub>46</sub>Al<sub>2</sub>LuNSi<sub>2</sub>: C 45.49, H 7.32, N 2.21; C 45.63, H 7.56, N 2.30.

(MePh<sub>2</sub>Si)<sub>2</sub>NY(AlMe<sub>4</sub>)<sub>2</sub> (GG<sub>Y</sub>): A solution of Y(AlMe<sub>4</sub>)<sub>3</sub> (100 mg, 0.285 mmol) in *n*-hexane was added to a stirred suspension of KN(SiPh<sub>2</sub>Me)<sub>2</sub> (128 mg, 0.0285 mmol) in *n*-hexane. The reaction mixture was stirred overnight at ambient temperatures. The precipitate was allowed to settle and the solution was separated *via* filtration. The solid was washed with *n*-hexane (3 x 5 ml), the collected solutions were combined, and concentrated *in vacuo*. Colourless crystals were obtained from a saturated solution at –40 °C (96.0 mg, 0.143 mmol, 50 %). <sup>1</sup>H NMR (400 MHz, [D<sub>6</sub>]benzene, 26 °C):  $\delta$  = 7.72-7.70 (m, 8H, Ar-*H*), 7.20-7.16 (m, 8H, Ar-*H*), 7.14-7.10 (m, 4H, Ar-*H*), 0.63 (s, 6H, Si–CH<sub>3</sub>), –0.31 (d, <sup>2</sup>J(YH) = 2.4 Hz, 24H, Al–CH<sub>3</sub>) ppm. <sup>13</sup>C{<sup>1</sup>H} NMR (63 MHz, [D<sub>6</sub>]benzene,

26 °C):  $\delta$  137.9 (Ar-C1), 136.6 (Ar-C3,5), 130.9 (Ar-C4), 129.1 (Ar-C2,5), 2.5 (Al–CH<sub>3</sub>), 2.3 (Si–CH<sub>3</sub>) ppm. <sup>29</sup>Si{<sup>1</sup>H} dept45 NMR (60 MHz, [D<sub>6</sub>]benzene, 26 °C):  $\delta$  –18.4 ppm. <sup>89</sup>Y NMR (from <sup>1</sup>H-<sup>89</sup>Y HSQC, 25 MHz, [D<sub>6</sub>]benzene, 26 °C):  $\delta$  = 445 ppm; IR (KBr):  $\tilde{\nu}$  = 3128 (vw), 3063 (w), 3051 (w), 3017 (w), 3000 (w), 2926 (w), 2888 (w), 2821 (vw), 2787 (vw), 1960 (vw), 1893 (vw), 1829 (vw), 1586 (vw), 1483 (vw), 1426 (m), 1303 (vw), 1217 (w), 1190 (w), 1159 (vw), 1104 (s), 1064 (vw), 1029 (w), 998 (w), 961 (s), 860 (vw), 801 (s), 787 (s), 769 (m), 735 (vs), 670 (vs), 650 (w), 587 (m), 574 (m), 544 (m), 529 (m), 503 (s), 489 (s), 458 (s), 418 (vw) cm<sup>-1</sup>.

(MePh<sub>2</sub>Si)<sub>2</sub>NLu(AlMe<sub>4</sub>)<sub>2</sub> (GG<sub>Lu</sub>): A solution of Lu(AlMe<sub>4</sub>)<sub>3</sub> (100 mg, 0.229 mmol) in *n*-hexane was added to a stirred suspension of KN(SiPh<sub>2</sub>Me)<sub>2</sub> (103 mg, 0.230 mmol) in *n*-hexane. The reaction mixture was stirred overnight at ambient temperatures. The precipitate was allowed to settle and the solution was isolated *via* filtration. The solid was washed with *n*-hexane (3 x 5 ml), the collected solutions were combined, and concentrated *in vacuo*. Colourless crystals were obtained from a saturated solution at  $-40 \,^{\circ}C$  (135 mg, 0.178 mmol, 78 %). <sup>1</sup>H NMR (400 MHz, [D<sub>6</sub>]benzene, 26 °C):  $\delta = 7.73-7.71$  (m, 8H, Ar-*H*), 7.20-7.18 (m, 8H, Ar-*H*), 7.14-7.10 (m, 4H, Ar-*H*), 0.67 (s, 6H, Si–CH<sub>3</sub>), -0.10 (s, 24H, Al–CH<sub>3</sub>) ppm; <sup>13</sup>C {<sup>1</sup>H} NMR (63 MHz, [D<sub>6</sub>]benzene, 26 °C):  $\delta = 137.9$  (Ar-C1), 136.6 (Ar-C3,5), 130.8 (Ar-C4), 128.9 (Ar-C2,5), 2.6 (Si–CH<sub>3</sub>), 2.2 (Al–CH<sub>3</sub>) ppm.

(Ph<sub>2</sub>SiC<sub>6</sub>H<sub>5</sub>)<sub>2</sub>NY(thf)<sub>3</sub> (HH<sub>Y</sub>): A solution of HN(SiPh<sub>3</sub>)<sub>2</sub> (199 mg, 0.373 mmol) in thf (5 mL) was added to a stirred suspension of YMe<sub>3</sub> (50.0 mg, 0.373 mmol) in toluene (5 mL) at ambient temperature. The suspension was allowed to stir for additional 12 h at 40 °C. The reaction mixture changed from white to orange-red. The solution was filtered and concentrated *in vacuo*. Orange crystals were obtained from a saturated solution in thf/toluene at -40 °C (262 mg, 0.313 mmol 84 %). <sup>1</sup>H NMR (400 MHz, [D<sub>8</sub>]thf, 26 °C):  $\delta$  = 7.63-7.61 (m, 2H, Ar-H), 7.28-7.25 (m, 8H, Ar-H), 7.20-7.19 (m, 2H, Ar-H), 7.02-6.98 (m, 4H, Ar-H), 6.92-6.88 (m, 8H, Ar-H), 6.87-6.83 (m, 2H, Ar-H), 6.80-6.76 (m, 2H, Ar-H), 3.58 (s, thf), 1.72 (s, thf) ppm. <sup>13</sup>C {<sup>1</sup>H} NMR (63 MHz, [D<sub>8</sub>]thf, 26 °C):  $\delta$  199.4 (d, <sup>1</sup>J(YC) = 43 Hz, Y–C2), 155.4 (Si–C1), 144.6 (Si–C7), 137.0 (Ar-C8,12), 136.1 (Ar-C3), 134.0 (Ar-C6), 127.5 (Ar-C10), 126.7 (Ar-C9,11), 125.2 (Ar-C4), 123.8 (Ar-C5), 67.2 (thf), 25.3 (thf) ppm. <sup>29</sup>Si {<sup>1</sup>H} dept45 NMR (60 MHz, [D<sub>8</sub>]thf, 26 °C):  $\delta$  = 567 ppm; IR (KBr):  $\tilde{v}$  = 3062 (w), 3014 (w), 2934 (w), 2872 (w), 2785 (vw), 1584 (vw), 1483 (vw), 1457 (vw), 1426 (w), 1407 (vw), 1294 (vw), 1259 (vw), 1213 (vw), 1183 (vw), 1154 (vw), 1100 (s), 1071 (m), 1033 (m), 1008 (s), 918 (w), 861 (m), 782 (vw), 729 (s), 700 (vs), 674 (w), 655 (m), 635 (w), 620 (vw), 578 (vw), 555 (m), 536 (w), 518 (vs), 503 (w), 484 (s), 451 (w), 435 (w) cm<sup>-1</sup>; elemental analysis calcd (%) for C<sub>48</sub>H<sub>52</sub>NO<sub>3</sub>Si<sub>2</sub>Y: C 68.96, H 6.27, N 1.68; C 67.83, H 6.28, N 1.63.

(Ph<sub>2</sub>SiC<sub>6</sub>H<sub>5</sub>)<sub>2</sub>NLu(thf)<sub>3</sub> (HH<sub>Lu</sub>): A solution of HN(SiPh<sub>3</sub>)<sub>2</sub> (121 mg, 0.227 mmol) in thf (5 mL) was added to a stirred suspension of LuMe<sub>3</sub> (50.0 mg, 0.227 mmol) in toluene (5 mL) at ambient temperature. The suspension was allowed to stir for additional 12 h at 40 °C. The reaction mixture changed from white to orange-red. The solution was filtered and concentrated *in vacuo*. Yellow crystals were obtained from a saturated solution in thf/toluene at -40 °C (174 mg, 0.189 mmol 83 %). <sup>1</sup>H NMR (400 MHz, [D<sub>8</sub>]thf, 26 °C):  $\delta$  = 7.66-7.64 (m, 2H, Ar-H), 7.29-7.26 (m, 10H, Ar-H), 7.02-6.98 (m, 4H, Ar-H), 6.94-6.88 (m, 10H, Ar-H), 6.81-6.77 (m, 2H, Ar-H), 3.58 (s, thf), 1.72 (s, thf) ppm. <sup>13</sup>C{<sup>1</sup>H} NMR (63 MHz, [D<sub>8</sub>]thf, 26 °C):  $\delta$  207.3 (Lu–C2), 155.4 (Si–C1), 144.5 (Si–C7), 137.2 (Ar-C3), 136.8 (Ar-C8,12), 134.2 (Ar-C6), 127.4 (Ar-C10), 126.6 (Ar-C9,11), 125.5 (Ar-C4), 123.6 (Ar-C5), 67.2 (thf), 25.3 (thf) ppm.<sup>29</sup>Si{<sup>1</sup>H} dept45 NMR (60 MHz, [D<sub>6</sub>]benzene, 26 °C):  $\delta$  -26.2 ppm; IR (KBr):  $\tilde{\nu}$  = 3062 (w), 3015 (m), 2992 (m), 2934 (w), 2889 (w), 1483 (vw), 1473 (vw), 1456 (vw), 1427 (m), 1408 (vw), 1294 (vw), 1259 (vw), 1214 (vw), 1183 (vw), 1100 (s), 1072 (m), 1033 (m), 1017 (vs), 918 (w), 860 (m), 738 (s), 731 (vs), 700 (vs), 674 (w), 657 (m), 635 (w), 556 (m), 518 (vs), 504 (w), 485 (s), 451 (w), 436 (w) cm<sup>-1</sup>.



Figure UPR1. <sup>1</sup>H NMR spectrum (400 MHz, [D<sub>6</sub>]benzene) of complex EE at 26 °C.



Figure UPR2. <sup>1</sup>H NMR spectrum (400 MHz, [D<sub>6</sub>]benzene) of complex FF<sub>Y</sub> at 26 °C.



Figure UPR3. <sup>13</sup>C NMR spectrum (101 MHz, [D<sub>6</sub>]benzene) of complex FF<sub>Y</sub> at 26 °C.



Figure UPR4. <sup>29</sup>Si{<sup>1</sup>H}-dept NMR spectrum (60 MHz, [D<sub>6</sub>]benzene) of complex FF<sub>Y</sub> at 26 °C.



Figure UPR5. <sup>1</sup>H-<sup>89</sup>Y HSQC NMR spectrum (25 MHz, [D<sub>6</sub>]benzene) of complex FF<sub>Y</sub> at 26 °C.



Figure UPR6. <sup>1</sup>H NMR spectrum (400 MHz, [D<sub>6</sub>]benzene) of complex FF<sub>La</sub> at 26 °C.



Figure UPR7. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (101 MHz, [D<sub>6</sub>]benzene) of complex FF<sub>La</sub> at 26 °C.



Figure UPR8. <sup>29</sup>Si{<sup>1</sup>H}-dept NMR spectrum (60 MHz, [D<sub>6</sub>]benzene) of complex FF<sub>La</sub> at 26 °C.



Figure UPR9. <sup>1</sup>H NMR spectrum (400 MHz, [D<sub>6</sub>]benzene) of complex FF<sub>Lu</sub> at 26 °C.



Figure UPR10. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (101 MHz, [D<sub>6</sub>]benzene) of complex FF<sub>Lu</sub> at 26 °C.



Figure UPR11. <sup>29</sup>Si{<sup>1</sup>H}-dept NMR spectrum (60 MHz, [D<sub>6</sub>]benzene) of complex FF<sub>Lu</sub> at 26 °C.



Figure UPR12. <sup>1</sup>H NMR spectrum (400 MHz, [D<sub>6</sub>]benzene) of complex GG<sub>Y</sub> at 26 °C.



Figure UPR13. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (101 MHz, [D<sub>6</sub>]benzene) of complex GG<sub>Y</sub> at 26 °C.



Figure UPR14. <sup>29</sup>Si{<sup>1</sup>H}-dept NMR spectrum (60 MHz, [D<sub>6</sub>]benzene) of complex GG<sub>Y</sub> at 26 °C.



Figure UPR15. <sup>1</sup>H-<sup>89</sup>Y HSQC NMR spectrum (25 MHz, [D<sub>6</sub>]benzene) of complex GG<sub>Y</sub> at 26 °C.



Figure UPR16. <sup>1</sup>H NMR spectrum (400 MHz, [D<sub>6</sub>]benzene) of complex GG<sub>Lu</sub> at 26 °C.



Figure UPR17. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (101 MHz, [D<sub>6</sub>]benzene) of complex GG<sub>Lu</sub> at 26 °C.



Figure UPR18. <sup>1</sup>H NMR spectrum (400 MHz, [D<sub>8</sub>]thf) of complex HH<sub>Y</sub> at 26 °C with traces of *n*-hexane.



Figure UPR19. <sup>1</sup>H-<sup>1</sup>H COSY NMR spectrum (400 MHz, [D<sub>8</sub>]thf) of complex HH<sub>Y</sub> at 26 °C.



Figure UPR20.  ${}^{13}C{}^{1}H$  NMR spectrum (101 MHz, [D<sub>8</sub>]thf) of complex HH<sub>Y</sub> at 26 °C.



Figure UPR21. <sup>29</sup>Si{<sup>1</sup>H}-dept NMR spectrum (60 MHz, [D<sub>8</sub>]thf) of complex HH<sub>Y</sub> at 26 °C.



Figure UPR22. <sup>1</sup>H-<sup>89</sup>Y HSQC NMR spectrum (25 MHz, [D<sub>8</sub>]thf) of complex HH<sub>Y</sub> at 26 °C.



Figure UPR23. <sup>1</sup>H NMR spectrum (400 MHz, [D<sub>8</sub>]thf) of complex HH<sub>Lu</sub> at 26 °C with traces of *n*-hexane.



Figure UPR24. <sup>1</sup>H-<sup>1</sup>H COSY NMR spectrum (400 MHz, [D<sub>8</sub>]thf) of complex HH<sub>Lu</sub> at 26 °C.



Figure UPR25. <sup>13</sup>C $\{^{1}H\}$  NMR spectrum (101 MHz, [D<sub>8</sub>]thf) of complex HH<sub>Lu</sub> at 26 °C.



Figure UPR26.  ${}^{29}Si{}^{1}H$ -dept NMR spectrum (60 MHz, [D<sub>8</sub>]thf) of complex HH<sub>Lu</sub> at 26 °C.

|                                           | EE                            | HHy               | HHLu              |
|-------------------------------------------|-------------------------------|-------------------|-------------------|
| formula                                   | $C_{76}H_{112}Lu_2N_2O_2Si_8$ | C55H60NO3Si2Y     | C55H60NO3Si2Lu    |
| M [g mol <sup>-1</sup> ]                  | 1660.33                       | 928.13            | 1014.19           |
| crystal system                            | monoclinic                    | monoclinic        | monoclinic        |
| space group                               | P2 <sub>1</sub>               | P21/c             | P21/c             |
| a [Å]                                     | 10.3066(8)                    | 11.715(5)         | 11.7435(9)        |
| b [Å]                                     | 40.211(3)                     | 12.156(6)         | 12.0158(9)        |
| c [Å]                                     | 10.6985(8)                    | 34.014(16)        | 34.138(3)         |
| α [°]                                     | 90                            | 90                | 90                |
| β[°]                                      | 114.5430(10)                  | 97.892(12)        | 97.3510(10)       |
| γ [°]                                     | 90                            | 90                | 90                |
| V [Å <sup>3</sup> ]                       | 4033.3(5)                     | 4798(4)           | 4777.5(6)         |
| Ζ                                         | 2                             | 4                 | 4                 |
| T [K]                                     | 100(2)                        | 100(2)            | 100(2)            |
| $\rho_{calcd} [g cm^{-3}]$                | 1.367                         | 1.285             | 1.410             |
| μ [mm <sup>-1</sup> ]                     | 2.595                         | 1.309             | 2.161             |
| F (000)                                   | 1704                          | 1952              | 2080              |
| Θ range [°]                               | 5.06 to 21.54                 | 1.209 to 28.281   | 1.992 to 30.109   |
| total reflns                              | 112281                        | 55510             | 105907            |
| unique reflns                             | 23356                         | 11901             | 14060             |
| Rint                                      | 0.0862                        | 0.0681            | 0.0421            |
| observed reflns (I>2o)                    | 23356                         | 8806              | 12870             |
| Data/restraints/parameter                 | 23356 / 1 / 828               | 11901 / 124 / 598 | 14060 / 258 / 675 |
| R1/wR2 (I>2o) [a]                         | 0.0440 / 0.0964               | 0.0560 / 0.1087   | 0.0225 / 0.0488   |
| R1/wR2 (all data) <sup>[a]</sup>          | 0.0520 / 0.1011               | 0.0863 / 0.1179   | 0.0262 / 0.0500   |
| GOF <sup>[a]</sup>                        | 0.988                         | 1.082             | 1.073             |
| largest diff. peak and hole [e $Å^{-3}$ ] | 6.977 and -1.029              | 0.993 and -0.753  | 0.765 and -1.173  |

| Table S1. | Comprehensive | crystallographic | data for | compounds | EE. H     | Hy, and HHL.   |
|-----------|---------------|------------------|----------|-----------|-----------|----------------|
| 1         | comprenensive | orystanographie  | aata 101 | compoundo | <b></b> , | III, and IIII. |

 $[a] R1 = \Sigma(||F_0| - |F_c||) / \Sigma|F_0|, F_0 > 4\sigma(F_0). wR2 = \{\Sigma[w(F_0^2 - F_c^2)^2 / \Sigma[w(F_0^2)^2]\}^{1/2}.$
## 

## Bibliography

[1] a) E. O. Fischer, A. Maasböl, Angew. Chem. Int. Ed. 1964, 3, 580-581; b) T. M. Trnka, R. H. Grubbs, Acc. Chem. Res. 2001, 34, 18-29; c) R. R. Schrock, Chem. Rev. 2002, 102, 145-180; d) F. E. Hahn, M. C. Jahnke, Angew. Chem. Int. Ed. 2008, 47, 3122-3172; Angew. Chem. 2008, 120, 3166-3216; e) K. H. Dötz, J. Stendel, Chem. Rev. 2009, 109, 3227-3274; f) M. Ephritikhine, Compt. Rend. Chim. 2013, 16, 391-405; g) G. Bertrand, Carbene Chemistry - from fleeting intermediates to powerful reagents 2002, Marcel Dekker, Inc.

[2] C. Elschenbroich, Organometallchemie, 6. überarbeitete Auflage **2008**, B. G. Teubner Verlag / GWV Fachverlage GmbH, Wiesbaden 2008, 308-323.

[3] a) J. Kratsch, P. W. Roesky, *Angew. Chem. Int. Ed.* **2014**, *53*, 376-383; *Angew. Chem.* **2014**, *126*, 384-391; b) J. Scott, D. J. Mindiola, *Dalton Trans.* **2009**, 8463-8472; c) O. T. Summerscales, J. C. Gordon, *RSC Adv.* **2013**, *3*, 6682-6692.

[4] G. R. Giesbrecht, J. C. Gordon, Dalton Trans. 2004, 2387-2393.

[5] a) M. Zimmermann, D. Rauschmaier, K. Eichele, K. W. Törnroos, R. Anwander, *Chem. Commun.* **2010**, *46*, 5346-5348; b) W. X. Zhang, Z. Wang, M. Nishiura, Z. Xi, Z. Hou, *J. Am. Chem. Soc.* **2011**, *133*, 5712-5715; c) D. Schädle, M. Meermann-Zimmermann, C. Maichle-Mössmer, C. Schädle, K. W. Törnroos, R. Anwander, *Dalton Trans.* **2015**, *44*, 18101-18110.

[6] H. Schumann, J. Müller, Angew. Chem. 1978, 90, 307-308.

[7] P. L. Watson, J. Am. Chem. Soc. 1983, 105, 6491-6493.

[8] a) H. M. Dietrich, G. Raudaschl-Sieber, R. Anwander, *Angew. Chem. Int. Ed.* **2005**, *44*, 5303-5306; *Angew. Chem. 117*, 5437-5440; b) D. Barisic, D. Diether, C. Maichle-Mossmer, R. Anwander, *J. Am. Chem. Soc.* **2019**, *141*, 13931-13940.

[9] a) H. M. Dietrich, H. Grove, K. W. Törnroos, R. Anwander, J. Am. Chem. Soc. 2006, 128, 1458-1459; b) A. D. Sadow, T. D. Tilley, J. Am. Chem. Soc. 2003, 125, 7971-7977; c) P. L. Watson, G. W. Parshall, Acc. Chem. Res. 2002, 18, 51-56; d) T. Ziegler, E. Folga, A. Berces, J. Am. Chem. Soc. 1993, 115, 636-646; e) M. E. Thompson, J. E. Bercaw, Pure Appl Chem 1984, 56, 1-11; f) P. J. Davidson, M. F. Lappert, R. Pearce, Chem. Rev. 1976, 76, 219-242; g) M. Zimmermann, R. Anwander, Chem. Rev. 2010, 110, 6194-6259.

[10] R. D. Shannon, Acta Crystallogr. Sect. A 1976, 32, 751-767.

[11] M. Zimmermann, R. Litlabø, K. W. Törnroos, R. Anwander, *Organometallics* 2009, 28, 6646-6649.

[12] J. Holton, M. F. Lappert, D. G. H. Ballard, R. Pearce, J. L. Atwood, W. E. Hunter, J. Chem. Soc., Dalton Trans. 1979, 54-61.

[13] W. J. Evans, R. Dominguez, T. P. Hanusa, Organometallics 1986, 5, 263-270.

[14] W. J. Evans, D. K. Drummond, T. P. Hanusa, R. J. Doedens, *Organometallics* 1987, 6, 2279-2285.

[15] a) W. J. Evans, J. M. Perotti, J. W. Ziller, J. Am. Chem. Soc. 2005, 127, 3894-3909; b) M.
E. Thompson, S. M. Baxter, A. R. Bulls, B. J. Burger, M. C. Nolan, B. D. Santarsiero, W. P.
Schaefer, J. E. Bercaw, J. Am. Chem. Soc. 1987, 109, 203-219.

[16] H. Schumann, M. R. Keitsch, J. Winterfeld, S. Mühle, G. A. Molander, J. Organomet. Chem. **1998**, 559, 181-190.

[17] a) A. Z. Voskoboynikov, I. N. Parshina, A. K. Shestakova, K. P. Butin, I. P. Beletskaya, L. a. G. Kuz'mina, J. A. K. Howard, *Organometallics* 1997, *16*, 4041-4055; b) S. D. Stults, R. A. Andersen, A. Zalkin, *J. Organomet. Chem.* 1993, *462*, 175-182; c) Q. Shen, Y. Cheng, Y. Lin, *J. Organomet. Chem.* 1991, *419*, 293-298.

[18] a) Y. Satoh, N. Ikitake, Y. Nakayama, S. Okuno, H. Yasuda, J. Organomet. Chem. 2003, 667, 42-52; b) H. Schumann, M. R. Keitsch, J. Demtschuk, G. A. Molander, J. Organomet. Chem. 1999, 582, 70-82.

[19] H. Schumann, M. R. Keitsch, S. H. Mühle, Z. Anorg. Allg. Chem. 2002, 628, 1311-1318.

[20] M. Zimmermann, J. Takats, G. Kiel, K. W. Törnroos, R. Anwander, *Chem. Commun.* 2008, 5, 612-614.

[21] D. Robert, T. P. Spaniol, J. Okuda, Eur. J. Inorg. Chem. 2008, 2801-2809.

[22] a) C. O. Hollfelder, M. Meermann-Zimmermann, G. Spiridopoulos, D. Werner, K. W. Törnroos, C. Maichle-Mössmer, R. Anwander, *Molecules* **2019**, *24*; b) C. O. Hollfelder, L. N. Jende, H. M. Dietrich, K. Eichele, C. Maichle-Mössmer, R. Anwander, *Chem. Eur. J.* **2019**, *25*, 7298-7302.

[23] P. G. Hayes, W. E. Piers, L. W. M. Lee, L. K. Knight, M. Parvez, M. R. J. Elsegood, W. Clegg, *Organometallics* **2001**, *20*, 2533-2544.

[24] K. D. Conroy, W. E. Piers, M. Parvez, J. Organomet. Chem. 2008, 693, 834-846.

[25] D. Schädle, C. Maichle-Mössmer, C. Schädle, R. Anwander, *Chem. Eur. J.* **2015**, *21*, 662-670.

[26] J. Zhou, L. Xiang, J. Guo, X. Leng, Y. Chen, Chem. Eur. J. 2017, 23, 5424-5428.

[27] J. Scott, H. Fan, B. F. Wicker, A. R. Fout, M. H. Baik, D. J. Mindiola, J. Am. Chem. Soc. **2008**, 130, 14438-14439.

[28] J. Zhou, J. Chu, Y. Zhang, G. Yang, X. Leng, Y. Chen, *Angew. Chem. Int. Ed.* **2013**, *52*, 4243-4246; *Angew. Chem.* **2013**, *125*, 4337-4340.

[29] L. D. Henderson, G. D. MacInnis, W. E. Piers, M. Parvez, Can. J. Chem. 2004, 82, 162-165.

[30] H. Schumann, J. Müller, J. Organomet. Chem. 1979, 169, C1-C4.

[31] K. Aparna, M. Ferguson, R. G. Cavell, J. Am. Chem. Soc. 2000, 122, 726-727.

[32] a) T. Cantat, F. Jaroschik, F. Nief, L. Ricard, N. Mezailles, P. Le Floch, *Chem. Commun.* **2005**, 5178-5180; b) T. Cantat, F. Jaroschik, L. Ricard, P. Le Floch, F. Nief, N. Mézailles, *Organometallics* **2006**, *25*, 1329-1332.

[33] H. M. Dietrich, K. W. Törnroos, R. Anwander, J. Am. Chem. Soc. 2006, 128, 9298-9299.

[34] R. Litlabø, M. Zimmermann, K. Saliu, J. Takats, K. W. Törnroos, R. Anwander, *Angew. Chem. Int. Ed.* **2008**, *47*, 9560-9564; *Angew. Chem.* **2008**, *120*, 9702-9706.

[35] L. C. Gerber, E. Le Roux, K. W. Tornroos, R. Anwander, Chem. Eur. J. 2008, 14, 9555-9564.

[36] a) D. P. Mills, O. J. Cooper, J. McMaster, W. Lewis, S. T. Liddle, *Dalton Trans.* 2009, 4547-4555; b) A. J. Wooles, D. P. Mills, W. Lewis, A. J. Blake, S. T. Liddle, *Dalton Trans.* 2010, 500-510; c) A. Buchard, A. Auffrant, L. Ricard, X. F. Le Goff, R. H. Platel, C. K. Williams, P. Le Floch, *Dalton Trans.* 2009, 10219-10222; d) S. T. Liddle, J. McMaster, J. C. Green, P. L. Arnold, *Chem. Commun.* 2008, 1747-1749; e) D. P. Mills, A. J. Wooles, J. McMaster, W. Lewis, A. J. Blake, S. T. Liddle, *Organometallics* 2009, 28, 6771-6776; f) F. Ortu, M. Gregson, A. J. Wooles, D. P. Mills, S. T. Liddle, *Organometallics* 2017, 36, 4584-4590; g) A. J. Wooles, O. J. Cooper, J. McMaster, W. Lewis, A. J. Blake, S. T. Liddle, *Organometallics* 2017, 36, 4584-4590; g) A. J. Wooles, Control, 2021; h) M. Gregson, E. Lu, J. McMaster, W. Lewis, A. J. Blake, S. T. Liddle, *Angew. Chem. Int. Ed.* 2013, 52, 13016-13019; *Angew. Chem.* 2013, 125, 13254-13257.

[37] M. Gregson, E. Lu, D. P. Mills, F. Tuna, E. J. McInnes, C. Hennig, A. C. Scheinost, J. McMaster, W. Lewis, A. J. Blake, A. Kerridge, S. T. Liddle, *Nature Commun.* **2017**, *8*, 14137.

[38] M. Fustier, X.-F. Le Goff, M. Lutz, J. C. Slootweg, N. Mézailles, *Organometallics* 2014, 34, 63-72.

[39] M. Gregson, N. F. Chilton, A. M. Ariciu, F. Tuna, I. F. Crowe, W. Lewis, A. J. Blake, D. Collison, E. J. L. McInnes, R. E. P. Winpenny, S. T. Liddle, *Chem. Sci.* **2016**, *7*, 155-165.

[40] a) A. Venugopal, I. Kamps, D. Bojer, R. J. Berger, A. Mix, A. Willner, B. Neumann, H. G. Stammler, N. W. Mitzel, *Dalton Trans.* 2009, 5755-5765; b) D. Bojer, A. Venugopal, A. Mix, B. Neumann, H. G. Stammler, N. W. Mitzel, *Chem. Eur. J.* 2011, *17*, 6248-6255; c) D. Bojer, B. Neumann, H. G. Stammler, N. W. Mitzel, *Chem. Eur. J.* 2011, *17*, 6239-6247; d) D. Bojer, B. Neumann, H. G. Stammler, N. W. Mitzel, *Eur. J. Inorg. Chem.* 2011, 3791-3796.

[41] Y. Takenaka, T. Shima, J. Baldamus, Z. Hou, *Angew. Chem. Int. Ed.* **2009**, *48*, 7888-7891; *Angew. Chem.* **2009**, *121*, 8028-8031.

[42] a) J. Hong, L. Zhang, X. Yu, M. Li, Z. Zhang, P. Zheng, M. Nishiura, Z. Hou, X. Zhou, *Chem. Eur. J.* 2011, *17*, 2130-2137; b) J. Hong, H. Tian, L. Zhang, X. Zhou, I. Del Rosal, L. Weng, L. Maron, *Angew. Chem. Int. Ed.* 2018, *57*, 1062-1067; *Angew. Chem.* 2018, *130*, 1074-1079.

[43] L. N. Jende, PhD Thesis 2015.

[44] W. Huang, C. T. Carver, P. L. Diaconescu, Inorg. Chem. 2011, 50, 978-984.

[45] S. Li, M. Wang, B. Liu, L. Li, J. Cheng, C. Wu, D. Liu, J. Liu, D. Cui, *Chem. Eur. J.* **2014**, 20, 15493-15498.

[46] J. Zhou, T. Li, L. Maron, X. Leng, Y. Chen, Organometallics 2015, 34, 470-476.

[47] T. Li, G. Zhang, J. Guo, S. Wang, X. Leng, Y. Chen, Organometallics 2016, 35, 1565-1572.

[48] W. Ma, C. Yu, Y. Chi, T. Chen, L. Wang, J. Yin, B. Wei, L. Xu, W. X. Zhang, Z. Xi, *Chem. Sci.* **2017**, *8*, 6852-6856.

[49] a) W. Mao, L. Xiang, L. Maron, X. Leng, Y. Chen, J. Am. Chem. Soc. 2017, 139, 17759-17762; b) W. Mao, L. Xiang, C. Alvarez Lamsfus, L. Maron, X. Leng, Y. Chen, J. Am. Chem. Soc. 2017, 139, 1081-1084; c) C. Wang, W. Mao, L. Xiang, Y. Yang, J. Fang, L. Maron, X. Leng, Y. Chen, Chem. Eur. J. 2018, 24, 13903-13917; d) C. Wang, L. Xiang, Y. Yang, J. Fang, L. Maron, X. Leng, Y. Chen, Chem. Eur. J. 2018, 24, 5637-5643.

[50] D. P. Mills, W. Lewis, A. J. Blake, S. T. Liddle, Organometallics 2013, 32, 1239-1250.

[51] a) S. T. Liddle, D. P. Mills, A. J. Wooles, *Chem. Soc. Rev.* **2011**, *40*, 2164-2176; b) D. P. Mills, L. Soutar, W. Lewis, A. J. Blake, S. T. Liddle, *J. Am. Chem. Soc.* **2010**, *132*, 14379-14381.

[52] M. Fustier-Boutignon, N. Mézailles, *Topics in Organometallic Chemistry, vol 47. Stable Geminal Dianions as Precursors for Gem-Diorganometallic and Carbene Complexes* **2014**, *47*, 63-127.

[53] J. Hong, L. Zhang, K. Wang, Y. Zhang, L. Weng, X. Zhou, *Chem. Eur. J.* **2013**, *19*, 7865-7873.

[54] K. Wang, G. Luo, J. Hong, X. Zhou, L. Weng, Y. Luo, L. Zhang, *Angew. Chem. Int. Ed. Engl.* 2014, *53*, 1053-1056; *Angew. Chem.* 2014, *126*, 1071-1074.

[55] T. Li, M. Nishiura, J. Cheng, Y. Li, Z. Hou, Chem. Eur. J. 2012, 18, 15079-15085.

[56] T. Li, M. Nishiura, J. Cheng, W. Zhang, Y. Li, Z. Hou, *Organometallics* **2013**, *32*, 4142-4148.

[57] W. Mao, L. Xiang, C. A. Lamsfus, L. Maron, X. Leng, Y. Chen, *Chin. J. Chem.* **2018**, *36*, 904-908.

[58] L. N. Grant, S. Ahn, B. C. Manor, M. H. Baik, D. J. Mindiola, *Chem. Commun.* **2017**, *53*, 3415-3417.

[59] a) N. A. Petasis, E. I. Bzowej, *J. Am. Chem. Soc.* **1990**, *112*, 6392-6394; b) N. A. Petasis, S. P. Lu, E. I. Bzowej, D. K. Fu, J. P. Staszewski, I. Akritopoulou-Zanze, M. A. Patane, Y. H. Hu, *Pure Appl Chem* **1996**, *68*, 667-670.

[60] V. M. Birkelbach, R. Thim, C. Stuhl, C. Maichle-Mössmer, R. Anwander, *Chem. Eur. J.* **2019**, *25*, 14711-14720.

[61] a) S.-Y. Liu, G. H. Maunder, A. Sella, M. Stevenson, D. A. Tocher, *Inorg. Chem.* **1996**, *35*, 76-81; b) R. J. H. Clark, S. Y. Liu, G. H. Maunder, A. Sella, M. R. J. Elsegood, *J. Chem. Soc., Dalton Trans.* **1997**, 2241-2247.

[62] a) F. A. Kunrath, O. L. Casagrande, L. Toupet, J.-F. Carpentier, *Polyhedron* **2004**, *23*, 2437-2445; b) N. Marques, A. Sella, J. Takats, *Chem. Rev.* **2002**, *102*, 2137-2160.

[63] M. Bonath, C. O. Hollfelder, D. Schädle, C. Maichle-Mössmer, P. Sirsch, R. Anwander, *Eur. J. Inorg. Chem.* **2017**, 4683-4692.

[64] C. Stuhl, C. Maichle-Mössmer, R. Anwander, Chem. Eur. J. 2018, 24, 14254-14268.

[65] D. M. P. Mingos, R. H. Crabtree, *Comprehensive Organometallic Chemistry III* **2006**, *Vol.* 4.01.

[66] V. M. Birkelbach, C. Stuhl, C. Maichle-Mössmer, R. Anwander, *Organometallics* 2019, 38, 4485-4496.

[67] a) F. N. Tebbe, G. W. Parshall, G. S. Reddy, *J. Am. Chem. Soc.* **1978**, *100*, 3611-3613; b) J. Holton, M. F. Lappert, R. Pearce, P. I. W. Yarrow, *Chem. Rev.* **1983**, *83*, 135-201; c) R. R. Schrock, A. H. Hoveyda, *Angew. Chem. Int. Ed.* **2003**, *42*, 4592-4633; *Angew. Chem.* **2003**, *115*, *38*, 4740-4782; d) R. H. Grubbs, *Tetrahedron* **2004**, *60*, 7117-7140.

[68] J. D. Meinhart, E. V. Anslyn, R. H. Grubbs, Organometallics 1989, 8, 583-589.

[69] H. M. Dietrich, O. Schuster, K. W. Törnroos, R. Anwander, *Angew. Chem. Int. Ed.* **2006**, *45*, 4858-4863; *Angew. Chem.* **2006**, *18*, 4977.

[70] a) M. Zimmermann, K. W. Törnroos, H. Sitzmann, R. Anwander, *Chem. Eur. J.* **2008**, *14*, 7266-7277; b) H. M. Dietrich, C. Zapilko, E. Herdtweck, R. Anwander, *Organometallics* **2005**, *24*, 5767-5771.

[71] R. Thompson, E. Nakamaru-Ogiso, C.-H. Chen, M. Pink, D. J. Mindiola, *Organometallics* **2013**, *33*, 429-432.

[72] a) X. Gu, L. Zhang, X. Zhu, S. Wang, S. Zhou, Y. Wei, G. Zhang, X. Mu, Z. Huang, D. Hong, F. Zhang, *Organometallics* **2015**, *34*, 4553-4559; b) X. Gu, X. Zhu, Y. Wei, S. Wang, S. Zhou, G. Zhang, X. Mu, *Organometallics* **2014**, *33*, 2372-2379.

[73] G. Scarel, C. Wiemer, M. Fanciulli, I. L. Fedushkin, G. K. Fukin, G. A. Domrachev, Y. Lebedinskii, A. Zenkevich, G. Pavia, Z. Anorg. Allg. Chem. 2007, 633, 2097-2103.

[74] H. Schumann, D. M. M. Freckmann, S. Dechert, Z. Anorg. Allg. Chem. 2002, 628, 2422-2426.

# E

## **Publications**

Potential Precursors for TerminalMethylideneRare-Earth-MetalComplexesSupportedby aSuperbulky Tris(pyrazolyl)boratoLigand



https://doi.org/10.1002/chem.201903606 reprinted with permission from *Chem. Eur. J.* **2019**, *25*, 14711-14720 License Number 4701980158697

Rare-Earth Metals | Hot Paper |

#### Potential Precursors for Terminal Methylidene Rare-Earth-Metal Complexes Supported by a Superbulky Tris(pyrazolyl)borato Ligand

Verena M. Birkelbach, Renita Thim, Christoph Stuhl, Cäcilia Maichle-Mössmer, and Reiner Anwander\*<sup>[a]</sup>

**Abstract:** A series of solvent-free heteroleptic terminal rareearth-metal alkyl complexes stabilized by a superbulky tris-(pyrazolyl)borato ligand with the general formula [Tp<sup>tBu,Me</sup>LnMeR] have been synthesized and fully characterized. Treatment of the heterobimetallic mixed methyl/tetramethylaluminate compounds [Tp<sup>tBu,Me</sup>LnMe(AIMe<sub>4</sub>)] (Ln = Y, Lu) with two equivalents of the mild halogenido transfer reagents SiMe<sub>3</sub>X (X = Cl, I) gave [Tp<sup>tBu,Me</sup>LnM2] in high yields. The addition of only one equivalent of SiMe<sub>3</sub>Cl to [Tp<sup>tBu,Me</sup>LuMe(AIMe<sub>4</sub>)] selectively afforded the desired mixed methyl/chloride complex [Tp<sup>tBu,Me</sup>LuMeCl]. Further reactivity studies of [Tp<sup>tBu,Me</sup>LuMeCl] with LiR or KR (R = CH<sub>2</sub>Ph, CH<sub>2</sub>SiMe<sub>3</sub>) through salt metathesis led to the monomeric

Introduction

Terminal transition-metal carbene and alkylidene complexes are of fundamental importance in organometallic chemistry/ catalysis and organic synthesis.<sup>[1]</sup> In contrast, discrete terminal rare-earth-metal (Ln) alkylidene complexes of the type LLn  $[=CR_2]$  (R=H or hydrocarbon substituent; L=monoanionic ancillary ligand) have remained elusive,<sup>[2]</sup> which is mainly attributed to the dominance of Ln-C ionic bonding and hence pronounced tendency for intermetallic bridging.<sup>[3]</sup> Notwithstanding, such bridging alkylidene moieties were accessed in mixed methyl/methylidene,<sup>[4]</sup> methyl/chloride,<sup>[5]</sup> cubane-like methylidene complexes,<sup>[6]</sup> and the first four-coordinate methandiide alkyl lutetium complex.<sup>[7]</sup> Also, Lewis acid-stabilized<sup>[8]</sup> or pincerlike rare-earth-metal alkylidene complexes<sup>[9]</sup> have been reported. Recent advances in the latter areas are represented by the syntheses of the first bridged bis-alkylidene scandium complex,<sup>[10]</sup> a non-pincer-type monometallic phosphinoalkylidene

 [a] V. M. Birkelbach, Dr. R. Thim, Dr. C. Stuhl, Dr. C. Maichle-Mössmer, Prof. Dr. R. Anwander
 Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen Auf der Morgenstelle 18, 72076 Tübingen (Germany)
 E-mail: reiner.anwander@uni-tuebingen.de
 Homepage: http://uni-tuebingen.de/syncat-anwander
 Supporting information and the ORCID identification number(s) for the

author(s) of this article can be found under: https://doi.org/10.1002/chem.201903606. mixed-alkyl derivatives  $[Tp^{rBu,Me}LuMe(CH_2SiMe_3)]$  and  $[Tp^{rBu,Me}LuMe(CH_2Ph)]$ , respectively, in good yields. The SiMe<sub>4</sub> elimination protocols were also applicable when using SiMe<sub>3</sub>X featuring more weakly coordinating moieties (here X = OTf, NTf<sub>2</sub>). X-ray structure analyses of this diverse set of new  $[Tp^{rBu,Me}LnMeR/X]$  compounds were performed to reveal any electronic and steric effects of the varying monoanionic ligands R and X, including exact cone-angle calculations of the tridentate tris(pyrazolyl)borato ligand. Deeper insights into the reactivity of these potential precursors for terminal alkylidene rare-earth-metal complexes were gained through NMR spectroscopic studies.

scandium complex,<sup>[11]</sup> and silyl-thiophosphinoyl alkylidene as well as phosphinomethylidene rare-earth-metal compounds.<sup>[12]</sup> By nature, higher-valent transition-metal chemistry draws upon alternative approaches to access terminal alkylidenes. For example, in 2017, Mindiola and co-workers isolated the first terminal titanium methylidene complex  $[(PN)_2Ti(=CH_2)]$  by treating [(PN)<sub>2</sub>Ti(CH<sub>3</sub>)(OTf)] (I, PN = (N-(2-(diisopropylphosphino)-4methylphenyl)-2,4,6-trimethylanilide)) with the Wittig reagent H<sub>2</sub>CPPh<sub>3</sub>. This protocol involves the abstraction of the weakly coordinating OTf group (OTf=trifluoromethanesulfonato, also triflato or SO<sub>3</sub>CF<sub>3</sub>) and formation of the reactive Ti=CH<sub>2</sub> moiety (Scheme 1, path A).<sup>[13]</sup> Another prominent example in transition-metal methylidene chemistry is the reaction behavior of  $[Cp_2Ti(CH_2R)_2]$  (II,  $Cp = C_5H_5$ , R = H, SiMe<sub>3</sub>, Ph) during thermolysis.<sup>[14]</sup> Petasis et al. found this compound to be an olefination agent for carbonylic derivatives. Therefore, terminal alkylidenes [Cp<sub>2</sub>Ti(=CHR)] were proposed as reaction intermediates (Scheme 1, path B), similar to the effective methylenating species of the Tebbe reagent.<sup>[15]</sup> Although Petasis et al. could not confirm their proposal by X-ray diffraction analysis (neither did Tebbe et al.), methane elimination during thermolysis and further reactivity studies substantiated their proposal of an intermediate methylidene moiety. Additionally, mixed alkyl titanocenes, for example,  $[Cp_2Ti(CH_3)(CH_2SiMe_3)]^{[14a]}$  showed the ability of olefination during exposure to higher temperatures. Crucially, all the aforementioned titanium(IV) alkylidene chemistry proceeds at a relatively small Ti<sup>IV</sup> center supported by two

Chem. Eur. J. 2019, 25, 14711 - 14720

Wiley Online Library

Synthesis path A: Abstraction of leaving group followed by deprotonation



Synthesis path B: Alkane elimination through thermolysis



II, R = H, SiMe<sub>3</sub>, Ph

**Scheme 1.** Synthesis approaches in titanium alkylidene chemistry. **Path A** displays the formation of a terminal methylidene through abstraction of a weakly coordinating OTf group and introduction of the  $CH_2$  group utilizing the Wittig reagent. **Path B** shows the proposed intermediate for the thermolysis and alkane/toluene elimination of dialkyl titanocenes.

monoanionic stabilizing ligands. Only recently, Okuda and coworkers reported on the structural elucidation of the anionic complex [Li(Me<sub>3</sub>TACD)Ti(CHSiMe<sub>3</sub>)(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>2</sub>] (Me<sub>3</sub>TACD = 1,4,7-trimethyl-1,4,7,10-tetraazacyclododecane).<sup>[16]</sup> Inspired by this transition-metal alkylidene chemistry, and in particular that of titanium, our group investigated the feasibility of rare-earthmetal variants of Mindiola's and Petasis' starting compounds, for example, [LLn(CH<sub>3</sub>)(OTf)] and [LLn(CH<sub>3</sub>)R] (R = alkyl, L = monoanionic ancillary ligand). Herein, we present different reaction schemes for the synthesis of the targeted heteroleptic complexes and further reactivity studies for their utilization in rare-earth-metal alkylidene chemistry.

#### **Results and Discussion**

In search of potential precursors for terminal Ln<sup>III</sup> alkylidene chemistry we focused on monomeric compounds  $[Tp^{tBu,Me}LnMe(AIMe_4)]$  (Ln = Y, Lu)<sup>[17]</sup> and  $[Tp^{tBu,Me}LuMe_2]^{[18]}$  supported by the superbulky scorpionate ligand  $Tp^{tBu,Me}$  (hydrotris(3-*tert*-butyl-5-methylpyrazolyl)borato).<sup>[19]</sup> Importantly, Piers et al. and Takats and co-workers reported similar complexes featuring  $[Tp^{R,Me}Sc(CH_2SiMe_3)_2(THF)_x]$  (R = Me, x = 1; R = tBu, x = 0),<sup>[20]</sup>  $[Tp^{Me,Me}Ln(CH_2SiMe_3)_2(THF)]$  (Ln = Y, Nd, Sm, Yb, Lu),<sup>[21]</sup>  $[Tp^{tBu,Me}Ln(CH_2SiMe_3)_2]$  (Ln = Y, Yb, Lu),<sup>[21]</sup>  $[Tp^{iPr,Pr}Ln(CH_2SiMe_3)_2(THF)]$  (Ln = Y, Lu)<sup>[22]</sup> obtained from  $[Ln(CH_2SiMe_3)_3(THF)_x]$  either by protonolysis with HTp<sup>R,R</sup> or reaction with TITp<sup>R,R</sup>.

#### "Half-sandwich" triflate complexes

In accordance to Scheme 1/path **A**/complex **I**, we anticipated the introduction of trifluoromethanesulfonato (OTf) or the even weaker coordinating trifluoromethansulfonimido (N(SO<sub>2</sub>CF<sub>3</sub>)<sub>2</sub> or NTf<sub>2</sub>) ligands to be feasible through mild trimethylsilyl-based transfer reagents SiMe<sub>3</sub>X (X = OTf, NTf<sub>2</sub>). Therefore, the scorpio-

nate-supported hydrocarbyl complexes  $[Tp^{tBu,Me}YMe(AIMe_4)]$ and  $[Tp^{tBu,Me}LuMe_2]$  were treated with one or two equivalents of SiMe<sub>3</sub>X, respectively, in toluene (Scheme 2).

In particular, given that the yttrium derivatives are extremely temperature sensitive, careful adjustment of the reaction conditions was required to afford complexes [Tp<sup>tBu,Me</sup>LnMe(OTf)] [Tp<sup>tBu,Me</sup>Lu(OTf)<sub>2</sub>] (Ln = Y,1-Y; Lu, 1-Lu), (2-Lu),  $[Tp^{tBu,Me}LnMe(NTf_2)]$  (3-Lu), and  $[Tp^{tBu,Me}Ln(NTf_2)_2]$  (4-Lu). The ambient-temperature <sup>1</sup>H NMR spectra of the diamagnetic compounds 1-4 showed only one set of signals for the pyrazolyl groups of the Tp<sup>tBu,Me</sup> ligand with chemical shifts similar to those of the starting compounds (spectral data are presented in the Supporting Information). This indicates a highly fluxional behavior, which is in accordance with previous studies on complex [Tp<sup>tBu,Me</sup>LuMe(AIMe<sub>4</sub>)].<sup>[17]</sup> However, these previous studies also reported that similar complexes behave differently at lower temperatures, with the pyrazolyl rings revealing a 2:1 splitting in the <sup>1</sup>H NMR spectra in accordance with the C<sub>s</sub> symmetry of these complexes in the solid state.<sup>[17]</sup> For 1-Lu and 3-Lu, the Lu-bound Me groups gave sharp singlets at  $\delta = 0.39$ and 0.14 ppm, respectively.

The ambient-temperature <sup>1</sup>H NMR spectrum of **1-Y** in  $C_6D_6$  showed a broadened signal at  $\delta = 0.26$  ppm for the terminal methyl moiety, not indicative of any Y–H coupling. To further investigate this behavior, a low-temperature <sup>1</sup>H NMR spectroscopy study was carried out (Figure S2 in the Supporting Information). Due to solubility issues in toluene at temperatures below 20 °C and rapid decomposition of complex **1-Y** in THF, a few drops of [D<sub>8</sub>]THF were added to a precooled solution of **1-Y** in [D<sub>8</sub>]toluene. Remarkably, the chosen NMR solvent "mix-



 $\label{eq:scheme 2. Synthesis pathways toward mixed methyl/triflate complexes $$ [Tp^{tBuMe}LnMe(OTf)] (Ln = Y, Lu), the mixed methyl/trifluoromethanesulfonimide complex $$ [Tp^{tBuMe}LuMe(NTf_2)], bis(triflate) complex $$ [Tp^{tBuMe}Lu(OTf)_2], and bis(triflimide) complex $$ [Tp^{tBuMe}Lu(NTf_2)_2]. $$$ 

Chem. Eur. J. 2019, 25, 14711 – 14720



ture" showed a strong influence on the chemical shift of the Y-Me moiety at low temperature, revealing a doublet at  $\delta = -0.13$  ppm (<sup>2</sup>J(Y-H) = 1.5 Hz) markedly shifted to higher fields compared with **1-Y** in [D<sub>6</sub>]benzene ( $\delta = 0.26$  ppm, Figure S1, Supporting Information). The <sup>1</sup>H-<sup>89</sup>Y HSQC NMR spectrum of **1-Y** at 0 °C shows a cross peak at  $\delta = 515$  ppm on the <sup>89</sup>Y NMR scale (Figure 1), which is shifted to higher field in comparison



Figure 1. <sup>1</sup>H-<sup>89</sup>Y HSQC NMR spectrum (24.5 MHz, [D<sub>6</sub>]toluene and a few drops of [D<sub>8</sub>]THF) of complex [Tp<sup>rBu,Me</sup>YMe(OTf)] (1-Y) at 0  $^{\circ}$ C.

to precursor [Tp<sup>tBu,Me</sup>YMe(AIMe<sub>4</sub>)] ( $\delta$  = 798 ppm).<sup>[18]</sup> The <sup>13</sup>C NMR spectra of the fluorine-containing complexes **1-Ln**, **2-Lu**, **3-Lu**, and **4-Lu** showed one set of signals for the Tp<sup>tBu,Me</sup> ligand but <sup>13</sup>C resonances of the CF<sub>3</sub> groups could not be detected, which is consistent with already reported compounds.<sup>[23]</sup> Notwith-standing, the presence of OTf and NTf<sub>2</sub> moieties was unambiguously evidenced by <sup>19</sup>F NMR spectroscopy revealing one

sharp resonance at  $\delta = -78.0$ , -78.1, -77.5, -77.9, and -76.9 ppm each for complexes **1-Y**, **1-Lu**, **2-Lu**, **3-Lu**, and **4-Lu**, respectively.

X-ray crystallographic structure determinations were performed on 1-Lu, 3-Lu, and 4-Lu (Figure 2, Table 1). The fivefold-coordinated lutetium centers of the methyl complexes [Tp<sup>tBu,Me</sup>LuMeX] (X=OTf, 1-Lu; NTf<sub>2</sub>, 3-Lu) adopt a distorted trigonal-bipyramidal coordination geometry. Moreover, the typically observed  $\kappa^3$  coordination of the ancillary ligand is adopted. In comparison with the reactant [Tp<sup>tBu,Me</sup>LuMe<sub>2</sub>],<sup>[24]</sup> the Lu-N(pz) (pz = pyrazolyl) bond lengths (2.339(2)-2.483(2) Å) of the Tp<sup>tBu,Me</sup> ligand are significantly shortened for 1-Lu (2.299(3)-2.376(3) Å) and 3-Lu (2.289(1)-2.328(1) Å); this could be attributable to the bulky electron-withdrawing triflato moieties. As known from literature, OTf<sup>-</sup> and NTf<sub>2</sub><sup>-</sup> moieties can coordinate in a monodentate, non-bridging (N- or O-wise, the latter was found for 1-Lu and 3-Lu) or in a bidentate, bridging fashion.<sup>[25]</sup> The Lu–O1 distance for 1-Lu (2.191(3) Å) is significantly shorter than those reported before for eightfold-coordinated [CpLu(OTf<sub>2</sub>)<sub>2</sub>(THF)<sub>3</sub>]<sup>[26]</sup> (2.237(4), 2.213(4) Å) and [Lu(OTf)<sub>3</sub>(OPPh<sub>3</sub>)<sub>4</sub>]<sup>[25a]</sup> (2.202(6), 2.232(5) Å) featuring likewise monodentate triflato ligands. Similarly, the Lu-O1 distance in bidentate eightfold-coordinated complex [(bmpyr)Lu(NTf<sub>2</sub>)<sub>4</sub>]<sup>[27]</sup> (bmpyr = 1-butyl-1-methylpyrrolidinium) (av. 2.30 Å) is elongated compared with that in 3-Lu (2.243(1) Å). The presence of the electron-withdrawing triflato moieties implies also slightly shorter Lu-C(Me) distances of 1-Lu (2.327(4) Å) and 3-Lu (2.323(2) Å) than those in the precursor  $[Tp^{tBu,Me}LuMe_2]^{[24]}$ (2.364(3)/2.375(2) Å). Despite several achievements on the structural characterization of various Tp-supported Ln-OTf complexes,<sup>[28]</sup> mixed Me/OTf and Me/NTf<sub>2</sub> structural motifs have not yet been identified. So far, the structurally authenticated complexes comprise "sandwich complexes" exclusively, namely sevenfold-coordinated [(Tp<sup>Me,Me</sup>)<sub>2</sub>Nd(OTf)] (Nd–O, 2.421(5) Å), sixfold-coordinated [{(Tp<sup>Me,Me</sup>)<sub>2</sub>Yb}(OTf)], eightfold-



**Figure 2.** ORTEP representation of the molecular structure of **1-Lu** (left), **3-Lu** (middle), and **4-Lu** (right) with atomic displacement parameters set at the 50% level. Hydrogen atoms except for BH, toluene, and the disorder in one *t*Bu and the SO<sub>3</sub>CF<sub>3</sub> group are omitted for clarity. Selected bond lengths are given in Table 1.

Chem. Eur. J. 2019, 25, 14711 - 14720



| Table 1. Selected bond lengths [Å] of 1-Lu, 3-Lu, 4-Lu, 5-Lu, 6-Lu, 7-Lu, 8-Lu, 9-Lu. |                                 |                                 |                             |                              |                             |                                  |                                    |                                                |
|---------------------------------------------------------------------------------------|---------------------------------|---------------------------------|-----------------------------|------------------------------|-----------------------------|----------------------------------|------------------------------------|------------------------------------------------|
|                                                                                       | <b>1-Lu</b><br>(X = Me, X' = O) | <b>3-Lu</b><br>(X = Me, X' = O) | <b>4-Lu</b><br>(X = X' = O) | <b>5-Lu</b><br>(X = X' = Cl) | <b>6-Lu</b><br>(X = X' = I) | <b>7-Lu</b><br>(X = Me, X' = Cl) | <b>8-Lu</b> (X = Me, X' = $CH_2$ ) | <b>9-Lu</b><br>(X = Me, X' = CH <sub>2</sub> ) |
| Lu–N2                                                                                 | 2.376(3)                        | 2.376(3)                        | 2.311(2)                    | 2.391(6)                     | 2.298(3)                    | 2.313(9)                         | 2.352(2)                           | 2.310(2)                                       |
| Lu–N4                                                                                 | 2.299(3)                        | 2.299(3)                        | 2.3260(2)                   | 2.306(3)                     | 2.293(3)                    | 2.413(1)                         | 2.353(2)                           | 2.323(2)                                       |
| Lu–N6/N'                                                                              | 2.309(4)                        | 2.309(4)                        | 2.3108(2)                   | 2.306(3)                     | 2.378(3)                    | 2.313(9)                         | 2.487(2)                           | 2.466(2)                                       |
| Lu–X                                                                                  | 2.327(4)                        | 2.323(2)                        | 2.2820(1)/2.2885(1)         | 2.4916(2)                    | 2.8467(4)                   | 2.393(1)                         | 2.343(2)                           | 2.349(3)                                       |
| Lu–X'                                                                                 | 2.191(3)                        | 2.191(3)                        | 2.2213(1)                   | 2.494(1)                     | 2.8987(4)                   | 2.526(4)                         | 2.372(2)                           | 2.412(3)                                       |

coordinated [(Tp<sup>Me,Me</sup>)<sub>2</sub>La(OTf)(CH<sub>3</sub>CN)] (La–O, 2.514(5) Å), and sevenfold-coordinated [{(Tp<sup>Me,Me</sup>)<sub>2</sub>Nd(CH<sub>3</sub>CN)<sub>2</sub>}(OTf)]. All these complexes were synthesized through salt metathesis employing Ln(OTf)<sub>3</sub> and KTp<sup>Me,Me</sup>, followed by exposure to donor molecules. Interestingly, complex [Tp<sup>rBu,Me</sup>Ln(NTf<sub>2</sub>)<sub>2</sub>] (**4-Lu**) is sixfold-coordinated by Tp<sup>rBu,Me</sup> ( $\kappa^3$ -mode) and each one monodentate and bidentate NTf<sub>2</sub> ligand (Figure 2, right). The Lu–O(triflato) distances range from 2.2213(1) to 2.2885(1) Å.

To target the envisaged LnMeX to  $Ln = CH_2$  transformation (see Scheme 1/path **A**) complexes [Tp<sup>rBu,Me</sup>LuMeX] (X=OTf, **1-**Lu; NTf<sub>2</sub>, **3-Lu**) were treated with one equivalent of H<sub>2</sub>CPPh<sub>3</sub> in [D<sub>6</sub>]benzene. Unfortunately, no reactivity was observed at ambient temperature. Further heating the reaction mixture to 50 °C led to methane elimination through C–H-bond activation involving the *t*Bu methyl groups of the ancillary ligand and the Lu–CH<sub>3</sub> moiety, as observed previously.<sup>[17]</sup> This intramolecular C–H-bond activation could not be prevented by addition of Nor O-donors like 4-dimethylaminopyridine (DMAP) and tetrahydrofuran (THF).

#### Generation of di(halogenido) and mixed methyl/halogenido and methyl/alkyl complexes

Further efforts to generate Ln<sup>III</sup> alkylidenes led to the idea of targeting mixed methyl/alkyl (Me/R) complexes  $[\mathsf{Tp}^{{}^{\mathsf{rBu},\mathsf{Me}}}\mathsf{Lu}\mathsf{MeR}].$  The latter might be convertible to the enviso aged alkylidene species following a thermal or donor-induced intramolecular elimination of either methane or the respective HR analog to Petasis (see Scheme 1/path B). Note that halfsandwich complexes of the type [(C<sub>5</sub>Me<sub>4</sub>SiMe<sub>3</sub>)LnMe<sub>2</sub>]<sub>3</sub> were previously shown to undergo such reactions affording tetrametallic cuboid clusters  $[(C_5Me_4SiMe_3)Ln(\mu_3-CH_2)]_4$  (Ln = Tm, Lu).<sup>[6]</sup> Preliminary NMR-scale reactivity studies probing the olefination capability of  $[{\sf Tp}^{t{\sf Bu},{\sf Me}}{\sf LuMe}_2]$  toward 9-fluorenone at 50  $^\circ{\sf C}$  (according to Petasis) indicated the exclusive formation of the respective alkoxide species. Therefore, to evade such preferential nucleophilic attack of the methyl moiety at the carbonyl functionality, the initial formation of an alkylidene species was envisaged. To provide a more versatile platform for further derivatization reactions, the above-mentioned precursors [Tp<sup>tBu,Me</sup>LnMe(AIMe<sub>4</sub>)] and [Tp<sup>tBu,Me</sup>LuMe<sub>2</sub>] were treated with one equivalent of SiMe<sub>3</sub>X (here X = CI, I) in toluene for the generation of mixed alkyl/halogenido compounds as depicted in Scheme 3.

Unfortunately, for yttrium and the combination Lu/I only the di(halogenido) derivatives  $[Tp^{tBu,Me}YCI_2]$  (5-Y),  $[Tp^{tBu,Me}YI_2]$  (6-Y),



 $\label{eq:scheme 3. Synthesis pathways toward di(halide) complexes [Tp^{rBu,Me}LnX_2] \\ (Ln=Y, Lu; X=CI, I) and the mixed methyl/halide complex [Tp^{rBu,Me}LuMeCI].$ 

and [Tp<sup>tBu,Me</sup>Lul<sub>2</sub>] (6-Lu) could be isolated, evidencing extensive ligand redistribution. It is noteworthy that the synthesis and isolation of such di(halogenido) "half-sandwich" complexes has been formerly assessed as problematic because of the occurrence of ligand redistribution reactions and B-N bond cleavage (formation of pyrazole adducts), in particular for complexes derived from Tp<sup>Me,Me [29]</sup> The few monomeric complexes [Tp<sup>R,R</sup>Ln(halogenido)<sub>2</sub>] authenticated by X-ray structure analysis [(Tp<sup>Me,Me</sup>)LnCl<sub>2</sub>(THF)] include THF adducts and [(Tp<sup>Me,Me</sup>)<sub>2</sub>NdI<sub>2</sub>(THF), as N-donor as well stabilized  $[(Tp^{Me,Me})_{2}LnCl_{2}(dmpzH)],^{[30]}$  $[(Tp^{Me,Me})_{2}YCI_{2}(1,10-phen)],$ and  $[(Tp^{Me,Me})_{2}LaCl_{2}(bipy)] \quad (dmpzH: \ dimethylpyrazole, \ 1,10-phen:$ 1,10-phenanthroline, bipy: 2,2'-bipyridine).<sup>[31]</sup>

Much to our delight, the combination Lu/Cl gave the desired mixed methyl/chloride complex [Tp<sup>tBu,Me</sup>LuMeCl] (7-Lu), in addition to the di(chlorido) derivative  $[Tp^{tBu,Me}LuCl_2]$  (5-Lu, twoequivalent reaction). All halide complexes exhibit low solubility which facilitated their isolation through crystallization (5-Y, 6-Y, 6-Lu, 7-Lu) or precipitation (5-Lu) from toluene solutions. Single crystals of 6-Lu and 7-Lu were grown from saturated toluene solutions at -35 °C, whereas 5-Lu was crystallized from THF at -35 °C. The <sup>1</sup>H and <sup>13</sup>C NMR spectroscopic data for all compounds clearly showed only one set of signals for the pyrazolyl groups of the ancillary ligand. In comparison with 1-Lu and 3-Lu, the proton NMR spectrum of 7-Lu shows a sharp singlet of the Lu–Me moiety located at  $\delta$  = 0.29 ppm, and hence shifted slightly to lower field. Overall, the Lu-N(pz) (pz = pyrazolyl) bond lengths in 5-Lu, 6-Lu and 7-Lu (Figure 3) are comparable to those found for 1-Lu, 3-Lu, and 4-Lu. The



CHEMISTRY A European Journal Full Paper



Figure 3. ORTEP representation of the molecular structures of 5-Lu (left), 6-Lu (middle), and 7-Lu (right) with atomic displacement parameters set at the 50% level. Hydrogen atoms except for BH and solvent THF are omitted for clarity. Selected bond lengths are given in Table 1.

Lu–X distances in the di(halogenido) derivatives  $[Tp^{rBu,Me}LuCl_2]$ (5-Lu) and  $[Tp^{rBu,Me}Lul_2]$  (6-Lu) average 2.493 and 2.873 Å, respectively, reflecting the size of the halogenido anion. The Lu–C(methyl) bond length of 2.393(1) Å in 7-Lu is slightly longer than in  $[Tp^{rBu,Me}LuMe_2]^{[24]}$  (2.364(3)/2.375(2) Å) and complexes 1-Lu and 3-Lu (see Table 1). Striking is the elongated Lu–Cl bond of 2.526(4) Å in 7-Lu compared with 5-Lu, apparently caused by the presence of the methyl ligand.

Aiming at mixed methyl/alkyl compounds, the mixed methyl/chloride lutetium complex **7-Lu** was examined in saltmetathesis reactions with different alkali-metal alkyls (Scheme 4). Due to the low solubility of **7-Lu** in other nonpolar solvents and unintended C–H-bond activation in donor solvents, all subsequent reactions were carried out in toluene.

The mixed alkyl complex [Tp<sup>rBu,Me</sup>LuMe(CH<sub>2</sub>SiMe<sub>3</sub>)] (8-Lu) was obtained by reacting 7-Lu with LiCH<sub>2</sub>SiMe<sub>3</sub>. Due to the thermal lability of 8-Lu, the reaction was performed at temperatures below 0°C. Such low temperatures are also beneficial to the use of Li salts because conducting the involved metathesis reactions at ambient temperature favors the formation of



Scheme 4. Salt-metathesis conversion of methyl/halide complex [Tp<sup>rBu,Me</sup>LuMeCI] (7-Lu) to mixed methyl/alkyl compounds [Tp<sup>rBu,Me</sup>LuMeR] ( $R = CH_2SiMe_3$  (8-Lu),  $CH_2Ph$  (9-Lu)).

LiTp<sup>rBu,Me</sup>.<sup>[20]</sup> In contrast, the mixed methyl/benzyl complex [Tp<sup>rBu,Me</sup>LuMe(CH<sub>2</sub>Ph)] (**9-Lu**) is thermally stable, but a prolonged reaction time is crucial when reacting **7-Lu** with potassium benzyl. For both mixed bis(alkyl) complexes **8-Lu** and **9-Lu**, the <sup>1</sup>H and <sup>13</sup>C NMR spectra show only one set of signals for the pyrazolyl groups. The Ln-bound methyl groups appeared as narrow singlets at  $\delta = 0.19$  (**8-Lu**) and 0.39 ppm (**9-Lu**). In agreement with literature reports, the methylene moieties of the neosilyl and benzyl ligand feature distinctly shifted signals at  $\delta = -0.71$  and 1.63 ppm, respectively, attributable to a strong electronic influence of the SiMe<sub>3</sub>/Ph groups.

Complexes **8-Lu** and **9-Lu** were crystallized from saturated toluene solutions at -35 °C and their solid-state structures analyzed by X-ray crystallography (Figure 4). As commonly observed for Ln<sup>III</sup>-Tp<sup>rBu,Me</sup> complexes with coordination number 5, both complexes adopt a distorted trigonal-bipyramidal geometry. The pyrazolyl nitrogen atoms N2 and N4 and the methyl carbon C25 reside in the equatorial plane, whereas the methyl-ene carbon atom C26 and the pyrazolyl nitrogen atom N6 occupy the axial positions. In comparison with complexes **1-Lu** and **3-Lu** the Lu-N(pz) bond lengths are slightly elongated for the mixed alkyl compounds **8-Lu** (2.352(2)–2.487(2) Å) and **9-Lu** (2.310(2)–2.466(2) Å).

Furthermore, the Lu–C(Me) distances of **8-Lu** (2.343(2) Å) and **9-Lu** (2.349(3) Å) lie in between those of **1-Lu/3-Lu** and **7-Lu** (Table 1). In accordance with literature, the Lu–C(neosilyI) bond length of **8-Lu** of 2.372(2) Å is in the same range as detected for Lu(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>3</sub>(THF)<sub>2</sub><sup>[32]</sup> (2.314(18)–2.344(18) Å) and Tp<sup>Me,Me</sup>Lu(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>2</sub>(THF) (2.373(2)–2.379(2) Å).<sup>[21]</sup> Other rare solid-state structures of monomeric but heteroleptic Tp-based rare-earth-metal complexes as [Tp<sup>R,R</sup>Ln(Danip)(CH<sub>2</sub>SiMe<sub>3</sub>)] (R = Me or R=H, Ln=Yb, Danip=2,6-di(*o*-anisol)phenyI)) display similar bond lengths (Yb–C<sub>*ipso*</sub>: 2.414(3)–2.438(4)/2.402(4)–2.435(5) Å; Yb–C(neosilyI): 2.379(4)–2.392(4)/2.359(4)–2.368(4) Å) taking into account the metal-ion size.<sup>[33]</sup> The Lu–

Chem. Eur. J. 2019, 25, 14711 - 14720



**Figure 4.** ORTEP representation of the molecular structures of **8-Lu** (top) and **9-Lu** (bottom) with atomic displacement parameters set at the 50% level. Hydrogen atoms except for BH and  $CH_2$  are omitted for clarity. For **9-Lu** the disorder in one *t*Bu group and toluene are omitted for clarity. Selected bond lengths are given in Table 1.

C(benzyl) bond length (2.412(3) Å) in **9-Lu** matches that in Lu(CH<sub>2</sub>Ph)<sub>3</sub>(THF)<sub>3</sub><sup>[34]</sup> (2.404(7)–2.413(5) Å) and Lu(CH<sub>2</sub>Ph)<sub>3</sub>(THF)<sub>2</sub> (2.380(3)–2.404(3) Å)<sup>[35]</sup> but is slightly elongated compared with Cp\*Lu(CH<sub>2</sub>Ph)<sub>2</sub>(THF) (2.378(2)–2.386(2) Å; Cp\*=C<sub>5</sub>Me<sub>5</sub>).<sup>[36]</sup> Furthermore, there is no significant secondary interaction between Lu1 and the *ipso* carbon atom C27 for **9-Lu**, as suggested by the Lu1···C27 distance of 3.314 Å and the Lu-C(CH<sub>2</sub>)-C27 angle (114.3(2)°). For further comparison, complex [Tp<sup>Me,Me</sup>Y(CH<sub>2</sub>Ph)<sub>2</sub>(THF)] was obtained through salt metathesis from [Tp<sup>Me,Me</sup>YCl<sub>2</sub>(THF)<sub>2</sub>] and potassium benzyl (Y–C(CH<sub>2</sub>) 2.457(8) and 2.418(8) Å, Y-CH<sub>2</sub>-C<sub>ipso</sub> 116.4(6) and 130.1(6)°).<sup>[37]</sup>

Next, we examined whether complexes 8-Lu and 9-Lu are capable of intramolecular deprotonation and alkane elimina-(see Scheme 1/path B). As mentioned before, tion [Tp<sup>tBu,Me</sup>LuMe(CH<sub>2</sub>SiMe<sub>3</sub>)] is temperature-sensitive. After one day at ambient temperature, a solution of complex 8-Lu in [D<sub>6</sub>]benzene turned from colorless to yellow. Monitoring this behavior with <sup>1</sup>H NMR spectroscopy revealed degradation of the ancillary ligand as indicated by different new pyrazolyl signals and methane evolution. Further attempts at generating alkylidenes through intramolecular deprotonation led to the use of N- or O-donor molecules such as DMAP or THF, but failed for the same reasons. Although compound 9-Lu is stable in solution in  $[D_6]$ benzene at ambient temperature, heating to 40  $^\circ$ C for 4 h also led to degradation of the ancillary ligand, as did the utilization of various donors. In accordance with other already reported degradation processes, we assume C-H-bond activation of one *tert*-butyl group or B–N bond cleavage to be responsible for the formation of multiple unidentified metal complexes in these reaction mixtures.<sup>[29b,38]</sup> It is also noteworthy, that the di(chlorido) derivative [Tp<sup>tBu,Me</sup>LuCl<sub>2</sub>] (**5-Lu**) does not undergo any "Tebbe-like" reaction with AIMe<sub>3</sub> at ambient temperature, but leads to unidentified complicated reaction mixtures (ancillary ligand degradation) at elevated temperatures (T = 50 °C).

In spite of these sobering findings, the successful isolation of mixed alkyl complexes **8-Lu** and **9-Lu** spurred our interest in the evaluation of the steric effects on the ancillary Tp<sup>rBu,Me</sup> ligand caused by the distinct triflato, halogenido, or alkyl co-ligands. According to a method recently reported by our group, we calculated the exact ligand cone angles  $\Theta^{\circ}$  (the procedure is given in the Supporting Information).<sup>[39]</sup> According to Allen and co-workers, the term "exact" refers to the acute mathematical solution and does not reflect the accuracy of the input structure itself.<sup>[39b]</sup> As a prerequisite for meaningful interpretations, the metal centers should have the same coordination number (CN, here 5) and the same overall charge. A general overview of the determined cone angles is summarized in Table 2.

| <b>Table 2.</b> Overview of mathematically exact calculated cone angles $\Theta^{\circ}$ [°] of selected Tp <sup>fBu,Me</sup> LuMeX or Tp <sup>fBu,Me</sup> LuMeR (see the Supporting Information for calculations). <sup>[a]</sup> |       |       |       |       |       |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|-------|-------|-------|--|
| 1-Lu                                                                                                                                                                                                                                | 3-Lu  | 6-Lu  | 7-Lu  | 8-Lu  | 9-Lu  |  |
| 278.0<br>280.9                                                                                                                                                                                                                      | 280.4 | 278.2 | 278.9 | 277.1 | 277.3 |  |
| [a] directly determined from atomic positions.                                                                                                                                                                                      |       |       |       |       |       |  |

The Tp<sup>rBu,Me</sup> ligand engages in an exclusive trigonal-bipyramidal coordination geometry at the Lu complexes under study, and hence, very similar cone angles ( $\Theta^{\circ} = 277.1$  to 280.9° for CN = 5) were calculated. For **1-Lu**, two different cone angles are displayed due to the respective disorder in one *tert*-butyl group. Nonetheless, the noticeable trend makes complexes with mixed alkyl co-ligands the least sterically demanding, followed by the di(halide) complexes, whereas the weakly coordinating triflato or triflimido moieties allow for the largest cone angles. Another important finding is that the mathematically exact method determines cone angles distinctly higher than those reported for Tp<sup>tBu,Me</sup> complexes in the literature ( $\Theta^{\circ} = 244^{\circ}$ ).<sup>[40]</sup> Therefore, further efforts should be expended to build up a library for better comparison.

#### Conclusions

Aiming at new synthesis protocols for terminal rare-earthmetal alkylidene complexes, we gained access to unprecedented mono-tris(pyrazolyl)borate complexes. Following TMS-elimination protocols by applying complexes [Tp<sup>tBu,Me</sup>YMe(AIMe<sub>4</sub>)] and [Tp<sup>tBu,Me</sup>LuMe<sub>2</sub>] along with SiMe<sub>3</sub>X (X = OTf, NTf<sub>2</sub>), the superbulky ligand Tp<sup>tBu,Me</sup> supports the formation of mixed

| Chem. Eu | . J. | 2019, | 25, | 14711 - | 14720 |
|----------|------|-------|-----|---------|-------|
|----------|------|-------|-----|---------|-------|



methyl triflate and mixed methyl triflimide complexes of yttrium and lutetium as new structural motif in rare-earth-metal chemistry. Moreover, similar reactions employing SiMe<sub>3</sub>X (X = Cl, I) afforded not only unsolvated di(halide) complexes Tp<sup>rBu,Me</sup>LnX<sub>2</sub> but also the mixed methyl/chloride complex [Tp<sup>tBu,Me</sup>LuMeCl]. The latter gave efficient access to mixed alkyl complexes [Tp<sup>tBu,Me</sup>LuMe(CH<sub>2</sub>SiMe<sub>3</sub>)] and [Tp<sup>tBu,Me</sup>LuMe(CH<sub>2</sub>Ph)] through salt-metathesis reactions with different alkali-metal salts. Unfortunately, neither reactivity studies utilizing the Wittig reagent nor the attempted thermally-induced intramolecular deprotonation afforded rare-earth-metal alkylidene compounds. It seems that terminal alkylidenes devoid of Lewis acid stabilization are not accessible/isolable in the presence of this very Tp<sup>tBu,Me</sup> ligand, which engages preferably in intramolecular B-N- and C-H-bond activation processes. Ongoing research focuses on tripodal ancillary ligand systems which are less prone to degradation and C-H-bond activation.

#### **Experimental Section**

All operations were performed under rigorous exclusion of air and water by using standard Schlenk, high-vacuum, and glovebox techniques (MBraun 200B;  $<0.1 \; \text{ppm}$   $O_{2^{\prime}}$   $<0.1 \; \text{ppm}$   $H_2O).$  Solvents were purified by using Grubbs-type columns (MBraun SPS, solvent purification system) and stored inside a glovebox. [D<sub>6</sub>]Benzene and [D<sub>8</sub>]toluene were obtained from Sigma-Aldrich and degassed, [D<sub>6</sub>]benzene was dried over NaK alloy for two days and [D<sub>8</sub>]toluene was stored over Na. Both were filtered prior to use. [D<sub>8</sub>]THF was obtained from Sigma-Aldrich, stirred over NaK alloy, and distilled. SiMe<sub>3</sub>Cl, trimethylsilyl trifluoromethanesulfonate (Me<sub>3</sub>SiOTf), and (trimethylsilyl)methyllithium (LiCH<sub>2</sub>SiMe<sub>3</sub>) solutions were purchased from Sigma Aldrich, SiMe<sub>3</sub>I and N-(trimethylsilyl)bis(trifluoromethanesulfonyl)imide (Me $_3SiNTf_2$ ) were purchased from ABCR and all chemicals were used as received. Potassium benzyl (KBn),<sup>[41]</sup> [Tp<sup>tBu,Me</sup>LuMe(AIMe<sub>4</sub>)],<sup>[17]</sup> [Tp<sup>tBu,Me</sup>YMe(AIMe<sub>4</sub>)],<sup>[17]</sup> and  $[Tp^{\text{tBu,Me}}LuMe_2]^{[18]} \text{ were synthesized according to literature proce-}$ dures. The NMR spectra of air- and moisture-sensitive compounds were recorded by using J. Young valve NMR tubes on a Bruker AVII + 400 spectrometer (<sup>1</sup>H, 400.13; <sup>13</sup>C, 100.61; <sup>19</sup>F, 376.31 MHz), on a Bruker AVII + 500 spectrometer (1H, 500.13; 13C, 125.76; 89Y, 24.51 MHz) and on a Bruker AVII+250 spectrometer (<sup>1</sup>H, 250.00; <sup>11</sup>B, 80.21; <sup>13</sup>C, 62.86 MHz). IR spectra were recorded on a Thermo Fisher Scientific NICOLET 6700 FTIR spectrometer using a DRIFT chamber with dry KBr/sample mixture and KBr windows; IR (DRIFT) data were converted by using the Kubelka-Munk refinement. Elemental analyses were performed on an Elementar Vario MICRO Cube.

#### Synthesis and characterization

[**Tp**<sup>tBu,Me</sup>**YMe**(**OTf**)] (1-Y): A chilled solution of Me<sub>3</sub>SiOTf (18.1 mg, 0.0814 mmol) in toluene (2 mL) was added to a precooled solution of [Tp<sup>tBu,Me</sup>YMe(AlMe<sub>4</sub>)] (50.0 mg, 0.0814 mmol) in toluene (5 mL) at -20 °C. The reaction mixture was allowed to stir for 12 h at -20 °C. The solution was concentrated in vacuo and stored at -35 °C. Crystallization yielded compound 1-Y (30.0 mg, 0.0443 mmol, 54%) as colorless crystals. <sup>1</sup>H NMR (250 MHz, [D<sub>6</sub>]benzene, 25 °C):  $\delta = 5.56$  (s, 3 H, 4-pz-H), 4.42 (v br d, <sup>1</sup>J(BH) = 350 Hz,1H, BH), 2.01 (s, 9H, pz-CH<sub>3</sub>), 1.36 (s, 27 H, pz-C(CH<sub>3</sub>)<sub>3</sub>), 0.26 ppm (s, Y-CH<sub>3</sub>). <sup>1</sup>H NMR (500 MHz, [D<sub>8</sub>]toluene, 0 °C):  $\delta = 5.70$  (s, 3 H, 4-pz-H), 4.52 (v br d, <sup>1</sup>J(BH) = 355 Hz,1H, BH), 2.07 (s, 9H, pz-CH<sub>3</sub>), 1.40 (s, 27 H, pz-CH<sub>3</sub>)

 $C(CH_3)_3$ , -0.13 ppm (d, <sup>2</sup>J(YH) = 1.5 Hz, 3 H, Y-CH\_3). <sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz, [D<sub>8</sub>]toluene, 0 °C): δ = 164.7 (5-pz-C), 147.0 (3-pz-C), 104.4 (4-pz-C), 32.7 (pz-C(CH<sub>3</sub>)<sub>3</sub>), 31.0 (pz-C(CH<sub>3</sub>)<sub>3</sub>), 25.4 (d, <sup>2</sup>J(YC) = 22.3 Hz, Y-CH<sub>3</sub>)), 13.4 ppm (pz-C(CH<sub>3</sub>)). <sup>13</sup>C NMR resonances for the triflato groups were not detected. <sup>11</sup>B{<sup>1</sup>H} NMR (80 MHz,  $[D_6]$ benzene, 26 °C):  $\delta = -8.6$  ppm. <sup>19</sup>F{<sup>1</sup>H} NMR (376 MHz, [D<sub>6</sub>]benzene, 26 °C):  $\delta = -78.0$  ppm. <sup>89</sup>Y NMR (from <sup>1</sup>H-<sup>89</sup>Y HSQC, 25 MHz, [D<sub>8</sub>]toluene, 0 °C):  $\delta = 515$  ppm. IR (KBr):  $\tilde{\nu} = 2964$  (w), 2931 (w), 2883 (w), 2873 (w), 2822 (vw), 2577 (B-H, vw), 2248 (vw), 2202 (vw), 2124 (vw), 1764 (vw), 1737 (vw), 1562 (vw), 1536 (w), 1518 (vw), 1501 (w), 1480 (w), 1462 (w), 1428 (w), 1342 (m), 1335 (m), 1282 (s), 1270 (s), 1228 (vs), 1204 (vs), 1171 (m), 1164 (m), 1136 (vw), 1097 (vw), 1053 (s), 1002 (vw), 995 (vw), 960 (vw), 940 (vw), 909 (vw), 892 (vw), 873 (vw), 860 (vw), 850 (vw), 837 (vw), 799 (w), 763 (w), 716 (m), 711 (m), 702 (m), 696 (m), 688 (m), 637 (vs), 586 (vw), 571 (vw), 550 (vw), 512 (w), 480 (vw), 469 (vw), 463 (vw), 431 (vw), 424 cm<sup>-1</sup>(vw); elemental analysis calcd (%) for  $C_{26}H_{43}BF_3N_6O_3SY$ : C 46.17, H 6.41, N 12.42; found C 46.98, H 7.80, N 12.95. Due to the high S and F contents no better elemental analysis could be obtained.

[Tp<sup>tBu,Me</sup>LuMe(OTf)] (1-Lu): A solution of Me<sub>3</sub>SiOTf (18.0 mg, 0.0814 mmol) in toluene (2 mL) was added to a solution of  $[\text{Tp}^{\text{tBu,Me}}\text{LuMe}_2]$  (50.0 mg, 0.0788 mmol) in toluene (5 mL) at ambient temperature. The reaction mixture was allowed to stir for 2 h. The solution was concentrated in vacuo and stored at -35 °C. Crystallization yielded compound 1-Lu (48.0 mg, 0.0630 mmol, 80%) as colorless crystals. <sup>1</sup>H NMR (250 MHz, [D<sub>6</sub>]benzene, 26 °C):  $\delta = 5.64$  (s, 3H, 4-pz-H), 4.50 (v br d, <sup>1</sup>J(BH) = 355 Hz,1H, BH), 1.96 (s, 9H, pz-CH<sub>3</sub>), 1.44 (s, 27 H, pz-C(CH<sub>3</sub>)<sub>3</sub>), 0.39 ppm (s, 3 H, Lu-CH<sub>3</sub>). <sup>13</sup>C{<sup>1</sup>H} NMR (63 MHz, [D<sub>6</sub>]benzene, 26 °C):  $\delta = 166.5$  (5-pz-C), 147.9 (3-pz-C), 104.4 (4-pz-C), 36.6 (Lu-CH<sub>3</sub>), 32.5 (pz-C(CH<sub>3</sub>)<sub>3</sub>), 31.1 (pz-C(CH<sub>3</sub>)<sub>3</sub>), 13.1 ppm (pz-C(CH<sub>3</sub>)). <sup>13</sup>C NMR resonances for the triflato groups could not be detected. <sup>11</sup>B{<sup>1</sup>H} NMR (80 MHz, [D<sub>6</sub>]benzene, 26 °C):  $\delta = -9.2$  ppm. <sup>19</sup>F{<sup>1</sup>H} NMR (376 MHz, [D<sub>6</sub>]benzene, 26 °C):  $\delta = -78.1$  ppm. IR (KBr):  $\tilde{\nu} = 2964$  (m), 2931 (w), 2910 (w), 2887 (vw), 2866 (vw), 2558 (vw, B-H), 1540 (m), 1477 (w), 1464 (w), 1433 (m), 1382 (vw), 1365 (m), 1351 (s), 1336 (s), 1238 (s), 1206 (vs), 1186 (vs), 1141 (vw), 1070 (m), 1062 (m), 1030 vs), 1010 (w), 989 (vw), 848 (vw), 840 (vw), 822 (vw), 804 (w), 789 (w), 765 (m), 678 (vw), 660 (vw), 648 (s), 587 (vw), 516 (w), 511 (w), 488 (vw), 413 cm<sup>-1</sup> (m); elemental analysis calcd (%) for C<sub>26</sub>H<sub>42</sub>BF<sub>3</sub>LuN<sub>6</sub>O<sub>3</sub>S: C 40.96, H 5.68, N 11.02; found C 41.12, H 5.57, N 10.53.

 $[Tp^{tBu,Me}Lu(OTf)_2]$  (2-Lu): A solution of Me<sub>3</sub>SiOTf (36.2 mg, 0.163 mmol) in toluene (2 mL) was added to a solution of [Tp<sup>tBu,Me</sup>LuMe<sub>2</sub>] (50.0 mg, 0.0788 mmol) in toluene (5 mL). The reaction mixture was allowed to stir for 4 h at ambient temperature. The solution was concentrated in vacuo and stored at -35 °C. Crystallization yielded compound 2-Lu (50.0 mg, 0.0558 mmol, 71%) as colorless crystals. <sup>1</sup>H NMR (400 MHz, [D<sub>6</sub>]benzene, 26 °C):  $\delta$  = 5.51 (s, 3H, 4-pz-H), 4.61 (v br d, <sup>1</sup>J(BH) = 115 Hz, 1H, BH), 1.87 (s, 9H, pz-CH<sub>3</sub>), 1.40 ppm (s, 27 H, pz-C(CH<sub>3</sub>)<sub>3</sub>). <sup>13</sup>C{<sup>1</sup>H} NMR (63 MHz,  $[D_6]$ benzene, 26°C):  $\delta = 167.1$  (5-pz-C), 148.5 (3-pz-C), 104.8 (4-pz-C), 32.4 (pz-C(CH<sub>3</sub>)<sub>3</sub>), 31.0 (pz-C(CH<sub>3</sub>)<sub>3</sub>), 12.8 ppm (pz-C(CH<sub>3</sub>)). <sup>13</sup>C NMR resonances for the triflato groups were not detected. <sup>11</sup>B{<sup>1</sup>H} NMR (80 MHz,  $[D_6]$ benzene, 26 °C):  $\delta = -8.3$  ppm. <sup>19</sup>F{<sup>1</sup>H} NMR (376 MHz, [D<sub>6</sub>]benzene, 26 °C):  $\delta = -77.5$  ppm. IR (KBr):  $\tilde{v}$  = 3138 (vw), 2963 (w), 2932 (vw), 2849 (vw), 2572 (vw, B-H), 1538 (m), 1480 (w), 1467 (w), 1455 (w), 1434 (m), 1355 (vs.), 1350 (vs), 1290 (vw), 1240 (s), 1202 (vs), 1193 (vs), 1167 (s), 1132 (vw), 1076 (w), 1061 (w), 1021 (m), 1004 (vs), 859 (vw), 850 (vw), 839 (vw), 826 (vw), 817 (vw), 804 (w), 765 (w), 677 (vw), 661 (vw), 637 (vs), 589 (vw), 568 (vw), 524 (vw), 508 cm<sup>-1</sup> (vw); elemental analysis calcd (%) for  $C_{26}H_{40}BF_{6}LuN_{6}O_{6}S_{2}{:}\ C$  34.83, H 4.50, N 9.37; found C 34.70, H 4.52, N 9.40.

Chem. Eur. J. 2019, 25, 14711 - 14720





[Tp<sup>tBu,Me</sup>LuMe(NTf<sub>2</sub>)] (3-Lu): A precooled solution of Me<sub>3</sub>SiNTf<sub>2</sub> (56.0 mg, 0.158 mmol) in toluene (5 mL) was added to a precooled solution of [Tp<sup>tBu,Me</sup>LuMe<sub>2</sub>] (100 mg, 0.158 mmol) in toluene (5 mL) at -35 °C. The reaction mixture was allowed to stir for 3 h at 0 °C. The solution was concentrated in vacuo and stored at -35 °C. Crystallization yielded compound 3-Lu (80.0 mg, 0.0895 mmol, 57%) as colorless crystals. <sup>1</sup>H NMR (250 MHz,  $[D_6]$ benzene, 26 °C):  $\delta = 5.66$  (s, 3 H, 4-pz-H), 4.55 (v br d,  ${}^{1}J(BH) = 355$  Hz, 1 H, BH), 2.05 (s, 9 H, pz-CH<sub>3</sub>), 1.38 (s, 27 H, pz-C(CH<sub>3</sub>)<sub>3</sub>), 0.14 ppm (s, 3 H, Lu-CH<sub>3</sub>). <sup>13</sup>C{<sup>1</sup>H} NMR (63 MHz, [D<sub>6</sub>]benzene, 26 °C):  $\delta = 166.9$  (5-pz-C), 148.8 (3-pz-C), 105.1 (4-pz-C), 35.7 (Lu-CH<sub>3</sub>), 32.3 (pz-C(CH<sub>3</sub>)<sub>3</sub>), 31.0 (pz- $C(CH_3)_3),\ 13.0\ ppm\ (pz-C(CH_3)).\ ^{13}C\ NMR$  resonances for the triflato groups were not detected. <sup>11</sup>B{<sup>1</sup>H} NMR (80 MHz, [D<sub>6</sub>]benzene, 26 °C):  $\delta = -8.3$  ppm. <sup>19</sup>F{<sup>1</sup>H} NMR (376 MHz, [D<sub>6</sub>]benzene, 26 °C):  $\delta = -77.9$  ppm. IR (KBr):  $\tilde{\nu} = 3138$  (vw), 3026 (vw), 2968 (m), 2931 (w), 2913 (w), 2863 (w), 2569 (vw, B-H), 1602 (vw), 1537 (m), 1393 (w), 1477 (m), 1465 (m), 1433 (m), 1367 (vs), 1352 (s), 1323 (s), 1208 (vs), 1190 (vs), 1161 (s), 1141 (s), 1122 (s), 1060 (vs), 1030 (m), 988 (w), 848 (vw), 817 (w), 801 (m), 759 (m), 741 (w), 728 (w), 694 (w), 675 (vw), 657 (w), 642 (m), 614 (m), 599 (w), 569 (w), 511 (m), 482 (vw), 465 (vw), 434 cm<sup>-1</sup> (w); elemental analysis calcd (%) for C<sub>27</sub>H<sub>43</sub>BF<sub>6</sub>LuN<sub>7</sub>O<sub>4</sub>S<sub>2</sub> x C<sub>7</sub>H<sub>8</sub>: C 41.43, H 5.21, N 9.95; found C 41.01, H 5.12, N 9.99.

[Tp<sup>rBu,Me</sup>Lu(NTf<sub>2</sub>)<sub>2</sub>] (4-Lu): A precooled solution of Me<sub>3</sub>SiNTf<sub>2</sub> (56.0 mg, 0.158 mmol) in toluene (5 mL) was added to a precooled solution of [Tp<sup>tBu,Me</sup>LuMe<sub>2</sub>] (50.0 mg, 0.0788 mmol) in toluene (5 mL) at  $-35\,^\circ\text{C}.$  The reaction mixture was allowed to stir for 4 h at 0°C. The solution was concentrated in vacuo and stored at -35 °C. Crystallization yielded compound 4-Lu (65.0 mg, 0.0561 mmol, 71%) as colorless crystals. <sup>1</sup>H NMR (250 MHz,  $[D_6]$ benzene, 26 °C):  $\delta = 5.74$  (s, 3 H, 4-pz-H), 4.54 (v br d, <sup>1</sup>J(BH) = 340 Hz, 1 H, BH), 2.06 (s, 9 H, pz-CH<sub>3</sub>), 1.31 ppm (s, 27 H, pz-C(CH<sub>3</sub>)<sub>3</sub>). <sup>13</sup>C{<sup>1</sup>H} NMR (63 MHz, [D<sub>6</sub>]benzene, 26 °C):  $\delta$  = 168.1 (5-pz-C), 150.5 (3-pz-C), 106.9 (4-pz-C), 32.3 (pz-C(CH<sub>3</sub>)<sub>3</sub>), 30.9 (pz-C(CH<sub>3</sub>)<sub>3</sub>), 13.3 ppm (pz-C(CH<sub>3</sub>)). <sup>13</sup>C NMR resonances for the triflato groups could not be detected. <sup>11</sup>B{<sup>1</sup>H} NMR (80 MHz,  $[D_6]$  benzene, 26 °C):  $\delta\!=\!-7.6$  ppm.  $\,^{_{19}}\!\mathrm{F}\{^1\mathrm{H}\}\,\mathrm{NMR}\,$  (376 MHz,  $\,[\mathrm{D}_6]\mathrm{benzene},\,$  26  $^\circ\mathrm{C}$ ):  $\delta\!=$ -76.9 ppm. IR (KBr):  $\tilde{v} = 3149$  (vw), 2974 (w), 2936 (w), 2873 (vw), 2569 (vw, B-H), 1544 (m), 1482 (w), 1464 (w), 1422 (w), 1358 (s), 1338 (vs), 1324 (m), 1239 (vs), 1218 (vs), 1193 (vs),1134 (s), 1119 (s), 1100 (vs), 1055 (m), 1035 (m), 1017 (w), 982 (vw), 928 (vw), 847 (vw), 838 (vw), 824 (w), 806 (w), 767 (w), 743 (w), 681 (vw), 661 (w), 653 (m), 605 (s), 579 (m), 531 (vw), 512 (m), 441 (vw), 426 cm<sup>-1</sup> (vw); elemental analysis calcd (%) for C<sub>28</sub>H<sub>40</sub>BF<sub>12</sub>LuN<sub>6</sub>O<sub>8</sub>S<sub>4</sub>: C 29.03, H 3.48, N 9.67; found C 30.12, H 3.49, N 9.27. Due to the high S and F contents no better elemental analysis could be obtained.

[Tp<sup>rBu,Me</sup>YCl<sub>2</sub>] (5-Y): A solution of SiMe<sub>3</sub>Cl (18.0 mg, 0.166 mmol) in toluene (5 mL) was added to a solution of [Tp<sup>tBu,Me</sup>YMe(AIMe<sub>4</sub>)] (50.0 mg, 0.0814 mmol) in toluene (5 mL) and stirred for 3 h at ambient temperature. The solution was concentrated in vacuo and stored at -35°C. Crystallization yielded compound 5-Y (42.0 mg, 0.0720 mmol, 89%) as colorless crystals. <sup>1</sup>H NMR (250 MHz,  $[D_8]$ toluene, 26 °C):  $\delta = 5.56$  (s, 3 H, 4-pz-H), 4.47 (v br d, <sup>1</sup>J(BH) = 140 Hz, 1 H, BH), 1.95 (s, 9 H, pz-CH<sub>3</sub>), 1.50 ppm (s, 27 H, pz-C(CH<sub>3</sub>)<sub>3</sub>). <sup>13</sup>C{<sup>1</sup>H} NMR (63 MHz, [D<sub>8</sub>]toluene, 26 °C):  $\delta = 175.4$  (5-pz-C), 147.1 (3-pz-C), 104.0 (4-pz-C), 32.6 (pz-C(CH<sub>3</sub>)<sub>3</sub>), 31.5 (pz-C(CH<sub>3</sub>)<sub>3</sub>), 13.1 ppm (pz-C(CH<sub>3</sub>)).  $^{13}C{^1H}$  NMR (63 MHz, [D<sub>8</sub>]THF, 26 °C):  $\delta =$ 166.4 (5-pz-C), 147.6 (3-pz-C), 105.7 (4-pz-C), 33.3 (pz-C(CH<sub>3</sub>)<sub>3</sub>), 31.5 (pz-C(CH<sub>3</sub>)<sub>3</sub>), 13.2 ppm (pz-C(CH<sub>3</sub>)). <sup>11</sup>B{<sup>1</sup>H} NMR (80 MHz, [D<sub>8</sub>]THF, 26 °C):  $\delta = -7.9$  ppm. IR (KBr):  $\tilde{\nu} = 2963$  (s), 2928 (w), 2859 (w), 2577 (vw, B-H), 1538 (vs), 1471 (w), 1463 (m), 1435 (s), 1382 (w), 1360 (m), 1346 (s), 1346 (s), 1332 (w), 1241 (w), 1192 (s), 1173 (vs), 1133 (vw), 1121 (vw), 1067 (m), 1064 (m), 1029 (m), 1014 (w), 989 (vw), 847 (vw), 810 (w), 804 (w), 787 (m), 777 (w), 765 (s), 729 (vw), 683 (vw), 677 (vw), 659 (vw), 645 (m), 515 cm<sup>-1</sup> (vw); elemental analysis calcd (%) for  $C_{24}H_{40}BCl_2N_6Y$ : C 49.42, H 6.91, N 14.41; found C 49.01, H 6.99, N 13.74.

 $[\textbf{Tp}^{tBu,Me}\textbf{LuCl}_2]$  (5-Lu): In a pressure tube a solution of SiMe\_3Cl (40.0 mg, 0.368 mmol) in toluene (5 mL) was added to a solution of [Tp<sup>tBu,Me</sup>LuMe<sub>2</sub>] (100 mg, 0.158 mmol) in toluene (10 mL) and stirred for 6 h at 50 °C. The formed precipitate was allowed to settle, the supernatant was decanted and the solid washed with nhexane (3×2 mL). The precipitate was dried in vacuo to afford 5-Lu (60.0 mg, 0.0896 mmol, 57%) as a white solid. Single crystals suitable for X-ray diffraction could be obtained by crystallization from a saturated THF solution at -35 °C. <sup>1</sup>H NMR (400 MHz,  $[D_8]$ THF, 26 °C):  $\delta = 6.04$  (s, 3 H, 4-pz-H), 4.83 (v br d, <sup>1</sup>J(BH) = 135 Hz, 1H, BH), 2.38 (s, 9H, pz-CH<sub>3</sub>), 1.49 ppm (s, 27H, pz-C(CH<sub>3</sub>)<sub>3</sub>). <sup>13</sup>C{<sup>1</sup>H} NMR (63 MHz, [D<sub>6</sub>]benzene, 26 °C):  $\delta = 166.1$  (5-pz-C), 147.0 (3-pz-C), 104.1 (4-pz-C), 32.6 (pz-C(CH<sub>3</sub>)<sub>3</sub>), 31.0 (pz-C(CH<sub>3</sub>)<sub>3</sub>), 13.0 ppm (pz-C(CH<sub>3</sub>)). <sup>11</sup>B{<sup>1</sup>H} NMR (80 MHz, [D<sub>8</sub>]THF, 26 °C):  $\delta =$ -9.2 ppm. IR (KBr):  $\tilde{\nu} = 2961$  (vs), 2906 (s), 2862 (s), 2550 (w, B-H), 1539 (vs), 1476 (s), 1463 (s), 1424 (vs), 1380 (m), 1356 (vs), 1332 (m), 1295 (vw), 1241 (s), 1192 (vs.), 1176 (vs), 1070 (vs), 1028 (s), 1015 (s), 987 (m), 913 (w), 867 (m), 849 (m), 840 (s), 804 (s), 789 (s), 781 (s), 766 (vs), 731 (w), 658 (m), 644 (s), 515 cm<sup>-1</sup> (w); elemental analysis calcd (%) for  $C_{24}H_{40}Bl_2LuN_6$ : C 43.07, H 6.02, N 12.56; found C 43.32, H 5.99, N 12.39.

[Tp<sup>tBu,Me</sup>YI<sub>2</sub>] (6-Y): A solution of SiMe<sub>3</sub>I (33.0 mg, 0.165 mmol) in toluene (5 mL) was added to a solution of [Tp<sup>tBu,Me</sup>YMe(AIMe<sub>4</sub>)] (50.0 mg, 0.0814 mmol) in toluene (5 mL) and stirred for 3 h. The solution was concentrated in vacuo and stored at -35 °C. Crystallization yielded compound 6-Y (52.0 mg, 0.0679 mmol, 84%) as colorless crystals. <sup>1</sup>H NMR (250 MHz, [D<sub>8</sub>]toluene, 26 °C):  $\delta$  = 5.55 (s, 3H, 4-pz-H), 4.50 (v br d, <sup>1</sup>J(BH) = 130 Hz, 1H, BH), 1.95 (s, 9H, pz-CH<sub>3</sub>), 1.54 ppm (s, 27 H, pz-C(CH<sub>3</sub>)<sub>3</sub>). <sup>13</sup>C{<sup>1</sup>H} NMR (63 MHz,  $[D_8]$ toluene, 26 °C):  $\delta =$  166.6 (5-pz-C), 147.9 (3-pz-C), 104.5 (4-pz-C), 33.1 (pz-C(CH<sub>3</sub>)<sub>3</sub>), 32.1 (pz-C(CH<sub>3</sub>)<sub>3</sub>), 13.2 ppm (pz-C(CH<sub>3</sub>)). <sup>11</sup>B{<sup>1</sup>H} NMR (80 MHz, [D<sub>8</sub>]toluene, 26 °C):  $\delta = -8.7$  ppm. IR (KBr):  $\tilde{\nu} =$ 2964 (s), 2927 (w), 2863 (vw), 2562 (vw, B-H), 1539 (vs), 1473 (m), 1456 (w), 1430 (vs), 1380 (w), 1364 (m), 1135 (vw), 1124 (vw), 1068 (m), 1061 (m), 1027 (m), 1014 (w), 985 (w), 846 (vw), 825 (vw), 802 (w), 799 (w), 764 (s), 729 (vw), 683 (vw), 674 (vw), 659 (w), 642 (m), 515 (vw), 472 (vw), 440 cm  $^{-1}$  (vw); elemental analysis calcd (%) for C<sub>24</sub>H<sub>40</sub>Bl<sub>2</sub>N<sub>6</sub>Y: C 37.62, H 5.26, N 10.97; found C 37.68, H 5.18, N 11.00.

[Tp<sup>tBu,Me</sup>Lul<sub>2</sub>] (6-Lu): A solution of SiMe<sub>3</sub>I (47.0 mg, 0.235 mmol) in toluene (5 mL) was added to a solution of [Tp<sup>tBu,Me</sup>LuMe<sub>2</sub>] (50.0 mg, 0.0788 mmol) in toluene (5 mL) and stirred for 3 h at ambient temperature. The solution was concentrated in vacuo and stored at -35°C. Crystallization yielded compound 6-Lu (60.0 mg, 0.0704 mmol, 89%) as colorless crystals. <sup>1</sup>H NMR (250 MHz,  $[D_8]$ toluene, 26 °C):  $\delta = 5.60$  (s, 3 H, 4-pz-H), 4.48 (v br d, <sup>1</sup>J(BH) = 135 Hz, 1 H, BH), 1.94 (s, 9 H, pz-CH<sub>3</sub>), 1.56 ppm (s, 27 H, pz-C(CH<sub>3</sub>)<sub>3</sub>). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, [D<sub>8</sub>]toluene, 26 °C):  $\delta = 167.3$  (5-pz-C), 148.1 (3-pz-C), 105.0 (4-pz-C), 32.9 (pz-C(CH<sub>3</sub>)<sub>3</sub>), 31.8 (pz-C(CH<sub>3</sub>)<sub>3</sub>), 12.9 ppm (pz-C(CH<sub>3</sub>)). <sup>11</sup>B{<sup>1</sup>H} NMR (80 MHz, [D<sub>8</sub>]toluene, 26 °C):  $\delta =$ -7.6 ppm. IR (KBr):  $\tilde{v} = 3126$  (vw), 2961 (vs), 2928 (w), 2906 (w), 2862 (w), 2553 (vw, B-H), 1541 (vs), 1475 (m), 1463 (w), 1430 (vs), 1381 (w), 1354 (s), 1324 (w), 1242 (w), 1201 (m), 1191 (s), 1171 (vs), 1131 (m), 1065 (vs), 1030 (w), 1024 (w), 1015 (w), 984 (w), 846 (vw), 824 (vw), 804 (m), 794 (m), 762 (s), 729 (vw), 673 (vw), 656 (w), 642 (m), 472 (vw), 412 cm<sup>-1</sup> (w); elemental analysis calcd (%) for  $C_{24}H_{40}BI_2LuN_6:$  C 33.83, H 4.73, N 9.86; found C 33.96, H 4.68, N 9.93.

Chem. Eur. J. 2019, 25, 14711 - 14720



[Tp<sup>tBu,Me</sup>LuMeCl] (7-Lu): A solution of SiMe<sub>3</sub>Cl (34.2 mg, 0.315 mmol) in toluene (5 mL) was added to a solution of  $[\text{Tp}^{\text{tBu,Me}}\text{LuMe}_2]$  (200.0 mg, 0.315 mmol) in toluene (10 mL) and stirred for 3 h at ambient temperature. The solvent was evaporated and the remaining white precipitate was washed with cold toluene (3×2 mL). The solid was dried in vacuo to afford 7-Lu (150 mg, 0.231 mmol, 73%). Single crystals suitable for X-ray diffraction could be obtained by crystallization from a saturated THF solution at  $-35\,^{\circ}$ C. <sup>1</sup>H NMR (400 MHz, [D<sub>8</sub>]THF, 26  $^{\circ}$ C):  $\delta = 5.98$  (s, 3 H, 4-pz-*H*), 4.75 (v br d,  ${}^{1}J(BH) = 135$  Hz, 1 H, BH), 2.40 (s, 9 H, pz-CH<sub>3</sub>), 1.48 (s, 27 H, pz-C(CH<sub>3</sub>)<sub>3</sub>), -0.29 ppm (s, 3 H, Lu-CH<sub>3</sub>). <sup>13</sup>C{<sup>1</sup>H} NMR (63 MHz, [D<sub>8</sub>]THF, 26 °C): δ = 166.0 (5-pz-C), 147.6 (3-pz-C), 104.7 (4pz-C), 35.5 (Lu-CH<sub>3</sub>), 32.9 (pz-C(CH<sub>3</sub>)<sub>3</sub>), 31.0 (pz-C(CH<sub>3</sub>)<sub>3</sub>), 13.1 ppm (pz-C(CH<sub>3</sub>)). <sup>11</sup>B{<sup>1</sup>H} NMR (80 MHz, [D<sub>8</sub>]THF, 26 °C):  $\delta = -8.7$  ppm. IR (KBr):  $\tilde{v} = 2963$  (s), 2953 (s), 2931 (w), 2907 (m), 2861 (w), 2575 (vw, B-H), 1540 (vs), 1474 (m), 1463 (m), 1435 (vs), 1381 (w), 1362 (s), 1351 (s), 1335 (w), 1242 (w), 1193 (s), 1172 (vs), 1123 (w), 1075 (s), 1063 (s), 1030 (m), 1014 (w), 987 (w), 849 (vw), 841 (w), 806 (m), 787 (vs), 777 (m), 765 (vs.), 729 (w), 694 (vw), 677 (w), 660 (w), 645 (s), 515 (w), 492 (vw), 442 (vw), 411 cm<sup>-1</sup> (m); elemental analysis calcd (%) for C<sub>25</sub>H<sub>43</sub>BClLuN<sub>6</sub>: C 46.28, H 6.68, N 12.95; found C 45.70, H 6.42, N 12.66.

[Tp<sup>tBu,Me</sup>LuMe(CH<sub>2</sub>SiMe<sub>3</sub>)] (8-Lu): A precooled solution of LiCH<sub>2</sub>SiMe<sub>3</sub> (14.5 mg, 0.154 mmol) in toluene (5 mL) was added to a precooled solution of [Tp<sup>rBu,Me</sup>LuMeCl] (100 mg, 0.154 mmol) in toluene (5 mL) at -35 °C. The reaction mixture was allowed to stir for 3 h at 0 °C. The precipitate was filtered off and the solution was concentrated in vacuo and stored at -35 °C. Crystallization yielded compound 8-Lu (56.0 mg, 0.0799 mmol, 52%) as colorless crystals. <sup>1</sup>H NMR (400 MHz,  $[D_6]$ benzene, 26 °C):  $\delta = 5.65$  (s, 3 H, 4-pz-*H*), 4.54 (v br d, <sup>1</sup>J(BH) = 360 Hz, 1 H, BH), 2.06 (s, 9 H, pz-CH<sub>3</sub>), 1.51 (s, 27 H, pz-C(CH<sub>3</sub>)<sub>3</sub>), 0.23 (s, 18H, SiCH<sub>3</sub>), 0.19 (s, 3H, Lu-CH<sub>3</sub>), -0.71 ppm (s, 2 H,  $CH_2SiMe_3$ ). <sup>13</sup>C{<sup>1</sup>H} NMR (63 MHz, [D<sub>6</sub>]benzene, 26 °C):  $\delta = 165.3$ (5-pz-C), 146.7 (3-pz-C), 103.9 (4-pz-C), 37.6 (Lu-CH<sub>2</sub>), 32.6 (pz-C(CH<sub>3</sub>)<sub>3</sub>), 31.9 (Lu-CH<sub>3</sub>), 31.4 (pz-C(CH<sub>3</sub>)<sub>3</sub>), 13.2 (pz-C(CH<sub>3</sub>)), 4.5 ppm (SiMe<sub>3</sub>). <sup>11</sup>B{<sup>1</sup>H} NMR (80 MHz, [D<sub>6</sub>]benzene, 26 °C):  $\delta = -8.2$  ppm.  $^{29}\text{Si}\{^1\text{H}\}$  dept45 NMR (50 MHz, [D\_6]benzene, 26  $^\circ\text{C}\text{)}\text{:}~\delta\!=\!-0.3$  ppm. IR (KBr):  $\tilde{v} = 2960$  (vs), 2926 (s), 2866 (m), 2815 (vw), 2552 (vw, B-H), 1540 (vs), 1463 (m), 1432 (s), 1379 (w), 1360 (s), 1334 (w), 1236 (m), 1205 (m), 1195 (m), 1175 (s), 1128 (w), 1071 (m), 1060 (m), 1025 (w), 1013 (w), 985 (w), 894 (w), 872 (s), 854 (m), 816 (w), 806 (w), 791 (m), 766 (m), 743 (w), 731 (w), 717 (w), 675 (vw), 663 (w), 645 (m), 521 (vw), 513 (vw), 473 (vw), 434 (vw), 421 (w), 404 cm<sup>-1</sup> (m); elemental analysis calcd (%) for C<sub>29</sub>H<sub>54</sub>BLuN<sub>6</sub>Si: C 49.71, H 7.77, N 11.99; found C 49.73, H 7.65, N 11.73.

 $[\mbox{Tp}^{t\mbox{Bu,Me}}\mbox{LuMe}(\mbox{CH}_2\mbox{Ph})]$  (9-Lu): A suspension of KCH2Ph (20.0 mg, 0.154 mmol) in toluene (5 mL) was added to a solution of [Tp<sup>rBu,Me</sup>LuMeCl] (100 mg, 0.154 mmol) in toluene (5 mL) and stirred for 24 h at ambient temperature. The reaction mixture was filtered and the solution was concentrated in vacuo and stored at -35 °C. Crystallization yielded compound 9-Lu (49.0 mg, 0.0695 mmol, 45%) as colorless crystals. <sup>1</sup>H NMR (250 MHz, [D<sub>6</sub>]benzene, 26°C):  $\delta = 6.95$  (t, <sup>3</sup>J(HH) = 15.5 Hz, 2 H, Ar-H), 6.62 (t, <sup>3</sup>J(HH) = 15.9 Hz, 1 H, Ar-H), 6.35 (d, <sup>2</sup>J(HH) = 7.6 Hz, 2H, Ar-H), 5.62 (s, 3H, 4-pz-H), 4.52 (v br d, <sup>1</sup>J(BH) = 147 Hz, 1 H, BH), 2.02 (s, 9 H, pz-CH<sub>3</sub>), 1.63 (s, 2 H, CH<sub>2</sub>), 1.44 (s, 27 H, pz-C(CH<sub>3</sub>)), 0.39 ppm (s, 3 H, Lu-CH<sub>3</sub>). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, [D<sub>6</sub>]benzene, 26 °C):  $\delta = 164.9$  (5-pz-C), 154.3 (Ar-C1), 147.0 (3-pz-C), 127.3 (Ar-C2/C6), 124.5(Ar-C3/C5), 117.1 (Ar-C4), 103.8 (4-pz-C), 61.0 (Lu-CH<sub>2</sub>), 38.2 (Lu-CH<sub>3</sub>), 32.3 (pz-C(CH<sub>3</sub>)<sub>3</sub>), 31.2 <sup>11</sup>B{<sup>1</sup>H} NMR 13.0 ppm (pz-C(*C*H<sub>3</sub>)).  $(pz-C(CH_2)_2)$ (80 MHz,  $[D_6]$ benzene, 26°C):  $\delta = -8.3$  ppm. IR (KBr):  $\tilde{\nu} = 3054$  (vw), 2999 (vw), 2963 (vs), 2926 (w), 2903 (m), 2864 (w), 2544 (vw, B-H), 1589 (m), 1539 (vs), 1486 (s), 1473 (s), 1431 (vs), 1362 (s), 1356 (s), 1330 (w), 1242 (w), 1218 (m), 1203 (m), 1190 (s), 1164 (s), 1129 (m), 1069 (s), 1057 (m), 1025 (m), 1015 (vw), 984 (w), 929 (s), 864 (w), 848 (vw), 810 (m), 802 (m), 787 (m), 775 (w), 764 (s), 742 (m), 732 (s), 696 (s), 682 (vw), 675 (vw), 661 (vw), 643 (s), 521 (w), 510 (vw), 468 (w), 457 cm<sup>-1</sup> (w); elemental analysis calcd (%) for  $C_{32}H_{50}BLuN_6$ : C 54.55, H 7.15, N 11.93; found C 54.72, H 7.25, N 12.29.

#### X-ray crystallography and crystal structure determinations

Single crystals of **1-Lu**, **3-Lu**, **4-Lu**, **5-Lu**, **6-Lu**, **7-Lu**, **8-Lu**, and **9-Lu** were grown by standard techniques from saturated solutions in *n*-hexane, toluene or THF at -35 °C as stated in the experimental section. Suitable crystals were collected in a glovebox and coated with Parabar 10312 (previously known as Paratone N, Hampton Research) and fixed on a nylon loop/glass fiber.

X-ray data for compounds of 1-Lu, 3-Lu, 4-Lu, 5-Lu, 6-Lu, 7-Lu, 8-Lu, and 9-Lu were collected on a Bruker APEX II DUO instrument equipped with an IµS microfocus sealed tube and QUAZAR optics for MoK<sub>a</sub> ( $\lambda = 0.71073$  Å) and CuK<sub>a</sub> ( $\lambda = 1.54184$  Å) radiation. The data collection strategy was determined using  $\mathsf{COSMO}^{\scriptscriptstyle[\!\!42]}$  employing  $\omega\text{-scans.}$  Raw data were processed using  $\text{APEX}^{\scriptscriptstyle[43]}$  and  $\text{SAINT,}^{\scriptscriptstyle[44]}$ corrections for absorption effects were applied using SADABS.<sup>[45]</sup> The structures were solved by direct methods and refined against all data by full-matrix least-squares methods on F<sup>2</sup> using SHELXTL<sup>[46]</sup> and ShelXle.<sup>[47]</sup> Disorder models were calculated using DSR, a program for refining structures in ShelXI.<sup>[48]</sup> All graphics were produced employing ORTEP-3<sup>[49]</sup> and POV-Ray.<sup>[50]</sup> Further details of the refinement and crystallographic data are listed in Table S1 (Supporting Information) and in the CIF files. CCDC 1945695, 1945696, 1945697, 1945698, 1945699, 1945700, 1945701, 1945702 contain the supplementary crystallographic data for this paper. These data are provided free of charge by The Cambridge Crystallographic Data Centre.

#### Acknowledgements

We are grateful to the German Science Foundation for support (grant: AN 238/15-2).

#### **Conflict of interest**

The authors declare no conflict of interest.

**Keywords:** alkyls • halides • heteroleptic compounds • rareearth metals • scorpionates

- [1] a) R. H. Grubbs, Tetrahedron 2004, 60, 7117-7140; b) T. E. Takeda, Modern Carbonyl Olefination 2004, Wiley-VCH, Weinheim, 2004; c) N. Calderon, Acc. Chem. Res. 1972, 5, 127-132; d) Y. Chauvin, Angew. Chem. Int. Ed. 2006, 45, 3740-3747; Angew. Chem. 2006, 118, 3824-3831; e) R. R. Schrock, Acc. Chem. Res. 1979, 12, 98-104; f) W. A. Herrmann, Angew. Chem. Int. Ed. Engl. 1982, 21, 117-130; Angew. Chem. 1982, 94, 118-131; g) "Fischer-Tropsch Synthesis: Catalysts and Chemistry": J. van de Loosdrecht, F. G. Botes, I. M. Ciobica, A. Ferreira, P. Gibson, D. J. Miidley, A. M. Salb, J. L. Visagie, C. J. Weststate, J. W. Niemantsverdriet in Comprehensive Inorganic Chemistry II, 2nd ed. (Eds.: J. Reedijk, K. Poeppelmeier), Elsevier, Amsterdam, 2013, ch. 7.20.
- [2] D. S. Levine, T. D. Tilley, R. A. Andersen, Organometallics 2017, 36, 80– 88.
- [3] G. R. Giesbrecht, J. C. Gordon, Dalton Trans. 2004, 2387-2393.
- [4] M. Zimmermann, D. Rauschmaier, K. Eichele, K. W. Törnroos, R. Anwander, Chem. Commun. 2010, 46, 5346–5348.

Chem. Eur. J. 2019, 25, 14711 - 14720

www.chemeurj.org

 $\ensuremath{^{\odot}}$  2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim



- [5] H. M. Dietrich, K. W. Törnroos, R. Anwander, J. Am. Chem. Soc. 2006, 128, 9298–9299.
- [6] W. X. Zhang, Z. Wang, M. Nishiura, Z. Xi, Z. Hou, J. Am. Chem. Soc. 2011, 133, 5712–5715.
- [7] S. Li, M. Wang, B. Liu, L. Li, J. Cheng, C. Wu, D. Liu, J. Liu, D. Cui, Chem. Eur. J. 2014, 20, 15493 – 15498.
- [8] R. Litlabø, M. Zimmermann, K. Saliu, J. Takats, K. W. Törnroos, R. Anwander, Angew. Chem. Int. Ed. 2008, 47, 9560–9564; Angew. Chem. 2008, 120, 9702–9706.
- [9] a) K. Aparna, M. Ferguson, R. G. Cavell, J. Am. Chem. Soc. 2000, 122, 726–727; b) S. T. Liddle, D. P. Mills, A. J. Wooles, Chem. Soc. Rev. 2011, 40, 2164–2176.
- [10] W. Ma, C. Yu, Y. Chi, T. Chen, L. Wang, J. Yin, B. Wei, L. Xu, W. X. Zhang, Z. Xi, Chem. Sci. 2017, 8, 6852–6856.
- [11] W. Mao, L. Xiang, C. Alvarez Lamsfus, L. Maron, X. Leng, Y. Chen, J. Am. Chem. Soc. 2017, 139, 1081–1084.
- [12] W. Mao, L. Xiang, L. Maron, X. Leng, Y. Chen, J. Am. Chem. Soc. 2017, 139, 17759–17762.
- [13] L. N. Grant, S. Ahn, B. C. Manor, M. H. Baik, D. J. Mindiola, Chem. Commun. 2017, 53, 3415–3417.
- [14] a) N. A. Petasis, E. I. Bzowej, J. Am. Chem. Soc. 1990, 112, 6392–6394;
   b) N. A. Petasis, S. P. Lu, E. I. Bzowej, D. K. Fu, J. P. Staszewski, I. Akritopoulou-Zanze, M. A. Patane, Y. H. Hu, Pure Appl. Chem. 1996, 68, 667–670.
- [15] F. N. Tebbe, G. W. Parshall, G. S. Reddy, J. Am. Chem. Soc. 1978, 100, 3611–3613.
- [16] H. Osseili, K. N. Truong, T. P. Spaniol, L. Maron, U. Englert, J. Okuda, Angew. Chem. Int. Ed. 2019, 58, 1833–1837; Angew. Chem. 2019, 131, 1847–1851.
- [17] M. Zimmermann, J. Takats, G. Kiel, K. W. Törnroos, R. Anwander, Chem. Commun. 2008, 612–614.
- [18] D. Schädle, C. Maichle-Mössmer, C. Schädle, R. Anwander, *Chem. Eur. J.* 2015, 21, 662–670.
- [19] For a similar mixed tetramethylaluminate/methyl complex, see: W. Rong, M. Wang, S. Li, J. Cheng, D. Liu, D. Cui, *Organometallics* 2018, *37*, 971–978.
- [20] J. Blackwell, C. Lehr, Y. Sun, W. E. Piers, S. D. Pearce-Batchilder, M. J. Zaworotko, J. V. G. Young, *Can. J. Chem.* **1997**, *75*, 702–711.
- [21] J. Cheng, K. Saliu, G. Y. Kiel, M. J. Ferguson, R. McDonald, J. Takats, Angew. Chem. Int. Ed. 2008, 47, 4910–4913; Angew. Chem. 2008, 120, 4988–4991.
- [22] J. Cheng, M. J. Ferguson, J. Takats, J. Am. Chem. Soc. 2010, 132, 2-3.
- [23] D. P. Solowey, T. Kurogi, B. C. Manor, P. J. Carroll, D. J. Mindiola, *Dalton Trans.* 2016, 45, 15894–15901.
- [24] M. Zimmermann, R. Litlabø, K. W. Törnroos, R. Anwander, Organometallics 2009, 28, 6646–6649.
- [25] a) J. Fawcett, A. W. G. Platt, D. R. Russell, *Polyhedron* 2002, 21, 287–293;
   b) A. Babai, S. Pitula, A.-V. Mudring, *Eur. J. Inorg. Chem.* 2010, 4933–4937.
- [26] H. Schumann, J. A. Meese-Marktscheffel, A. Dietrich, J. Organomet. Chem. 1989, 377, C5–C8.
- [27] A. Babai, A. V. Mudring, Dalton Trans. 2006, 1828-1830.

- [28] a) S.-Y. Liu, G. H. Maunder, A. Sella, M. Stevenson, D. A. Tocher, *Inorg. Chem.* **1996**, *35*, 76–81; b) R. J. H. Clark, S. Y. Liu, G. H. Maunder, A. Sella, M. R. J. Elsegood, *J. Chem. Soc. Dalton Trans.* **1997**, 2241–2247.
- [29] a) N. Marques, A. Sella, J. Takats, *Chem. Rev.* 2002, *102*, 2137–2160;
   b) F. A. Kunrath, O. L. Casagrande, L. Toupet, J.-F. Carpentier, *Polyhedron* 2004, *23*, 2437–2445.
- [30] a) D. P. Long, A. Chandrasekaran, R. O. Day, P. A. Bianconi, *Inorg. Chem.* 2000, 39, 4476–4487; b) C. Apostolidis, A. Carvalho, A. Domingos, B. Kanellakopulos, R. Maier, N. Marques, A. Pires de Matos, J. Rebizant, *Polyhedron* 1998, 18, 263–272.
- [31] D. Roitershtein, A. Domingos, L. C. Pereira, J. R. Ascenso, N. Marques, *Inorg. Chem.* 2003, 42, 7666–7673.
- [32] H. Schumann, D. M. M. Freckmann, S. Dechert, Z. Anorg. Allg. Chem. 2002, 628, 2422–2426.
- [33] a) G. W. Rabe, F. A. Riederer, M. Zhang-Preße, A. L. Rheingold, *Inorg. Chim. Acta* 2017, 457, 103–106; b) G. W. Rabe, F. A. Riederer, M. Zhang-Preße, G. P. A. Yap, *Inorg. Chim. Acta* 2010, 364, 255–258.
- [34] N. Meyer, P. W. Roesky, S. Bambirra, A. Meetsma, B. Hessen, K. Saliu, J. Takats, Organometallics 2008, 27, 1501–1505.
- [35] K. O. Saliu, J. Takats, R. McDonald, Acta Crystallogr. E 2018, 74, 88-90.
- [36] R. Thim, H. M. Dietrich, M. Bonath, C. Maichle-Mössmer, R. Anwander, Organometallics 2018, 37, 2769–2777.
- [37] W. Yi, J. Zhang, F. Zhang, Y. Zhang, Z. Chen, X. Zhou, Chem. Eur. J. 2013, 19, 11975 – 11983.
- [38] Â. Domingos, M. R. J. Elsegood, A. C. Hillier, G. Lin, S. Y. Liu, I. Lopes, N. Marques, G. H. Maunder, R. McDonald, A. Sella, J. W. Steed, J. Takats, *Inorg. Chem.* 2002, 41, 6761–6768.
- [39] a) C. Stuhl, C. Maichle-Mössmer, R. Anwander, *Chem. Eur. J.* 2018, *24*, 14254–14268; b) J. A. Bilbrey, A. H. Kazez, J. Locklin, W. D. Allen, *J. Comput. Chem.* 2013, *34*, 1189–1197.
- [40] S. Trofimenko, J. C. Calabrese, J. S. Thompson, *Inorg. Chem.* 1987, 26, 1507–1514.
- [41] P. J. Bailey, R. A. Coxall, C. M. Dick, S. Fabre, L. C. Henderson, C. Herber, S. T. Liddle, D. Lorono-Gonzalez, A. Parkin, S. Parsons, *Chem. Eur. J.* 2003, 9, 4820–4828.
- [42] COSMO v. 1.61, Bruker AXS Inc., Madison, WI, 2012.
- [43] APEX 3 v. 2017.3-0, Bruker AXS Inc., Madison, WI, 2017.
- [44] SAINT v. 8.38A, Bruker AXS Inc., Madison, WI, 2017.
- [45] L. Krause, R. Herbst-Irmer, G. M. Sheldrick, D. Stalke, J. Appl. Crystallogr. 2015, 48, 3-10.
- [46] G. Sheldrick, Acta Crystallogr. Sect. C. 2015, 71, 3-8.
- [47] C. B. Hübschle, G. M. Sheldrick, B. Dittrich, J. Appl. Crystallogr. 2011, 44, 1281–1284.
- [48] D. Kratzert, J. J. Holstein, I. Krossing, J. Appl. Crystallogr. 2015, 48, 933– 938.
- [49] L. J. Farrugia, J. Appl. Crystallogr. 2012, 45, 849-854.
- [50] POV-Ray v.3.6, Persistence of Vision Pty. Ltd., POV-Ray Williamstown, Victoria, Australia, 2004, http://www.povray.org.

Manuscript received: August 7, 2019

Accepted manuscript online: September 6, 2019 Version of record online: October 22, 2019

## **CHEMISTRY** A European Journal

### Supporting Information

#### Potential Precursors for Terminal Methylidene Rare-Earth-Metal Complexes Supported by a Superbulky Tris(pyrazolyl)borato Ligand

Verena M. Birkelbach, Renita Thim, Christoph Stuhl, Cäcilia Maichle-Mössmer, and Reiner Anwander<sup>\*[a]</sup>

chem\_201903606\_sm\_miscellaneous\_information.pdf

Supporting Information

#### **Table of contents**

NMR spectroscopy

| <sup>1</sup> H NMR, <sup>13</sup> C{ <sup>1</sup> H} NMR, <sup>11</sup> B{ <sup>1</sup> H} | NMR, <sup>19</sup> F{ <sup>1</sup> H} NMR spectra of complex <b>1-Y</b>  | Pages S2-S4   |
|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------|
| <sup>1</sup> H NMR, <sup>13</sup> C{ <sup>1</sup> H} NMR, <sup>11</sup> B{ <sup>1</sup> H} | NMR, <sup>19</sup> F{ <sup>1</sup> H} NMR spectra of complex <b>1-Lu</b> | Pages S4-S6   |
| <sup>1</sup> H NMR, <sup>13</sup> C{ <sup>1</sup> H} NMR, <sup>11</sup> B{ <sup>1</sup> H} | NMR, <sup>19</sup> F{ <sup>1</sup> H} NMR spectra of complex <b>2-Lu</b> | Pages S6-S8   |
| <sup>1</sup> H NMR, <sup>13</sup> C{ <sup>1</sup> H} NMR, <sup>11</sup> B{ <sup>1</sup> H} | NMR, <sup>19</sup> F{ <sup>1</sup> H} NMR spectra of complex <b>3-Lu</b> | Pages S9-S10  |
| <sup>1</sup> H NMR, <sup>13</sup> C{ <sup>1</sup> H} NMR, <sup>11</sup> B{ <sup>1</sup> H} | NMR, <sup>19</sup> F{ <sup>1</sup> H} NMR spectra of complex <b>4-Lu</b> | Pages S10-S12 |
| <sup>1</sup> H NMR, <sup>13</sup> C{ <sup>1</sup> H} NMR, <sup>11</sup> B{ <sup>1</sup> H} | NMR spectra of complex 5-Y                                               | Pages S12-S13 |
| <sup>1</sup> H NMR, <sup>13</sup> C{ <sup>1</sup> H} NMR, <sup>11</sup> B{ <sup>1</sup> H} | NMR spectra of complex 5-Lu                                              | Pages S14-S15 |
| <sup>1</sup> H NMR, <sup>13</sup> C{ <sup>1</sup> H} NMR, <sup>11</sup> B{ <sup>1</sup> H} | NMR spectra of complex 6-Y                                               | Pages S15-S16 |
| <sup>1</sup> H NMR, <sup>13</sup> C{ <sup>1</sup> H} NMR, <sup>11</sup> B{ <sup>1</sup> H} | NMR spectra of complex 6-Lu                                              | Pages S17-S18 |
| <sup>1</sup> H NMR, <sup>13</sup> C{ <sup>1</sup> H} NMR, <sup>11</sup> B{ <sup>1</sup> H} | NMR spectra of complex 7-Lu                                              | Pages S19-S20 |
| <sup>1</sup> H NMR, <sup>13</sup> C{ <sup>1</sup> H} NMR, <sup>11</sup> B{ <sup>1</sup> H} | NMR, <sup>29</sup> Si{ <sup>1</sup> H} NMR spectra of complex 8-Lu       | Pages S20-S21 |
| <sup>1</sup> H NMR, <sup>13</sup> C{ <sup>1</sup> H} NMR, <sup>11</sup> B{ <sup>1</sup> H} | NMR spectra of complex 9-Lu                                              | Pages S22-S23 |

X-ray structure analyses

Comprehensive crystallographic data for compounds **1-Lu**, **2-Lu**, **4-Lu**, **5-Lu**, **Pages** S24-25 **6-Lu**, **7-Lu**, **8-Lu**, and **9-Lu** 

Cone-angle analyses

Cone angle calculations Raw data files for cone angle calculation Pages S26-28 Pages S29-40

#### NMR spectroscopy

The solvent residual peaks are marked with an asterisk (\*).



**Figure S1.** <sup>1</sup>H NMR spectrum (250 MHz, [D<sub>6</sub>]benzene of complex [Tp<sup>*t*Bu,Me</sup>YMe(OTf)] (**1-Y**) at 26 °C with traces of toluene (#).



**Figure S2.** <sup>1</sup>H NMR spectrum (500 MHz, [D<sub>8</sub>]toluene and a few drops of [D<sub>8</sub>]thf due to solubility issues at lower temperatures) of complex [Tp<sup>tBu,MeY</sup>Me(OTf)] (**1-Y**) at 0 °C.



**Figure S3.** <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (126 MHz, [D<sub>8</sub>]toluene and a few drops of [D<sub>8</sub>]thf due to solubility issues at lower temperatures) of complex [Tp<sup>*f*Bu,Me</sup>YMe(OTf)] (**1-Y**) at 0 °C. <sup>13</sup>C NMR resonances for the triflate groups could not be detected.



Figure S4. <sup>11</sup>B{<sup>1</sup>H} NMR spectrum (80 MHz, [D<sub>6</sub>]benzene) of complex [Tp<sup>*t*Bu,Me</sup>YMe(OTf)] (1-Y) at 26 °C.



Figure S5.  $^{19}F\{^{1}H\}$  NMR spectrum (376 MHz, [D6]benzene) of complex [Tp^{fBu,Me}YMe(OTf)] (1-Y) at 26 °C.



**Figure S6.** <sup>1</sup>H NMR spectrum (250 MHz, [D<sub>6</sub>]benzene) of complex [Tp<sup>*t*Bu,Me</sup>LuMe(OTf)] (**1-Lu**) at 26 °C with minor impurities of the reactant [Tp<sup>*t*Bu,Me</sup>Lu(OTf)<sub>2</sub>] (#).



**Figure S7.** <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (63 MHz, [D<sub>6</sub>]benzene) of complex [Tp<sup>tBu,Me</sup>LuMe(OTf)] (**1-Lu**) at 26 °C. <sup>13</sup>C NMR resonances for the triflate groups could not be detected.</sup>



**Figure S8.** <sup>11</sup>B{<sup>1</sup>H} NMR spectrum (80 MHz, [D<sub>6</sub>]benzene) of complex [Tp<sup>*t*Bu,Me</sup>LuMe(OTf)] (**1-Lu**) at 26 °C.



**Figure S9.** <sup>19</sup>F{<sup>1</sup>H} NMR spectrum (376 MHz, [D<sub>6</sub>]benzene) of complex [Tp<sup>*t*Bu,Me</sup>LuMe(OTf)] (**1-Lu**) at 26 °C with minor impurities of [Tp<sup>*t*Bu,Me</sup>Lu(OTf)<sub>2</sub>] (#).



**Figure S10.** <sup>1</sup>H NMR spectrum (250 MHz, [D<sub>6</sub>]benzene) of complex [Tp<sup>*t*Bu,Me</sup>Lu(OTf)<sub>2</sub>] (**2-Lu**) at 26 °C with minor impurities of [Tp<sup>*t*Bu,Me</sup>LuMe(OTf)] (#).



**Figure S11.** <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (63 MHz, [D<sub>6</sub>]benzene) of complex  $[Tp^{fBu,Me}Lu(OTf)_2]$  (**2-Lu**) at 26 °C. <sup>13</sup>C NMR resonances for the triflate groups could not be detected.



Figure S12. <sup>11</sup>B{<sup>1</sup>H} NMR spectrum (80 MHz, [D<sub>6</sub>]benzene) of complex  $[Tp^{tBu,Me}Lu(OTf)_2]$  (2-Lu) at 26 °C.



Figure S13. <sup>19</sup>F{<sup>1</sup>H} NMR spectrum (376 MHz, [D<sub>6</sub>]benzene) of complex [Tp<sup>tBu,Me</sup>Lu(OTf)<sub>2</sub>] (2-Lu) at 26 °C.



Figure S14. <sup>1</sup>H NMR spectrum (250 MHz,  $[D_6]$ benzene) of complex  $[Tp^{tBu,Me}LuMe(NTf_2)]$  (3-Lu) at 26 °C.



**Figure S15.** <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (63 MHz, [D<sub>6</sub>]benzene) of complex [Tp<sup>fBu,Me</sup>LuMe(NTf<sub>2</sub>)] (**3-Lu**) at 26 °C. <sup>13</sup>C NMR resonances for the triflate groups could not be detected.</sup>



Figure S16. <sup>11</sup>B{<sup>1</sup>H} NMR spectrum (80 MHz, [D<sub>6</sub>]benzene) of complex [Tp<sup>tBu,Me</sup>LuMe(NTf<sub>2</sub>)] (3-Lu) at 26 °C.



Figure S17. <sup>19</sup>F{<sup>1</sup>H} NMR spectrum (376 MHz, [D<sub>6</sub>]benzene) of complex [Tp<sup>tBu,Me</sup>LuMe(NTf<sub>2</sub>)] (3-Lu) at 26 °C.



Figure S18. <sup>1</sup>H NMR spectrum (250 MHz, [D<sub>6</sub>]benzene) of complex [Tp<sup>*t*Bu,Me</sup>Lu(NTf<sub>2</sub>)<sub>2</sub>] (4-Lu) at 26 °C.



**Figure S19.** <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (63 MHz, [D<sub>6</sub>]benzene) of complex [Tp<sup>tBu,Me</sup>Lu(NTf<sub>2</sub>)<sub>2</sub>] (**4-Lu**) at 26 °C. <sup>13</sup>C NMR resonances for the triflate groups could not be detected.</sup>



Figure S20. <sup>11</sup>B{<sup>1</sup>H} NMR spectrum (80 MHz, [D<sub>6</sub>]benzene) of complex  $[Tp^{tBu,Me}Lu(NTf_2)_2]$  (4-Lu) at 26 °C.



Figure S21. <sup>19</sup>F{<sup>1</sup>H} NMR spectrum (376 MHz,  $[D_6]$ benzene) of complex  $[Tp^{fBu,Me}Lu(NTf_2)_2]$  (4-Lu) at 26 °C.



Figure S22. <sup>1</sup>H NMR spectrum (250 MHz, [D<sub>8</sub>]toluene) of complex [Tp<sup>*t*Bu,Me</sup>YCl<sub>2</sub>] (5-Y) at 26 °C.



Figure S23. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (63 MHz, [D<sub>8</sub>]thf) of complex [Tp<sup>*t*Bu,Me</sup>YCl<sub>2</sub>] (5-Y) at 26 °C.



Figure S24. <sup>11</sup>B{<sup>1</sup>H} NMR spectrum (80 MHz, [D<sub>8</sub>]thf) of complex [Tp<sup>fBu,Me</sup>YCl<sub>2</sub>] (5-Y) at 26 °C.



Figure S25. <sup>1</sup>H NMR spectrum (400 MHz, [D<sub>8</sub>]thf) of complex [Tp<sup>tBu,Me</sup>YLuCl<sub>2</sub>] (5-Lu) at 26 °C.



Figure S26. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (63 MHz, [D<sub>6</sub>]benzene) of complex [Tp<sup>*t*Bu,Me</sup>YLuCl<sub>2</sub>] (5-Lu) at 26 °C.


Figure S27. <sup>11</sup>B{<sup>1</sup>H} NMR spectrum (80 MHz, [D<sub>8</sub>]thf) of complex [Tp<sup>tBu,Me</sup>YLuCl<sub>2</sub>] (5-Lu) at 26 °C.



Figure S28. <sup>1</sup>H NMR spectrum (250 MHz, [D<sub>8</sub>]toluene) of complex [Tp<sup>tBu,Me</sup>Yl<sub>2</sub>] (6-Y) at 26 °C.



Figure S29. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (63 MHz, [D<sub>8</sub>]toluene) of complex [Tp<sup>tBu,Me</sup>YI<sub>2</sub>] (6-Y) at 26 °C.</sup>



Figure S30. <sup>11</sup>B{<sup>1</sup>H} NMR spectrum (80 MHz, [D<sub>8</sub>]toluene) of complex [Tp<sup>tBu,Me</sup>YI<sub>2</sub>] (6-Y) at 26 °C.</sup>



Figure S31. <sup>1</sup>H NMR spectrum (250 MHz, [D<sub>8</sub>]toluene) of complex [Tp<sup>rBu,Me</sup>Lul<sub>2</sub>] (6-Lu) at 26 °C.



Figure S32. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (101 MHz, [D<sub>8</sub>]toluene) of complex [Tp<sup>tBu,Me</sup>Lul<sub>2</sub>] (6-Lu) at 26 °C.



Figure S33. <sup>11</sup>B{<sup>1</sup>H} NMR spectrum (80 MHz, [D<sub>8</sub>]toluene) of complex [Tp<sup>*t*Bu,Me</sup>Lul<sub>2</sub>] (6-Lu) at 26 °C.



Figure S34. <sup>1</sup>H NMR spectrum (250 MHz, [D<sub>8</sub>]thf) of complex [Tp<sup>*t*Bu,Me</sup>LuMeCl] (7-Lu) at 26 °C.



**Figure S35.** <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (63 MHz, [D<sub>8</sub>]thf) of complex [Tp<sup>*t*Bu,Me</sup>LuMeCl] (**7-Lu**) at 26°C with minor impurities (#) due to decomposition in thf.



Figure S36. <sup>11</sup>B{<sup>1</sup>H} NMR spectrum (80 MHz, [D<sub>8</sub>]thf) of complex [Tp<sup>tBu,Me</sup>LuMeCl] (7-Lu) at 26 °C.



**Figure S37.** <sup>1</sup>H NMR spectrum (250 MHz, [D<sub>6</sub>]benzene) of complex [Tp<sup>*t*Bu,Me</sup>LuMe(CH<sub>2</sub>SiMe<sub>3</sub>)] (**8-Lu**) at 26 °C with traces of *n*-hexane (#).



**Figure S38.** <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (63 MHz, [D<sub>6</sub>]benzene) of complex [Tp<sup>*t*Bu,Me</sup>LuMe(CH<sub>2</sub>SiMe<sub>3</sub>)] (**8-**Lu) at 26 °C with traces of *n*-hexane (#).



**Figure S39.** <sup>11</sup>B{<sup>1</sup>H} NMR spectrum (80 MHz, [D<sub>6</sub>]benzene) of complex [Tp<sup>*t*Bu,Me</sup>LuMe(CH<sub>2</sub>SiMe<sub>3</sub>)] (**8-**Lu) at 26 °C.



Figure S40.  $^{29}$ Si{<sup>1</sup>H}-DEPT45 NMR spectrum (50 MHz, [D<sub>6</sub>]benzene) of complex [Tp<sup>tBu,Me</sup>LuMe(CH<sub>2</sub>SiMe<sub>3</sub>)] (8-Lu) at 26 °C.



**Figure S41.** <sup>1</sup>H NMR spectrum (250 MHz, [D<sub>6</sub>]benzene) of complex [Tp<sup>*t*Bu,Me</sup>LuMe(CH<sub>2</sub>Ph)] (**9-Lu**) at 26 °C.



Figure S42. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (63 MHz, [D<sub>6</sub>]benzene) of complex [Tp<sup>tBu,Me</sup>LuMe(CH<sub>2</sub>Ph)] (9-Lu) at 26 °C with traces of hexane (#).



**Figure S43.** <sup>11</sup>B{<sup>1</sup>H} NMR spectrum (80 MHz, [D<sub>6</sub>]benzene) of complex [Tp<sup>*t*Bu,Me</sup>LuMe(CH<sub>2</sub>Ph)] (**9-Lu**) at 26 °C.

## X-ray structure analyses

|                                                  | 1-Lu                                                                                 | 3-Lu                                                                                              | 4-Lu                   | 5-Lu                                                                                |
|--------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------|-------------------------------------------------------------------------------------|
| CCDC                                             | 1945695                                                                              | 1945701                                                                                           | 1945700                | 1945696                                                                             |
| Formula                                          | C <sub>26</sub> H <sub>43</sub> BF <sub>3</sub> LuN <sub>6</sub><br>O <sub>3</sub> S | C <sub>34</sub> H <sub>51</sub> BF <sub>6</sub> LuN <sub>7</sub><br>O <sub>4</sub> S <sub>2</sub> | C35H48BF12Lu<br>N8O8S4 | C <sub>32</sub> H <sub>56</sub> BCl <sub>2</sub> LuN <sub>6</sub><br>O <sub>2</sub> |
| M [g mol <sup>-1</sup> ]                         | 762.50                                                                               | 985.71                                                                                            | 1250.83                | 813.50                                                                              |
| Crystal system                                   | Monoclinic                                                                           | Triclinic                                                                                         | Triclinic              | Orthorhombic                                                                        |
| Space group                                      | P21/n                                                                                | ΡĪ                                                                                                | ΡĪ                     | Cmc2 <sub>1</sub>                                                                   |
| a [Å]                                            | 12.2754(16)                                                                          | 9.8940(3)                                                                                         | 12.9270(6)             | 20.9267(15)                                                                         |
| b [Å]                                            | 17.658(2)                                                                            | 14.1054(5)                                                                                        | 13.7542(6)             | 9.7844(7)                                                                           |
| c [Å]                                            | 15.2272(17)                                                                          | 16.1627(6)                                                                                        | 14.2033(7)             | 17.7155(13)                                                                         |
| α [°]                                            | 90                                                                                   | 86.5330(10)                                                                                       | 87.4410(10)            | 90                                                                                  |
| β [°]                                            | 93.699(2)                                                                            | 79.7220(10)                                                                                       | 81.360(2)              | 90                                                                                  |
| γ [°]                                            | 90                                                                                   | 76.3470(10)                                                                                       | 82.7930(10)            | 90                                                                                  |
| V [Å <sup>3</sup> ]                              | 3293.8(7)                                                                            | 2156.34(13)                                                                                       | 2476.1(2)              | 3627.3(5)                                                                           |
| Z                                                | 4                                                                                    | 2                                                                                                 | 2                      | 4                                                                                   |
| T [K]                                            | 100(2)                                                                               | 100(2)                                                                                            | 100(2)                 | 99(2)                                                                               |
| ρ <sub>calcd</sub> [g cm <sup>-3</sup> ]         | 1.538                                                                                | 1.518                                                                                             | 1.678                  | 1.490                                                                               |
| µ[mm <sup>-1</sup> ]                             | 3.113                                                                                | 2.455                                                                                             | 2.262                  | 2.906                                                                               |
| F (000)                                          | 1536                                                                                 | 996                                                                                               | 1252                   | 1664                                                                                |
| Θ range [°]                                      | 1.768 to<br>27.485                                                                   | 1.281 to<br>30.189                                                                                | 1.493 to<br>30.068     | 1.946 to 30.053                                                                     |
| total refins                                     | 48598                                                                                | 65970                                                                                             | 106930                 | 39179                                                                               |
| unique reflns                                    | 7539                                                                                 | 12746                                                                                             | 14494                  | 5445                                                                                |
| Rint                                             | 0.0784                                                                               | 0.0283                                                                                            | 0.0615                 | 0.0544                                                                              |
| observed reflns (I>2σ)                           | 5801                                                                                 | 11805                                                                                             | 13160                  | 5187                                                                                |
| Data/restraints/parameter                        | 7539 / 487 /<br>494                                                                  | 12746 / 189 /<br>554                                                                              | 14494 / 397 /<br>799   | 5445 / 61 / 235                                                                     |
| R1/wR2 (I>2σ) <sup>[a]</sup>                     | 0.0352 /<br>0.0718                                                                   | 0.0215 /<br>0.0505                                                                                | 0.0254 /<br>0.0594     | 0.0210 / 0.0469                                                                     |
| R1/wR2 (all data) <sup>[a]</sup>                 | 0.0569 /<br>0.0793                                                                   | 0.0244 / 0.0518                                                                                   | 0.0299 /<br>0.0618     | 0.0228 / 0.0478                                                                     |
| GOF <sup>[a]</sup>                               | 1.046                                                                                | 1.060                                                                                             | 1.053                  | 1.038                                                                               |
| largest diff. peak and hole [e Å <sup>-3</sup> ] | 1.253 and<br>-0.828                                                                  | 2.426 and<br>-0.618                                                                               | 2.101 and<br>-0.638    | 2.419 and<br>-0.828                                                                 |

| Table S1. Comprehensive c | rystallographic data for | compounds 1-Lu, 2-L | .u, 4-Lu, and 5-Lu |
|---------------------------|--------------------------|---------------------|--------------------|
|---------------------------|--------------------------|---------------------|--------------------|

[a] R1 =  $\Sigma(||F0|-|Fc||)/\Sigma|F0|,F0> 4s(F0)$ . wR2 = { $\Sigma[w(F02-Fc2)^2/\Sigma[w(F02)^2]$ }<sup>1/2</sup>.

|                                                  | 6-Lu                    | 7-Lu                                                | 8-Lu                                                 | 9-Lu                                                                                   |
|--------------------------------------------------|-------------------------|-----------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------|
| CCDC                                             | 1945699                 | 1945697                                             | 1945698                                              | 1945702                                                                                |
| Formula                                          | $C_{24}H_{40}BI_2LuN_6$ | C <sub>25</sub> H <sub>42</sub> BCILuN <sub>6</sub> | C <sub>29</sub> H <sub>54</sub> BLuN <sub>6</sub> Si | C <sub>32</sub> H <sub>50</sub> BLuN <sub>6</sub> •1/2(C <sub>7</sub> H <sub>8</sub> ) |
| M [g mol <sup>-1</sup> ]                         | 852.20                  | 647.87                                              | 700.65                                               | 750.62                                                                                 |
| Crystal system                                   | Monoclinic              | Orthorhombic                                        | Triclinic                                            | Monoclinic                                                                             |
| Space group                                      | P21/n                   | Pnma                                                | ΡĪ                                                   | P21/n                                                                                  |
| a [Å]                                            | 12.4642(6)              | 17.9200(18)                                         | 11.9871(4)                                           | 9.7194(7)                                                                              |
| b [Å]                                            | 13.2018(7)              | 16.9031(16)                                         | 12.1377(4)                                           | 20.3381(15)                                                                            |
| c [Å]                                            | 19.0586(10)             | 9.7340(9)                                           | 15.4042(5)                                           | 18.5754(14)                                                                            |
| α [°]                                            | 90                      | 90                                                  | 99.9460(10)                                          | 90                                                                                     |
| β [°]                                            | 97.771(2)               | 90                                                  | 108.1190(10)                                         | 98.5760(10)                                                                            |
| γ [°]                                            | 90                      | 90                                                  | 96.9700(10)                                          | 90                                                                                     |
| V [Å <sup>3</sup> ]                              | 3107.3(3)               | 2948.5(5)                                           | 2061.08(12)                                          | 3630.8(5)                                                                              |
| Z                                                | 4                       | 4                                                   | 2                                                    | 4                                                                                      |
| T [K]                                            | 101(2)                  | 173(2)                                              | 150(2)                                               | 100(2)                                                                                 |
| ρ <sub>calcd</sub> [g cm <sup>-3</sup> ]         | 1.822                   | 1.459                                               | 1.129                                                | 1.373                                                                                  |
| µ[mm <sup>-1</sup> ]                             | 5.143                   | 3.462                                               | 2.445                                                | 2.750                                                                                  |
| F (000)                                          | 1632                    | 1308                                                | 720                                                  | 1540                                                                                   |
| Θ range [°]                                      | 2.089 to<br>27.485      | 2.414 to 28.336                                     | 1.427 to<br>28.700                                   | 1.494 to 28.281                                                                        |
| total reflns                                     | 78632                   | 13206                                               | 89956                                                | 57404                                                                                  |
| unique reflns                                    | 7119                    | 3749                                                | 10644                                                | 8999                                                                                   |
| Rint                                             | 0.0567                  |                                                     | 0.0483                                               | 0.0563                                                                                 |
| observed reflns (I>2σ)                           | 5912                    | 2814                                                | 9478                                                 | 7343                                                                                   |
| Data/restraints/parameter                        | 7119 / 0 / 323          | 3749 / 336 /<br>187                                 | 10644 / 0 / 366                                      | 8999 / 159 / 483                                                                       |
| R1/wR2 (I>2σ) <sup>[a]</sup>                     | 0.0309 /<br>0.0747      | 0.0913 / 0.1642                                     | 0.0219 /<br>0.0484                                   | 0.0280 / 0.0605                                                                        |
| R1/wR2 (all data) <sup>[a]</sup>                 | 0.0407 /<br>0.0796      | 0.1254 / 0.1763                                     | 0.0274 /<br>0.0507                                   | 0.0381 / 0.0647                                                                        |
| GOF <sup>[a]</sup>                               | 1.038                   | 1.278                                               | 1.059                                                | 1.039                                                                                  |
| largest diff. peak and hole [e Å <sup>-3</sup> ] | 2.973 and<br>-2.205     | 3.318 and<br>-4.846                                 | 2.091 and<br>-0.722                                  | 2.504 and -0.750                                                                       |

 Table S1 continued.
 Comprehensive crystallographic data for compounds 6-Lu, 7-Lu, 8-Lu, and 9-Lu.

 $\begin{bmatrix} 1 \\ [a] R1 = \Sigma(||F0|-|Fc||)/\Sigma|F0|, F0> 4s(F0). wR2 = \{\Sigma[w(F02-Fc2)_2/\Sigma[w(F02)^2]\}^{1/2}. \end{bmatrix}$ 

#### **Cone-angle calculations**

To calculate the mathematically exact cone angles a series of .xyz files was generated from the final .cif files with ORTEP. The Mathematica package was downloaded free of charge from http://www.ccqc.uga.edu/references/software.php.

The adopted van der Waals radii were r = 1.20, 1.70, 1.55, 1.52, 1.92, 2.27 Å for H, C, N, O, B, Lu in this order.



Tp<sup>*t*Bu,Me</sup>LuMeOTf\_a (**1-Lu**)

due to disorder in one *tert*-butyl group two different cone angles were calculated for **1-Lu** 

Ligand atoms forming cone =  $\{22, 43, 49\}$ 

Cone angle (deg) = 278.007

Cone axis = {-0.316083, 0.800716, -0.508867}



Tp<sup>*t*Bu,Me</sup>LuMeOTf\_b (**1-Lu**) Ligand atoms forming cone = {11, 34, 51} Cone angle (deg) = 280.98 Cone axis = {0.162371, 0.909077, 0.383687} Tp<sup>tBu,Me</sup>LuMeNTf<sub>2</sub> (2-Lu)



Ligand atoms forming cone = {37, 42, 53} Cone angle (deg) = 280.4

Cone axis = {-0.755706, 0.611601, 0.234206}



Tp<sup>*t*Bu,Me</sup>Lul<sub>2</sub> (**6-Lu**) Ligand atoms forming cone = {34, 39, 46} Cone angle (deg) = 278.17 Cone axis = {-0.143777, 0.94259, 0.301416}



Tp<sup>*t*Bu,Me</sup>LuMeCl (**7-Lu**) Ligand atoms forming cone = {35, 45, 56} Cone angle (deg) = 278.932 Cone axis = {-0.3202, 0.943738, -0.0826429}



Tp<sup>*t*Bu,Me</sup>LuMeNeo (**8-Lu**) Ligand atoms forming cone = {7, 31, 43} Cone angle (deg) = 277.109 Cone axis = {-0.311522, 0.745404, 0.589344}



Tp<sup>*t*Bu,Me</sup>LuMeBn\_a (**9-Lu**)

due to disorder in one *tert*-butyl group two different cone angles were calculated for **9-Lu** 

Ligand atoms forming cone = {29, 42, 70}

Cone angle (deg) = 277.267

Cone axis = {-0.797352, -0.315855, 0.514262}



Tp<sup>*t*Bu,Me</sup>LuMeBn\_b (**9-Lu**) Ligand atoms forming cone = {31, 32, 67} Cone angle (deg) = 277.268 Cone axis = {0.0836185, -0.209561, 0.974214}

## Raw Data Files for Cone Angle Calculations

#### CompexDataBase1.txt

## (X1) Tp*t*Bu,MeLuCl2

| 1              | Lu     | -0.36398 | -0.36470            | -1.55235 |
|----------------|--------|----------|---------------------|----------|
| 2              | С      | 3.70546  | -1.32279            | -3.30348 |
| 3              | С      | -1.74055 | 3.63113             | -3.19040 |
| 4              | С      | 1.81816  | -2.74353            | -2.49688 |
| 5              | С      | -2.95856 | 1.60157             | -2.39770 |
| 6              | С      | 3.13135  | -2.07343            | -2.08815 |
| 7              | С      | -2.40598 | 2.96356             | -1.97317 |
| 8              | С      | 4.13539  | -3.15922            | -1.67112 |
| 9              | С      | -3.57174 | 3.85151             | -1.51109 |
| 10             | С      | 2.91718  | -1.12097            | -0.94626 |
| 11             | C      | -1.41189 | 2.81693             | -0.85637 |
| 12             | C      | -1.87025 | -3.93654            | -0.25941 |
| 13             | C      | -3.74781 | -2.22864            | -0.22042 |
| 14             | C      | 3.88177  | -0.59254            | -0.08289 |
| 15             | Č      | -0.95716 | 3.80916             | 0.01759  |
| 16             | Č      | -2.68715 | -2.96827            | 0.62181  |
| 17             | Č      | 3.21236  | 0.19854             | 0.82490  |
| 18             | Č      | -0.08615 | 3 19899             | 0.89339  |
| 19             | Č      | -1 77299 | -1 97891            | 1 30518  |
| 20             | č      | -3 42012 | -3 79831            | 1 68434  |
| 21             | č      | 3 76943  | 0 97563             | 1 97688  |
| 22             | C<br>C | 0.66101  | 3 80318             | 2 04143  |
| 23             | C<br>C | -1 60105 | -1 82139            | 2 68536  |
| 24             | č      | -0.67632 | -0.80858            | 2 85100  |
| 25             | č      | -0 13788 | -0.24560            | 4 11903  |
| 26             | н      | 3 82813  | -1 95103            | -4 04757 |
| 27             | н      | -2 39429 | 3 70914             | -3 91837 |
| 28             | н      | 3 08412  | -0 61495            | -3 57417 |
| 29             | н      | -0.98367 | 3 08528             | -3 48970 |
| 30             | н      | 2 00194  | -3 44397            | -3 15734 |
| 31             | н      | 4 56859  | -0.92618            | -3.06462 |
| 32             | н      | -3 68801 | 1 73185             | -3.03920 |
| 33             | н      | -1 42165 | 4 52279             | -2 94023 |
| 34             | н      | 1 21856  | -2 07496            | -2 88783 |
| 35             | н      | -2 24556 | 1 07615             | -2 81589 |
| 36             | н      | 4 25469  | -3 79316            | -2.01000 |
| 37             | н      | -4 23071 | 3 92551             | -2.40000 |
| 38             | н      | 1 39579  | -3 14186            | -1 70845 |
| 30             | н      | 1.00070  | -0.14100            | -1.76040 |
| 40             | н      | -3 29733 | 1 12720             | -1.40001 |
| 40             | н      | -3 23282 | 4 74273             | -1 28545 |
| 42             | н      | 3 79724  | -3 63415            | -0.88444 |
| 42             | н      | -1 40456 | -3.42891            | -0.00444 |
| 43             | н      | -3 30225 | -1 70269            | -0.93020 |
| 45             | н      | -3 99472 | 3 45373             | -0.72264 |
| 46             | н      | -2 47384 | -4 58588            | -0.67771 |
| 40<br>17       | н      | -1 3/676 | -2 88220            | -0.63882 |
| 47<br>18       | н      | 1 81803  | -2.00220            | -0.00002 |
| 40<br>/0       | н      | -1 20227 | -0.74337<br>A 72776 | 0.00867  |
| <del>5</del> 0 | н      | -1.20227 | -1 10026            | 0.00007  |
| 51             | Ц      | -1.21302 | -1 63267            | 0.23403  |
| 52             | н<br>Ц | -7.20141 | -1.03201            | 1 32619  |
| 52<br>52       |        | 2 55010  | 1 92/60             | 1 86682  |
| 5/             | Ц      | 1 62318  | 3 67807             | 1 00688  |
| 55             |        | 1.02040  | 0.86630             | 2 00522  |
| 55             | 17     | 4.14200  | 0.00030             | 2.00023  |

| 56 | Н | 0.46120  | 4.76084  | 2.09413  |
|----|---|----------|----------|----------|
| 57 | Н | -2.86954 | -4.32525 | 2.23150  |
| 58 | Н | -3.98400 | -3.31149 | 2.25464  |
| 59 | Н | 1.07007  | 1.12278  | 2.34745  |
| 60 | Н | 3.37904  | 0.64589  | 2.81243  |
| 61 | Н | 0.38856  | 3.36615  | 2.87452  |
| 62 | Н | -2.03472 | -2.31382 | 3.37218  |
| 63 | Н | 0.76983  | -0.43069 | 4.16441  |
| 64 | Н | -0.40655 | 0.63939  | 4.18884  |
| 65 | Н | -0.57345 | -0.73984 | 4.79369  |
| 66 | В | 0.71099  | 0.75168  | 1.31132  |
| 67 | N | 1.70801  | -0.65917 | -0.58415 |
| 68 | N | -0.83018 | 1.64967  | -0.53145 |
| 69 | N | 1.89421  | 0.15462  | 0.51540  |
| 70 | N | -0.01276 | 1.88928  | 0.55500  |
| 71 | N | -0.98462 | -1.09699 | 0.63789  |
| 72 | N | -0.30817 | -0.37587 | 1.62477  |
| 0  |   |          |          |          |

## (X2) TptBu,MeLul2

| 1  | Lu | -0.38842 | -1.37835 | -0.71130 |
|----|----|----------|----------|----------|
| 2  | С  | -0.83145 | 0.19850  | -5.22549 |
| 3  | С  | 1.58187  | 0.81917  | -4.90102 |
| 4  | С  | 0.33879  | 0.22982  | -4.22287 |
| 5  | С  | 0.62988  | -1.19010 | -3.76123 |
| 6  | С  | -0.21596 | 2.47254  | -3.00342 |
| 7  | С  | -0.00228 | 1.10591  | -3.03670 |
| 8  | С  | -0.37858 | 2.83381  | -1.68175 |
| 9  | С  | -0.57749 | 4.18166  | -1.08014 |
| 10 | С  | 3.52965  | -2.03029 | -0.96355 |
| 11 | С  | 3.56238  | -1.83145 | 0.55852  |
| 12 | С  | 5.00888  | -1.54420 | 0.95763  |
| 13 | С  | 2.69489  | -0.63862 | 0.94463  |
| 14 | С  | 3.08385  | -3.09717 | 1.28535  |
| 15 | С  | -4.34751 | -2.81399 | 1.74951  |
| 16 | С  | -2.99455 | 2.60946  | 1.63065  |
| 17 | С  | -2.63902 | 1.15289  | 1.62108  |
| 18 | С  | -1.93485 | -3.46298 | 1.75123  |
| 19 | С  | 3.04090  | 0.37594  | 1.82334  |
| 20 | С  | -2.59770 | -1.04166 | 1.86204  |
| 21 | С  | 1.97652  | 1.24680  | 1.85798  |
| 22 | С  | -3.33443 | 0.09617  | 2.14576  |
| 23 | С  | -2.94484 | -2.44683 | 2.28551  |
| 24 | С  | 1.81348  | 2.48673  | 2.66340  |
| 25 | С  | -2.98423 | -2.48086 | 3.82512  |
| 26 | Н  | -0.57565 | -0.32899 | -6.01080 |
| 27 | Н  | 1.85434  | 0.24086  | -5.64397 |
| 28 | Н  | -1.04869 | 1.11345  | -5.50230 |
| 29 | Н  | 1.37511  | 1.71505  | -5.24226 |
| 30 | Н  | -1.61472 | -0.20876 | -4.80101 |
| 31 | Н  | 0.92032  | -1.72966 | -4.52653 |
| 32 | Н  | 2.31194  | 0.87939  | -4.25013 |
| 33 | Н  | -0.24371 | 3.05552  | -3.75279 |
| 34 | Н  | -0.18149 | -1.58219 | -3.37548 |
| 35 | Н  | 1.33890  | -1.17456 | -3.08554 |
| 36 | Н  | -0.63496 | 4.85270  | -1.79219 |
| 37 | Н  | 3.78091  | -1.19469 | -1.40810 |
| 38 | Н  | 4.16145  | -2.73602 | -1.21409 |
| 39 | Н  | 2.62568  | -2.28735 | -1.23978 |
| 40 | Н  | -1.40600 | 4.18772  | -0.55725 |

| 41 | Н | 0.17901  | 4.39305  | -0.49445 |
|----|---|----------|----------|----------|
| 42 | Н | 5.58734  | -2.26400 | 0.62859  |
| 43 | Н | 5.29191  | -0.69218 | 0.56517  |
| 44 | Н | -4.34103 | -2.77876 | 0.76975  |
| 45 | Н | -3.21704 | 2.89791  | 0.72056  |
| 46 | Н | -1.95233 | -3.45604 | 0.77161  |
| 47 | Н | 3.58306  | -3.87225 | 0.95147  |
| 48 | Н | -0.30090 | 2.46917  | 0.99400  |
| 49 | Н | 2.12798  | -3.22671 | 1.12089  |
| 50 | Н | 5.07381  | -1.49325 | 1.93443  |
| 51 | Н | -4.58251 | -3.71820 | 2.04368  |
| 52 | Н | -5.00552 | -2.17488 | 2.09477  |
| 53 | Н | -2.17071 | -4.35786 | 2.07425  |
| 54 | Н | -2.23191 | 3.12968  | 1.96070  |
| 55 | Н | 1.88814  | 3.26855  | 2.07643  |
| 56 | Н | -1.03791 | -3.22799 | 2.06434  |
| 57 | Н | -3.76701 | 2.75376  | 2.21629  |
| 58 | Н | 3.23980  | -2.99799 | 2.24862  |
| 59 | Н | 3.85358  | 0.45486  | 2.30798  |
| 60 | Н | -4.15971 | 0.13640  | 2.61432  |
| 61 | Н | 0.93242  | 2.48328  | 3.09244  |
| 62 | Н | 2.51131  | 2.52470  | 3.34955  |
| 63 | Н | -3.25702 | -3.37352 | 4.12454  |
| 64 | Н | -3.62723 | -1.81692 | 4.15036  |
| 65 | Н | -2.09343 | -2.27546 | 4.17931  |
| 66 | Ν | -0.05882 | 0.62366  | -1.77888 |
| 67 | Ν | -0.27531 | 1.69565  | -0.93510 |
| 68 | Ν | 1.44916  | -0.42312 | 0.45758  |
| 69 | Ν | 1.02931  | 0.76920  | 1.02222  |
| 70 | Ν | -1.49881 | 0.67895  | 1.06503  |
| 71 | Ν | -1.46917 | -0.70476 | 1.20141  |
| 72 | В | -0.26609 | 1.50754  | 0.59345  |

0

#### (X3) TptBu,MeLuMeCl

| 1  | Lu | 1.02768  | -1.26206 | -0.37047 |
|----|----|----------|----------|----------|
| 2  | С  | 0.26377  | -1.67990 | -5.04073 |
| 3  | С  | -2.08234 | -2.16579 | -4.32727 |
| 4  | С  | -0.68345 | -1.76956 | -3.84333 |
| 5  | С  | -1.26803 | 0.76841  | -3.65946 |
| 6  | С  | -0.76941 | -0.43342 | -3.16119 |
| 7  | С  | -0.18691 | -2.85014 | -2.89632 |
| 8  | С  | -1.67850 | 3.08671  | -2.6156  |
| 9  | С  | -1.22631 | 1.67555  | -2.63281 |
| 10 | С  | 0.90228  | 4.24401  | 0.60089  |
| 11 | С  | 1.50114  | 2.89863  | 0.76653  |
| 12 | С  | 5.18090  | 0.52510  | 1.08772  |
| 13 | С  | -1.86682 | -3.67515 | 1.16352  |
| 14 | С  | 2.71415  | 2.55414  | 1.30373  |
| 15 | С  | 2.79114  | 1.16324  | 1.27648  |
| 16 | С  | -3.04527 | 2.16592  | 1.66406  |
| 17 | С  | 3.49788  | -1.19776 | 1.69621  |
| 18 | С  | -2.38643 | 0.84016  | 1.61246  |
| 19 | С  | 3.86704  | 0.27103  | 1.82815  |
| 20 | С  | -1.77370 | -1.29520 | 1.88913  |
| 21 | С  | -2.69332 | -0.32891 | 2.27932  |
| 22 | С  | -1.69019 | -2.73269 | 2.33933  |
| 23 | С  | -0.36764 | -3.00287 | 3.03202  |
| 24 | С  | 4.05084  | 0.58452  | 3.31679  |
| 25 | С  | -2.81267 | -2.99983 | 3.33606  |

| 26        | Н      | -0.07125 | -1.01138 | -5.67421 |
|-----------|--------|----------|----------|----------|
| 27        | Н      | 0.31675  | -2.55351 | -5.48244 |
| 28        | Н      | -2.40404 | -1.50422 | -4.97344 |
| 29        | Н      | -2.04215 | -3.04683 | -4.75379 |
| 30        | н      | 1.15746  | -1.41725 | -4.73136 |
| 31        | H      | -1.57722 | 0.92910  | -4.54285 |
| 32        | Н      | -2.69374 | -2.20165 | -3.56271 |
| 33        | H      | -2 17131 | 3 28352  | -3 43900 |
| 34        | н      | -0 21626 | -3 71857 | -3 34811 |
| 35        | н      | 0 73479  | -2 65192 | -2 62902 |
| 36        | н      | -0.89937 | 3 67872  | -2 55121 |
| 37        | н      | -0 75981 | -2 87561 | -2 10113 |
| 38        | н      | -2 26334 | 3 23363  | _1 84139 |
| 30        | н      | 0.86460  | 1 16071  | -0.35268 |
| 10        | н      | 5 06020  | 0 33286  | 0.13281  |
| 40<br>//1 | ц      | -1 04750 | 2/3180   | -0.03442 |
| 41        | ц<br>Ц | 1 12699  | 2.43100  | 0.52282  |
| 42        | и<br>Ц | -1.13000 | -3.33740 | 0.32302  |
| 43        |        | -2.72307 | -3.49440 | 0.72307  |
| 44        |        | -3.41301 | 2.43404  | 0.70434  |
| 40        |        | 3.44390  | -1.43707 | 0.74747  |
| 40        |        | -0.00043 | 4.24370  | 0.97150  |
| 47        | п      | 1.44831  | 4.90007  | 1.07229  |
| 48        | н      | 5.44475  | 1.46216  | 1.20062  |
| 49        | н      | 5.87959  | -0.05896 | 1.45079  |
| 50        | н      | -1.85138 | -4.60198 | 1.48236  |
| 51        | н      | 3.37658  | 3.15054  | 1.63130  |
| 52        | н      | -2.43789 | 2.87248  | 2.00292  |
| 53        | н      | 4.18146  | -1.74649 | 2.13297  |
| 54        | н      | 2.62963  | -1.35567 | 2.12329  |
| 55        | н      | -3.79887 | 2.07842  | 2.30020  |
| 56        | н      | 0.36637  | -2.86336 | 2.39739  |
| 5/        | н      | -3.62024 | -2.83839 | 2.84777  |
| 58        | н      | -3.40605 | -0.45082 | 2.89504  |
| 59        | Н      | 4.33207  | 1.51647  | 3.42209  |
| 60        | Н      | -0.35017 | -3.92879 | 3.35339  |
| 61        | н      | -2.71603 | -3.92110 | 3.59000  |
| 62        | Н      | 4.73470  | -0.00788 | 3.69251  |
| 63        | Н      | 3.20315  | 0.44270  | 3.78686  |
| 64        | Н      | -0.26510 | -2.39198 | 3.79009  |
| 65        | Н      | -2.64455 | -2.40086 | 4.06382  |
| 66        | В      | -0.57720 | 1.55210  | -0.09532 |
| 67        | Ν      | -0.39221 | -0.24919 | -1.89151 |
| 68        | Ν      | -0.67842 | 1.05475  | -1.56381 |
| 69        | Ν      | 0.88594  | 1.75625  | 0.38592  |
| 70        | Ν      | 1.68545  | 0.68250  | 0.69798  |
| 71        | Ν      | -1.29094 | 0.57008  | 0.83067  |
| 72        | Ν      | -0.89843 | -0.75071 | 0.99095  |
| 0         |        |          |          |          |
|           |        |          |          |          |

#### (X4) TptBu,MeLuMeNeosilyl

| 1  | Lu | 0.46224  | -0.64746 | -1.51707 |
|----|----|----------|----------|----------|
| 2  | С  | -3.35919 | 0.10084  | -4.19683 |
| 3  | С  | -2.39021 | -1.83409 | -2.94835 |
| 4  | С  | -3.30459 | -0.62327 | -2.84211 |
| 5  | С  | -4.72361 | -1.05992 | -2.46255 |
| 6  | С  | 4.45556  | 2.02550  | -2.04473 |
| 7  | С  | 3.56975  | -0.28826 | -1.77557 |
| 8  | С  | -2.79601 | 0.34868  | -1.80106 |
| 9  | С  | -3.32923 | 1.58768  | -1.46229 |
| 10 | С  | 3.99212  | 0.96881  | -1.03504 |

| 11        | С      | -2.52385           | 2.09334  | -0.47009 |
|-----------|--------|--------------------|----------|----------|
| 12        | C      | 5,14967            | 0.63262  | -0.07633 |
| 13        | Č      | 2.84354            | 1.52102  | -0.22582 |
| 14        | Ċ      | -0 22928           | -4 30341 | 0 22460  |
| 15        | Č      | -2 59833           | 3 41202  | 0 22850  |
| 16        | ĉ      | 2 82860            | 2 61/78  | 0.22000  |
| 17        | č      | 2.02000            | -3 51007 | 0.00000  |
| 10        | Č      | 2.10203            | 2 69210  | 1 15097  |
| 10        | Č      | 0.67015            | 2.00319  | 1.13007  |
| 19        | C      | 0.07913            | -3.00149 | 1.20791  |
| 20        |        | 0.12074            | -2.32200 | 1.7 1020 |
| 21        |        | 0.99081            | 3.00043  | 2.13989  |
| 22        | C      | 0.74004            | -4.61559 | 2.50884  |
| 23        | C      | -0.74711           | -0.63522 | 2.83970  |
| 24        | С      | -0.38374           | -1.95640 | 2.94656  |
| 25        | С      | -1.31211           | 0.26780  | 3.88838  |
| 26        | Н      | -3.65813           | -0.52448 | -4.8904  |
| 27        | Н      | -2.46766           | 0.43698  | -4.42426 |
| 28        | Н      | -3.98721           | 0.85139  | -4.14164 |
| 29        | Н      | -2.77198           | -2.47730 | -3.58184 |
| 30        | Н      | -5.08032           | -1.65099 | -3.15834 |
| 31        | Н      | -1.50741           | -1.54860 | -3.26385 |
| 32        | Н      | 5.20902            | 1.67402  | -2.56264 |
| 33        | н      | 3.71686            | 2.24405  | -2.65089 |
| 34        | H      | -5.29689           | -0.27028 | -2.37959 |
| 35        | н      | 2,85682            | -0.06881 | -2.41165 |
| 36        | н      | 4 33873            | -0.65557 | -2 26104 |
| 37        | н      | -2 30303           | -2 25512 | -2 06714 |
| 38        | н      | -4 09586           | 2 00170  | -1 84050 |
| 30        | н      | 4 73537            | 2 83479  | -1 56672 |
| 40        | н      | -1 70127           | -1 53883 | -1.60760 |
| 40<br>//1 | Ц      | 3 2/1/8            | -0.05005 | -1.13256 |
| 41<br>12  | н      | 5 906/1            | 0.27836  | -0.58976 |
| 12        | Ц      | -0.25208           | -3 72354 | -0.56475 |
| 43        | и<br>Ц | -0.23230           | 2 02582  | -0.30473 |
| 44        |        | -3.34040           | 5.90002  | -0.14007 |
| 40        |        | 2,00000            | -0.10091 | -0.02092 |
| 40        |        | 2.09099            | -2.91740 | -0.02230 |
| 47        |        | -1./0/4/           | 3.09900  | 0.09701  |
| 40        |        | 0.42077<br>0.46146 | 1.44317  | 0.39692  |
| 49        |        | 2.40140            | -4.38525 | 0.49803  |
| 50        | н      | 4.85162            | -0.04026 | 0.57181  |
| 51        | н      | -1.13551           | -4.40146 | 0.58529  |
| 52        | н      | 3.55359            | 3.19861  | 0.82767  |
| 53        | н      | -2.74627           | 3.26593  | 1.18558  |
| 54        | н      | 2.66753            | -3.12014 | 1.45591  |
| 55        | н      | 0.27390            | 4.16268  | 1.72250  |
| 56        | н      | -0.97386           | 1.86021  | 1.75286  |
| 57        | Н      | 1.13150            | -5.47405 | 2.24533  |
| 58        | Н      | 1.70259            | 4.26313  | 2.43489  |
| 59        | Н      | -0.16549           | -4.76197 | 2.85411  |
| 60        | Н      | 0.64546            | 3.16107  | 2.91351  |
| 61        | Н      | 1.29275            | -4.20523 | 3.20731  |
| 62        | Н      | -2.09736           | 0.73301  | 3.53080  |
| 63        | Н      | -0.46427           | -2.50776 | 3.71521  |
| 64        | Н      | -0.63470           | 0.92539  | 4.15185  |
| 65        | Н      | -1.57477           | -0.26300 | 4.66897  |
| 66        | Ν      | -1.72093           | 0.09299  | -1.04754 |
| 67        | Ν      | 1.63132            | 0.95084  | -0.24800 |
| 68        | Ν      | -1.55929           | 1.18349  | -0.21079 |
| 69        | Ν      | 0.83542            | 1.67921  | 0.61171  |
| 70        | Ν      | 0.06590            | -1.28320 | 0.85474  |
| 71        | Ν      | -0.47281           | -0.23542 | 1.57648  |

| 72 | В | -0.58097 | 1.18349 | 0.99752 |
|----|---|----------|---------|---------|
| 0  |   |          |         |         |

(X5) TptBu,MeLuMeBn\_a

| 1        | Lu     | 0.75370  | -1.20483 | -0.99685 |
|----------|--------|----------|----------|----------|
| 2        | С      | -0.42709 | 0.37569  | -5.48758 |
| 3        | С      | -2.71530 | 0.12917  | -4.48492 |
| 4        | С      | -1.20627 | 0.02921  | -4.20309 |
| 5        | С      | -0.88723 | -1.39646 | -3.79524 |
| 6        | С      | -0.99257 | 2.38458  | -3.10614 |
| 7        | С      | -0.86219 | 0.99651  | -3.10777 |
| 8        | С      | -0.61428 | 2.81028  | -1.85126 |
| 9        | С      | -0.57877 | 4.20078  | -1.30524 |
| 10       | С      | -2.70472 | -3.03753 | -0.23289 |
| 11       | С      | 2.98882  | -2.66110 | 0.78567  |
| 12       | С      | -2.31292 | -2.74094 | 1.23259  |
| 13       | C      | 5.04238  | -1.54342 | 1.64921  |
| 14       | C      | -1.96309 | -1.28599 | 1.39952  |
| 15       | C      | 2.87938  | -0.28417 | 1.54343  |
| 16       | C      | -1.14817 | -3.63450 | 1.64334  |
| 17       | C      | 2.28000  | 1.85203  | 1.63/14  |
| 18       |        | 3.51778  | -1.63264 | 1.77690  |
| 19       | C      | 2.17030  | 3.31006  | 1.89780  |
| 20       | C      | -1.95951 | 0.85151  | 1.95523  |
| 21       | C      | 3.21342  | 0.94806  | 2.10128  |
| 22       |        | -3.32023 | -3.15371 | 2.30270  |
| 23       |        | -2.57799 | -0.34449 | 2.22715  |
| 24       |        | -2.23630 | 2.20571  | 2.52252  |
| 25       |        | 3.15455  | -2.08050 | 3.21140  |
| 20<br>27 |        | -0.07037 | -0.23470 | -0.19710 |
| 21       |        | -0.05199 | 1.20000  | -5.70924 |
| 20       |        | -2.93012 | -0.40900 | -5.22245 |
| 20       |        | 2 04021  | 1 051479 | -3.31239 |
| 30       | и<br>Ц | -2.94031 | -2 00011 | -4.73002 |
| 32       | н      | -1.10400 | 2 028/7  | -3 82726 |
| 32       | н      | -3 21512 | -0 12689 | -3 68131 |
| 34       | н      | 0.07564  | -1 48218 | -3 63428 |
| 35       | н      | -1 37740 | -1 61834 | -2 97582 |
| 36       | н      | -0 74834 | 4 83947  | -2 02869 |
| 37       | н      | 0.30311  | 4 37569  | -0.91538 |
| 38       | H      | -1.93337 | -2.87832 | -0.81596 |
| 39       | H      | -1.26637 | 4.29871  | -0.61420 |
| 40       | Н      | -3,44190 | -2.45022 | -0.49999 |
| 41       | Н      | -2.98640 | -3.97279 | -0.31255 |
| 42       | Н      | 3.16484  | -2.35356 | -0.12777 |
| 43       | Н      | 5.27949  | -1.29873 | 0.72976  |
| 44       | Н      | 3.43965  | -3.51820 | 0.93406  |
| 45       | Н      | -0.23440 | 2.63564  | 0.82345  |
| 46       | Н      | 2.02353  | -2.77316 | 0.91311  |
| 47       | Н      | 2.15935  | 3.79457  | 1.04676  |
| 48       | Н      | -0.37004 | -3.43449 | 1.08066  |
| 49       | Н      | -1.40108 | -4.57370 | 1.52967  |
| 50       | Н      | 5.44017  | -2.41148 | 1.86892  |
| 51       | Н      | -2.47028 | 2.82136  | 1.79689  |
| 52       | Н      | 5.38218  | -0.86250 | 2.26637  |
| 53       | Н      | -4.18434 | -2.70485 | 2.21166  |
| 54       | Н      | -3.45770 | -4.12521 | 2.34577  |
| 55       | Н      | 2.93755  | 3.60482  | 2.43181  |
| 56       | н      | 1.34263  | 3.49315  | 2.38790  |

| 57 | Н | -0.92284 | -3.46567 | 2.58219  |
|----|---|----------|----------|----------|
| 58 | Н | 3.93973  | 1.12954  | 2.68500  |
| 59 | Н | -3.27812 | -0.49878 | 2.85028  |
| 60 | Н | -1.43842 | 2.53535  | 2.98607  |
| 61 | Н | -2.98214 | 2.14932  | 3.15583  |
| 62 | Н | -2.96816 | -2.88846 | 3.23597  |
| 63 | Н | 3.54550  | -2.96249 | 3.38765  |
| 64 | Н | 2.17993  | -2.13263 | 3.30093  |
| 65 | Н | 3.50809  | -1.43263 | 3.85569  |
| 66 | В | -0.01389 | 1.63233  | 0.40925  |
| 67 | Ν | -0.40974 | 0.58652  | -1.91089 |
| 68 | Ν | -0.26049 | 1.71829  | -1.12944 |
| 69 | Ν | -1.00727 | -0.70027 | 0.65458  |
| 70 | Ν | 1.79812  | -0.14283 | 0.76810  |
| 71 | Ν | 1.41980  | 1.18259  | 0.82390  |
| 72 | Ν | -1.01432 | 0.63006  | 1.00957  |
| 0  |   |          |          |          |

(X6) TptBu,MeLuMeBn\_b

| 1  | Lu | -1.32164 | -0.78819 | -0.80604 |
|----|----|----------|----------|----------|
| 2  | С  | 1.54811  | -3.77319 | -3.69799 |
| 3  | С  | 2.87928  | -1.28957 | -2.35020 |
| 4  | С  | 1.28701  | -3.36590 | -2.24382 |
| 5  | С  | 3.76911  | 1.10642  | -1.93064 |
| 6  | С  | 1.69034  | -1.92997 | -2.00748 |
| 7  | С  | -0.18643 | -3.57495 | -1.91920 |
| 8  | С  | -4.38105 | 2.95038  | -1.65581 |
| 9  | С  | 2.79338  | -0.00977 | -1.84167 |
| 10 | С  | 2.14095  | -4.25211 | -1.30801 |
| 11 | С  | 1.06267  | 4.25198  | -0.75131 |
| 12 | С  | -1.47222 | 3.72197  | -0.67089 |
| 13 | С  | -0.13980 | 3.37115  | -0.64592 |
| 14 | С  | -2.19452 | 2.53894  | -0.52091 |
| 15 | С  | -3.68147 | 2.36176  | -0.41436 |
| 16 | С  | -4.05053 | 0.89656  | -0.28147 |
| 17 | С  | -4.17165 | 3.10340  | 0.84114  |
| 18 | С  | -0.37170 | -3.41438 | 2.19345  |
| 19 | С  | 1.63161  | 0.52274  | 2.33474  |
| 20 | С  | 2.76690  | 1.47442  | 2.52897  |
| 21 | С  | 0.02530  | -0.97728 | 2.55255  |
| 22 | С  | -2.29260 | -1.90196 | 2.88643  |
| 23 | С  | -0.80646 | -2.17137 | 3.02507  |
| 24 | С  | 1.08030  | -0.36202 | 3.22924  |
| 25 | С  | -0.75772 | -2.15686 | 4.59825  |
| 26 | Н  | 0.97883  | -3.24141 | -4.29349 |
| 27 | Н  | 2.48954  | -3.61346 | -3.91752 |
| 28 | Н  | 1.34239  | -4.72423 | -3.81306 |
| 29 | Н  | 3.60467  | -1.66052 | -2.83742 |
| 30 | Н  | 4.52350  | 0.83630  | -2.49513 |
| 31 | Н  | -4.07077 | 2.48205  | -2.45803 |
| 32 | Н  | -0.72964 | -2.97281 | -2.46900 |
| 33 | Н  | 3.33330  | 1.89144  | -2.32174 |
| 34 | Н  | -0.43342 | -4.50354 | -2.11051 |
| 35 | Н  | -4.16667 | 3.90372  | -1.72917 |
| 36 | Н  | -5.35062 | 2.83973  | -1.56748 |
| 37 | Н  | 3.08957  | -4.13656 | -1.52388 |
| 38 | Н  | 1.89082  | -5.19255 | -1.42982 |
| 39 | Н  | 1.65866  | 3.90822  | -1.44910 |
| 40 | Н  | 0.78109  | 5.16178  | -0.98161 |
| 41 | н  | -3.76498 | 0.41387  | -1.08511 |

| 42 | Н | 4.09559  | 1.32743  | -1.03436 |
|----|---|----------|----------|----------|
| 43 | Н | -0.34366 | -3.38365 | -0.97090 |
| 44 | Н | -1.82861 | 4.59646  | -0.76964 |
| 45 | Н | 1.98312  | -3.99129 | -0.37652 |
| 46 | Н | -5.02229 | 0.81266  | -0.17766 |
| 47 | Н | 1.53642  | 4.26309  | 0.10622  |
| 48 | Н | 2.02832  | 1.88703  | 0.00636  |
| 49 | Н | -3.60326 | 0.51793  | 0.50437  |
| 50 | Н | -3.92147 | 4.04936  | 0.77891  |
| 51 | Н | -5.14536 | 3.02805  | 0.90559  |
| 52 | Н | -0.64679 | -3.29408 | 1.26010  |
| 53 | Н | -3.75772 | 2.70728  | 1.63670  |
| 54 | Н | 3.48895  | 1.25387  | 1.90435  |
| 55 | Н | -2.51349 | -1.79971 | 1.93471  |
| 56 | Н | 0.60153  | -3.51369 | 2.23753  |
| 57 | Н | 2.45772  | 2.38904  | 2.36110  |
| 58 | Н | -0.79963 | -4.21774 | 2.55867  |
| 59 | Н | -2.79568 | -2.65680 | 3.25666  |
| 60 | Н | -2.52363 | -1.08285 | 3.36665  |
| 61 | Н | 3.09824  | 1.40564  | 3.44877  |
| 62 | Н | 1.36008  | -0.52259 | 4.12268  |
| 63 | Н | 0.11141  | -2.48569 | 4.90414  |
| 64 | Н | -1.46911 | -2.73137 | 4.95366  |
| 65 | Н | -0.89236 | -1.23873 | 4.92321  |
| 66 | В | 1.19540  | 1.17374  | -0.14942 |
| 67 | Ν | 0.90866  | -1.08268 | -1.32828 |
| 68 | Ν | 1.58981  | 0.11204  | -1.22037 |
| 69 | Ν | -0.06552 | 2.02553  | -0.49625 |
| 70 | Ν | -1.34439 | 1.50314  | -0.42227 |
| 71 | Ν | 0.93707  | 0.43437  | 1.17436  |
| 72 | Ν | -0.06819 | -0.49835 | 1.29815  |
| 0  |   |          |          |          |

#### (X7) TptBu,MeLuMeNTf2

| 1  | Lu | 0.90235  | -1.28354 | -0.05014 |
|----|----|----------|----------|----------|
| 2  | С  | -2.36375 | -2.92884 | -3.75077 |
| 3  | С  | 3.27280  | 2.39663  | -3.39047 |
| 4  | С  | 2.68936  | -0.02325 | -3.25201 |
| 5  | С  | -0.19201 | -3.32403 | -2.54801 |
| 6  | С  | -1.70805 | -3.24733 | -2.39554 |
| 7  | С  | 2.80474  | 1.28131  | -2.44158 |
| 8  | С  | -2.24162 | -4.59637 | -1.90919 |
| 9  | С  | 0.75835  | 2.84340  | -2.00323 |
| 10 | С  | 1.47195  | 1.65660  | -1.84288 |
| 11 | С  | -2.10217 | -2.16580 | -1.41904 |
| 12 | С  | 3.84135  | 1.12238  | -1.32207 |
| 13 | С  | -0.37014 | 2.72123  | -1.21438 |
| 14 | С  | -1.46400 | 3.72260  | -1.00289 |
| 15 | С  | -3.37656 | -1.86076 | -0.95704 |
| 16 | С  | -3.23980 | -0.75061 | -0.15197 |
| 17 | С  | -4.29659 | -0.00718 | 0.59660  |
| 18 | С  | 2.89160  | -1.52823 | 2.56317  |
| 19 | С  | -0.80501 | 1.27454  | 2.97246  |
| 20 | С  | 1.09274  | 0.12902  | 3.08339  |
| 21 | С  | -1.99649 | 2.12418  | 3.27115  |
| 22 | С  | 3.44028  | 0.69653  | 3.52674  |
| 23 | С  | 2.42658  | -0.43823 | 3.50951  |
| 24 | С  | 0.22892  | 0.92803  | 3.82141  |
| 25 | С  | 2.28893  | -1.02597 | 4.91998  |
| 26 | Н  | -2.17849 | -3.65482 | -4.38255 |

| 28         H         -1.99846         -2.08949         -4.10103           29         H         2.06166         0.10746         -3.99290           30         H         4.15854         2.17272         -3.74544           31         H         -3.33184         -2.83896         -3.63142           32         H         3.56938         -0.26505         -3.60825           33         H         0.03465         -3.99443         -3.22613           34         H         3.32227         3.24379         -2.89970           35         H         -2.00226         -5.29378         -2.54555           36         H         0.15312         -2.44907         -2.82483           37         H         2.36251         -0.74065         -2.67105           38         H         0.99863         3.58599         -2.54450           39         H         -3.21701         -4.55060         -1.82427           40         H         2.33131         3.0110         -1.71217           41         H         -2.33131         3.0110         -1.17707           45         H         -1.84678         -4.80851         -1.03745                                                                                            | 27 | Н | 2.63743  | 2.48398  | -4.13109 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---|----------|----------|----------|
| 29         H         2.06166         0.10746         -3.99290           30         H         4.15854         2.17272         -3.74544           31         H         -3.33184         -2.83896         -3.63142           32         H         3.56938         -0.26505         -3.60825           33         H         0.03465         -3.99443         -3.22613           34         H         3.32227         3.24379         -2.89970           35         H         -2.00226         -5.29378         -2.54450           36         H         0.15312         -2.44907         -2.82483           37         H         2.36251         -0.74065         -2.67105           38         H         0.99863         3.58599         -2.54450           39         H         -3.21701         -4.55060         -1.82427           40         H         4.71359         0.90239         -1.71217           41         H         -1.33894         4.47819         -1.61524           42         H         0.20974         -3.57646         -1.69179           43         H         -4.18116         -2.32474         -1.15585 <td< td=""><td>28</td><td>Н</td><td>-1.99846</td><td>-2.08949</td><td>-4.10103</td></td<> | 28 | Н | -1.99846 | -2.08949 | -4.10103 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 29 | Н | 2.06166  | 0.10746  | -3.99290 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30 | Н | 4.15854  | 2.17272  | -3.74544 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 31 | н | -3.33184 | -2.83896 | -3.63142 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 32 | н | 3,56938  | -0.26505 | -3.60825 |
| 34H $3.32227$ $3.24379$ $-2.89970$ 35H $-2.00226$ $-5.29378$ $-2.55455$ 36H $0.15312$ $-2.44907$ $-2.82483$ 37H $2.36251$ $-0.74065$ $-2.67105$ 38H $0.99863$ $3.58599$ $-2.54450$ 39H $-3.21701$ $-4.55060$ $-1.82427$ 40H $4.71359$ $0.90239$ $-1.71217$ 41H $-1.33894$ $4.47819$ $-1.61524$ 42H $0.20974$ $-3.57646$ $-1.69179$ 43H $-4.18116$ $-2.32474$ $-1.15585$ 44H $-2.33131$ $3.30110$ $-1.17707$ 45H $-1.84678$ $-4.80851$ $-1.03745$ 46H $3.91045$ $1.96001$ $-0.81229$ 47H $3.56320$ $0.40185$ $-0.71902$ 48H $-1.43832$ $4.04436$ $-0.07799$ 49H $-4.30219$ $0.93013$ $0.30895$ 50H $-5.17145$ $-0.40934$ $0.41318$ 51H $-2.13642$ $1.65421$ $0.59397$ 52H $4.11000$ $-0.05279$ $1.55717$ 53H $3.02639$ $-1.14987$ $1.66896$ 54H $2.21351$ $-2.23478$ $2.51924$ 55H $3.50475$ $1.90540$ $2.88867$ 58H $-2.81484$ $1.60593$ $3.11790$ 59H $4.31655$ $0.34853$ $3.$                                                                                                                                                                                                                                                                                                                                       | 33 | н | 0.03465  | -3.99443 | -3.22613 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 34 | н | 3.32227  | 3.24379  | -2.89970 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 35 | H | -2.00226 | -5.29378 | -2.55455 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 36 | H | 0.15312  | -2.44907 | -2.82483 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 37 | Н | 2.36251  | -0.74065 | -2.67105 |
| 39H-3.21701-4.55060-1.8242740H4.713590.90239-1.7121741H-1.338944.47819-1.6152442H0.20974-3.57646-1.6917943H-4.18116-2.32474-1.1558544H-2.331313.30110-1.1770745H-1.84678-4.80851-1.0374546H3.910451.96001-0.8192947H3.563200.40185-0.7190248H-1.438324.04436-0.0779949H-4.302190.930130.3089550H-5.17145-0.409340.4131851H-2.136421.654210.5939752H-4.11000-0.052791.5571753H3.02639-1.149871.6689654H2.21351-2.234782.5192455H3.504751.090502.6312056H-1.993492.909882.6852957H3.73587-1.905402.8886758H-2.814841.605933.1179059H4.316550.348533.7945760H3.152661.382804.1648761H-1.964712.415374.2058262H0.328791.185124.7303563H1.59110-1.715424.9201964H3.14151-1.42313<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 38 | н | 0.99863  | 3.58599  | -2.54450 |
| 40H4.713590.90239-1.7121741H-1.338944.47819-1.6152442H0.20974-3.57646-1.6917943H-4.18116-2.32474-1.1558544H-2.331313.30110-1.1770745H-1.84678-4.80851-1.0374546H3.910451.96001-0.8192947H3.563200.40185-0.7190248H-1.438324.04436-0.0779949H-4.302190.930130.3089550H-5.17145-0.409340.4131851H-2.136421.654210.5939752H-4.11000-0.052791.5571753H3.02639-1.149871.6689654H2.21351-2.234782.5192455H3.504751.090502.6312056H-1.993492.909882.6852957H3.73587-1.905402.8886758H-2.814841.605933.1179059H4.316550.348533.7945760H3.152661.382804.1648761H-1.964712.415374.2058262H0.328791.185124.7303563H1.59110-1.715424.9201964H3.14151-1.423135.1930765H2.04461-0.31347 <td>39</td> <td>H</td> <td>-3.21701</td> <td>-4.55060</td> <td>-1.82427</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 39 | H | -3.21701 | -4.55060 | -1.82427 |
| 41H-1.338944.47819-1.6152442H0.20974-3.57646-1.6917943H-4.18116-2.32474-1.1558544H-2.331313.30110-1.1770745H-1.84678-4.80851-1.0374546H3.910451.96001-0.8192947H3.563200.40185-0.7190248H-1.438324.04436-0.0779949H-4.302190.930130.3089550H-5.17145-0.409340.4131851H-2.136421.654210.5939752H-4.11000-0.052791.5571753H3.02639-1.149871.6689654H2.21351-2.234782.5192455H3.504751.090502.6312056H-1.993492.909882.6852957H3.73587-1.905402.8886758H-2.814841.605933.1179059H4.316550.348533.7945760H3.152661.382804.1648761H-1.964712.415374.2058262H0.328791.185124.7303563H1.59110-1.715424.9201964H3.14151-1.423135.1930765H2.04461-0.313475.5475066N0.815010.84243 <td>40</td> <td>H</td> <td>4,71359</td> <td>0.90239</td> <td>-1.71217</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 40 | H | 4,71359  | 0.90239  | -1.71217 |
| 42H $0.20974$ $-3.57646$ $-1.69179$ 43H $-4.18116$ $-2.32474$ $-1.15585$ 44H $-2.33131$ $3.30110$ $-1.17707$ 45H $-1.84678$ $-4.80851$ $-1.03745$ 46H $3.91045$ $1.96001$ $-0.81929$ 47H $3.56320$ $0.40185$ $-0.71902$ 48H $-1.43832$ $4.04436$ $-0.07799$ 49H $-4.30219$ $0.93013$ $0.30895$ 50H $-5.17145$ $-0.40934$ $0.41318$ 51H $-2.13642$ $1.65421$ $0.59397$ 52H $-4.11000$ $-0.05279$ $1.55717$ 53H $3.02639$ $-1.14987$ $1.66896$ 54H $2.21351$ $-2.23478$ $2.51924$ 55H $3.50475$ $1.09050$ $2.63120$ 56H $-1.99349$ $2.90988$ $2.68529$ 57H $3.73587$ $-1.90540$ $2.88867$ 58H $-2.81484$ $1.60593$ $3.11790$ 59H $4.31655$ $0.34853$ $3.79457$ 60H $3.15266$ $1.38280$ $4.16487$ 61H $-1.96471$ $2.41537$ $4.20582$ 62H $0.32879$ $1.18512$ $4.73035$ 63H $1.59110$ $-1.71542$ $4.92019$ 64H $3.14151$ $-1.42313$ $5.19307$ 65H $2.04461$ $-0.31347$ $5.54750$ </td <td>41</td> <td>H</td> <td>-1.33894</td> <td>4.47819</td> <td>-1.61524</td>                                                                                                                                                                                                                                                         | 41 | H | -1.33894 | 4.47819  | -1.61524 |
| 43H-4.18116-2.32474-1.1558544H-2.331313.30110-1.1770745H-1.84678-4.80851-1.0374546H3.910451.96001-0.8192947H3.563200.40185-0.7190248H-1.438324.04436-0.0779949H-4.302190.930130.3089550H-5.17145-0.409340.4131851H-2.136421.654210.5939752H-4.11000-0.052791.5571753H3.02639-1.149871.6689654H2.21351-2.234782.5192455H3.504751.090502.6312056H-1.993492.909882.6852957H3.73587-1.905402.8886758H-2.814841.605933.1179059H4.316550.348533.7945760H3.152661.382804.1648761H-1.964712.415374.2058262H0.328791.185124.7303563H1.59110-1.715424.9201964H3.14151-1.423135.1930765H2.04461-0.313475.5475066N0.815010.84243-0.9950667N-1.21870-1.28777-0.9128068N-0.334111.51721 <td>42</td> <td>H</td> <td>0.20974</td> <td>-3.57646</td> <td>-1.69179</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 42 | H | 0.20974  | -3.57646 | -1.69179 |
| 44H-2.33131 $3.30110$ -1.1770745H-1.84678-4.80851-1.0374546H $3.91045$ $1.96001$ -0.8192947H $3.56320$ $0.40185$ -0.7190248H-1.43832 $4.04436$ -0.0779949H-4.30219 $0.93013$ $0.30895$ 50H-5.17145-0.40934 $0.41318$ 51H-2.13642 $1.65421$ $0.59397$ 52H-4.11000-0.05279 $1.55717$ 53H $3.02639$ -1.14987 $1.66896$ 54H2.21351-2.23478 $2.51924$ 55H $3.50475$ $1.09050$ $2.63120$ 56H-1.99349 $2.90988$ $2.68529$ 57H $3.73587$ $-1.90540$ $2.88867$ 58H-2.81484 $1.60593$ $3.11790$ 59H $4.31655$ $0.34853$ $3.79457$ 60H $3.15266$ $1.38280$ $4.16487$ 61H $-1.96471$ $2.41537$ $4.20582$ 62H $0.32879$ $1.18512$ $4.73035$ 63H $1.59110$ $-1.71542$ $4.92019$ 64H $3.14151$ $-1.42313$ $5.19307$ 65H $2.04461$ $-0.31347$ $5.54750$ 66N $0.81501$ $0.84243$ $-0.99506$ 67N $-1.21870$ $-1.28777$ $-0.91280$ 68N $-0.$                                                                                                                                                                                                                                                                                                                                                                                             | 43 | H | -4.18116 | -2.32474 | -1.15585 |
| 45H-1.84678-4.80851-1.0374546H $3.91045$ $1.96001$ -0.8192947H $3.56320$ $0.40185$ -0.7190248H-1.43832 $4.04436$ -0.0779949H-4.30219 $0.93013$ $0.30895$ 50H-5.17145-0.40934 $0.41318$ 51H-2.13642 $1.65421$ $0.59397$ 52H-4.11000-0.05279 $1.55717$ 53H $3.02639$ -1.14987 $1.66896$ 54H $2.21351$ -2.23478 $2.51924$ 55H $3.50475$ $1.09050$ $2.63120$ 56H-1.99349 $2.90988$ $2.68529$ 57H $3.73587$ -1.90540 $2.88867$ 58H-2.81484 $1.60593$ $3.11790$ 59H $4.31655$ $0.34853$ $3.79457$ 60H $3.15266$ $1.38280$ $4.16487$ 61H-1.96471 $2.41537$ $4.20582$ 62H $0.32879$ $1.18512$ $4.73035$ 63H $1.59110$ $-1.71542$ $4.92019$ 64H $3.14151$ $-1.28777$ $-0.91280$ 67N $-0.33411$ $1.51721$ $-0.60733$ 68N $-0.33411$ $1.51721$ $-0.60733$ 69N $-1.93500$ $-0.39641$ $-0.13309$ 70N $-0.57211$ $0.70094$ $1.77351$ 71N                                                                                                                                                                                                                                                                                                                                                                                            | 44 | Н | -2 33131 | 3 30110  | -1 17707 |
| 46H $3.91045$ $1.96001$ $-0.81929$ 47H $3.56320$ $0.40185$ $-0.71902$ 48H $-1.43832$ $4.04436$ $-0.07799$ 49H $-4.30219$ $0.93013$ $0.30895$ 50H $-5.17145$ $-0.40934$ $0.41318$ 51H $-2.13642$ $1.65421$ $0.59397$ 52H $-4.11000$ $-0.05279$ $1.55717$ 53H $3.02639$ $-1.14987$ $1.66896$ 54H $2.21351$ $-2.23478$ $2.51924$ 55H $3.50475$ $1.09050$ $2.63120$ 56H $-1.99349$ $2.90988$ $2.68529$ 57H $3.73587$ $-1.90540$ $2.88867$ 58H $-2.81484$ $1.60593$ $3.11790$ 59H $4.31655$ $0.34853$ $3.79457$ 60H $3.15266$ $1.38280$ $4.16487$ 61H $-1.96471$ $2.41537$ $4.20582$ 62H $0.32879$ $1.18512$ $4.73035$ 63H $1.59110$ $-1.71542$ $4.92019$ 64H $3.14151$ $-1.28777$ $-0.91280$ 67N $-1.21870$ $-1.28777$ $-0.91280$ 68N $-0.33411$ $1.51721$ $-0.60733$ 69N $-1.93500$ $-0.39641$ $-0.13309$ 70N $-0.57211$ $0.70094$ $1.77351$ 71N $0.60878$ $-0.02060$ $1.83609$ </td <td>45</td> <td>н</td> <td>-1.84678</td> <td>-4.80851</td> <td>-1.03745</td>                                                                                                                                                                                                                                                        | 45 | н | -1.84678 | -4.80851 | -1.03745 |
| 47H $3.56320$ $0.40185$ $-0.71902$ 48H $-1.43832$ $4.04436$ $-0.07799$ 49H $-4.30219$ $0.93013$ $0.30895$ 50H $-5.17145$ $-0.40934$ $0.41318$ 51H $-2.13642$ $1.65421$ $0.59397$ 52H $-4.11000$ $-0.05279$ $1.55717$ 53H $3.02639$ $-1.14987$ $1.66896$ 54H $2.21351$ $-2.23478$ $2.51924$ 55H $3.50475$ $1.09050$ $2.63120$ 56H $-1.99349$ $2.90988$ $2.68529$ 57H $3.73587$ $-1.90540$ $2.88867$ 58H $-2.81484$ $1.60593$ $3.11790$ 59H $4.31655$ $0.34853$ $3.79457$ 60H $3.15266$ $1.38280$ $4.16487$ 61H $-1.96471$ $2.41537$ $4.20582$ 62H $0.32879$ $1.18512$ $4.73035$ 63H $1.59110$ $-1.71542$ $4.92019$ 64H $3.14151$ $-1.42313$ $5.19307$ 65H $2.04461$ $-0.31347$ $5.54750$ 66N $0.81501$ $0.84243$ $-0.99506$ 67N $-1.21870$ $-1.28777$ $-0.91280$ 68N $-0.33411$ $1.51721$ $-0.60733$ 69N $-1.93500$ $-0.39641$ $-0.13309$ 70N $-0.57211$ $0.70094$ $1.77351$ <td>46</td> <td>н</td> <td>3.91045</td> <td>1.96001</td> <td>-0.81929</td>                                                                                                                                                                                                                                                                | 46 | н | 3.91045  | 1.96001  | -0.81929 |
| 111.11.438324.04436-0.0779949H-4.302190.930130.3089550H-5.17145-0.409340.4131851H-2.136421.654210.5939752H-4.11000-0.052791.5571753H3.02639-1.149871.6689654H2.21351-2.234782.5192455H3.504751.090502.6312056H-1.993492.909882.6852957H3.73587-1.905402.8886758H-2.814841.605933.1179059H4.316550.348533.7945760H3.152661.382804.1648761H-1.964712.415374.2058262H0.328791.185124.7303563H1.59110-1.715424.9201964H3.14151-1.423135.1930765H2.04461-0.313475.5475066N0.815010.84243-0.9950667N-1.21870-1.28777-0.9128068N-0.334111.51721-0.6073369N-1.93500-0.39641-0.1330970N-0.572110.700941.7735171N0.60878-0.020601.8360972B-1.317650.927910.425480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 47 | Н | 3 56320  | 0 40185  | -0 71902 |
| 49         H         -4.30219         0.93013         0.30895           50         H         -5.17145         -0.40934         0.41318           51         H         -2.13642         1.65421         0.59397           52         H         -4.11000         -0.05279         1.55717           53         H         3.02639         -1.14987         1.66896           54         H         2.21351         -2.23478         2.51924           55         H         3.50475         1.09050         2.63120           56         H         -1.99349         2.90988         2.68529           57         H         3.73587         -1.90540         2.88867           58         H         -2.81484         1.60593         3.11790           59         H         4.31655         0.34853         3.79457           60         H         3.15266         1.38280         4.16487           61         H         -1.96471         2.41537         4.20582           62         H         0.32879         1.18512         4.73035           63         H         1.59110         -1.71542         4.92019           64                                                                                              | 48 | Н | -1 43832 | 4 04436  | -0 07799 |
| 50H-5.17145-0.409340.4131851H-2.136421.654210.5939752H-4.11000-0.052791.5571753H $3.02639$ -1.149871.6689654H2.21351-2.234782.5192455H $3.50475$ 1.090502.6312056H-1.993492.909882.6852957H $3.73587$ -1.905402.8886758H-2.814841.605933.1179059H4.316550.348533.7945760H3.152661.382804.1648761H-1.964712.415374.2058262H0.328791.185124.7303563H1.59110-1.715424.9201964H3.14151-1.423135.1930765H2.04461-0.313475.5475066N0.815010.84243-0.9950667N-1.21870-1.28777-0.9128068N-0.334111.51721-0.6073369N-1.93500-0.39641-0.1330970N-0.572110.700941.7735171N0.60878-0.020601.8360972B-1.317650.927910.425480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 49 | н | -4 30219 | 0.93013  | 0 30895  |
| 51H-2.136421.65421 $0.59397$ 52H-4.11000-0.052791.5571753H $3.02639$ -1.149871.6689654H2.21351-2.234782.5192455H $3.50475$ 1.090502.6312056H-1.993492.909882.6852957H $3.73587$ -1.905402.8886758H-2.814841.605933.1179059H4.316550.348533.7945760H3.152661.382804.1648761H-1.964712.415374.2058262H0.328791.185124.7303563H1.59110-1.715424.9201964H3.14151-1.423135.1930765H2.04461-0.313475.5475066N0.815010.84243-0.9950667N-1.21870-1.28777-0.9128068N-0.334111.51721-0.6073369N-1.93500-0.39641-0.1330970N-0.572110.700941.7735171N0.60878-0.020601.8360972B-1.317650.927910.425480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50 | н | -5.17145 | -0.40934 | 0.41318  |
| 52H-4.11000-0.052791.5571753H $3.02639$ -1.149871.6689654H $2.21351$ -2.23478 $2.51924$ 55H $3.50475$ $1.09050$ $2.63120$ 56H-1.99349 $2.90988$ $2.68529$ 57H $3.73587$ -1.90540 $2.88867$ 58H-2.81484 $1.60593$ $3.11790$ 59H $4.31655$ $0.34853$ $3.79457$ 60H $3.15266$ $1.38280$ $4.16487$ 61H-1.96471 $2.41537$ $4.20582$ 62H $0.32879$ $1.18512$ $4.73035$ 63H $1.59110$ $-1.71542$ $4.92019$ 64H $3.14151$ $-1.42313$ $5.19307$ 65H $2.04461$ $-0.31347$ $5.54750$ 66N $0.81501$ $0.84243$ $-0.99506$ 67N $-1.21870$ $-1.28777$ $-0.91280$ 68N $-0.33411$ $1.51721$ $-0.60733$ 69N $-0.57211$ $0.70094$ $1.77351$ 71N $0.60878$ $-0.02060$ $1.83609$ 72B $-1.31765$ $0.92791$ $0.42548$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 51 | H | -2.13642 | 1.65421  | 0.59397  |
| 53H $3.02639$ $-1.14987$ $1.66896$ 54H $2.21351$ $-2.23478$ $2.51924$ 55H $3.50475$ $1.09050$ $2.63120$ 56H $-1.99349$ $2.90988$ $2.68529$ 57H $3.73587$ $-1.90540$ $2.88867$ 58H $-2.81484$ $1.60593$ $3.11790$ 59H $4.31655$ $0.34853$ $3.79457$ 60H $3.15266$ $1.38280$ $4.16487$ 61H $-1.96471$ $2.41537$ $4.20582$ 62H $0.32879$ $1.18512$ $4.73035$ 63H $1.59110$ $-1.71542$ $4.92019$ 64H $3.14151$ $-1.42313$ $5.19307$ 65H $2.04461$ $-0.31347$ $5.54750$ 66N $0.81501$ $0.84243$ $-0.99506$ 67N $-1.21870$ $-1.28777$ $-0.91280$ 68N $-0.33411$ $1.51721$ $-0.60733$ 69N $-0.57211$ $0.70094$ $1.77351$ 71N $0.60878$ $-0.02060$ $1.83609$ 72B $-1.31765$ $0.92791$ $0.42548$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 52 | H | -4.11000 | -0.05279 | 1.55717  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 53 | H | 3.02639  | -1.14987 | 1.66896  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 54 | H | 2.21351  | -2.23478 | 2.51924  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 55 | H | 3.50475  | 1.09050  | 2.63120  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 56 | H | -1.99349 | 2.90988  | 2.68529  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 57 | H | 3.73587  | -1.90540 | 2.88867  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 58 | н | -2.81484 | 1.60593  | 3.11790  |
| 60         H         3.15266         1.38280         4.16487           61         H         -1.96471         2.41537         4.20582           62         H         0.32879         1.18512         4.73035           63         H         1.59110         -1.71542         4.92019           64         H         3.14151         -1.42313         5.19307           65         H         2.04461         -0.31347         5.54750           66         N         0.81501         0.84243         -0.99506           67         N         -1.21870         -1.28777         -0.91280           68         N         -0.33411         1.51721         -0.60733           69         N         -1.93500         -0.39641         -0.13309           70         N         -0.57211         0.70094         1.77351           71         N         0.60878         -0.02060         1.83609           72         B         -1.31765         0.92791         0.42548                                                                                                                                                                                                                                                      | 59 | н | 4.31655  | 0.34853  | 3.79457  |
| 61         H         -1.96471         2.41537         4.20582           62         H         0.32879         1.18512         4.73035           63         H         1.59110         -1.71542         4.92019           64         H         3.14151         -1.42313         5.19307           65         H         2.04461         -0.31347         5.54750           66         N         0.81501         0.84243         -0.99506           67         N         -1.21870         -1.28777         -0.91280           68         N         -0.33411         1.51721         -0.60733           69         N         -1.93500         -0.39641         -0.13309           70         N         -0.57211         0.70094         1.77351           71         N         0.60878         -0.02060         1.83609           72         B         -1.31765         0.92791         0.42548                                                                                                                                                                                                                                                                                                                             | 60 | н | 3.15266  | 1.38280  | 4.16487  |
| 62H0.328791.185124.7303563H1.59110-1.715424.9201964H3.14151-1.423135.1930765H2.04461-0.313475.5475066N0.815010.84243-0.9950667N-1.21870-1.28777-0.9128068N-0.334111.51721-0.6073369N-1.93500-0.39641-0.1330970N-0.572110.700941.7735171N0.60878-0.020601.8360972B-1.317650.927910.425480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 61 | н | -1.96471 | 2.41537  | 4.20582  |
| 63         H         1.59110         -1.71542         4.92019           64         H         3.14151         -1.42313         5.19307           65         H         2.04461         -0.31347         5.54750           66         N         0.81501         0.84243         -0.99506           67         N         -1.21870         -1.28777         -0.91280           68         N         -0.33411         1.51721         -0.60733           69         N         -1.93500         -0.39641         -0.13309           70         N         -0.57211         0.70094         1.77351           71         N         0.60878         -0.02060         1.83609           72         B         -1.31765         0.92791         0.42548           0           -1.31765         0.92791                                                                                                                                                                                                                                                                                                                                                                                                                             | 62 | Н | 0.32879  | 1.18512  | 4.73035  |
| 64         H         3.14151         -1.42313         5.19307           65         H         2.04461         -0.31347         5.54750           66         N         0.81501         0.84243         -0.99506           67         N         -1.21870         -1.28777         -0.91280           68         N         -0.33411         1.51721         -0.60733           69         N         -1.93500         -0.39641         -0.13309           70         N         -0.57211         0.70094         1.77351           71         N         0.60878         -0.02060         1.83609           72         B         -1.31765         0.92791         0.42548           0           -1.31765         0.92791                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 63 | н | 1.59110  | -1.71542 | 4.92019  |
| 65         H         2.04461         -0.31347         5.54750           66         N         0.81501         0.84243         -0.99506           67         N         -1.21870         -1.28777         -0.91280           68         N         -0.33411         1.51721         -0.60733           69         N         -1.93500         -0.39641         -0.13309           70         N         -0.57211         0.70094         1.77351           71         N         0.60878         -0.02060         1.83609           72         B         -1.31765         0.92791         0.42548                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 64 | н | 3.14151  | -1.42313 | 5,19307  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 65 | Н | 2.04461  | -0.31347 | 5.54750  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 66 | Ν | 0.81501  | 0.84243  | -0.99506 |
| 68         N         -0.33411         1.51721         -0.60733           69         N         -1.93500         -0.39641         -0.13309           70         N         -0.57211         0.70094         1.77351           71         N         0.60878         -0.02060         1.83609           72         B         -1.31765         0.92791         0.42548                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 67 | Ν | -1.21870 | -1.28777 | -0.91280 |
| 69         N         -1.93500         -0.39641         -0.13309           70         N         -0.57211         0.70094         1.77351           71         N         0.60878         -0.02060         1.83609           72         B         -1.31765         0.92791         0.42548           0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 68 | N | -0.33411 | 1.51721  | -0.60733 |
| 70N-0.572110.700941.7735171N0.60878-0.020601.8360972B-1.317650.927910.425480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 69 | N | -1.93500 | -0.39641 | -0.13309 |
| 71 N 0.60878 -0.02060 1.83609<br>72 B -1.31765 0.92791 0.42548<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 70 | Ν | -0.57211 | 0.70094  | 1.77351  |
| 72 B -1.31765 0.92791 0.42548<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 71 | Ν | 0.60878  | -0.02060 | 1.83609  |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 72 | В | -1.31765 | 0.92791  | 0.42548  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0  |   |          |          |          |

## (X8) TptBu,MeLuMeOTf\_a

| 1  | Lu | -0.13770 | -1.42063 | 0.81601  |
|----|----|----------|----------|----------|
| 2  | С  | 0.48602  | -3.42979 | -3.97813 |
| 3  | С  | -2.36658 | 1.25386  | -3.42774 |
| 4  | С  | -1.46736 | -1.19358 | -3.45362 |
| 5  | С  | -1.56379 | -4.27741 | -2.83642 |
| 6  | С  | -1.60676 | 0.05265  | -2.90179 |
| 7  | С  | -0.32408 | -3.41136 | -2.60896 |
| 8  | С  | -0.78218 | -1.95521 | -2.52246 |
| 9  | С  | 1.62271  | 3.20566  | -1.90035 |
| 10 | С  | 0.39127  | -3.81291 | -1.44354 |
| 11 | С  | 1.87938  | 2.05036  | -0.98134 |

| 12       | С      | 3.09091  | 1.61239  | -0.46066 |
|----------|--------|----------|----------|----------|
| 13       | С      | -2.56508 | 3.57267  | 0.05492  |
| 14       | С      | 3.78819  | -1.82002 | 0.35006  |
| 15       | С      | 2.80162  | 0.46616  | 0.27385  |
| 16       | С      | 5.18377  | 0.14246  | 0.94214  |
| 17       | С      | -2.13934 | 2.43324  | 0.93046  |
| 18       | С      | 3.76268  | -0.42662 | 1.01928  |
| 19       | Ċ      | -2.42844 | 2.21787  | 2,25878  |
| 20       | č      | 3.34680  | -0.55801 | 2,48596  |
| 21       | Ċ      | -1 79891 | 1 03497  | 2 59609  |
| 22       | Ĉ      | -0.99960 | -0.98085 | 3 85627  |
| 23       | Č      | -1 74906 | 0 35544  | 3 93997  |
| 24       | Č      | -3 19013 | 0 12031  | 4 43249  |
| 25       | Č      | -1 03847 | 1 27393  | 4 93241  |
| 26       | н      | -0 10255 | -3 15508 | -4 71090 |
| 27       | н      | -2 70112 | 1 06060  | -4 32863 |
| 28       | н      | 0.81836  | -4 33625 | -4 14776 |
| 29       | н      | -1 77805 | -1 47809 | -4 30453 |
| 30       | н      | 1 24283  | -2 81037 | -3 91727 |
| 31       | н      | -2 03820 | -3 96541 | -3 63588 |
| 32       | н      | -1 76945 | 2 02957  | -3 46072 |
| 33       | н      | -1 201// | -5 200/7 | -2 96033 |
| 34       | н      | -3 12133 | 1 1/775  | -2.30033 |
| 35       | Ц      | 1 28861  | 2 87/63  | -2.05407 |
| 36       | и<br>Ц | 2 15607  | 2.07403  | 2.70007  |
| 27       |        | -2.15007 | 2 70127  | -2.03910 |
| 31<br>20 |        | 2.40001  | 3.70127  | -2.04344 |
| 20       |        | 0.75500  | 2 20007  | 1 40950  |
| 39       |        | 0.90490  | 3.00097  | -1.49009 |
| 40       |        | -0.77210 | 2.19270  | -1.40011 |
| 41       |        | 1.13990  | -3.19893 | -1.29232 |
| 42       |        | -3.02740 | 3.22329  | -0.73344 |
| 43       |        | -0.20792 | -3.79400 | -0.00099 |
| 44       |        | 4.00173  | -1.72309 | -0.00112 |
| 40       |        | 3.94431  | 2.01232  | -0.00100 |
| 40       |        | -1.77390 | 4.00090  | -0.22041 |
| 47       |        | 2 17000  | 0.12090  | 0.01424  |
| 40       |        | -3.17099 | 4.10994  | 0.00239  |
| 49       |        | 2.90950  | -2.24417 | 0.44530  |
| 50       |        | 4.4070Z  | -2.3///3 | 0.70319  |
| 51       |        | 5.1030U  | 1.00493  | 1.27 131 |
| 52       |        | 5.78207  | -0.40093 | 1.49087  |
| 53       | н      | 2.46526  | -0.98210 | 2.53946  |
| 54<br>55 |        | -2.95229 | 2.70911  | 2.82692  |
| 55       |        | 4.00235  | -1.10832 | 2.90523  |
| 50       |        | 3.30099  | 0.33131  | 2.09571  |
| 57       |        | -1.40975 | -1.58002 | 3.23934  |
| 58       | н      | -0.08858 | -0.82425 | 3.52993  |
| 59       | н      | -3.63933 | -0.51731 | 3.83860  |
| 60       | н      | -3.68047 | 0.96997  | 4.42748  |
| 61       | н      | -0.11450 | 1.42083  | 4.63804  |
| 62       | н      | -0.96254 | -1.38987 | 4.74617  |
| 63       | н      | -1.50690 | 2.13265  | 4.97586  |
| 64       | н      | -3.17029 | -0.23952 | 5.34455  |
| 65       | Н      | -1.03490 | 0.85720  | 5.81869  |
| 66       | N      | -1.00374 | 0.05226  | -1.70556 |
| 67       | N      | -0.48903 | -1.19843 | -1.45596 |
| 68       | N      | 0.92497  | 1.20904  | -0.56278 |
| 69       | N      | 1.47504  | 0.21427  | 0.20593  |
| 70       | N      | -1.36521 | 1.40146  | 0.47196  |
| 71       | N      | -1.14334 | 0.52069  | 1.52359  |
| 72       | В      | -0.59456 | 1.29512  | -0.85083 |

0

#### (X9) TptBu,MeLuMeOTf\_b

| 1        | Lu     | -0.10666 | -1.62460 | 0.07682  |
|----------|--------|----------|----------|----------|
| 2        | С      | -1.39766 | 0.01065  | -5.06482 |
| 3        | C      | 0.12502  | -1.57515 | -3.87519 |
| 4        | C      | -1.05311 | -0.61319 | -3.70783 |
| 5        |        | -2.30249 | -1.38602 | -3.22631 |
| 0<br>7   | C      | -0.76229 | 1.84473  | -2.88743 |
| ן<br>8   | C      | -0.71002 | 2 /0271  | -2.70724 |
| g        | C      | 4 73353  | -1 77658 | -1 17468 |
| 10       | C<br>C | -0.34866 | 3 85012  | -1 28301 |
| 11       | Č      | 2 71779  | -3 03116 | -0.39592 |
| 12       | Č      | 3.80974  | -2.03432 | 0.01431  |
| 13       | Č      | -4.40588 | -1.18231 | 0.53469  |
| 14       | Ċ      | 3.21050  | -0.72536 | 0.45905  |
| 15       | С      | 3.86143  | 0.39001  | 0.95056  |
| 16       | С      | 4.64641  | -2.61675 | 1.16987  |
| 17       | С      | 2.88276  | 1.33388  | 1.16437  |
| 18       | С      | 3.03073  | 2.73064  | 1.68715  |
| 19       | С      | -2.92384 | -2.82177 | 1.82192  |
| 20       | С      | -3.60804 | -1.36412 | 1.92092  |
| 21       | С      | -2.57137 | -0.24717 | 2.04519  |
| 22       | С      | -1.42678 | 1.55700  | 2.58391  |
| 23       | С      | -4.63938 | -1.36210 | 2.99911  |
| 24       | С      | -2.55866 | 0.84876  | 2.89098  |
| 25       | С      | -0.84986 | 2.78288  | 3.26305  |
| 26       | н      | -1.53278 | -0.70133 | -5.72496 |
| 27       | н      | -0.66107 | 0.58735  | -5.35489 |
| 20       |        | -2.21300 | 0.54065  | -4.98278 |
| 29       |        | -0.09304 | -2.24012 | -4.00077 |
| 30<br>21 |        | 2 56940  | -1.07363 | -4.10404 |
| 32       | н      | -2.30040 | 2 30917  | -3.91033 |
| 33       | н      | -3.03677 | -0 75689 | -3.06899 |
| 34       | н      | 0.30472  | -2 02393 | -3 02306 |
| 35       | H      | -2.09336 | -1.85803 | -2.39290 |
| 36       | Н      | -0.53530 | 4.40424  | -2.06910 |
| 37       | Н      | 4.21072  | -1.41831 | -1.92319 |
| 38       | Н      | 5.15783  | -2.61621 | -1.44700 |
| 39       | Н      | 5.42215  | -1.12917 | -0.91899 |
| 40       | Н      | 2.18216  | -2.64801 | -1.12206 |
| 41       | Н      | 0.54439  | 4.06405  | -0.93893 |
| 42       | Н      | 3.13490  | -3.86384 | -0.70133 |
| 43       | Н      | -1.01697 | 4.03217  | -0.58980 |
| 44       | н      | -3.79871 | -1.35480 | -0.21560 |
| 45       | н      | -5.15270 | -1.81525 | 0.50272  |
| 46       | н      | -4.74945 | -0.26635 | 0.47320  |
| 4/       | н      | 2.14027  | -3.21688 | 0.37389  |
| 48       | н      | 5.11330  | -3.42260 | 0.86281  |
| 49<br>50 |        | 2.70039  | 3.37029  | 0.99207  |
| 51       | н<br>Ц | -2 12216 | -2 80077 | 0.08104  |
| 52       | н      | 0 42605  | 2 58406  | 0.90104  |
| 53       | н      | 5 30380  | -1 95141 | 1 46572  |
| 54       | н      | -3.61915 | -3.51190 | 1.84578  |
| 55       | H      | 4.05638  | -2.84544 | 1.91861  |
| 56       | Н      | 3.96379  | 2.88920  | 1.93967  |
| 57       | н      | 2.45700  | 2.84868  | 2.47293  |

| Н | -5.29957                         | -2.06262                                             | 2.82026                                              |
|---|----------------------------------|------------------------------------------------------|------------------------------------------------------|
| Н | -2.31168                         | -2.94870                                             | 2.57598                                              |
| Н | -0.70692                         | 3.48797                                              | 2.59838                                              |
| Н | -5.08645                         | -0.49005                                             | 3.02155                                              |
| Н | -3.20531                         | 1.06609                                              | 3.55139                                              |
| Н | -4.20900                         | -1.53011                                             | 3.86419                                              |
| Н | 0.00463                          | 2.55143                                              | 3.68254                                              |
| Н | -1.47418                         | 3.10159                                              | 3.94827                                              |
| Ν | -0.34954                         | 0.19180                                              | -1.43571                                             |
| Ν | -0.14902                         | 1.39969                                              | -0.81615                                             |
| Ν | 1.87445                          | -0.49793                                             | 0.37100                                              |
| Ν | 1.66931                          | 0.79997                                              | 0.82296                                              |
| Ν | -1.50578                         | -0.19695                                             | 1.23397                                              |
| Ν | -0.80213                         | 0.93422                                              | 1.57567                                              |
| В | 0.32080                          | 1.51305                                              | 0.65551                                              |
|   |                                  |                                                      |                                                      |
|   | <b>Η Η Η Η Η Η Η Ζ Ζ Ζ Ζ Ζ Β</b> | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$ | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$ |

Paper II

Mixed Methyl Aryloxy Rare-Earth Metal Complexes Stabilized by a Superbulky Tris(pyrazolyl)borato Ligand



https://doi.org/10.1021/acs.organomet.9b00631. reprinted with permission from *Organometallics*, **2019**, *38*, 4485-4496 Copyright © 2019 American Chemical Society

# 

pubs.acs.org/Organometallics

# Mixed Methyl Aryloxy Rare-Earth-Metal Complexes Stabilized by a Superbulky Tris(pyrazolyl)borato Ligand

Verena M. Birkelbach, Christoph Stuhl, Cäcilia Maichle-Mössmer,<sup>©</sup> and Reiner Anwander\*<sup>©</sup>

Institut für Anorganische Chemie, Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany

Supporting Information

ABSTRACT: Various mixed methyl aryloxide complexes Tp<sup>tBu,Me</sup>LnMe(OAr) (Ln = Y, Lu) were obtained in moderate to high yields according to distinct synthesis protocols dependent on the metal size and sterics of the phenolic proligand. The reaction of Tp<sup>tBu,Me</sup>LuMe<sub>2</sub> and Tp<sup>tBu,Me</sup>YMe(AlMe<sub>4</sub>) via protonolysis with 1 or 2 equiv  $HOC_6H_2tBu_2$ -2,6-Me-4 in *n*-hexane gave the desired complexes  $Tp^{tBu,Me}LnMe(OAr)$ . Corresponding treatment of  $Tp^{tBu,Me}LuMe_2$  with the sterically less demanding HOC<sub>6</sub>H<sub>3</sub>Me<sub>2</sub>-2,6, HOC<sub>6</sub>H<sub>3</sub>iPr<sub>2</sub>-2,6 and HOC<sub>6</sub>H<sub>3</sub>(CF<sub>3</sub>)<sub>2</sub>-3,5 led to the formation of the bis(aryloxy) lutetium complexes Tp<sup>tBu,Me</sup>Lu(OAr)<sub>2</sub>. Application



of a salt-metathesis protocol employing Tp<sup>fBu,Me</sup>LnMe(AlMe<sub>4</sub>) and the potassium aryloxides KOAr made complexes Tp<sup>tBu,Me</sup>LnMe(OAr) accessible for the smaller aryloxy ligands as well. All complexes were analyzed by X-ray crystallography to compare the terminal Ln–Me bond lengths and to evaluate the implication of the methyl/aryloxy coordination for the exact cone angles  $\Theta^{\circ}$  of the  $[Tp^{tBu,Me}]$  ancillary ligand. Treatment of  $Tp^{tBu,Me}$ LnMe(AlMe<sub>4</sub>) (Ln = Lu, Y) with HOC<sub>6</sub>H<sub>2</sub>tBu<sub>2</sub>-2,6-Me-4 in the presence of 4-(dimethylamino)pyridine (dmap) produced ion-separated complexes  $[Tp^{Bu,Mc}LnMe(dmap)_2]-[Ma_AlOC_6H_2tBu_2-2,6-Me-4)]$ . The thermal instability of  $Tp^{tBu,Mc}LuMe(OC_6H_2tBu_2-2,6-Me-4)$  was revealed by the formation of  $(Tp^{(tBu-H)/(tBu)_2,Me})Lu(OC_6H_2tBu_2-2,6-Me-4)$  via intramolecular C–H-bond activation.

#### **INTRODUCTION**

The quest for methyl compounds has clearly and unmistakably coined the development of organorare-earth-metal (Ln) chemistry.<sup>1,2</sup> Upon proving their existence, feasibility, and anticipated high reactivity ([Li<sub>3</sub>LnMe<sub>6</sub>(tmeda)<sub>3</sub>], Schumann 1978),<sup>3</sup> it was the discovery by Watson and Bercaw that [Ln]- $CH_3$  moieties (Ln = Sc, Y, Lu) engage in methane activation<sup>4,5</sup> that triggered immense research. The synthesis of such highly reactive metallocene derivatives  $[Cp*_2LnMe]_x$  (x = 1 for Sc; x = 2 for Lu, Y; x = 3 for Sm; Cp\* = C<sub>5</sub>Me<sub>5</sub>) from LnCl<sub>3</sub>(THF)<sub>x</sub> precursors, however, involves a rather elaborate multistep procedure to ensure the formation of unsolvated, non-ate derivatives.<sup>4-6</sup> Notwithstanding, cyclopentadienyl ancillary ligands have played a key role in advancing Ln(III) methyl chemistry, and many homometallic  $[Cp_{2}^{R}LnMe(do)_{y}]_{x}$  complexes (y = 0, 1; x = 1, 2, 3) have been structurally characterized.<sup>4–18</sup> However, the kinetic stabilization of discrete dimethyl Ln(III) derivatives of the type  $[(L)LnMe_2]_r$  proved particularly challenging and depended on the monoanionic ancillary ligand L.<sup>2,19-21</sup> Not considering any prevailing ligand redistribution processes, methyl-bridged dimerized and oligomerized species display solid-state structural motifs favored by half-sandwich complexes, e.g., [Cp\*YMe<sub>2</sub>]<sub>3</sub>,<sup>11</sup> [Cp'ScMe<sub>2</sub>]<sub>2</sub> or  $[Cp'LnMe_2]_3$  (Ln = Tm, Lu;  $Cp' = C_5Me_4SiMe_3$ ).<sup>23</sup> So far, only sterically demanding N-coordinating ligands provided access to monometallic complexes [(L)LnMe2] (Chart 1), comprising  $[(Dipp)NC(tBu)CHC(tBu)N(Dipp)]ScMe_2$  (I, Dipp =  $C_6H_3iPr_2-2,6$ ,  $^{24}$  [(1-(NDipp)-2-(PPh\_2=NDipp)- $C_6H_4$ )]ScMe<sub>2</sub> (II),  $^{25}$  Tp<sup>fBu,Me</sup>LnMe<sub>2</sub> (III, Ln = Ho, Lu; Tp<sup>fBu,Me</sup> tris(pyrazolyl-fBu-3-Me-5)borato),  $^{26,27}$  as well as N-

or *P*-donor supported [2 {N(Dipp)C(Ph)N}C<sub>6</sub>H<sub>4</sub>CH=N-(Dipp)]ScMe<sub>2</sub> (IV),<sup>28</sup> [MeC(N(Dipp))CHC(Me)N-(CH)N(L))V(L) (V)<sup>29</sup> and N(2)PD- $(CH_2)_2N(Me)(CH_2)_2NMe_2)$ ]YMe<sub>2</sub> (V),<sup>29<sup>-</sup></sup> and N[2-PiPr<sub>2</sub>-4methylphenyl] $_2$ ScMe $_2$  (VI).

External donor stabilization was exploited for complexes Cp\*ScMe<sub>2</sub>(OPtBu<sub>3</sub>) (VII),<sup>31</sup> [N(SiMe<sub>3</sub>)(Dipp)]-LuMe<sub>2</sub>(THF)<sub>2</sub> (VIII),<sup>32</sup> and [(Dipp)NC(Me)CHC(Me)N- $(Dipp)]ScMe_2(THF) (IX).^{24}$ 

Trofimenko's unique Tp scorpionate ligands<sup>33,34</sup> seem especially suited for studying the reactivity of such [(L)-LnMe<sub>2</sub>] dimethyl compounds. Only very recently, we reported on a series of different mixed alkyl lutetium complexes Tp<sup>tBu,Me</sup>LuRMe with R representing alkyl (CH<sub>2</sub>SiMe<sub>3</sub>, CH<sub>2</sub>Ph) or weakly coordinating groups (chlorido, SO<sub>3</sub>CF<sub>3</sub> or  $N(SO_2CF_3)_2$ ).<sup>35</sup> The latter complexes were obtained from  $Tp^{tBu,Me}LuMe_2$  by applying SiMe<sub>4</sub>-elimination and salt-metathesis protocols.

We were further interested in whether the dimethyl complex  $Tp^{tBu,Me}LuMe_2^{26}$  or mixed methyl/aluminate complex  $Tp^{tBu,Me}LnMe(AlMe_4)$  (Ln = Y, Lu)<sup>36,37</sup> would also engage in selective protonolysis reactions. Aryloxy groups stand out for ease of steric and electronic tunability, chemical robustness, and ready availability.<sup>38</sup> Importantly, aryloxy ligands were shown to stabilize half-sandwich hydrocarbyl complexes  $[Cp*LnR(OAr)]_{x}$  (R = Me, CH(SiMe<sub>3</sub>)<sub>2</sub>, AlMe<sub>4</sub>; Ln = Sc, Y, La, Ce, Lu)<sup>39-44</sup> and were probed in  $\alpha$ -olefin polymerization. To the best of our knowledge, mixed methyl aryloxy



Received: September 17, 2019 Published: November 8, 2019



Chart 1. Structurally Characterized Monometallic Rare-Earth-Metal Dimethyl Complexes (L)LnMe<sub>2</sub>

rare-earth-metal complexes have not been characterized by Xray crystallography to date. Herein, we present the synthesis of various tris(pyrazolyl)borato-stabilized lutetium and yttrium methyl complexes  $Tp^{fBu,Me}LnMe(OAr)$  bearing distinct aryloxy ligands. Further exemplary reactivity studies revealed a thermally induced intramolecular C–H-bond activation of the ancillary ligand backbone and a donor (= 4-(dimethylamino)pyridine (dmap))-promoted cationization.

#### RESULTS AND DISCUSSION

Synthesis of Heteroleptic Bis(aryloxy) and Mixed Me/ OAr Ln(III) Complexes. We have shown previously that scorpionate-supported rare-earth-metal methyl complexes  $Tp^{tBu,Me}LuMe_2$  and  $Tp^{tBu,Me}Ln(AlMe_4)Me$  give access to mixed methyl alkyl Ln(III) complexes  $Tp^{tBu,Me}LuRMe$  (R = Article

CH<sub>2</sub>SiMe<sub>3</sub>, CH<sub>2</sub>Ph).<sup>35</sup> Therefore, it was reasoned that the role of these versatile precursors might be expanded to selective protonolyses with phenols as well as salt metatheses with potassium phenolates, respectively. We set out to treat Tp<sup>tBu,Me</sup>LuMe<sub>2</sub>, supposedly the most reactive because sterically least hindered, with various alkyl-substituted phenol derivatives HOAr (HOC<sub>6</sub>H<sub>3</sub>Me<sub>2</sub>-2,6, HOC<sub>6</sub>H<sub>3</sub>iPr<sub>2</sub>-2,6, HOC<sub>6</sub>H<sub>3</sub>(CF<sub>3</sub>)<sub>2</sub>-3,5,  $HOC_6H_2tBu_2$ -2,6-Me-4) (Scheme 1). The reaction of  $Tp^{tBu,Me}LuMe_2$  with an equimolar amount of the least bulky HOC<sub>6</sub>H<sub>3</sub>Me<sub>2</sub>-2,6 in *n*-hexane at ambient temperature was indicated by an instant methane evolution. After evaporation of the solvent, crystallization from n-hexane afforded colorless crystals identified as bis(aryloxy) derivatives  $Tp^{tBu,Me}Lu$ -(OC<sub>6</sub>H<sub>3</sub>Me<sub>2</sub>-2,6)<sub>2</sub> (1-Lu) and reactant Tp<sup>fBu,Me</sup>LuMe<sub>2</sub> via <sup>1</sup>H NMR spectroscopy. The formation of 1-Lu (via ligand redistribution or double protonolysis) could not be prevented by performing the reaction at lower temperature  $(-40 \ ^{\circ}C)$ . The same behavior was found when carrying out the reaction in toluene. In order to obtain the bis(aryloxy) lutetium complex more efficiently, the reaction was carried out with 2 equiv of the respective phenol. Similarly, protonolysis of Tp<sup>tBu,Me</sup>LuMe<sub>2</sub> with 1 equiv HOC<sub>6</sub>H<sub>3</sub>iPr<sub>2</sub>-2,6 in *n*-hexane led to the bis(aryloxy) derivative Tp<sup>tBu,Me</sup>Lu(OC<sub>6</sub>H<sub>3</sub>iPr<sub>2</sub>-2,6)<sub>2</sub> (2-Lu), even though the sterics of the respective phenol were markedly increased. The <sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H} NMR spectra of 1-Lu and 2-Lu at ambient temperatures showed only one set of signals for the pyrazolyl groups of the Tp<sup>tBu,Me</sup> ligand, similar to that of the starting compound.<sup>26</sup>

The X-ray diffraction (XRD) analyses of **1-Lu** and **2-Lu** revealed isomorphous structures (Figure S49 and S50). As typically observed for a coordination number CN = 5, the Tp<sup>rBu,Me</sup> ligand adopts a  $\kappa^3$ -coordination mode, thus accomplishing an environment of the lutetium center that is best described as distorted trigonal bipyramidal.<sup>37</sup> This is indicated by the Lu–N(pz) (pz = pyrazolyl) bond lengths, with the axial Lu–N distance being longer than the equatorial ones. Moreover, the Lu–N(pz) bond lengths in **1-Lu** (2.335(2)–2.439(3) Å) are in the same range as those reported for the starting compound Tp<sup>rBu,Me</sup>LuMe<sub>2</sub> (2.339(2)–2.483(2) Å),<sup>26</sup> while the ones of **2-Lu** (2.365(1)–2.517(1) Å) appear slightly elongated. This can be attributed to the increased steric bulk of the [OC<sub>6</sub>H<sub>3</sub>*i*Pr<sub>2</sub>-2,6] moieties. Interestingly, the Lu–O distances as well as the Lu–O–C bond angles in **1-Lu** and



Scheme 1. Synthesis Pathways toward Tp<sup>tBu,Me</sup>Lu(OAr)<sub>2</sub> and Mixed Methyl Aryloxy Ln(III) Complexes Tp<sup>tBu,Me</sup>LnMe(OAr)

DOI: 10.1021/acs.organomet.9b00631 Organometallics 2019, 38, 4485–4496

Article

| Table 1. Selected Structural Parameters $[Å, \circ]$ , Chemical Shifts in Benzene- $d_6$ [ppm], and Mathematically Exact Calculated   |
|---------------------------------------------------------------------------------------------------------------------------------------|
| Cone Angles $\Theta^{\circ}$ [°] of Selected Tp <sup>tBu,Me</sup> Lu(OAr) <sub>2</sub> or Tp <sup>tBu,Me</sup> LuMe(OAr) <sup>a</sup> |

|                                    | Tp <sup>tBu,Me</sup> LuMe <sub>2</sub> <sup>26</sup>                                                                    | 1-Lu     | 2-Lu     | 3-Lu     | 4-Lu     | 5-Lu     | 6-Lu      | 7-Lu     | 8-Lu              | 9-Lu     |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|----------|----------|-----------|----------|-------------------|----------|
| Lu1-N(pz)                          | 2.339(2)                                                                                                                | 2.335(2) | 2.365(1) | 2.315(2) | 2.321(3) | 2.328(2) | 2.323(1)  | 2.319(4) | n.a.              | 2.306(3) |
|                                    | 2.339(2)                                                                                                                | 2.362(9) | 2.370(1) | 2.318(2) | 2.345(3) | 2.334(2) | 2.330(1)  | 2.322(4) |                   | 2.380(3) |
|                                    | 2.483(2)                                                                                                                | 2.439(9) | 2.517(1) | 2.397(2) | 2.626(3) | 2.492(2) | 2.502(1)  | 2.442(4) |                   | 2.390(3) |
| Lu1-01/02                          | n.a.                                                                                                                    | 2.052(2) | 2.072(1) | 2.064(2) | 2.092(2) | 2.053(2) | 2.0548(9) | 2.085(3) | n.a.              | 2.068(2) |
|                                    |                                                                                                                         | 2.06(2)  | 2.038(1) | 2.090(2) |          |          |           |          |                   |          |
| Lu1-C(Me)                          | 2.364(3)/2.375(2)                                                                                                       | n.a.     | n.a.     | n.a.     | 2.338(4) | 2.358(3) | 2.362(1)  | 2.339(6) | n.a.              | 2.381(3) |
| Lu1-O1-C26/25                      | n.a.                                                                                                                    | 170.9(2) | 171.8(1) | 145.3(2) | 168.2(2) | 167.2(2) | 168.35(9) | 150.9(3) | n.a.              | 175.9(2) |
|                                    |                                                                                                                         | 174(3)   | 175.4(1) | 147.3(2) |          |          |           |          |                   |          |
| $^{1}$ H $\delta$ (Lu–Me)          | -0.08                                                                                                                   | n.a.     | n.a.     | n.a.     | 0.67     | 0.55     | 0.50      | 0.37     | $-0.09^{b}$       | n.a.     |
| $^{13}$ C $\delta$ (Lu–Me)         | 33.0                                                                                                                    | n.a.     | n.a.     | n.a.     | 40.4     | 32.2     | 32.1      | 32.2     | 26.7 <sup>b</sup> | n.a.     |
| cone angle $\Theta^{\circ c}$      | 277.1                                                                                                                   | 276.1    | 272.5    | 280.4    | 278.1    | 276.1    | 279.2     | 280.3    | n.a.              | 286.3    |
| <sup>a</sup> n.a. (not available). | a. (not available). <sup>b</sup> Measured in THF- $d_8$ . <sup>c</sup> See the Supporting Information for calculations. |          |          |          |          |          |           |          |                   |          |

2-Lu are quite similar (Table 1). The treatment of  $Tp^{tBu,Me}LuMe_2$  with 2 equiv of the increasingly electron deficient phenol HOC<sub>6</sub>H<sub>3</sub>(CF<sub>3</sub>)<sub>2</sub>-3,5 under reaction conditions chosen as for 1-Lu and 2-Lu led to rapid decomposition of the dimethyl complex and a complicated reaction mixture. Therefore, a precooled solution of the reactant TptBu,MeLuMe2 in toluene was prepared and the respective phenol was added. Crystallization of the residue from toluene gave the bis(aryloxy) derivative Tp<sup>tBu,Me</sup>Lu- $[OC_6H_3(CF_3)_2-3,5]_2$  (3-Lu) in good yield. The <sup>1</sup>H NMR spectrum of 3-Lu showed the pyrazolyl signals slightly shifted to higher fields compared to the starting material. Again, the solid-state structure analysis revealed a distorted trigonal bipyramidal coordination geometry, consistent with the aforementioned congeners (Figure S51). The marginally shortened Ln-N(pz) bond lengths compared with 1-Lu and 2-Lu (2.315(2)-2.397(2) Å for 3-Lu) could be attributed to the decreased steric bulk of 3,5-substituted aryloxy ligand. Striking is the bending of the Lu-O-C linkages (145.3(2) and 147.3(2)°), which, however, was found even more pronounced in transition metal complexes, e.g., for  $[\kappa^{\frac{3}{5}}-C_{6}H_{3}-2,6-(CH_{2}PtBu_{2})_{2}Ir(CH_{3})[OC_{6}H_{3}(CF_{3})_{2}-3,5]$  (131.4(4)°)<sup>45</sup> and  $(PPh_3)_2Ni[OC_6H_3(CF_3)_2-3,5]_2$  (122.4(2), 121.0(2)°).<sup>46</sup> Unfortunately, the protonolysis reactions of  $Tp^{fBu,Me}YMe(AlMe_4)$ with 2 equiv HOAr to give the respective bis(aryloxy) yttrium congeners did not give any clean conversion; however, degradation of the ancillary ligand was observed.

The targeted mixed methyl aryloxy Ln(III) complexes could be eventually achieved by utilizing the sterically demanding phenol HOC<sub>6</sub>H<sub>2</sub>tBu<sub>2</sub>-2,6-Me-4. As for the aforementioned syntheses, instant methane evolution, when treating a suspension of Tp<sup>tBu,Me</sup>LuMe<sub>2</sub> in *n*-hexane with the tBusubstituted phenol, indicated a successful protonolysis reaction. The formation of complex Tp<sup>tBu,Me</sup>LuMe- $(OC_6H_2tBu_2-2,6-Me-4)$  (4-Lu) could be confirmed by <sup>1</sup>H and <sup>13</sup>C NMR spectroscopy. The proton resonances of the pyrazolyl moieties appeared in the same region as for the precursor. Furthermore, the lutetium-bonded methyl ligand shows one narrow singlet at  $\delta = 0.67$  ppm, which is significantly shifted downfield in comparison with the reactant  $(\delta = -0.08 \text{ ppm})$ <sup>26</sup> A broad resonance at 1.40 ppm is attributable to the overlapping signals of the tert-butyl substituents of the pyrazolyl moieties as well as of the aryloxy ligand. Furthermore, the methyl groups of the pyrazolyl ligand gave one broad singlet at  $\delta$  = 2.08 ppm (Figure S16 in SI). The aromatic protons of the aryloxy ligand overlap with the signal of benzene- $d_6$  but could be unequivocally identified by <sup>1</sup>H–<sup>1</sup>H COSY NMR spectroscopy. The <sup>13</sup>C NMR spectroscopic analysis gave a signal for the Lu–Me moiety at  $\delta$  = 40.4 ppm (Figure S17 in SI). It is noteworthy that an excess of HOC<sub>6</sub>H<sub>2</sub>tBu<sub>2</sub>-2,6-Me-4 (>2 equiv) did not lead to a bis(aryloxy) lutetium complex, mainly attributable to sterics.

The XRD analysis of **4-Lu** revealed a monometallic complex with a distorted trigonal bipyramidal coordination geometry of the lutetium center, consistent with the aforementioned complexes (Figure 1). The  $Ln-Tp^{fBu,Me}$  entity exhibits one



**Figure 1.** ORTEP representation of the crystal structure of **4-Lu** with atomic displacement parameters set at the 50% level. Hydrogen atoms except for BH are omitted for clarity. Selected bond lengths [Å] and angles [°] for **4-Lu** are given in Table 1.

significantly elongated Lu–N(pz) bond of 2.626(3) Å compared to the respective precursor, which nicely displays the coordination flexibility of the scorpionate ligand. The Ln–C(Me) bond length of 2.338(4) Å of five-coordinate complex **4-Lu** compares well with those of similar methyl complexes, e.g., Tp<sup>tBu,Me</sup>LuMe<sub>2</sub> (2.364(3)/2.375(2) Å),<sup>26</sup> but is slightly elongated compared with the methyl triflate complex Tp<sup>tBu,Me</sup>LuMe(OTf) (2.327(4) Å),<sup>35</sup> as well as [(DippN)<sub>2</sub>C]<sub>2</sub>LuMe (2.314(3) Å).<sup>47</sup> Additionally, the Ln–O distance of 2.092(2) Å of **4-Lu** is slightly elongated compared to the range observed for 4-coordinate Lu(OC<sub>6</sub>H<sub>2</sub>tBu<sub>2</sub>-2,6)<sub>2</sub>(AlMe<sub>4</sub>) (1.999(3) and 2.006(3) Å)<sup>43</sup> and homoleptic "3-coordinate" Lu(OC<sub>6</sub>H<sub>3</sub>tBu<sub>2</sub>-2,6)<sub>3</sub> (2.02 Å).<sup>48</sup>

In order to access mixed methyl aryloxy rare-earth-metal complexes of sterically less demanding aryloxy ligands, we examined complexes  $Tp^{fBu,Me}LnMe(AlMe_4)$  (Ln = Y, Lu) according to salt metathesis reactions. Here, precipitation of KAlMe<sub>4</sub> is considered more advantageous than release of non-



Figure 2. ORTEP representation of the crystal structures of 5-Y (left) and 6-Lu (right) with atomic displacement parameters set at the 50% level. Hydrogen atoms except for BH are omitted for clarity. Selected bond lengths [Å] and angles [°] for 5-Y and 6-Lu are given in Tables 1 and 2.

innocent AlMe<sub>3</sub> when applying a protonolysis protocol. Initial synthesis attempts with the sterically "most favored" pair  $Tp^{tBu,Me}YMe(AlMe_4)/KOC_6H_2tBu_2-2,6-Me-4$  toward putative  $Tp^{tBu,Me}YMe(OC_6H_2tBu_2-2,6-Me-4)$  (4-Y), however, failed in different solvents. To our great surprise, protonolysis of  $Tp^{\mathit{tBu,Me}}YMe(AlMe_4)$  with the respective phenolic proligand instead succeeded under mild reaction conditions (2 h at -35 °C; rapid decomposition of the yttrium complex in solution at ambient temperature) to yield 4-Y (Scheme 1). Other protonolysis attempts at mixed methyl/aryloxy Ln(III) complexes employing  $Tp^{fBu,Me}LnMe(AlMe_4)$  (Ln = Y, Lu) and less bulky HOAr led to complicated mixtures of products and no clean conversion. Single-crystalline 4-Y was obtained in good yields from a saturated solution in toluene. The proton NMR spectrum of 4-Y in toluene- $d_8$  shows a broad singlet at  $\delta$ = 0.27 ppm for the terminally bonded Me ligand but no Y-H coupling could be detected (Figure S11 in SI, 89Y: nuclear spin 1/2, natural abundance 100%). Therefore, NMR spectroscopic analyses were performed in  $\text{THF-}d_8$  to exclude signal coalescence. Rapid decomposition of 4-Y in donor solvents, however, required low-temperature experiments. Remarkably, the change of the NMR solvent led to a strong shift of the Y-Me resonance revealing a doublet at  $\delta = -0.36$  ppm with  $^{2}J(YH) = 1.8$  Hz. The  $^{1}H-^{89}Y$  HSQC NMR spectrum of 4-Y at 0 °C shows a cross peak at  $\delta$  = 556 ppm on the <sup>89</sup>Y NMR scale (Figure S15 in SI), located highfield compared to the reactant Tp<sup>rBu,Me</sup>YMe(AlMe<sub>4</sub>) ( $\delta$  = 798 ppm).<sup>27</sup> The <sup>13</sup>C{<sup>1</sup>H} NMR spectrum displays a doublet at  $\delta$  = 26.8 ppm for the Y– Me moiety with  ${}^{1}J(YC) = 44.6$  Hz. Despite several attempts, single crystals of 4-Y suitable for an X-ray crystallographic study could not be obtained.

The salt metathesis reactions involving Tp<sup>fBu,Me</sup>LnMe-(AlMe<sub>4</sub>) (Ln = Y, Lu) and the sterically less bulky  $KOC_6H_3Me_2$ -2,6 and  $KOC_6H_3iPr_2$ -2,6 proceeded as envisaged (Scheme 1). Combining a solution of the rare-earth-metal precursor in toluene and a suspension of the potassium aryloxide in toluene and stirring the mixture for 6 h gave complexes Tp<sup>fBu,Me</sup>LnMe(OC<sub>6</sub>H<sub>3</sub>Me<sub>2</sub>-2,6) (5-Ln; Ln = Y, Lu) or Tp<sup>fBu,Me</sup>LnMe(OC<sub>6</sub>H<sub>3</sub>iPr<sub>2</sub>-2,6) (6-Ln; Ln = Y, Lu) along with insoluble K(AlMe<sub>4</sub>). Upon separation of the latter via filtration, crystals of 5-Ln and 6-Ln could be grown from saturated solutions of toluene in moderate to good yields. The <sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H} NMR spectroscopic analyses clearly corroborated the formation of mixed methyl aryloxy Ln(III) complexes. The Tp<sup>fBu,Me</sup> signals of both complexes 5-Ln and 6-Ln are very similar and feature only one set of signals, as

already observed for the aforementioned complexes. Also, the resonances of the Ln(III)-bonded methyl group appeared in the same region. Complex 5-Y shows a doublet for the Y-Me molety at  $\delta = 0.46$  ppm with <sup>2</sup>J(YH) = 1.8 Hz (cf., 6-Y: doublet at  $\delta = 0.50$  ppm, <sup>2</sup>J(YH) = 1.9 Hz), whereas the terminal methyl group of **5-Lu** is detected at  $\delta$  = 0.55 ppm (6-Lu: singlet at  $\delta$  = 0.50 ppm), slightly shifted to lower field. For the yttrium congener the respective <sup>13</sup>C signal revealed a doublet at  $\delta$  = 22.5 ppm (<sup>1</sup>J(YC) = 51.2 Hz) and the <sup>1</sup>H-<sup>89</sup>Y HSQC NMR spectrum shows a cross peak at  $\delta$  = 580 ppm. As expected, the Lu–Me carbon shift was found at  $\delta$  = 32.2 ppm, slightly shifted downfield compared with 5-Y. The carbon resonances of the terminal methyl ligands of complexes 6-Ln both give a singlet at  $\delta = 32.1$  ppm; however, the Y-C coupling for 6-Y could not be observed. Additionally, the  $^{1}\text{H}-^{89}\text{Y}$  HSQC NMR shows a cross peak at  $\delta$  = 578 ppm, almost identical to the <sup>89</sup>Y resonance of 5-Y.

Complexes 5-Ln and 6-Ln were further analyzed by means of XRD (5-Y and 6-Lu, Figure 2; 5-Lu, Figure S52 in SI; 6-Y, Figure S53 in SI). The crystal structures show a distorted trigonal bipyramidal geometry around the rare-earth-metal center as expected. The determined Ln-N(pz) bond lengths are in line with those discussed above and in the respective precursors (e.g.,  $Tp^{tBu,Me}YMe(AlMe_4)$ : 2.357(2)–2.418(2) Å).<sup>37</sup> Furthermore, all complexes nicely demonstrate the scorpionate character of the Tp ligand with two similar Ln-N(pz) bond lengths and the third slightly elongated. Additionally, the Ln-C(Me) distances (5-Y 2.409(2) Å; 5-Lu 2.358(3) Å; 6-Y 2.404(2) Å; 6-Lu 2.362(1) Å) and the Ln-O distances (5-Y 2.080(1) Å; 5-Lu 2.053(2) Å); 6-Y 2.087(1) Å; 6-Lu 2.0548(9) Å) compare well and reflect the distinct size of the metal centers. For further comparison, the terminal  $Y-C(CH_3)$  distances (5-Y: 2.409(2) Å, 6-Y: 2.404(2) Å) are similar to those detected for  $Tp^{tBu,Me}YMe$ - $(AlMe_4)$  (2.382(3) Å)<sup>37</sup> and Y(CH<sub>3</sub>)[(AlMe<sub>2</sub>){OSi-(OtBu)<sub>3</sub>}<sub>2</sub>][OSi(OtBu)<sub>3</sub>] (2.438(2) Å).<sup>49</sup> Similarly, the Ln-O distances in complexes 5-Ln and 6-Ln lie in the expected range, e.g.,  $Y(OC_6H_2Me_3\cdot2,4,6)_3(THF)_3$  (Y-O: 2.104(4)-2.114(5) Å),<sup>50</sup> [Y( $\mu$ -OC<sub>6</sub>H<sub>3</sub>Me\_2-2,6)(OC<sub>6</sub>H<sub>3</sub>Me<sub>2</sub>-2,6)<sub>2</sub>(THF)]<sub>2</sub> (Y-O<sub>terminal</sub>: 2.046 (6) Å, 2.075(6) Å),<sup>51</sup> 1-Lu (2.052(2), 2.06(2) Å), Ln(OC<sub>6</sub>H<sub>3</sub>iPr<sub>2</sub>-2,6)<sub>3</sub>(THF)<sub>2</sub> (Y: 2.065(7) - 2.086(7) Å<sup>52</sup> and 2.069(3) - 2.086(2) Å;<sup>53</sup> Lu: av. 2.044 Å).  $^{54}$  Moreover, the Ln–O–C bond angles on 5-Ln and **6-Ln** range from 167.2(2) to 168.35(9)°.

The salt-metathesis protocol was also applicable for the pairs  $Tp^{tBu,Me}LnMe(AlMe_4)/KOC_6H_3(CF_3)_2$ -3,5 (Ln = Y, Lu),

subject to certain restrictions. While the synthesis of the lutetium complex  $Tp^{tBu,Me}LnMe[OC_6H_3(CF_3)_2-3,5]$  (7-Lu) succeeded in toluene under the reaction conditions previously applied for 5-Ln and 6-Ln (Scheme 1), <sup>1</sup>H NMR reaction studies revealed decomposition of the Tp<sup>tBu,Me</sup> ligand for yttrium. Subsequently, milder reaction conditions (4 h at -35°C) were chosen for the effective synthesis of 7-Y. The <sup>1</sup>H NMR spectra of 7-Lu and 7-Y show similar shifts of the Ln-C(Me) moiety at  $\delta$  = 0.37 and 0.27 ppm (doublet with <sup>2</sup>*J*(YH) = 1.8 Hz). Compared to other Me/OAr congeners a shift to higher fields was observed, which is in accordance with the electron-withdrawing CF<sub>3</sub> groups of the aryloxy ligand. <sup>19</sup>F NMR spectroscopy clearly identified both complexes at  $\delta$  = -62.6 ppm (7-Y and 7-Lu), but unfortunately the expected quartet for the C-F coupling was hardly visible in the <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (7-Y: 132.3 ppm; 7-Lu: 132.1 ppm) and could also not be detected with longer measurement times due to decomposition of the complexes in solution, especially for 7-Y. Despite this, Ln–C(Me) carbon resonances were found at  $\delta$  = 22.3 ppm as a doublet for yttrium  $({}^{1}J(YC) = 50.8 \text{ Hz})$  and as a singlet for lutetium at  $\delta$  = 32.2 ppm. The <sup>1</sup>H–<sup>89</sup>Y HSQC NMR spectrum shows a cross peak at  $\delta$  = 620 ppm, considerably shifted downfield compared with complexes 4-Y, 5-Y, and 6-Y.

Suitable crystals for XRD were obtained from saturated solutions in toluene at -35 °C (7-Y, Figure 3; 7-Lu, Figure



**Figure 3.** ORTEP representation of the crystal structure of 7-Y with atomic displacement parameters set at the 50% level. Hydrogen atoms except for BH, the other molecules in the unit cell, and the disorder in one CF<sub>3</sub> group are omitted for clarity. Selected bond lengths [Å] and angles [°] for 7-Y are given in Table 2.

S54 in SI). In both complexes, the Ln(III) centers adopt the typical distorted trigonal bipyramidal geometry. The Ln–N(pz) bond lengths (7-Y: 2.33(1)–2.52(1) Å; 7-Lu:

2.319(4)–2.442(4) Å) are slightly shortened compared with **5-Ln**, likely reflecting the decreased steric hindrance in the 2and 6-positions of the aryloxy ligand. The Ln–C(Me) distances of 2.45(1) Å (7-Y) and 2.339(6) Å (7-Lu) as well as the Ln–O distances of 2.10(1) Å (7-Y) and 2.085(3) Å (7-Lu) are in the expected range. As already observed for **3-Lu**, the Ln–O–C bond angles (7-Y: 148(1)°, 7-Lu: 150.9(3)°) appear strongly bent compared to the complexes bearing other aryloxy ligands.

For better comparability, Table 1 and Table 2 show selected structural parameters, and <sup>1</sup>H and <sup>13</sup>C NMR chemical shifts of the important Ln-Me moieties. Furthermore, we were interested in the evaluation of the coordination behavior of the  $\lceil Tp^{\prime Bu,Me} \rceil$  ancillary ligand in the presence of different sterically demanding coligands. Hence, we calculated the mathematically exact cone angles  $\Theta^{\circ}$  (Tables 1 and Table 2) according to a method previously developed by Allen et al.<sup>5</sup> and implemented by our group for scorpionate ligands.<sup>56</sup> A noticeable trend was revealed: the cone angles reach a maximum in the presence of the fluorinated aryloxy ligand  $[OC_6H_3(CF_3)_2-3,5]$  ( $\Theta^\circ$ : 5-Ln < 6-Ln < 7-Ln). Apparently, the CF<sub>3</sub> substituents in the peripheral 3- and 5-positions exhibit the least interactions with the ancillary ligand. Cone angles of similar complexes of lutetium were already reported to range from 277.1° to 280.9°.35 This compares well with the mixed methyl aryloxy rare-earth-metal complexes under study. The calculations also nicely document that the cone angles  $\Theta^\circ$ of 5-Ln, 6-Ln, and 7-Ln increase with decreasing metal size, as expected for a given ligand set. Comparing only the lutetium complexes, it is interesting to note that the cone angle is marginally larger in the presence of aryloxy ligands with the sterically more demanding iPr and tBu groups in 2- and 6positions ( $\Theta^{\circ}$ : 5-Lu < 4-Lu < 6-Lu).

**Reactivity Pattern.** The overall thermal stability and reactivity toward additional donor molecules was probed exemplarily for methyl aryloxides **4-Ln**. As mentioned before, **4-Y** is temperature-sensitive and hence, expected to be the most reactive derivative. Accordingly, the pairs  $Tp^{tBu,Me}LnMe(AlMe_4)/HOC_6H_2tBu_2-2,6-Me-4$  (Ln = Lu, Y) were examined in the presence of dmap (Scheme 2). After 1 h a white precipitate of **8-Ln** had formed, which could be separated and further analyzed. Fortunately, the yttrium congener could be subjected to a crystal structure analysis, which confirmed the formation of ion pairs  $[Tp^{tBu,Me}LnMe(dmap)_2][Me_3Al-(OC_6H_2tBu_2-2,6-Me-4)]$  (Figure 4, left). The formation of ionic homoaluminates in donor solvents is well-known (e.g.,

Table 2. Selected Structural Parameters [Å, °], Chemical Shifts, and Coupling Constants in Benzene- $d_6$  [ppm, Hz], and Mathematically Exact Calculated Cone Angles  $\Theta^{\circ}$  [°] of Complexes Tp<sup>fBu,Me</sup>YMe(OAr)<sup>*a*</sup>

|                                         | $[Tp^{tBu,Me}YMe(AlMe_4)]^{27,36,37}$ | 4-Y               | 5-Y                | 6-Y                | 7-Y              | 8-Y                |
|-----------------------------------------|---------------------------------------|-------------------|--------------------|--------------------|------------------|--------------------|
| Y1-N(pz)                                | 2.357(2), 2.361(2)                    | n.a.              | 2.381(2), 2.387(2) | 2.375(1), 2.384(2) | 2.33(1), 2.40(1) | 2.407(2), 2.456(2) |
|                                         | 2.418(2)                              |                   | 2.530(2)           | 2.561(2)           | 2.52(1)          | 2.459(2)           |
| Y1-O1                                   | n.a.                                  | n.a.              | 2.080(1)           | 2.087(1)           | 2.10(1)          | n.a.               |
| Y1-C(Me)                                | 2.382(3)                              | n.a.              | 2.409(2)           | 2.404(2)           | 2.45(1)          | 2.389(2)           |
| Y1-O1-C26                               | n.a.                                  | n.a.              | 167.2(1)           | 176.9(1)           | 148(1)           | n.a.               |
| $^{1}$ H $\delta$ (Y–Me)                | 0.28/0.25                             | $-0.36^{b}$       | 0.46               | 0.50               | 0.27             | $-0.09^{b}$        |
| $^{13}$ C $\delta$ (Y–Me)               | -0.5                                  | 26.8 <sup>b</sup> | 22.5               | 32.1               | 22.3             | 26.9 <sup>b</sup>  |
| $^{2}J(\mathrm{YH})/^{1}J(\mathrm{YC})$ | n.o./n.o.                             | 1.8/44.6          | 1.8/51.2           | 1.9/n.o.           | 1.8/50.8         | n.o./47.4          |
| <sup>1</sup> H- <sup>89</sup> Y HSQC    | 798                                   | 556 <sup>b</sup>  | 580                | 578                | 620              | 555 <sup>b</sup>   |
| cone angle $\Theta^{\circ c}$           | 276.1                                 | n.a.              | 273.9              | 276.1              | 278.6            | 276.8              |

<sup>a</sup>n.o. (not observed); n.a. (not available). <sup>b</sup>Measured in THF-d<sub>8</sub>. <sup>c</sup>See the Supporting Information for calculations.

#### **Organometallics**

Scheme 2. Reactivity of 4-Ln toward DMAP and under Thermolysis Conditions



$$\begin{split} & [YMe_2(THF)_5][AlMe_4]),^{57} \text{ but solvent-separated heteroaluminates are less common comprising, e.g., amidoaluminates [Li(THF)_2(tmeda)][AlPh_3(tmp)] (tmp = tetramethylpiperidido)^{58} \text{ or } [Ca(THF)_6][AlMe_3(NPh_2)]_2.^{59} \end{split}$$

The <sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H} NMR spectra of 8-Ln show only one set of signals for the Tp<sup>fBu,Me</sup> ligand, slightly shifted compared with **4-Ln**. The Ln–Me moieties were both found at  $\delta = -0.09$ ppm in the <sup>1</sup>H NMR spectrum; however, no Y-H coupling but only a broad signal could be observed. Additionally, <sup>13</sup>C NMR spectroscopy also revealed almost identical shifts (8-Y: d, 26.9 ppm,  ${}^{1}J(YC) = 47.4$  Hz); 8-Lu: 26.7 ppm) and the characteristic Y-C coupling. It is noteworthy that ionic 8-Y shows a cross peak at  $\delta$  = 555 ppm in the <sup>1</sup>H-<sup>89</sup>Y HSQC NMR spectrum (solvent THF- $d_8$ ), identical to that of  $Tp^{tBu,Me}YMe(OC_6H_2tBu_2-2,6-Me-4)$  (4-Y) in THF- $d_8$  (Table 2); however, the shifts in the <sup>1</sup>H NMR spectrum strongly vary (4-Y: -0.36 ppm). Furthermore, the shift of 8-Y in the  $^{1}H-^{89}Y$  HSQC NMR compares well to ionic  $[YMe_{2}(THF)_{5}]$ -[AlMe<sub>4</sub>] (<sup>1</sup>H-<sup>89</sup>Y HMBC: 535 ppm).<sup>57</sup> Complexes 8-Ln are stable at ambient temperature, however, undergo B-N bond cleavage at elevated temperature (>50 °C) in THF. The 6coordinate cationic yttrium center in 8-Y displays a Y-C(Me)distance of 2.389(2) Å, which is significantly shortened compared to those of methyl aryloxide complexes 5-Y, 6-Y, and 7-Y. On the other hand, the Ln-N(pz) distances

Article

(2.407(2)-2.459(2) Å) are markedly elongated. Unfortunately, complex 8-Y did not show any activity in isoprene polymerization.

We were further interested in the thermal stability of such mixed methyl aryloxy rare-earth-metal complexes. As mentioned before, 4-Y is very sensitive toward temperatures above 0 °C and already starts to decomposes at ambient temperature after 30 min, indicated by a color change from colorless to yellow. NMR studies indicated extensive degradation of the ancillary ligand and therefore, the formation of an ill-defined mixture of products. In contrast, 4-Lu is stable for days in benzene or toluene solution; however, it shows intramolecular C-H-bond activation of one of the tert-butyl groups of the pyrazolyl rings through the terminal methyl group at elevated temperatures (60 °C) (Scheme 2). This is indicated by methane evolution as found in the proton NMR spectrum as well as XRD analysis of suitable crystals (Figure 4, right). This C-H-bond activation for reactive terminal methyl groups was observed before for the  $[Tp^{tBu,Me}]$  ligand set; however 9-Lu revealed in accordance with its lower coordination number, Lu-C(CH<sub>2</sub>) distances (2.381(3) Å) shorter than in [(Tp<sup>(fBu-H)2/fBu,Me</sup>)Lu(AlMe<sub>2</sub>{B(NDippCH)<sub>2</sub>})] (2.391(3) Å) and [(Tp<sup>(fBu-H)2/fBu,Me</sup>)Lu(AlMe<sub>3</sub>)] (2.418(5) Å) (Tp<sup>(fBu-H)2/fBu,Me</sup> = hydro(3-Me-5-fBu-pyrazolyl)bis{ $\mu$ -(3-Me-5-Me<sub>2</sub>C-CH<sub>2</sub>-pyrazolyl)}borate).<sup>60</sup> In comparison to 4-Lu, the "sting" Ln-N6(pz) bond length is drastically decreased (4-Lu: 2.626(3) Å; 9-Lu: 2.390(3) Å)), and also the Ln–O bond is shorter (4-Lu: 2.092(2) Å; 9-Lu: 2.068(2) Å). Interestingly, the Ln-O-C bond angle is even closer to linear due to the reduced steric bulk around the metal center  $(4-Lu: 168.2(2)^\circ;$ **9-Lu**: 175.9(2)°).

#### CONCLUSION

In summary, the monomeric methyl complexes  $Tp^{tBu,Me}LuMe_2$ and  $Tp^{tBu,Me}LnMe(AlMe_4)$  (Ln = Lu, Y) provide access for various bis(aryloxy) and mixed methyl aryloxy rare-earth-metal complexes. Applying protonolysis protocols with phenolic proligands HOAr, only the sterically most demanding derivative HOC<sub>6</sub>H<sub>2</sub>tBu<sub>2</sub>-2,6-Me-4 efficiently afforded the desired complexes  $Tp^{tBu,Me}LnMe(OAr)$ . In contrast, such methane elimination reactions with sterically less hindered phenols reproducibly led to bis(aryloxy) derivatives  $Tp^{tBu,Me}Lu(OAr)_2$ . On the other hand complexes  $Tp^{tBu,Me}LnMe(OAr)$  with smaller aryloxy ligands can be



**Figure 4.** ORTEP representation of the crystal structures of 8-Y (left) and 9-Lu (right) with atomic displacement parameters set at the 50% level. Hydrogen atoms except for BH and  $CH_2$  and the disorder in one *tert*-butyl group are omitted for clarity. Selected bond lengths [Å] and angles [°] for 8-Y and 9-Lu are given in Tables 1 and 2.
readily obtained from Tp<sup>tBu,Me</sup>LnMe(AlMe<sub>4</sub>) via a salt metathesis protocol employing KOAr and generating KAlMe<sub>4</sub> as a coproduct. Examination of the pairs Tp<sup>tBu,Me</sup>LnMe(AlMe<sub>4</sub>)/HOC<sub>6</sub>H<sub>2</sub>tBu<sub>2</sub>-2,6-Me-4 in the presence of the strong neutral donor dmap led to the ion-separated complex [Tp<sup>tBu,Me</sup>LnMe(dmap)<sub>2</sub>][Me<sub>3</sub>Al(OC<sub>6</sub>H<sub>2</sub>tBu<sub>2</sub>-2,6-Me-4)] featuring an anionic heteroaluminato moiety. The proneness of the [Tp<sup>tBu,Me</sup>] ancillary ligand for C–H-bond activation in the presence of highly reactive Ln–Me moieties was further revealed by the isolation of complex [(Tp<sup>(tBu-H)/(tBu)2,Me</sup>)Lu(OC<sub>6</sub>H<sub>2</sub>tBu<sub>2</sub>-2,6-Me-4).

#### EXPERIMENTAL SECTION

General Procedures. All operations were performed with rigorous exclusion of air and water by using standard Schlenk, highvacuum, and glovebox techniques (MBraun 200B; <0.1 ppm of O<sub>2</sub>, <0.1 ppm of H<sub>2</sub>O). Solvents were purified by using Grubbs-type columns (MBraun SPS, solvent purification system) and stored inside a glovebox. Benzene- $d_6$  and toluene- $d_8$  were obtained from Sigma-Aldrich and degassed. Benzene- $d_6$  was dried over NaK alloy for 2 days, and toluene- $d_8$  was stored over Na. Both were filtered prior to use. THF-d<sub>8</sub> was obtained from Sigma-Aldrich, stirred over NaK alloy and distilled. HOC<sub>6</sub>H<sub>3</sub>Me<sub>2</sub>-2,6, HOC<sub>6</sub>H<sub>3</sub>iPr<sub>2</sub>-2,6, and HOC<sub>6</sub>H<sub>2</sub>tBu<sub>2</sub>-2,6-Me-4 were purchased from Sigma-Aldrich, and HOC<sub>6</sub>H<sub>3</sub>(CF<sub>3</sub>)<sub>2</sub>-3,5 and dmap from ABCR and sublimed prior to use. Reagents KOC<sub>6</sub>H<sub>3</sub>*i*Pr<sub>2</sub>-2,6, KOC<sub>6</sub>H<sub>2</sub>*t*Bu<sub>2</sub>-2,6-Me-4, and KOC<sub>6</sub>H<sub>3</sub>(CF<sub>3</sub>)<sub>2</sub>-3,5 were prepared from the respective dry phenol and KH in tetrahydrofuran at ambient temperature, and were dried in vacuo prior to use.  $Tp^{fBu,Me}LnMe(AlMe_4)$ ,<sup>36</sup> and  $Tp^{fBu,Me}LuMe_2$ <sup>27</sup> were synthesized according to literature procedures. The NMR spectra of air- and moisture-sensitive compounds were recorded by using J. Young valve NMR tubes on a Bruker AVII+500 spectrometer (<sup>1</sup>H, 500.00 MHz, <sup>13</sup>C, 125.72 MHz, <sup>89</sup>Y 24.496 MHz), a Bruker AVII +400 spectrometer (<sup>1</sup>H, 400.13 MHz, <sup>13</sup>C, 100.61 MHz, <sup>19</sup>F, 376.31 MHz), and a Bruker AVII+250 spectrometer (<sup>1</sup>H, 250.00 MHz, <sup>11</sup>B, 80.21 MHz, <sup>13</sup>C, 62.86 MHz). IR spectra were recorded on a Thermo Fisher Scientific NICOLET 6700 FTIR spectrometer using a DRIFT chamber with dry KBr/sample mixture and KBr windows; IR (DRIFT) data were converted by using the Kubelka-Munk refinement. Elemental analyses were performed on an Elementar Vario MICRO Cube.

 $Tp^{tBu,Me}Lu(OC_6H_3Me_2-2,6)_2$  (1-Lu). A solution of  $HOC_6H_2Me_2$ -2,6 (19.3 mg, 0.158 mmol) in n-hexane (5 mL) was added to a suspension of Tp<sup>tBu,Me</sup>LuMe<sub>2</sub>(50.0 mg, 0.080 mmol) in *n*-hexane (5 mL) and stirred for 6 h at ambient temperature. The reaction mixture was filtered and the solution was concentrated in vacuo. Crystallization at -35 °C yielded compound 1-Lu (62.0 mg, 0.074 mmol, 94%) as colorless crystals. <sup>1</sup>H NMR (250 MHz, benzene-d<sub>6</sub>, 26 °C)  $\delta$  7.11 (d, 4H,  ${}^{3}J(HH) = 7.2$  Hz, Ar-H), 6.76 (t,  ${}^{3}J(HH) = 14.5$ Hz, 2H, Ar-H), 5.68 (s, 3H, 4-pz-H), 4.71 (v br d,  ${}^{1}J(BH) = 119$  Hz, 1H, BH), 2.15 (s, 12H, C(CH<sub>3</sub>)), 2.10 (s, 9H, pz-CH<sub>3</sub>), 1.28 (s, 27H, pz-C(CH<sub>3</sub>)) ppm. <sup>13</sup>C{<sup>1</sup>H} NMR (63 MHz, benzene- $d_6$ , 26 °C)  $\delta$ 166.2 (3-pz-C), 161.5 (Ar-C1), 146.6 (5-pz-C), 128.7 (Ar-C2/6), 126.5 (Ar-C3/5), 117.4 (Ar-C4), 104.9 (4-pz-C), 32.5 (pz-C(CH<sub>3</sub>)<sub>3</sub>), 30.8 (pz-C(CH<sub>3</sub>)<sub>3</sub>), 18.1 (C(CH<sub>3</sub>)), 13.4 (pz-C(CH<sub>3</sub>)) ppm. <sup>11</sup>B{<sup>1</sup>H} NMR (80 MHz, benzene- $d_6$ , 26 °C)  $\delta$  –8.7 (br s) ppm. IR (KBr)  $\tilde{\nu}$ 2959 (m), 2924 (m), 2863 (w), 2560 (vw, B-H), 1590 (w), 1543 (s), 1470 (s), 1426 (vs), 1380 (m), 1373 (m), 1356 (m), 1329 (m), 1292 (vs), 1276 (vs), 1235 (s), 1195 (s), 1178 (s), 1136 (vw), 1093 (m), 1065 (m), 1025 (w), 984 (w), 916 (vw), 875 (m), 840 (w), 809 (w), 793 (w), 783 (m), 769 (m), 759 (m), 742 (w), 729 (w), 709 (w), 680 (vw), 645 (w), 535 (w), 512 (vw) cm<sup>-1</sup>. Elemental analysis calcd (%) for C40H58BLuN6O2: C 57.15, H 6.95, N 10.00; found C 57.15, H 6.95, N 10.07.  $Tp^{Bu,Me}Lu(OC_6H_3iPr_2-2,6)_2$  (2-Lu). A solution of  $HOC_6H_2iPr_2-2$ 

**Tp**<sup>BBU,Me</sup>**Lu**(OC<sub>6</sub>H<sub>3</sub>*i*Pr<sub>2</sub>-2,6)<sub>2</sub> (2-Lu). A solution of HOC<sub>6</sub>H<sub>2</sub>*i*Pr<sub>2</sub>-2,6 (28.1 mg, 0.158 mmol) in *n*-hexane (5 mL) was added to a suspension of Tp<sup>fBu,Me</sup>LuMe<sub>2</sub> (50.0 mg, 0.080 mmol) in *n*-hexane (5 mL) and stirred for 6 h at ambient temperature. The reaction mixture

was filtered and the solution was concentrated in vacuo. Crystallization at -35 °C yielded compound 2-Lu (60.0 mg, 0.063 mmol, 80%) as colorless crystals. <sup>1</sup>H NMR (250 MHz, benzene-d<sub>6</sub>, 26 °C)  $\delta$  7.12 (s, 4H, Ar-H), 6.90 (t, <sup>3</sup>J(HH) = 16.2 Hz, 2H, Ar-H), 5.62 (s, 3H, 4-pz-H), 4.73 (v br d, <sup>1</sup>J(BH) = 286 Hz, 1H, BH), 3.32 (sept,  ${}^{3}J(HH) = 6.8$  Hz, 4H, CH(CH<sub>3</sub>)<sub>2</sub>), 2.08 (s, 9H, pz-CH<sub>3</sub>), 1.27 (s, 27H, pz-C(CH<sub>3</sub>)), 1.13 (d,  ${}^{3}J$ (HH) = 7.1 Hz, 24H, CH(CH<sub>3</sub>)<sub>2</sub>) ppm. <sup>13</sup>C{<sup>1</sup>H} NMR (63 MHz, benzene- $d_6$ , 26 °C)  $\delta$  165.9 (3-pz-C), 158.6 (Ar-C1), 146.3 (5-pz-C), 137.9 (Ar-C2/6), 123.6 (Ar-C3/5), 118.5 (Ar-C4), 105.0 (4-pz-C), 32.1 (pz-C(CH<sub>3</sub>)<sub>3</sub>), 31.4 (pz-C(CH<sub>3</sub>)<sub>3</sub>), 26.3  $(C(CH_3)_2)$ , 25.5  $(C(CH_3)_2)$ , 13.7  $(pz-C(CH_3))$  ppm. <sup>11</sup>B{<sup>1</sup>H} NMR (80 MHz, benzene- $d_6$ , 26 °C)  $\delta$  –8.6 (br s) ppm. IR (KBr)  $\tilde{\nu}$ 3051 (vw), 3016 (vw), 2963 (s), 2865 (m), 2576 (vw, B-H), 1589 (w), 1515 (s), 1493 (w), 1461 (s), 1431 (vs), 1380 (s), 1363 (s), 1335 (s), 1321 (s), 1274 (s), 1256 (s), 1201 (vs), 1180 (m), 1115 (w), 1103 (w), 1071 (m), 1064 (m), 1042 (w), 1025 (w), 1018 (w), 985 (w), 934 (vw), 888 (m), 869 (m), 859 (w), 807 (s), 795 (s), 774 (s), 751 (m), 732 (m), 696 (vw), 657 (w), 646 (m), 574 (w), 517 (vw), 464 (vw) cm<sup>-1</sup>. Elemental analysis calcd (%) for C48H74BLuN6O2: C 60.50, H 7.83, N 8.82; found C 61.21, H 8.15, N 8.58. Although these results are outside the range viewed as establishing analytical purity (C: +0.71%), they are provided to illustrate the best values obtained to date.

 $Tp^{tBu,Me}Lu[OC_6H_3(CF_3)_2-3,5]_2$  (3-Lu). A precooled solution of HOC<sub>6</sub>H<sub>2</sub>(CF<sub>3</sub>)<sub>2</sub>-3,5 (36.3 mg, 0.158 mmol) in toluene (5 mL) was added to a precooled solution of Tp<sup>fBu,Me</sup>LuMe<sub>2</sub> (50.0 mg, 0.080 mmol) in toluene (5 mL) and stirred for 2 h at -35 °C. The reaction mixture was filtered and the solution was concentrated in vacuo. Crystallization at  $-35\ ^\circ C$  yielded compound 3-Lu (21.0 mg, 0.020 mmol, 37%) as colorless crystals. <sup>1</sup>H NMR (250 MHz, benzene-d<sub>6</sub>, 26 °C)  $\delta$  7.35 (s, 2H, Ar-H), 7.03 (s, 4H, Ar-H), 5.54 (s, 3H, 4-pz-H), 4.76 (v br d, 1H,  ${}^{1}J(BH) = 140$  Hz, BH), 2.10 (s, 9H, pz-CH<sub>3</sub>), 1.23 (s, 27H, pz-C(CH<sub>3</sub>) ppm. <sup>13</sup>C{<sup>1</sup>H} NMR (63 MHz, benzene-d<sub>6</sub>, 26 °C)  $\delta$  165.7 (3-pz-C), 165.2 (Ar-C1), 147.5 (5-pz-C), 133.2 (Ar-CCF<sub>3</sub>), 122.4 (Ar-C3/5), 119.4 (Ar-C2/6), 110.7 (Ar-C4), 104.5 (4pz-C), 32.2 (pz-C(CH<sub>3</sub>)<sub>3</sub>), 30.4 (pz-C(CH<sub>3</sub>)<sub>3</sub>), 12.9 (pz-C(CH<sub>3</sub>)) ppm. <sup>13</sup>C NMR resonances for the CF<sub>3</sub> group showed no C-F coupling. <sup>11</sup>B{<sup>1</sup>H} NMR (80 MHz, benzene- $d_{6t}$  26 °C)  $\delta$  -8.2 (br s) ppm. <sup>19</sup>F{<sup>1</sup>H} NMR (376 MHz, benzene- $d_6$ , 26 °C)  $\delta$  –62.8 ppm; IR (KBr)  $\tilde{\nu}$  2972 (w), 2935 (vw), 2866 (vw), 2558 (vw, B-H), 1605 (m), 1556 (s), 1533 (vw), 1471 (m), 1466 (m), 1456 (w), 1435 (w), 1399 (s), 1385 (vs), 1360 (m), 1352 (m), 1332 (vw), 1275 (w), 1243 (w), 1204 (w), 1167 (vs), 1128 (vs), 1099 (w), 1084 (w), 1068 (w), 1028 (w), 1016 (w), 997 (m), 964 (s), 893 (w), 883 (w), 878 (vw), 859 (w), 856 (w), 845 (w), 806 (w), 799 (w), 774 (vw), 764 (w), 732 (w), 700 (w), 682 (m), 643 (w), 628 (vw), 613 (vw), 411 (vw) cm<sup>-1</sup>. Elemental analysis calcd (%) for  $C_{40}H_{46}BF_{12}LuN_6O_2$ : C 45.47, H 4.39, N 7.95; found C 46.00, H 3.53, N 8.52. Although these results are outside the range viewed as establishing analytical purity (C: +0.53%, H: -0.86%, N: +0.57%), they are provided to illustrate the best values obtained to date. Due to the high F content, no better elemental analysis could be obtained.

Tp<sup>tBu,Me</sup>YMe(OC<sub>6</sub>H<sub>2</sub>tBu<sub>2</sub>-2,6-Me-4) (4-Y). A precooled solution of HOC<sub>6</sub>H<sub>2</sub>tBu<sub>2</sub>-2,6-Me-4 (18.0 mg, 0.082 mmol) in n-hexane (5 mL) was added to a precooled suspension of Tp<sup>tBu,Me</sup>YMe(AlMe<sub>4</sub>) (50.0 mg, 0.081 mmol) in *n*-hexane (5 mL) at -35 °C. The suspension was stirred for 2 h at -35 °C. The reaction mixture was evaporated to dryness in vacuo and washed with *n*-hexane  $(3 \times 2)$ mL). Crystallization from toluene yielded compound 4-Y (47 mg, 0.063 mmol, 78%). <sup>1</sup>H NMR (500 MHz, toluene- $d_8$ , 26 °C)  $\delta$  7.17 (s, 2H, Ar-H), 5.50 (s, 3H, 4-pz-H), 4.55 (v br d,  ${}^{1}J(BH) = 100$  Hz, 1H, BH), 2.39 (s, 3H, C(CH<sub>3</sub>)), 1.99 (br s, 9H, pz-CH<sub>3</sub>), 1.55 (s, 18H, C(CH<sub>3</sub>)<sub>3</sub>), 1.29 (s, 27H, pz-C(CH<sub>3</sub>)), 0.27 (br s, 3H, YCH<sub>3</sub>) ppm. <sup>1</sup>H NMR (500 MHz, THF- $d_8$ , 0 °C)  $\delta$  6.70 (s, 2H, Ar-H), 6.20 (s, 3H, 4-pz-H), 4.74 (v br d, <sup>1</sup>J(BH) = 100 Hz, 1H, BH), 2.44 (s, 3H,  $C(CH_3)$ ), 2.09 (br s, 9H, pz-CH<sub>3</sub>), 1.43 (s, 18H,  $C(CH_3)_3$ ), 1.37 (s, 27H, pz-C(CH<sub>3</sub>)), -0.36 (d, 3H, <sup>2</sup>J(YH) = 1.8 Hz, YCH<sub>3</sub>) ppm.  $^{13}C{^{1}\hat{H}}$  NMR (101 MHz, THF- $d_8$ , 0 °C)  $\delta$  165.2 (3-pz-C), 159.6 (Ar-C1), 149.2 (5-pz-C), 138.6 (Ar-C2/6), 124.8 (Ar-C3/5), 119.9

(Ar-C4), 105.8 (4-pz-C), 35.4 (Ar-C(CH<sub>3</sub>)<sub>3</sub>), 32.9 (pz-C(CH<sub>3</sub>)<sub>3</sub>), 31.5  $(Ar-C(CH_3)_3)$ , 31.1  $(pz-C(CH_3)_3)$ , 26.8  $(d, {}^{1}J(YC) = 44.6 Hz$ , YCH<sub>3</sub>), 21.5 (Ar–C(CH<sub>3</sub>)), 13.6 (pz-C(CH<sub>3</sub>)) ppm. <sup>11</sup>B{<sup>1</sup>H} NMR (80 MHz, benzene- $d_6$ , 26 °C)  $\delta$  –8.8 (br s) ppm. <sup>89</sup>Y NMR (from <sup>1</sup>H-<sup>89</sup>Y HSQC, 25 MHz, THF- $d_8$ , 0 °C)  $\delta$  556 ppm; IR (KBr)  $\tilde{\nu}$ 2957 (s), 2931 (m), 2857 (m), 2566 (vw, B-H), 1539 (s), 1489 (vw), 1473 (m), 1464 (m), 1458 (m), 1426 (vs), 1382 (w), 1354 (m), 1348 (m), 1325 (w), 1286 (s), 1261 (vw), 1240 (vw), 1184 (m), 1161 (vs), 1135 (w), 1071 (m), 1062 (w), 1028 (w), 984 (vw), 888 (vw), 866 (m), 859 (m), 859 (w), 847 (m), 812 (w), 804 (w), 788 (w), 779 (w), 760 (s), 730 (vw), 682 (m), 675 (m), 659 (m), 644 (m), 590 (vw), 575 (vw), 548 (w), 524 (w), 472 (vw), 439 (vw), 426 (m) cm<sup>-1</sup>. Elemental analysis calcd (%) for C<sub>40</sub>H<sub>66</sub>BN<sub>6</sub>OY: C 64.34, H 8.91, N 11.25; found C 63.65, H 8.43, N 10.38. Although these results are outside the range viewed as establishing analytical purity (C: -0.79%, N: -0.87%), they are provided to illustrate the best values obtained to date. Due to fast decomposition at ambient temperature no better elemental analysis could be obtained.

 $Tp^{tBu,Me}LuMe(OC_6H_2tBu_2-2,6-Me-4)$  (4-Lu). A solution of  $HOC_6H_2tBu_2-2,6$ -Me-4 (35.0 mg, 0.159 mmol) in *n*-hexane (5 mL) was added to a suspension of  $Tp^{tBu,Me}LuMe_2(100 mg, 0.158 mmol)$  in n-hexane (5 mL) and stirred for 6 h at ambient temperature. The solution was filtered and concentrated in vacuo. Crystallization at -35 $^{\circ}\text{C}$  yielded compound 4-Lu (100 mg, 0.121 mmol, 77%) as colorless crystals. <sup>1</sup>H NMR (400 MHz, benzene- $d_6$ , 26 °C)  $\delta$  7.17 (s, 2H, Ar-H), 5.66 (s, 3H, 4-pz-H), 4.66 (v br d,  ${}^{1}J(BH) = 100$  Hz, 1H, BH), 2.30 (s, 3H, C(CH<sub>3</sub>)), 2.08 (br s, 9H, pz-CH<sub>3</sub>), 1.40 (br s, 45H, C(CH<sub>3</sub>)<sub>3</sub>), 0.67 (s, 3H, LuCH<sub>3</sub>) ppm. <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, benzene-d<sub>6</sub>, 26 °C) δ 166.0 (3-pz-C), 162.5 (Ar-C1), 138.6 (5-pz-C), 126.1 (Ar-C3/5), 124.1 (Ar-C4), 120.4 (Ar-C2/6), 104.9 (4-pz-C), 40.4 (Lu-CH<sub>3</sub>), 32.5 (Ar-C(CH<sub>3</sub>)<sub>3</sub>), 31.0 (C(CH<sub>3</sub>)<sub>3</sub>), 21.3 (Ar-C(CH<sub>3</sub>)), 13.4 (pz-C(CH<sub>3</sub>)) ppm. <sup>11</sup>B{<sup>1</sup>H} NMR (80 MHz, benzene- $d_6$ , 26 °C)  $\delta$  -8.1 (br s) ppm; IR (KBr)  $\tilde{\nu}$  3067 (vw), 3026 (vw), 2961 (vs), 2928 (s), 2865 (m), 2563 (w, B-H), 1544 (vs), 1464 (m), 1428 (vs), 1409 (s), 1353 (s), 1328 (m), 1264 (vs), 1232 (vs), 1217 (vs), 1198 (s), 1170 (m), 1155 (w), 1129 (w), 1121 (w), 1070 (m), 1055 (m), 1025 (m), 1017 (m), 1004 (w), 984 (w), 889 (vw), 861 (vw), 849 (m), 823 (m), 808 (m), 793 (m), 779 (m), 767 (m), 731 (w), 679 (w), 646 (w), 639 (w), 525 (m), 512 (w), 503 (w), 438 (w), 404 (w) cm<sup>-1</sup>. Elemental analysis calcd (%) for C40H66BLuN6O: C 57.69, H 7.99, N 10.09; found C 58.27, H 8.19, N 9.86. Although these results are outside the range viewed as establishing analytical purity (C: +0.58%), they are provided to illustrate the best values obtained to date.

Tp<sup>tBu,Me</sup>YMe(OC<sub>6</sub>H<sub>3</sub>Me<sub>2</sub>-2,6) (5-Y). A suspension of  $KOC_6H_3Me_2$ -2,6 (26.1 mg, 0.163 mmol) in toluene (5 mL) was added to a solution of  $Tp^{fBu,Me}YMe(AlMe_4)$  (100 mg, 0.163 mmol) in toluene (5 mL). The reaction mixture was stirred for 6 h at ambient temperature. The precipitate was removed by filtration and the solution was concentrated in vacuo. Crystallization at -35 °C yielded compound 5-Y (62.0 mg, 0.096 mmol, 59%) as colorless crystals. <sup>1</sup>H NMR (250 MHz, benzene- $d_6$ , 26 °C)  $\delta$  7.01 (d, 2H,  ${}^{3}J(HH) = 7.3$ Hz, Ar-H), 6.66 (t,  ${}^{3}J(HH) = 14.4$  Hz, 1H, Ar-H), 5.57 (s, 3H, 4-pz-H), 4.72 (v br d, 1H,  ${}^{1}J(BH) = 130$  Hz, BH), 2.12 (s, 9H, pz-CH<sub>3</sub>), 1.82 (s, 6H, C(CH<sub>3</sub>)), 1.36 (s, 27H, pz-C(CH<sub>3</sub>)), 0.46 (d, 3H,  ${}^{2}J(YH) = 1.8$  Hz, YCH<sub>3</sub>) ppm.  ${}^{13}C{}^{1}H{}$  NMR (63 MHz, benzene- $d_{6}$ , 26 °C) δ 165.1 (3-pz-C), 161.9 (Ar-C1), 146.3 (5-pz-C), 128.2 (Ar-C2/6), 126.8 (Ar-C3/5), 116.8 (Ar-C4), 103.8 (4-pz-C), 32.6 (pz- $C(CH_3)_3$ ), 31.0 (pz- $C(CH_3)_3$ ), 22.5 (d, YCH<sub>3</sub>, <sup>2</sup>J(YC) = 51.2 Hz), 17.1 (Ar- $C(CH_3)$ , 13.4 (pz- $C(CH_3)$ ) ppm. <sup>11</sup>B{<sup>1</sup>H} NMR (80 MHz, benzene- $d_6$ , 26 °C)  $\delta$  -8.9 (br s) ppm. <sup>89</sup>Y NMR (from <sup>1</sup>H-<sup>89</sup>Y HSQC, 25 MHz, benzene-d\_6, 26 °C)  $\delta$  580 ppm; IR (KBr)  $\tilde{\nu}$  3002 (vw), 2961 (vs), 2927 (m), 2862 (m), 2569 (vw, B-H), 1589 (w), 1541 (s), 1464 (vs), 1425 (vs), 1381 (w), 1359 (s), 1348 (m), 1336 (vw), 1308 (vs), 1284 (s), 1238 (s), 1197 (vs), 1173 (m), 1119 (w), 1090 (m), 1074 (m), 1063 (m), 1026 (m), 1013 (w), 986 (w), 876 (w), 862 (w), 848 (vw), 802 (s), 787 (m), 766 (m), 756 (s), 757 (s), 745 (w), 730 (w), 708 (w), 657 (vw), 657 (m), 645 (m), 537 (w), 514 (vw), 478 (vw), 464 (w), 420 (w) cm<sup>-1</sup>. Elemental analysis calcd (%) for  $C_{33}H_{52}BN_6OY$ : C 61.12, H 8.08, N 12.96; found C 61.43, H 8.15, N 12.78.

 $Tp^{tBu,Me}LuMe(OC_6H_3Me_2-2,6)$  (5-Lu). A suspension of  $KOC_6H_3Me_2-2,6$  (23.0 mg, 0.144 mmol) in toluene (5 mL) was added to a solution of  $Tp^{fBu,Me}LuMe(AlMe_4)$  (100 mg, 0.143 mmol) in toluene (5 mL). The reaction mixture was stirred for 6 h at ambient temperature. The precipitate was removed by filtration and the solution was concentrated in vacuo. Crystallization at -35 °C yielded compound 5-Lu (51.0 mg, 0.069 mmol, 48%) as colorless crystals.  $^1\mathrm{H}$ NMR (250 MHz, benzene- $d_6$ , 26 °C)  $\delta$  7.02 (d, 2H,  $^{3}J(HH) = 7.4$ Hz, Ar-H), 6.66 (t,  ${}^{3}J(HH) = 13.4$  Hz, 1H, Ar-H), 5.62 (s, 3H, 4-pz-H), 4.69 (v br d, 1H,  ${}^{1}J(BH) = 150$  Hz, BH), 2.12 (s, 9H, pz-CH<sub>3</sub>), 1.82 (s, 6H, C(CH<sub>3</sub>)), 1.39 (s, 27H, pz-C(CH<sub>3</sub>)), 0.55 (s, 3H, Lu-CH<sub>3</sub>) ppm. <sup>13</sup>C{<sup>1</sup>H} NMR (63 MHz, benzene- $d_{6}$ , 26 °C)  $\delta$  165.8 (3pz-C), 161.9 (Ar-C1), 146.3 (5-pz-C), 128.3 (Ar-C2/6), 127.0 (Ar-C3/5), 116.8 (Ar-C4), 104.0 (4-pz-C), 32.5  $(pz-C(CH_3)_3)$ , 32.2 (Lu-CH<sub>3</sub>), 31.1  $(pz-C(CH_3)_3)$ , 17.1 (Ar-C(CH<sub>3</sub>), 13.3  $(pz-C(2H_3)_3)$ ), 17.1 (Ar-C(CH<sub>3</sub>)), 13.3 (pz-C(2H\_3)\_3)), 17.1 (Ar-C(2H\_3)\_3)  $C(CH_3)$  ppm. <sup>11</sup>B{<sup>1</sup>H} NMR (80 MHz, benzene- $d_6$ , 26 °C)  $\delta$ -8.5 ppm. IR (KBr)  $\tilde{\nu}$  3002 (vw), 2962 (s), 2909 (m), 2863 (w), 2863 (vw), 2571 (vw, B-H), 1589 (vw), 1542 (s), 1465 (s), 1435 (vs), 1360 (s), 1351 (m), 1338 (w), 1307 (vw), 1288 (vs), 1239 (m), 1198 (s), 1174 (vs), 1132 (w), 1090 (w), 1075 (m), 1062 (m), 1027 (w), 1013 (w), 987 (w), 877 (w), 863 (w), 849 (vw), 804 (w), 788 (s), 768 (s), 757 (s), 745 (w), 731 (vw), 708 (w), 676 (vw), 657 (vw), 645 (m), 537 (w), 516 (w), 487 (vw), 401 (m) cm<sup>-1</sup> Elemental analysis calcd (%) for C33H52BLuN6O: C 53.96, H 7.14, N 11.44; found C 53.88, H 6.99, N 11.37.

 $Tp^{tBu,Me}YMe(OC_6H_3iPr_2-2,6)$  (6-Y). A suspension of  $KOC_6H_3iPr_2-2$ 2,6 (35.3 mg, 0.163 mmol) in toluene (5 mL) was added to a solution of  $Tp^{tBu,Me}$ YMe(AlMe<sub>4</sub>) (100 mg, 0.163 mmol) in toluene (5 mL). The reaction mixture was stirred for 6 h at ambient temperature. The precipitate was removed by filtration and the solution was concentrated in vacuo. Crystallization at -35 °C yielded compound 6-Y (64.0 mg, 0.091 mmol, 56%) as colorless crystals. <sup>1</sup>H NMR (250 MHz, benzene- $d_6$ , 26 °C)  $\delta$  7.13 (d, <sup>3</sup>J(HH) = 7.6 Hz, 2H, Ar-H), 6.85 (t, <sup>3</sup>J(HH) = 15.1 Hz, 1H, Ar-H), 5.60 (s, 3H, 4-pz-H), 4.73 (v br d,  ${}^{1}J(BH) = 286$  Hz, 1H, BH), 3.09 (br s, 2H,  $CH(CH_{3})_{2}$ ), 2.13 (s, 9H, pz-CH<sub>3</sub>), 1.39 (s, 27H, pz-C(CH<sub>3</sub>)), 1.12 (d,  ${}^{3}J$ (HH) = 7.0 Hz, 12H,  $CH(CH_3)_2$ ), 0.50 (d, 3H,  ${}^2J(YH) = 1.9$  Hz,  $YCH_3$ ) ppm.  $^{13}C{^{1}H}$  NMR (63 MHz, benzene- $d_{6}$ , 26 °C)  $\delta$  165.3 (3-pz-C), 158.7 (Ar-C1), 146.3 (5-pz-C), 138.0 (Ar-C2/6), 123.0 (Ar-C3/5), 117.7 (Ar-C4), 104.3 (4-pz-C), 32.3 (pz-C(CH<sub>3</sub>)<sub>3</sub>), 32.1 (Y-CH<sub>3</sub>), 31.1  $(pz-C(CH_3)_3)$ , 25.8 (Ar-CH(CH<sub>3</sub>)<sub>2</sub>), 24.5 (Ar-CH(CH<sub>3</sub>)<sub>2</sub>), 13.3 (pz-C(CH<sub>3</sub>)) ppm. <sup>11</sup>B{<sup>1</sup>H} NMR (80 MHz, benzene- $d_6$ , 26 °C)  $\delta$ -8.5 (br s) ppm. 89Y NMR (from 1H-89Y HSQC, 25 MHz, benzene $d_{6\prime}$  26 °C)  $\delta$  578 ppm; IR (KBr)  $\tilde{\nu}$  3017 (vw), 2960 (s), 2862 (w), 2558 (vw, B-H), 1587 (vw), 1540 (s), 1458 (m), 1433 (s), 1379 (w), 1354 (m), 1335 (s), 1274 (s), 1241 (w), 1209 (m), 1194 (m), 1175 (m), 1119 (vw), 1074 (w), 1011 (vw), 984 (vw), 888 (w), 866 (w), 798 (m), 766 (m), 750 (m), 730 (w), 695 (w), 679 (w), 660 (w), 646 (w), 570 (vw), 515 (vw), 464 (vw), 437 (vw), 403 (w) cm<sup>-1</sup>. Elemental analysis calcd (%) for  $C_{37}H_{60}BN_6OY$ : C 63.07, H 8.58, N 11.93; C 62.74, H 8.49, N 11.67.

**Tp**<sup>rBu,Me</sup>LuMe(OC<sub>6</sub>H<sub>3</sub>*i*Pr<sub>2</sub>-2,6) (6-Lu). A suspension of KO-C<sub>6</sub>H<sub>3</sub>*i*Pr<sub>2</sub>-2,6 (31.1 mg, 0.144 mmol) in toluene (5 mL) was added to a solution of Tp<sup>rBu,Me</sup>LuMe(AlMe<sub>4</sub>) (100 mg, 0.143 mmol) in toluene (5 mL). The reaction mixture was stirred for 6 h at ambient temperature. The precipitate was removed by filtration and the solution was concentrated in vacuo. Crystallization at -35 °C yielded compound 6-Lu (80.0 mg, 0.101 mmol, 71%) as colorless crystals. <sup>1</sup>H NMR (250 MHz, benzene-d<sub>6</sub>, 26 °C) δ 7.11 (d, <sup>3</sup>*J*(HH) = 7.5 Hz, 2H, Ar-H), 6.85 (t, <sup>3</sup>*J*(HH) = 15.1 Hz, 1H, Ar-H), 5.60 (s, 3H, 4-pz-H), 4.70 (v br d, <sup>1</sup>*J*(BH) = 150 Hz, 1H, BH), 3.08 (br s, 2H, CH(CH<sub>3</sub>)<sub>2</sub>), 2.12 (s, 9H, pz-CH<sub>3</sub>), 1.38 (s, 27H, pz-C(CH<sub>3</sub>)), 1.11 (br s, 12H, CH(CH<sub>3</sub>)<sub>2</sub>), 0.50 (s, 3H, Lu-CH<sub>3</sub>) ppm. <sup>13</sup>C{<sup>1</sup>H} NMR (63 MHz, benzene-d<sub>6</sub>, 26 °C) δ 165.5 (3-pz-C), 158.6 (Ar-C1), 146.3 (5-pz-C), 137.7 (Ar-C2/6), 122.9 (Ar-C3/5), 117.8 (Ar-C4), 104.3 (4-pz-C), 32.4 (pz-C(CH<sub>3</sub>)<sub>3</sub>), 32.1 (Lu-CH<sub>3</sub>)<sub>2</sub>), 13.3 (pz-C(CH<sub>3</sub>)<sub>3</sub>), 25.8 (Ar-CH(CH<sub>3</sub>)<sub>2</sub>), 24.5 (Ar-CH(CH<sub>3</sub>)<sub>2</sub>), 13.3 (pz-C(CH<sub>3</sub>)<sub>3</sub>), pm. <sup>11</sup>B{<sup>1</sup>H} NMR (80 MHz, benzene-d<sub>6</sub>, 26 °C) δ -8.5 (br s)

ppm; IR (KBr)  $\tilde{\nu}$  2964 (s), 2863 (w), 2564 (vw, B–H), 1542 (s), 1488 (vw), 1472 (w), 1463 (m), 1456 (m), 1435 (vs), 1380 (vw), 1355 (m), 1339 (s), 1277 (m), 1241 (w), 1210 (w), 1194 (m), 1174 (m), 1139 (vw), 1099 (vw), 1073 (m), 1061 (w), 1043 (vw), 1028 (w), 1013 (vw), 989 (vw), 892 (w), 870 (w), 848 (vw), 805 (w), 790 (s), 766 (m), 747 (m), 696 (vw), 677 (vw), 661 (vw), 646 (w), 640 (w), 572 (vw), 517 (w), 491 (vw), 421 (vw), 401 (w) cm<sup>-1</sup>. Elemental analysis calcd (%) for  $C_{37}H_{60}BLuN_6O$ : C 56.20, H 7.65, N 10.63; found C 56.50, H 7.64, N 10.68.

10.63; found C 56.50, H 7.64, N 10.68. Tp<sup>fBu,Me</sup>YMe[OC<sub>6</sub>H<sub>3</sub>(CF<sub>3</sub>)<sub>2</sub>-3,5)] (7-Y). A precooled solution of KOC<sub>6</sub>H<sub>3</sub>(CF<sub>3</sub>)<sub>2</sub>-3,5 (40.1 mg, 0.150 mmol) in toluene (5 mL) was added to a precooled suspension of Tp<sup>tBu,Me</sup>YMe(AlMe<sub>4</sub>) (75.0 mg, 0.122 mmol) in toluene (5 mL) at -35 °C. The suspension was stirred for 4 h at -35 °C. The precipitate was removed by filtration and the solution was concentrated in vacuo. Crystallization at -35 °C yielded compound 7-Y (79.0 mg, 0.104 mmol, 69%) as colorless crystals. <sup>1</sup>H NMR (250 MHz, benzene- $d_6$ , 26 °C)  $\delta$  6.98 (s, 1H, Ar-H), 6.36 (s, 2H, Ar-H), 5.53 (s, 3H, 4-pz-H), 4.73 (v br d, 1H, <sup>1</sup>J(BH) = 150 Hz, BH), 2.12 (s, 9H, pz-CH<sub>3</sub>), 1.32 (s, 27H, pz-C(CH<sub>3</sub>)), 0.27 (d, 3H,  $^{2}J$ (YH) = 1.8 Hz, Y-CH<sub>3</sub>) ppm.  $^{13}C$ {<sup>1</sup>H} NMR (63 MHz, benzene-d<sub>6</sub>, 26 °C) δ 165.0 (Ar-C1), 164.8 (3-pz-C), 147.0 (5-pz-C), 132.2 (Ar-CCF<sub>3</sub>), 121.2 (Ar-C4), 119.4 (Ar-C2/6), 109.3 (Ar-C3/ 5), 103.7 (4-pz-C), 32.4 (pz-C(CH<sub>3</sub>)<sub>3</sub>), 31.1 (pz-C(CH<sub>3</sub>)<sub>3</sub>), 22.3 (d,  ${}^{2}J(YC) = 50.8$  Hz, Y–CH<sub>3</sub>), 13.1 (pz-C(CH<sub>3</sub>)) ppm.  ${}^{13}C$  NMR resonances for the  $CF_3$  groups showed no C-F coupling.  $^{11}B\{^1H\}$ NMR (80 MHz, benzene- $d_6$ , 26 °C)  $\delta$  -7.9 (br s) ppm. <sup>19</sup>F{<sup>1</sup>H} NMR (376 MHz, benzene- $d_{6}$ , 26 °C)  $\delta$  –62.6 ppm. <sup>89</sup>Y NMR (from  $^{1}\text{H}-^{89}\text{Y}$  HSQC, 25 MHz, benzene- $d_{6\prime}$  26 °C)  $\delta$  620 ppm; IR (KBr)  $\tilde{\nu}$ 2966 (m), 2933 (w), 2907 (w), 2861 (w), 2559 (w, B-H), 1601 (w), 1558 (vw), 1541 (vs), 1506 (vw), 1471 (s), 1458 (s), 1447 (m), 1435 (s), 1392 (vs), 1359 (s), 1351 (m), 1334 (w), 1311 (vw), 1273 (vs), 1252 (w), 1242 (w), 1205 (m), 1194 (m), 1170 (vs), 1123 (vs), 1100 (w), 1073 (m), 1064 (m), 1027 (m), 1013 (w), 996 (w), 986 (w), 963 (s), 882 (w), 876 (w), 866 (w), 843 (w), 802 (s), 765 (s), 731 (w), 681 (m), 658 (w), 643 (m), 622 (w), 612 (m), 569 (vw), 516 (w), 472 (w), 464 (w), 442 (w), 409 (s) cm<sup>-1</sup>. Elemental analysis calcd (%) for  $C_{33}H_{46}BF_6N_6OY$ : C 52.40, H 6.13, N 11.11; found C 52.78, H 6.25, N 11.21. Tp<sup>tBu,Me</sup>LuMe[OC<sub>6</sub>H<sub>3</sub>(CF<sub>3</sub>)<sub>2</sub>-3,5] (7-Lu). A suspension of

 $\rm KOC_6H_3(CF_3)_2$ -3,5 (38.2 mg, 0.142 mmol) in toluene (5 mL) was added to a solution of  $\rm Tp^{fBu,Me}LuMe(AlMe_4)](100$  mg, 0.142 mmol) in toluene (5 mL). The reaction mixture was stirred for 6 h at ambient temperature. The precipitate was removed by filtration and the solution was concentrated in vacuo. Crystallization at -35 °C yielded compound 7-Lu (80.0 mg, 0.095 mmol, 67%) as colorless crystals. <sup>1</sup>H NMR (250 MHz, benzene- $d_6$ , 26 °C)  $\delta$  7.03 (s, 1 H, Ar-H), 6.34 (s, 2H, Ar-H), 5.57 (s, 3H, 4-pz-H), 4.66 (v br d, 1H, <sup>1</sup>J(BH) = 120 Hz, BH), 2.12 (s, 9H, pz-CH<sub>3</sub>), 1.35 (s, 27H, pz-C(CH<sub>3</sub>)), 0.37 (s, 3H, LuCH<sub>3</sub>) ppm. <sup>13</sup>C{<sup>1</sup>H} NMR (63 MHz, benzene- $d_{62}$  26 °C)  $\delta$  165.7 (3-pz-C), 165.5 (Ar-C1), 147.0 (5-pz-C), 132.1 (Ar-CCF<sub>3</sub>), 126.9 (Ar-C4), 119.5 (Ar-C2/6), 109.2 (Ar-C3/5), 104.2 (4-pz-C), 32.3  $(pz-C(CH_3)_3)$ , 32.2  $(Lu-CH_3)$ , 31.0  $(pz-C(CH_3)_3)$ , 13.0  $(pz-C(CH_3)_3)$ C(CH<sub>3</sub>)) ppm. <sup>13</sup>C NMR resonances for the CF<sub>3</sub> group showed no C–F coupling. <sup>11</sup>B{<sup>1</sup>H} NMR (80 MHz, benzene- $d_{6'}$  26 °C)  $\delta$  –8.3 (br s) ppm. <sup>19</sup>F{<sup>1</sup>H} NMR (376 MHz, benzene- $d_{6'}$  26 °C)  $\delta$  –62.6 ppm; IR (KBr)  $\tilde{\nu}$  2963 (m), 2936 (m), 2910 (w), 2862 (w), 2560 (w, B-H), 1601 (m), 1541 (s), 1470 (s), 1433 (m), 1391 (vs), 1357 (m), 1334 (w), 1310 (vw), 1273 (vs), 1251 (w), 1242 (w), 1195 (m), 1169 (vs), 1125 (vs), 1099 (w), 1071 (m), 1062 (m), 1028 (w), 1015 (w), 996 (w), 986 (w), 963 (m), 881 (w), 866 (w), 843 (w), 802 (m), 765 (m), 731 (w), 704 (w), 680 (m), 658 (vw), 643 (w), 612 (w), 516 (vw), 410 (w), 403 (w) cm<sup>-1</sup>. Elemental analysis calcd (%) for C33H46BF6LuN6O: C 47.04, H 5.50, N 9.97; found C 47.52, H 5.42, N 10.11.

 $[Tp^{tBu,Me}YMe(dmap)_2][Me_3Al(OC_6H_2tBu_2-2,6-Me-4)]$  (8-Y). A solution of HOC<sub>6</sub>H<sub>3</sub>tBu<sub>2</sub>-2,6-Me-4 (35.9 mg, 0.163 mmol) in toluene (5 mL) was added to a solution of  $Tp^{tBu,Me}YMe(AlMe_4)$  (100 mg, 0.163 mmol) in toluene (5 mL). A solution of dmap (29.8 mg, 0.243 mmol) in *n*-hexane (1 mL) was added to the solution and the reaction mixture was stirred for 1 h at ambient temperature. The precipitate

was allowed to settle and washed with cold toluene  $(3 \times 2 \text{ mL})$ . The precipitate was dried in vacuo and gave 8-Y as white solid (80.0 mg, 0.075 mmol, 46%). Crystals suitable for XRD analysis could be obtained by performing the reaction under the same conditions without stirring. <sup>1</sup>H NMR (500 MHz, THF- $d_8$ , 0 °C)  $\delta$  7.70 (br s, 4H, dmap), 6.70 (s, 2H, Ar-H), 6.44 (s br, 4H, dmap), 6.03 (s, 3H, 4-pz-H), 4.93 (v br d,  ${}^{1}J(BH) = 100$  Hz, 1H, BH), 2.95 (s br, 12H, dmap, N(CH<sub>3</sub>)<sub>2</sub>), 2.50 (s, 9H, pz-CH<sub>3</sub>), 2.08 (s, 3H, C(CH<sub>3</sub>)), 1.37 (s, 18H,  $C(CH_3)_3$ , 1.09 (s, 27H, pz- $C(CH_3)_3$ ), -0.09 (s br, 3H, YCH<sub>3</sub>), -1.01 (s, 9H, AlCH<sub>3</sub>) ppm. <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, THF- $d_8$ , 26 °C)  $\delta$  165.2 (3-pz-C), 159.9 (Ar-C1), 155.7 (C3, dmap), 149.7 (5-pz-C), 148.4 (C1, dmap), 138.8 (Ar-C2/6), 124.8 (Ar-C3/5), 120.8 (Ar-C4), 107.2 (4-pz-C), 105.8 (C2, dmap), 38.8 (NCH<sub>3</sub>, dmap), 35.4 (Ar-C(CH<sub>3</sub>)), 32.7 (pz-C(CH<sub>3</sub>)<sub>3</sub>), 31.7 (pz-C(CH<sub>3</sub>)<sub>3</sub>), 30.9 (Ar- $C(CH_3)_3)$ , 26.9 (d, <sup>2</sup>J(YC) = 47.4 Hz,  $Y-CH_3)$ , 21.5 (Ar-C(CH<sub>3</sub>)), 13.6 (pz-C(CH<sub>3</sub>)), -2.7 (AlCH<sub>3</sub>) ppm. <sup>11</sup>B{<sup>1</sup>H} NMR (80 MHz, THF- $d_{82}$  26 °C)  $\delta$  -8.7 ppm. <sup>89</sup>Y NMR (from <sup>1</sup>H-<sup>89</sup>Y HSQC, 25 MHz, THF- $d_{8}$ , 26 °C)  $\delta$  555 ppm; IR (KBr)  $\tilde{\nu}$  3057 (vw), 3016 (w), 2958 (s), 2915 (m), 2863 (w), 2723 (vw), 2561 (vw, B-H), 1640 (m), 1616 (s), 1557 (m), 1539 (vs), 1456 (m), 1436 (m), 1418 (s), 1386 (m), 1355 (m), 1313 (w), 1286 (w), 1265 (m), 1236 (s), 1200 (m), 1160 (w), 1132 (w), 1120 (w), 1066 (m), 1037 (vw), 1023 (w), 1004 (s), 985 (w), 949 (w), 887 (vw), 861 (w), 833 (m), 819 (m), 806 (m), 792 (w), 781 (m), 760 (w), 729 (w), 689 (w), 646 (w), 614 (vw), 533 (w), 520 (w), 502 (vw), 458 (vw), 439 (vw), 419 (vw), 412 (vw) cm<sup>-1</sup>. Elemental analysis calcd (%) for  $C_{57}H_{95}AlBN_{10}OY$ : C 64.40, H 9.01, N 13.17, found C 64.91, H 8.54, N 13.74. Although these results are outside the range viewed as establishing analytical purity (C: +0.51%, N: +0.57%), they are provided to illustrate the best values obtained to date.

 $\label{eq:2.1} [Tp^{tBu,Me}LuMe(dmap)_2][Me_3Al(OC_6H_2tBu_2-2,6-Me-4)] \ \ (8-Lu).$ A solution of  $HOC_6H_3tBu_2$ -2,6-Me-4) (15.7 mg, 0.071 mmol) in toluene (5 mL) was added to a solution of  $Tp^{tBu_4Me}LuMe(AlMe_4)$ (50.0 mg, 0.071 mmol) in toluene (5 mL). A solution of dmap (26.1 mg, 0.214 mmol) in *n*-hexane (1 mL) was added to the solution and the reaction mixture was stirred for 1 h at ambient temperature. The precipitate was allowed to settle and washed with cold toluene  $(3 \times 2)$ mL). The solid was dried in vacuo and gave 8-Lu as white solid (25.0 mg, 0.022 mmol, 31%). Crystals could be obtained by performing the reaction under the same conditions without stirring. <sup>1</sup>H NMR (500 MHz, THF-d<sub>8</sub>, 26 °C) δ 7.82 (br s, 4H, dmap), 6.70 (s, 2H, Ar-H), 6.45 (s br, 4H, dmap), 6.04 (s, 3H, 4-pz-H), 4.94 (v br d,  ${}^{1}J(BH) =$ 100 Hz, 1H, BH), 2.95 (s br, 12H, dmap, N(CH<sub>3</sub>)<sub>2</sub>), 2.50 (s, 9H, pz-CH<sub>3</sub>), 2.10 (s, 3H, C(CH<sub>3</sub>)), 1.38 (s, 18H, C(CH<sub>3</sub>)<sub>3</sub>), 1.12 (s, 27H, pz-C(CH<sub>3</sub>)<sub>3</sub>), -0.09 (s br, 3H, YCH<sub>3</sub>), -1.01 (s, 9H, AlCH<sub>3</sub>) ppm.  $^{13}C{}^{1}H$  NMR (101 MHz, THF-d\_8, 26 °C)  $\delta$  165.1 (3-pz-C), 159.8 (Ar-C1), 155.8 (C3, dmap), 149.6 (5-pz-C), 148.3 (C1, dmap), 138.7 (Ar-C2/6), 124.8 (Ar-C3/5), 120.8 (Ar-C4), 107.1 (4-pz-C), 105.7 (C2, dmap), 38.8 (NCH<sub>3</sub>, dmap), 35.4 (Ar-C(CH<sub>3</sub>)), 32.7 (pz-C(CH<sub>3</sub>)<sub>3</sub>), 31.6 (pz-C(CH<sub>3</sub>)<sub>3</sub>), 30.9 (Ar-C(CH<sub>3</sub>)<sub>3</sub>), 26.7 (Lu-CH<sub>3</sub>), 21.4 (Ar-C(CH<sub>3</sub>)), 13.6 (pz-C(CH<sub>3</sub>)) ppm. <sup>13</sup>C NMR resonances for the AlCH<sub>3</sub> group could not be detected. <sup>11</sup>B{<sup>1</sup>H} NMR (80 MHz, THF- $d_{8}$ , 26 °C)  $\delta$  –8.8 ppm. IR (KBr)  $\tilde{\nu}$  2959 (m), 2909 (m), 2812 (vw), 2563 (vw, B-H), 1616 (vs), 1543 (vs), 1506 (w), 1487 (w), 1457 (m), 1422 (s), 1393 (m), 1351 (m), 1327 (w), 1288 (m), 1267 (vw), 1238 (s), 1195 (m), 1182 (m), 1168 (m), 1117 (w), 1063 (m), 1023 (w), 1003 (vs), 986 (w), 949 (vw), 888 (vw), 862 (w), 848 (m), 818 (m), 809 (m), 798 (m), 782 (w), 770 (w), 761 (vw), 728 (vw),  $681 (s), 642 (w), 612 (w), 554 (w), 537 (w), 511 (w), 480 (vw), 442 (vw), 412 (w) cm^{-1}$ . Elemental analysis calcd (%) for C57H95AlBLuN8O: C 59.57, H 8.33, N 12.19, found C 60.09, H 8.21, N 12.41. Although these results are outside the range viewed as establishing analytical purity (C: +0.52%), they are provided to illustrate the best values obtained to date.

**Thermal Activation of 4-Lu (9-Lu).** In a glovebox, compound 4-Lu was dissolved in benzene- $d_6$  and placed in a J. Young valve NMR tube. The NMR tube was heated to 60 °C for 2 h, and a color change from colorless to slight yellow was observed. The deuterated solvent was evaporated, and few crystals suitable for XRD could be obtained from a saturated solution of 9-Lu in toluene at -35 °C.

X-ray Crystallography and Crystal Structure Determinations. Single crystals of 1-Lu, 2-Lu, 3-Lu, 4-Lu, 5-Ln, 6-Ln, 7-Ln, 8-Y, and 9-Lu were grown by standard techniques from saturated solutions in *n*-hexane, toluene, or THF at  $-35^{\circ}C$  as stated in the Experimental Section. Suitable crystals were collected in a glovebox and coated with Parabar 10312 (previously known as Paratone N, Hampton Research) and fixed on a nylon loop/glass fiber. X-ray data for all compounds were collected on a Bruker APEX II DUO instrument equipped with an I $\mu$ S microfocus sealed tube and QUAZAR optics for MoK<sub> $\alpha$ </sub> ( $\lambda$  = 0.71073 Å) and CuK<sub> $\alpha$ </sub> ( $\lambda$  = 1.54184 Å) radiation. The data collection strategy was determined using COSMO<sup>61</sup> employing  $\omega$ -scans. Raw data were processed using APEX<sup>62</sup> and SAINT, <sup>63</sup> corrections for absorption effects were applied using SADABS.<sup>64</sup> The structures were solved by direct methods and refined against all data by full-matrix least-squares methods on  $F^2$  using  $SHELXTL^{65}$  and  $ShelXle.^{66}$  Disorder models were calculated using DSR, a program for refining structures in ShelXl.<sup>67</sup> Compound 7-Y was refined as a twin, using hklf4 format. Restraints were given (RIGU/ISOR) because the complex showed additional disorder. 7-Lu was also twinned, and refinement in hklf5 format decreased the wR2 from 0.48 to 0.085. Restraints were given for the disordered CF<sub>3</sub> groups. All graphics were produced employing ORTEP-3<sup>68</sup> and POV-Ray.<sup>69</sup> Further details of the refinement and crystallographic data are listed in Table S1 (SI) and in the CIF files (CCDC depositions 1952857-1952868).

#### ASSOCIATED CONTENT

#### **S** Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.organomet.9b00631.

NMR spectra and crystallographic data for compounds 1-Lu, 2-Lu, 3-Lu, 4-Lu, 5-Ln, 6-Ln, 7-Ln, 8-Y, and 9-Lu, as well as cone angle calculations (PDF)

Structure data (XYZ)

#### Accession Codes

CCDC 1952857–1952868 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data\_request/cif, or by emailing data\_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

#### AUTHOR INFORMATION

#### **Corresponding Author**

\*E-mail: reiner.anwander@uni-tuebingen.de.

#### ORCID <sup>©</sup>

Cäcilia Maichle-Mössmer: 0000-0001-7638-1610 Reiner Anwander: 0000-0002-1543-3787

#### Notes

The authors declare no competing financial interest.

#### ACKNOWLEDGMENTS

We are grateful to the German Science Foundation for financial support (Grant: AN 238/15-2).

#### REFERENCES

(1) Mingos, D. M. P.; Carabtree, R. H. Comprehensive Organometallic Chemistry III; Elsevier Science, 2006; Vol. 4.01.

(2) Zimmermann, M.; Anwander, R. Homoleptic rare-earth metal complexes containing Ln-C sigma-bonds. *Chem. Rev.* **2010**, *110*, 6194–6259.

(3) Schumann, H.; Müller, J. Tris[(N,N,N',N'-tetramethylethylendiamin)lithium]-hexamethylerbat(III) und -lutetat-(III). *Angew. Chem.* **1978**, *90*, 307–308.

(4) Watson, P. L. Methane exchange reactions of lanthanide and early-transition-metal methyl complexes. J. Am. Chem. Soc. **1983**, 105, 6491–6493.

(5) Thompson, M. E.; Baxter, S. M.; Bulls, A. R.; Burger, B. J.; Nolan, M. C.; Santarsiero, B. D.; Schaefer, W. P.; Bercaw, J. E.  $\sigma$ -Bond metathesis for carbon-hydrogen bonds of hydrocarbons and Sc-R (R = H, alkyl, aryl) bonds of permethylscandocene derivatives. Evidence for noninvolvement of the  $\pi$  system in electrophilic activation of aromatic and vinylic C-H bonds. *J. Am. Chem. Soc.* **1987**, *109*, 203– 219.

(6) Evans, W. J.; Perotti, J. M.; Ziller, J. W. Synthetic utility of  $[(C_5Me_5)_2Ln][(\mu-Ph)_2BPh]$  in accessing  $[(C_5Me_5)_2LnR]_x$  unsolvated alkyl lanthanide metallocenes, complexes with high C-H activation reactivity. *J. Am. Chem. Soc.* **2005**, *127*, 3894–3909.

(7) Thompson, M. E.; Bercaw, J. E. Some aspects of the chemistry of alkyl and hydride derivatives of permethylscandocene. *Pure Appl. Chem.* **1984**, *56*, 1–11.

(8) Ziegler, T.; Folga, E.; Berces, A. A density functional study on the activation of hydrogen-hydrogen and hydrogen-carbon bonds by Cp<sub>2</sub>Sc-H and Cp<sub>2</sub>Sc-CH<sub>3</sub>. *J. Am. Chem. Soc.* **1993**, *115*, 636–646.

(9) Watson, P. L.; Parshall, G. W. Organolanthanides in catalysis. *Acc. Chem. Res.* **1985**, *18*, 51–56.

(10) Sadow, A. D.; Tilley, T. D. Homogeneous catalysis with methane. A strategy for the hydromethylation of olefins based on the nondegenerate exchange of alkyl groups and sigma-bond metathesis at scandium. *J. Am. Chem. Soc.* **2003**, *125*, 7971–7977.

(11) Dietrich, H. M.; Grove, H.; Törnroos, K. W.; Anwander, R. Multiple C-H bond activation in group 3 chemistry: synthesis and structural characterization of an yttrium-aluminum-methine cluster. *J. Am. Chem. Soc.* **2006**, *128*, 1458–1459.

(12) Holton, J.; Lappert, M. F.; Ballard, D. G. H.; Pearce, R.; Atwood, J. L.; Hunter, W. E. Alkyl-bridged complexes of the d- and fblock elements. Part 2. Bis[bis( $\eta$ -cyclopentadienyl)methylmetal(III)] complexes, and the crystal and molecular structure of the yttrium and ytterbium species. *J. Chem. Soc., Dalton Trans.* **1979**, 54–61.

(13) Davidson, P. J.; Lappert, M. F.; Pearce, R. Metal  $\sigma$ -hydrocarbyls, MRn Stoichiometry, structures, stabilities, and thermal decomposition pathways. *Chem. Rev.* **1976**, 76, 219–242.

(14) Shen, Q.; Cheng, Y.; Lin, Y. Preparation and molecular structure of methylbis(*t*-butyl-cyclopentadienyl)neodymium and -gadolinium. *J. Organomet. Chem.* **1991**, *419*, 293–298.

(15) Stults, S. D.; Andersen, R. A.; Zalkin, A. Preparation of  $(Me_3CC_3H_5)_4M_2(\mu-Me)_2$  (M = Ce or U) and the crystal structure of the cerium derivative. *J. Organomet. Chem.* **1993**, *462*, 175–182.

(16) Voskoboynikov, A. Z.; Parshina, I. N.; Shestakova, A. K.; Butin, K. P.; Beletskaya, I. P.; Kuz'mina, L. a. G.; Howard, J. A. K. Reactivity of Lanthanide and Yttrium Hydrides and Hydrocarbyls toward Organosilicon Hydrides and Related Compounds. *Organometallics* **1997**, *16*, 4041–4055.

(17) Schumann, H.; Keitsch, M. R.; Demtschuk, J.; Molander, G. A. Organometallic compounds of the lanthanides. *J. Organomet. Chem.* **1999**, *582*, 70–82.

(18) Satoh, Y.; Ikitake, N.; Nakayama, Y.; Okuno, S.; Yasuda, H. Syntheses of bis- and tetra(trimethylsilyl) substituted lanthanocene methyl complexes and their catalyses for polymerizations of methyl methacrylate,  $\varepsilon$ -caprolactone and *l*-lactide. *J. Organomet. Chem.* **2003**, 667, 42–52.

(19) Edelmann, F. T.; Freckmann, D. M. M.; Schumann, H. Synthesis and Structural Chemistry of Non-Cyclopentadienyl Organolanthanide Complexes. *Chem. Rev.* **2002**, *102*, 1851–1896.

(20) Piers, W. Non-cyclopentadienyl ancillaries in organogroup 3 metal chemistry: a fine balance in ligand design. *Coord. Chem. Rev.* **2002**, 233–234, 131–155.

(21) Arndt, S.; Okuda, J. Mono(cyclopentadienyl) Complexes of the Rare-Earth Metals. *Chem. Rev.* **2002**, *102*, 1953–1976.

(22) Robert, D.; Spaniol, T. P.; Okuda, J. Neutral and Monocationic Half-Sandwich Methyl Rare-Earth Metal Complexes: Synthesis, Structure, and 1,3-Butadiene Polymerization Catalysis. *Eur. J. Inorg. Chem.* **2008**, 2801–2809.

(23) Zhang, W. X.; Wang, Z.; Nishiura, M.; Xi, Z.; Hou, Z.  $Ln_4(CH_2)_4$  cubane-type rare-earth methylidene complexes consisting of " $(C_5Me_4SiMe_3)LnCH_2$ " units (Ln = Tm, Lu). J. Am. Chem. Soc. **2011**, 133, 5712–5715.

(24) Hayes, P. G.; Piers, W. E.; Lee, L. W. M.; Knight, L. K.; Parvez, M.; Elsegood, M. R. J.; Clegg, W. Dialkylscandium Complexes Supported by  $\beta$ -Diketiminato Ligands: Synthesis, Characterization, and Thermal Stability of a New Family of Organoscandium Complexes. *Organometallics* **2001**, *20*, 2533–2544.

(25) Conroy, K. D.; Piers, W. E.; Parvez, M. Synthesis and thermal behavior of dimethyl scandium complexes featuring anilido-phosphinimine ancillary ligands. *J. Organomet. Chem.* **2008**, 693, 834–846.

(26) Zimmermann, M.; Litlabø, R.; Törnroos, K. W.; Anwander, R. "Metastable" Lu(GaMe<sub>4</sub>)<sub>3</sub> Reacts Like Masked [LuMe<sub>3</sub>]: Synthesis of an Unsolvated Lanthanide Dimethyl Complex. *Organometallics* **2009**, 28, 6646–6649.

(27) Schädle, D.; Maichle-Mössmer, C.; Schädle, C.; Anwander, R. Rare-earth-metal methyl, amide, and imide complexes supported by a superbulky scorpionate ligand. *Chem. - Eur. J.* **2015**, *21*, 662–670.

(28) Zhou, J.; Xiang, L.; Guo, J.; Leng, X.; Chen, Y. Formation and Reactivity of a C-P-N-Sc Four-Membered Ring:  $H_2$ ,  $O_2$ , CO, Phenylsilane, and Pinacolborane Activation. *Chem. - Eur. J.* 2017, 23, 5424–5428.

(29) Zhou, J.; Chu, J.; Zhang, Y.; Yang, G.; Leng, X.; Chen, Y. An yttrium hydride-silane complex as a structural model for a sigma-bond metathesis transition state. *Angew. Chem., Int. Ed.* **2013**, *52*, 4243–4246.

(30) Scott, J.; Fan, H.; Wicker, B. F.; Fout, A. R.; Baik, M. H.; Mindiola, D. J. Lewis acid stabilized methylidene and oxoscandium complexes. J. Am. Chem. Soc. **2008**, 130, 14438–9.

(31) Henderson, L. D.; MacInnis, G. D.; Piers, W. E.; Parvez, M. A new family of monocyclopentadienyl organoscandium bis-alkyls supported by a bulky trialkylphosphine oxide ancillary. *Can. J. Chem.* **2004**, *82*, 162–165.

(32) Schädle, D.; Meermann-Zimmermann, M.; Maichle-Mössmer, C.; Schädle, C.; Törnroos, K. W.; Anwander, R. Rare-earth metal methylidene complexes with  $Ln_3(\mu^3-CH_2)(\mu^3-Me)(\mu^2-Me)_3$  core structure. *Dalton Trans* **2015**, *44*, 18101–18110.

(33) Trofimenko, S. Recent advances in poly(pyrazolyl)borate (scorpionate) chemistry. *Chem. Rev.* **1993**, *93*, 943–980.

(34) Marques, N.; Sella, A.; Takats, J. Chemistry of the Lanthanides Using Pyrazolylborate Ligands. *Chem. Rev.* **2002**, *102*, 2137–2160.

(35) Birkelbach, V. M.; Thim, R.; Stuhl, C.; Maichle-Mössmer, C.; Anwander, R. Potential Precursors for Terminal Methylidene Rare-Earth-Metal Complexes Supported by a Superbulky Tris(pyrazolyl)borato Ligand. *Chem. - Eur. J.* **2019**, DOI: 10.1002/chem.201903606.

(36) Zimmermann, M.; Takats, J.; Kiel, G.; Törnroos, K. W.; Anwander, R. Ln(III) methyl and methylidene complexes stabilized by a bulky hydrotris(pyrazolyl)borate ligand. *Chem. Commun.* 2008, 612–614.

(37) Litlabø, R.; Zimmermann, M.; Saliu, K.; Takats, J.; Törnroos, K. W.; Anwander, R. A rare-earth metal variant of the Tebbe reagent. *Angew. Chem., Int. Ed.* **2008**, *47*, 9560–9564.

(38) Boyle, T. J.; Ottley, L. A. Advances in structurally characterized lanthanide alkoxide, aryloxide, and silyloxide compounds. *Chem. Rev.* **2008**, *108*, 1896–1917.

(39) Heeres, H. J.; Meetsma, A.; Teuben, J. H.; Rogers, R. D. Mono(pentamethylcyclopentadienyl) complexes of cerium(III). Synthesis, molecular structure, thermal stability, and reactivity of  $(C_5Me_5)CeX_2$  (X = 2,6-di-tert-butylphenoxo, CH(SiMe\_3)<sub>2</sub>) and N(SiMe\_3)<sub>2</sub>) complexes. *Organometallics* **1989**, *8*, 2637–2646.

(40) Piers, W. E.; Bunel, E. E.; Bercaw, J. E. Synthesis and characterization of mono-(pentamethylcyclopentadienyl)-

alkoxyscandium alkyl derivatives,  $(\eta^5 - C_5 Me_5)(OR)ScR'$ . J. Organomet. Chem. **1991**, 407, 51–60.

(41) Schaverien, C. J. Alkoxides as ancillary ligands in organolanthanide chemistry: synthesis of, reactivity of, and olefin polymerization by the  $\mu$ -hydride- $\mu$ -alkyl compounds [Y(C<sub>5</sub>Me<sub>5</sub>)-(OC<sub>6</sub>H<sub>3</sub>tBu<sub>2</sub>)]<sub>2</sub>( $\mu$ -H)( $\mu$ -alkyl). Organometallics **1994**, 13, 69–82.

(42) Klooster, W. T.; Brammer, L.; Schaverien, C. J.; Budzelaar, P. H. M. C-H Bonds Are Not Elongated by Coordination to Lanthanide Metals: Single-Crystal Neutron Diffraction Structures of  $(C_5Me_5)Y$ - $(OC_6H_3tBu_2)CH(SiMe_3)_2$  at 20 K and  $(C_5Me_5)La\{CH(SiMe_3)_2\}_2$  at 15 K. J. Am. Chem. Soc. **1999**, 121, 1381–1382.

(43) Fischbach, A.; Herdtweck, E.; Anwander, R.; Eickerling, G.; Scherer, W. Reactivity of Trimethylaluminum with Lanthanide Aryloxides: Adduct and Tetramethylaluminate Formation. *Organometallics* **2003**, *22*, 499–509.

(44) Fischbach, A.; Herdtweck, E.; Anwander, R. Synthesis and derivatization of halflanthanidocene aryl(alk)oxide complexes. *Inorg. Chim. Acta* **2006**, *359*, 4855–4864.

(45) Choi, J.; Choliy, Y.; Zhang, X.; Emge, T. J.; Krogh-Jespersen, K.; Goldman, A. S. Cleavage of sp<sup>3</sup> C-O bonds via oxidative addition of C-H bonds. *J. Am. Chem. Soc.* **2009**, *131*, 15627–9.

(46) Kim, M.; Zakharov, L. N.; Rheingold, A. L.; Doerrer, L. H. Synthesis and structural characterization of Groups 10 and 11 mononuclear fluoroaryloxide complexes. *Polyhedron* **2005**, *24*, 1803–1812.

(47) Jende, L. N.; Maichle-Mössmer, C.; Anwander, R. Rare-earth metal formamidinate complexes from  $[(C_5Me_5)LnMe_2]_3$  and  $[LnMe_3]_n$  precursors. J. Organomet. Chem. **2018**, 857, 138–144.

(48) Steele, L. A. M.; Boyle, T. J.; Kemp, R. A.; Moore, C. The selective insertion of carbon dioxide into a lanthanide(III) 2,6-di-*t*-butyl-phenoxide bond. *Polyhedron* **2012**, *42*, 258–264.

(49) Dettenrieder, N.; Dietrich, H. M.; Maichle-Mössmer, C.; Anwander, R. Yttrium Siloxide Complexes Bearing Terminal Methyl Ligands: Molecular Models for Ln-CH<sub>3</sub> Terminated Silica Surfaces. *Chem. - Eur. J.* **2016**, *22*, 13189–13200.

(50) Deacon, G. B.; Junk, P. C.; Moxey, G. J. Mono-, di-, tri- and tetranuclear rare earth complexes obtained using a moderately bulky aryloxide ligand. *Chem. - Asian J.* **2009**, *4*, 1717–1728.

(51) Evans, W. J.; Olofson, J. M.; Ziller, J. W. Utility of the 2,6dimethylphenoxide ligand in providing chloride- and oxide-free yttrium  $[Y(OR)_3(solvent)_a]_b$  complexes with accessible coordination sites. *Inorg. Chem.* **1989**, *28*, 4308–4309.

(52) Hamidi, S.; Deacon, G. B.; Junk, P. C.; Neumann, P. Direct reaction of iodine-activated lanthanoid metals with 2,6-diisopropylphenol. *Dalton Trans* **2012**, *41*, 3541–3552.

(53) Cornish, A. D.; Mills, D. P.; Lewis, W.; Blake, A. J.; Liddle, S. T. Reactions of alkali metal and yttrium alkyls with a sterically demanding bis(aryloxysilyl)methane: Formation of aryloxide complexes by Si-O bond cleavage. *C. R. Chim.* **2010**, *13*, 593–602.

(54) Barnhart, D. M.; Clark, D. L.; Gordon, J. C.; Huffman, J. C.; Vincent, R. L.; Watkin, J. G.; Zwick, B. D. Synthesis, Properties, and X-ray Structures of the Lanthanide  $\eta^6$ -Arene-Bridged Aryloxide Dimers  $Ln_2(O-2,6-i-Pr_2C_6H_3)_6$  and Their Lewis Base Adducts  $Ln(O-2,6-i-Pr_2C_6H_3)_3$ (THF)<sub>2</sub> (Ln = Pr, Nd, Sm, Gd, Er, Yb, Lu). *Inorg. Chem.* **1994**, 33, 3487–3497.

(55) Bilbrey, J. A.; Kazez, A. H.; Locklin, J.; Allen, W. D. Exact ligand cone angles. J. Comput. Chem. 2013, 34, 1189–1197.

(56) Stuhl, C.; Maichle-Mössmer, C.; Anwander, R. Magnesium Stung by Nonclassical Scorpionate Ligands: Synthesis and Cone-Angle Calculations. *Chem. - Eur. J.* **2018**, *24*, 14254–14268.

(57) Nieland, A.; Mix, A.; Neumann, B.; Stammler, H.-G.; Mitzel, N. W. Lanthanoid Tetramethylaluminates and Their Paramagnetic NMR Parameters. *Eur. J. Inorg. Chem.* **2014**, 51–57.

(58) Langer, J.; Krieck, S.; Görls, H.; Kreisel, G.; Seidel, W.; Westerhausen, M. Organic heterobimetallic complexes of the alkaline earth metals (Ae = Ca, Sr, Ba) with tetrahedral metallate anions of three-valent metals (M = B, Al, Ga, and V). *New J. Chem.* **2010**, *34*, 1667.

(59) Krieck, S.; Görls, H.; Westerhausen, M. Synthesis and molecular structure of hexakis(tetrahydrofuran)calcium bis-[trimethyl-(diphenylamino)Alanate]. *Inorg. Chem. Commun.* **2008**, *11*, 911–913.

(60) Bonath, M.; Hollfelder, C. O.; Schädle, D.; Maichle-Mössmer, C.; Sirsch, P.; Anwander, R. C-H Bond Activation and Isoprene Polymerization by Lutetium Alkylaluminate/gallate Complexes Bearing a Peripheral Boryl and a Bulky Hydrotris(pyrazolyl)borate Ligand. *Eur. J. Inorg. Chem.* **201**7, 4683–4692.

(61) COSMO v. 1.61; Bruker AXS Inc.: Madison, WI, 2012.

(62) APEX 3 v. 2017.3-0; Bruker AXS Inc.: Madison, WI, 2017.

(63) SAINT v. 8.38A; Bruker AXS Inc.: Madison, WI, 2017.

(64) Krause, L.; Herbst-Irmer, R.; Sheldrick, G. M.; Stalke, D. J. Appl. Crystallogr. **2015**, 48, 3–10.

(65) Sheldrick, G. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem. 2015, 71, 3–8.

(66) Hübschle, C. B.; Sheldrick, G. M.; Dittrich, B. ShelXle: a Qt graphical user interface for SHELXL. J. Appl. Crystallogr. 2011, 44, 1281–1284.

(67) Kratzert, D.; Holstein, J. J.; Krossing, I. DSR: enhanced modelling and refinement of disordered structures with SHELXL. J. Appl. Crystallogr. 2015, 48, 933–938.

(68) Farrugia, L. WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr. 2012, 45, 849–854.

(69) POV-Ray v. 3.6; Persistence of Vision Raytracer Pty. Ltd.: Williamstown, Australia, 2004; http://www.povray.org.

Article

# Supporting Information

# Mixed Methyl Aryloxy Rare-Earth Metal Complexes Stabilized by a Superbulky Tris(pyrazolyl)borato Ligand

Verena M. Birkelbach, Christoph Stuhl, Cäcilia Maichle-Mössmer, and Reiner Anwander\*

Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen (Germany)

\* to whom correspondence should be addressed: E-Mail reiner.anwander@uni-tuebingen.de

# **Table of contents**

## NMR spectroscopy

| <sup>1</sup> H NMR, <sup>13</sup> C{ <sup>1</sup> H} NMR, <sup>11</sup> B{ <sup>1</sup> H} NMR spectra of complex <b>1-Lu</b>                                                                                 | Pages S3-S4   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| <sup>1</sup> H NMR, <sup>13</sup> C{ <sup>1</sup> H} NMR, <sup>11</sup> B{ <sup>1</sup> H} NMR spectra of complex <b>2-Lu</b>                                                                                 | Pages S4-S5   |
| <sup>1</sup> H NMR, <sup>13</sup> C{ <sup>1</sup> H} NMR, <sup>11</sup> B{ <sup>1</sup> H} NMR, <sup>19</sup> F{ <sup>1</sup> H} NMR spectra of complex <b>3-Lu</b>                                           | Pages S6-S7   |
| <sup>1</sup> H NMR, <sup>13</sup> C{ <sup>1</sup> H} NMR, <sup>11</sup> B{ <sup>1</sup> H} NMR, <sup>1</sup> H- <sup>89</sup> Y HSQC NMR spectra of complex <b>4-Y</b>                                        | Pages S8-S10  |
| <sup>1</sup> H NMR, <sup>13</sup> C{ <sup>1</sup> H} NMR, <sup>11</sup> B{ <sup>1</sup> H} NMR spectra of complex <b>4-Lu</b>                                                                                 | Pages S10-S11 |
| <sup>1</sup> H NMR, <sup>13</sup> C{ <sup>1</sup> H} NMR, <sup>11</sup> B{ <sup>1</sup> H} NMR, <sup>1</sup> H- <sup>89</sup> Y HSQC NMR spectra of complex <b>5-Y</b>                                        | Pages S12-S13 |
| <sup>1</sup> H NMR, <sup>13</sup> C{ <sup>1</sup> H} NMR, <sup>11</sup> B{ <sup>1</sup> H} NMR spectra of complex <b>5-Lu</b>                                                                                 | Pages S14-S15 |
| <sup>1</sup> H NMR, <sup>13</sup> C{ <sup>1</sup> H} NMR, <sup>11</sup> B{ <sup>1</sup> H} NMR, <sup>1</sup> H- <sup>89</sup> Y HSQC NMR spectra of complex <b>6-Y</b>                                        | Pages S15-S17 |
| <sup>1</sup> H NMR, <sup>13</sup> C{ <sup>1</sup> H} NMR, <sup>11</sup> B{ <sup>1</sup> H} NMR spectra of complex <b>6-Lu</b>                                                                                 | Pages S17-S18 |
| <sup>1</sup> H NMR, <sup>13</sup> C{ <sup>1</sup> H} NMR, <sup>11</sup> B{ <sup>1</sup> H} NMR, <sup>19</sup> F{ <sup>1</sup> H} NMR, <sup>1</sup> H- <sup>89</sup> Y HSQC NMR spectra of complex <b>7</b> -Y | Pages S19-S21 |
| <sup>1</sup> H NMR, <sup>13</sup> C{ <sup>1</sup> H} NMR, <sup>11</sup> B{ <sup>1</sup> H} NMR, <sup>19</sup> F{ <sup>1</sup> H} NMR spectra of complex <b>7-Lu</b>                                           | Pages S21-S23 |
| <sup>1</sup> H NMR, <sup>13</sup> C{ <sup>1</sup> H} NMR, <sup>11</sup> B{ <sup>1</sup> H} NMR, <sup>1</sup> H- <sup>89</sup> Y HSQC NMR spectra of complex <b>8-Y</b>                                        | Pages S24-S25 |
| <sup>1</sup> H NMR, <sup>13</sup> C{ <sup>1</sup> H} NMR, <sup>11</sup> B{ <sup>1</sup> H} NMR spectra of complex <b>8-Lu</b>                                                                                 | Pages S26-S26 |

## X-ray structure analyses

| ORTEP representation of the molecular structure for compounds 1-Lu, 2-Lu, 3-Lu, 5-Lu, 6-Y, and 7-Lu       | Pages S27-S28 |
|-----------------------------------------------------------------------------------------------------------|---------------|
| Comprehensive crystallographic data for compounds 1-Lu, 2-Lu, 3-Lu, 4-Lu, 5-Ln, 6-Ln, 7-Ln, 8-Y, and 9-Lu | Pages S29-S31 |

## Cone angle analyses

Pages S32-S36

### NMR spectroscopy

The solvent residual peaks are marked with an asterisk (\*).



Figure S1. <sup>1</sup>H NMR spectrum (250 MHz, [D<sub>6</sub>]benzene) of complex  $Tp^{tBu,Me}Lu(OC_6H_3Me_2-2,6)_2$  (1-Lu) at 26 °C.



Figure S2. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (63 MHz, [D<sub>6</sub>]benzene) of complex  $Tp^{tBu,Me}Lu(OC_6H_3Me_2-2,6)_2$  (1-Lu) at 26 °C.



Figure S3. <sup>11</sup>B{<sup>1</sup>H} NMR spectrum (80 MHz, [D<sub>6</sub>]benzene) of complex Tp<sup>tBu,Me</sup>Lu(OC<sub>6</sub>H<sub>3</sub>Me<sub>2</sub>-2,6)<sub>2</sub> (1-Lu) at 26 °C.



Figure S4. <sup>1</sup>H NMR spectrum (250 MHz, [D<sub>6</sub>]benzene) of complex  $Tp^{tBu,Me}Lu(OC_6H_3iPr_2-2,6)_2$  (2-Lu) at 26 °C.



**Figure S5.** <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (63 MHz, [D<sub>6</sub>]benzene) of complex  $Tp^{tBu,Me}Lu(OC_6H_3iPr_2-2,6)_2$  (**2-Lu**) at 26 °C.



Figure S6. <sup>11</sup>B{<sup>1</sup>H} NMR spectrum (80 MHz, [D<sub>6</sub>]benzene) of complex  $Tp^{tBu,Me}Lu(OC_6H_3iPr_2-2,6)_2$  (2-Lu) at 26 °C.



Figure S7. <sup>1</sup>H NMR spectrum (250 MHz,  $[D_6]$ benzene) of complex  $Tp^{tBu,Me}Lu[OC_6H_3(CF_3)_2-3,5]_2$  (3-Lu) at 26 °C.



Figure S8. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (63 MHz, [D<sub>6</sub>]benzene) of complex  $Tp^{tBu,Me}Lu[OC_6H_3(CF_3)_2-3,5]_2$  (3-Lu) at 26 °C.



Figure S9. <sup>11</sup>B{<sup>1</sup>H} NMR spectrum (80 MHz, [D<sub>6</sub>]benzene) of complex  $Tp^{tBu,Me}Lu[OC_6H_3(CF_3)_2-3,5]_2$  (3-Lu) at 26 °C.



Figure S10.  ${}^{19}F{}^{1}H$  NMR spectrum (376 MHz, [D<sub>6</sub>]benzene) of complex Tp<sup>tBu,Me</sup>Lu[OC<sub>6</sub>H<sub>3</sub>(CF<sub>3</sub>)<sub>2</sub>-3,5]<sub>2</sub> (3-Lu) at 26 °C.



**Figure S11.** <sup>1</sup>H NMR spectrum (500 MHz, [D<sub>8</sub>]toluene) of complex Tp<sup>*t*Bu,Me</sup>YMe(OC<sub>6</sub>H<sub>2</sub>*t*Bu<sub>2</sub>-2,6-Me-4) (**4-Y**) at 26 °C.



**Figure S12.** <sup>1</sup>H NMR spectrum (500 MHz,  $[D_8]$ thf) of complex Tp<sup>tBu,Me</sup>YMe(OC<sub>6</sub>H<sub>2</sub>tBu<sub>2</sub>-2,6-Me-4) (**4-Y**) at 0 °C.



Figure S13. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (126 MHz, [D<sub>8</sub>]thf) of complex Tp<sup>tBu,Me</sup>YMe(OC<sub>6</sub>H<sub>2</sub>tBu<sub>2</sub>-2,6-Me-4) (4-Y) at 0 °C



**Figure S14.** <sup>11</sup>B{<sup>1</sup>H} NMR spectrum (80 MHz, [D<sub>8</sub>]toluene) of complex Tp<sup>*t*Bu,Me</sup>YMe(OC<sub>6</sub>H<sub>2</sub>*t*Bu<sub>2</sub>-2,6-Me-4) (**4-Y**) at 26 °C.



**Figure S15.** <sup>1</sup>H-<sup>89</sup>Y HSQC NMR spectrum (25 MHz, [D<sub>8</sub>]thf) of complex Tp<sup>tBu,Me</sup>YMe(OC<sub>6</sub>H<sub>2</sub>tBu<sub>2</sub>-2,6-Me-4) (**4-Y**) at 0 °C.



**Figure S16.** <sup>1</sup>H NMR spectrum (400 MHz, [D<sub>6</sub>]benzene) of complex Tp<sup>*t*Bu,Me</sup>LuMe(OC<sub>6</sub>H<sub>2</sub>*t*Bu<sub>2</sub>-2,6-Me-4) (**4-Lu**) at 26 °C with traces of *n*-hexane (#).



**Figure S17.** <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (101 MHz, [D<sub>6</sub>]benzene) of complex Tp<sup>*t*Bu,Me</sup>LuMe(OC<sub>6</sub>H<sub>2</sub>*t*Bu<sub>2</sub>-2,6-Me-4) (**4-Lu**) at 26 °C with traces of *n*-hexane (#).



**Figure S18.** <sup>11</sup>B{<sup>1</sup>H} NMR spectrum (80 MHz, [D<sub>6</sub>]benzene) of complex  $Tp^{tBu,Me}LuMe(OC_6H_2tBu_2-2,6-Me-4)$  (**4-Lu**) at 26 °C.



Figure S19. <sup>1</sup>H NMR spectrum (250 MHz, [D<sub>6</sub>]benzene) of complex  $Tp^{tBu,Me}YMe(OC_6H_3Me_2-2,6)$  (5-Y) at 26 °C.



Figure S20. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (63 MHz, [D<sub>6</sub>]benzene) of complex  $Tp^{tBu,Me}$ YMe(OC<sub>6</sub>H<sub>3</sub>Me<sub>2</sub>-2,6) (5-Y) at 26 °C.



**Figure S21.** <sup>11</sup>B{<sup>1</sup>H} NMR spectrum (80 MHz, [D<sub>6</sub>]benzene) of complex  $Tp^{tBu,Me}$ YMe(OC<sub>6</sub>H<sub>3</sub>Me<sub>2</sub>-2,6) (**5- Y**) at 26 °C.



**Figure S22.** <sup>1</sup>H-<sup>89</sup>Y HSQC NMR spectrum (25 MHz, [D<sub>6</sub>]benzene) of complex Tp<sup>*t*Bu,Me</sup>YMe(OC<sub>6</sub>H<sub>3</sub>Me<sub>2</sub>-2,6) (**5-Y**) at 26 °C.



**Figure S23.** <sup>1</sup>H NMR spectrum (250 MHz, [D<sub>6</sub>]benzene) of complex Tp<sup>*t*Bu,Me</sup>LuMe(OC<sub>6</sub>H<sub>3</sub>Me<sub>2</sub>-2,6) (**5-**Lu) at 26 °C with traces of Tp<sup>*t*Bu,Me</sup>LuMe(AIMe<sub>4</sub>) (#).



Figure S24. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (63 MHz, [D<sub>6</sub>]benzene) of complex  $Tp^{tBu,Me}LuMe(OC_6H_3Me_2-2,6)$  (5-Lu) at 26 °C.



Figure S25. <sup>11</sup>B{<sup>1</sup>H} NMR spectrum (80 MHz, [D<sub>6</sub>]benzene) of complex  $Tp^{tBu,Me}LuMe(OC_6H_3Me_2-2,6)$  (5-Lu) at 26 °C.



**Figure S26.** <sup>1</sup>H NMR spectrum (250 MHz, [D<sub>6</sub>]benzene) of complex Tp<sup>*t*Bu,Me</sup>YMe(OC<sub>6</sub>H<sub>3</sub>*i*Pr<sub>2</sub>-2,6) (**6-Y**) at 26 °C.



**Figure S27.** <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (63 MHz, [D<sub>6</sub>]benzene) of complex Tp<sup>*t*Bu,Me</sup>YMe(OC<sub>6</sub>H<sub>3</sub>*i*Pr<sub>2</sub>-2,6) (**6-Y**) at 26 °C, no Y-C coupling was observed.



Figure S28. <sup>11</sup>B{<sup>1</sup>H} NMR spectrum (80 MHz, [D<sub>6</sub>]benzene) of complex  $Tp^{tBu,Me}YMe(OC_6H_3/Pr_2-2,6)$  (6-Y) at 26 °C.



Figure S29. <sup>1</sup>H-<sup>89</sup>Y HSQC NMR spectrum (25 MHz, [D<sub>6</sub>]benzene) of complex  $Tp^{tBu,Me}$ YMe(OC<sub>6</sub>H<sub>3</sub>/Pr<sub>2</sub>-2,6) (6-Y) at 26 °C.



**Figure S30.** <sup>1</sup>H NMR spectrum (250 MHz, [D<sub>6</sub>]benzene) of complex Tp<sup>*t*Bu,Me</sup>LuMe(OC<sub>6</sub>H<sub>3</sub>*i*Pr<sub>2</sub>-2,6) (**6-**Lu) at 26 °C.



Figure S31. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (63 MHz, [D<sub>6</sub>]benzene) of complex  $Tp^{tBu,Me}LuMe(OC_6H_3iPr_2-2,6)$  (6-Lu) at 26 °C.



**Figure S32.** <sup>11</sup>B{<sup>1</sup>H} NMR spectrum (80 MHz, [D<sub>6</sub>]benzene) of complex  $Tp^{tBu,Me}LuMe(OC_6H_3iPr_2-2,6)$  (**6-Lu**) at 26 °C.



**Figure S33.** <sup>1</sup>H NMR spectrum (250 MHz, [D<sub>6</sub>]benzene) of complex  $Tp^{tBu,Me}YMe[OC_6H_3(CF_3)_2-3,5]$  (**7- Y**) at 26 °C and traces of decomposition products (#).



**Figure S34.** <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (63 MHz, [D<sub>6</sub>]benzene) of complex Tp<sup>*t*Bu,Me</sup>YMe[OC<sub>6</sub>H<sub>3</sub>(CF<sub>3</sub>)<sub>2</sub>-3,5] (7-Y) at 26 °C and traces of decomposition products (#).



**Figure S35.** <sup>11</sup>B{<sup>1</sup>H} NMR spectrum (80 MHz, [D<sub>6</sub>]benzene) of complex  $Tp^{tBu,Me}YMe[OC_6H_3(CF_3)_2-3,5]$ **7-Y**) at 26 °C.



**Figure S36.** <sup>19</sup>F{<sup>1</sup>H} NMR spectrum (376 MHz, [D<sub>6</sub>]benzene) of complex Tp<sup>*t*Bu,Me</sup>YMe[OC<sub>6</sub>H<sub>3</sub>(CF<sub>3</sub>)<sub>2</sub>-3,5] (7-Y) at 26 °C and traces of decomposition products (#).



Figure S37. <sup>1</sup>H-<sup>89</sup>Y HSQC NMR spectrum (25 MHz, [D<sub>6</sub>]benzene) of complex Tp<sup>*t*Bu,Me</sup>YMe[OC<sub>6</sub>H<sub>3</sub>(CF<sub>3</sub>)<sub>2</sub>-3,5] (7-Y) at 26 °C.



**Figure S38.** <sup>1</sup>H NMR spectrum (250 MHz, [D<sub>6</sub>]benzene) of complex Tp<sup>*t*Bu,Me</sup>LuMe[OC<sub>6</sub>H<sub>3</sub>(CF<sub>3</sub>)<sub>2</sub>-3,5] (**7-**Lu) at 26 °C.



**Figure S39.** <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (63 MHz, [D<sub>6</sub>]benzene) of complex  $Tp^{tBu,Me}LuMe[OC_6H_3(CF_3)_2-3,5]$  (**7-Lu**) at 26 °C and traces of decomposition products (#).



Figure S40. <sup>11</sup>B{<sup>1</sup>H} NMR spectrum (80 MHz, [D<sub>6</sub>]benzene) of complex  $Tp^{tBu,Me}LuMe[OC_6H_3(CF_3)_2-3,5]$  (7-Lu) at 26 °C.



Figure S41. <sup>19</sup>F{<sup>1</sup>H} NMR spectrum (376 MHz, [D<sub>6</sub>]benzene) of complex Tp<sup>tBu,Me</sup>LuMe[OC<sub>6</sub>H<sub>3</sub>(CF<sub>3</sub>)<sub>2</sub>-3,5] (7-Lu) at 26 °C.



**Figure S42.** <sup>1</sup>H NMR spectrum (500 MHz, [D<sub>8</sub>]thf) of complex [Tp<sup>tBu,Me</sup>YMe(dmap)<sub>2</sub>][Me<sub>3</sub>Al(OC<sub>6</sub>H<sub>2</sub>tBu<sub>2</sub>-2,6-Me-4)] (**8-Y**) at 0 °C, no Y-H coupling was observed.



**Figure S43.**  ${}^{13}C{}^{1}H$  NMR spectrum (101 MHz, [D<sub>8</sub>]thf) of complex [Tp<sup>tBu,Me</sup>YMe(dmap)<sub>2</sub>][Me<sub>3</sub>Al(OC<sub>6</sub>H<sub>2</sub>tBu<sub>2</sub>-2,6-Me-4)] (**8-Y**) at 26 °C.



**Figure S44.** <sup>11</sup>B{<sup>1</sup>H} NMR spectrum (80 MHz,  $[D_8]$ thf) of complex  $[Tp^{tBu,Me}YMe(dmap)_2][Me_3Al(OC_6H_2tBu_2-2,6-Me-4)]$  (**8-Y**) at 26 °C.



Figure S45. <sup>1</sup>H-<sup>89</sup>Y HSQC NMR spectrum (25 MHz, [D<sub>6</sub>]thf) of complex  $[Tp^{tBu,Me}YMe(dmap)_2][Me_3Al(OC_6H_2tBu_2-2,6-Me-4)]$  (8-Y) at 0 °C.



Figure S46. <sup>1</sup>H NMR spectrum (500 MHz,  $[D_8]$ thf) of complex  $[Tp^{tBu,Me}LuMe(dmap)_2][Me_3Al(OC_6H_2tBu_2-2,6-Me-4)]$  (8-Lu) at 26 °C.



Figure S47.  ${}^{13}C{}^{1}H$  NMR spectrum (101 MHz, [D<sub>8</sub>]thf) of complex [Tp<sup>tBu,Me</sup>LuMe(dmap)<sub>2</sub>][Me<sub>3</sub>Al(OC<sub>6</sub>H<sub>2</sub>tBu<sub>2</sub>-2,6-Me-4)] (8-Lu) at 26 °C.



**Figure S48.** <sup>11</sup>B{<sup>1</sup>H} NMR spectrum (80 MHz,  $[D_8]$ thf) of complex  $[Tp^{tBu,Me}LuMe(dmap)_2][Me_3Al(OC_6H_2tBu_2-2,6-Me-4)]$  (**8-Lu**) at 26 °C.

### X-ray structure analyses



| 1-Lu          | Selected bond lengths<br>and angles [Å, °] |
|---------------|--------------------------------------------|
| Lu1b–N2       | 2.335(2)                                   |
| Lu1b–N4       | 2.362(9)                                   |
| Lu1b–N6       | 2.439(3)                                   |
| Lu1b–O1       | 2.052(2)                                   |
| Lu1b–O2b      | 2.06(2)                                    |
| Lu1b-01-C25   | 170.9(2)                                   |
| Lu1b-O2b-C33b | 174(3)                                     |

**Figure S49.** ORTEP representation of the crystal structure of **1-Lu** with atomic displacement parameters set at the 50% level. Hydrogen atoms except for BH and the disorder in the *tert*-butyl groups, one aryloxy ligand, and one pyrazolyl ligand are omitted for clarity.



| 2-Lu       | Selected bond lengths<br>and angles [Å, °] |
|------------|--------------------------------------------|
| Lu1–N2     | 2.365(1)                                   |
| Lu1–N4     | 2.517(1)                                   |
| Lu1–N6     | 2.370(1)                                   |
| Lu1–O1     | 2.072(1)                                   |
| Lu1–O2     | 2.038(1)                                   |
| Lu1–O1–C25 | 171.8(1)                                   |
| Lu1-02-C37 | 175.4(1)                                   |

**Figure S50.** ORTEP representation of the crystal structure of **2-Lu** with atomic displacement parameters set at the 50% level. Hydrogen atoms except for BH, the second molecule in the unit cell and solvents are omitted for clarity.



| 3-Lu       | Selected bond lengths<br>and angles [Å, °] |
|------------|--------------------------------------------|
| Lu1–N2     | 2.397(2)                                   |
| Lu1–N4     | 2.318(2)                                   |
| Lu1–N6     | 2.315(2)                                   |
| Lu1–O1     | 2.090(2)                                   |
| Lu1–O2     | 2.064(2)                                   |
| Lu1–O1–C25 | 145.3(2)                                   |
| Lu1-02-C33 | 147.3(2)                                   |

**Figure S51.** ORTEP representation of the crystal structure of **3-Lu** with atomic displacement parameters set at the 50% level. Hydrogen atoms except for BH and the disorder in one  $CF_3$  group are omitted for clarity.



**Figure S52.** ORTEP representation of the crystal structure of **5-Lu** with atomic displacement parameters set at the 50% level. Hydrogen atoms except for BH are omitted for clarity.



**Figure S53.** ORTEP representation of the crystal structure of **6-Y** with atomic displacement parameters set at the 50% level. Hydrogen atoms except for BH, the disorder in one *tert*-butyl group and solvent molecules are omitted for clarity.



**Figure S54.** ORTEP representation of the crystal structure of **7-Lu** with atomic displacement parameters set at the 50% level. Hydrogen atoms except for BH, the second molecule in the unit cell and the disorder in one  $CF_3$  group are omitted for clarity.

|                                          | 1-Lu                    | 2-Lu                                                                                                  | 3-Lu                          | 4-Lu                                                |
|------------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------------------------|
| CCDC                                     | 1952866                 | 1952862                                                                                               | 1952859                       | 1952861                                             |
| formula                                  | $C_{40}H_{58}BLuN_6O_2$ | C <sub>48</sub> H <sub>74</sub> BLuN <sub>6</sub> O <sub>2</sub> •<br>½ C <sub>7</sub> H <sub>8</sub> | $C_{40}H_{46}BF_{12}LuN_6O_2$ | C <sub>40</sub> H <sub>66</sub> BLuN <sub>6</sub> O |
| M [g mol <sup>-1</sup> ]                 | 839.69                  | 998.97                                                                                                | 1056.61                       | 832.76                                              |
| crystal system                           | triclinic               | triclinic                                                                                             | monoclinic                    | monoclinic                                          |
| space group                              | PĪ                      | PĪ                                                                                                    | P 2 <sub>1</sub> /c           | P 21/c                                              |
| a [Å]                                    | 13.2578(12)             | 10.0205(6)                                                                                            | 11.2564(8)                    | 19.301(2)                                           |
| b [Å]                                    | 14.1925(13)             | 22.1089(14)                                                                                           | 21.3657(14)                   | 9.9326(11)                                          |
| c [Å]                                    | 14.9775(14)             | 23.8154(15)                                                                                           | 18.8036(13)                   | 22.217(2)                                           |
| α [°]                                    | 90.420(2)               | 76.770(2)                                                                                             | 90                            | 90                                                  |
| β [°]                                    | 109.7010(10)            | 78.528(2)                                                                                             | 96.4670(10)                   | 104.378(2)                                          |
| γ [°]                                    | 103.9910(10)            | 84.220(2)                                                                                             | 90                            | 90                                                  |
| V [Å <sup>3</sup> ]                      | 2562.3(4)               | 5025.0(5)                                                                                             | 4493.5(5)                     | 4125.8(8)                                           |
| Z                                        | 2                       | 4                                                                                                     | 4                             | 4                                                   |
| T [K]                                    | 102(2)                  | 100(2)                                                                                                | 100(2)                        | 100(2)                                              |
| ρ <sub>calcd</sub> [g cm <sup>-3</sup> ] | 1.090                   | 1.320                                                                                                 | 1.562                         | 1.341                                               |
| µ[mm <sup>-1</sup> ]                     | 1.958                   | 2.008                                                                                                 | 2.287                         | 2.429                                               |
| F (000)                                  | 864                     | 2084                                                                                                  | 2112                          | 1728                                                |
| Θ range [°]                              | 1.486 to 27.483         | 1.786 to 29.130                                                                                       | 2.055 to 29.117               | 1.893 to 27.200                                     |
| total refins                             | 56923                   | 195002                                                                                                | 65376                         | 87459                                               |
| unique reflns                            | 11737                   | 27049                                                                                                 | 12066                         | 9184                                                |
| Rint                                     | 0.0478                  | 0.0440                                                                                                | 0.0432                        | 0.0623                                              |
| observed reflns (I>2σ)                   | 10141                   | 23803                                                                                                 | 10379                         | 8005                                                |
| Data/restraints/parameter                | 11737 / 741 /<br>727    | 27049 / 29 / 1169                                                                                     | 12066 / 55 / 632              | 9184 / 0 / 466                                      |
| R1/wR2 (I>2σ) <sup>[a]</sup>             | 0.0290 / 0.0613         | 0.0205 / 0.0470                                                                                       | 0.0279 / 0.0635               | 0.0323 / 0.0610                                     |
| R1/wR2 (all data) <sup>[a]</sup>         | 0.0392 / 0.0643         | 0.0260 / 0.0491                                                                                       | 0.0352 / 0.0667               | 0.0402 / 0.0628                                     |
| GOF <sup>[a]</sup>                       | 1.073                   | 1.028                                                                                                 | 1.036                         | 1.193                                               |
| largest diff. peak and hole [e Å⁻³]      | 1.120<br>and -0.823     | 1.107 and -0.714                                                                                      | 1.545 and -0.705              | 1.459<br>and -1.855                                 |

 Table S1. Comprehensive crystallographic data for compounds 1-Lu, 2-Lu, 3-Lu, and 4-Lu

[a] R1 =  $\Sigma(||F0|-|Fc||)/\Sigma|F0|,F0> 4s(F0)$ . wR2 = { $\Sigma[w(F02-Fc2)2/\Sigma[w(F02)^2]$ }<sup>1/2</sup>.

### Table S1 continued.

Comprehensive crystallographic data for compounds 5-Y, 5-Lu, 6-Y, and 6-Lu

|                                                  | 5-Y                                                | 5-Lu                | 6-Y                 | 6-Lu                |
|--------------------------------------------------|----------------------------------------------------|---------------------|---------------------|---------------------|
| CCDC                                             | 1952865                                            | 1952858             | 1952868             | 1952860             |
| formula                                          | C <sub>33</sub> H <sub>52</sub> BN <sub>6</sub> OY | C33H52BLuN6O        | C44H68BN6OY         | C44H68BLuN6O        |
| M [g mol <sup>-1</sup> ]                         | 648.52                                             | 734.58              | 796.76              | 882.82              |
| crystal system                                   | monoclinic                                         | monoclinic          | monoclinic          | triclinic           |
| space group                                      | P21/n                                              | P21/n               | P21/n               | PĪ                  |
| a [Å]                                            | 11.8874(2)                                         | 11.8831(5)          | 20.0903(12)         | 10.6560(5)          |
| b [Å]                                            | 19.2010(3)                                         | 19.2344(8)          | 10.2628(6)          | 12.6363(5)          |
| c [Å]                                            | 15.5311(3)                                         | 15.4889(7)          | 22.1377(13)         | 17.0849(7)          |
| α [°]                                            | 90                                                 | 90                  | 90                  | 76.3380(10)         |
| β [°]                                            | 96.7110(10)                                        | 96.3300(10)         | 104.0960(10)        | 82.3050(10)         |
| γ [°]                                            | 90                                                 | 90                  | 90                  | 87.5710(10)         |
| V [ų]                                            | 3520.68(11)                                        | 3518.6(3)           | 4427.0(5)           | 2215.16(16)         |
| Z                                                | 4                                                  | 4                   | 4                   | 2                   |
| T [K]                                            | 160(2)                                             | 180(2)              | 99(2)               | 100(2)              |
| ρ <sub>calcd</sub> [g cm <sup>-3</sup> ]         | 1.224                                              | 1.387               | 1.195               | 1.324               |
| µ[mm <sup>-1</sup> ]                             | 1.689                                              | 2.838               | 1.356               | 2.267               |
| F (000)                                          | 1376                                               | 1504                | 1704                | 916                 |
| Θ range [°]                                      | 1.693 to 27.875                                    | 1.694 to 30.119     | 1.897 to 27.099     | 1.659 to 30.538     |
| total reflns                                     | 44128                                              | 62037               | 79010               | 99941               |
| unique reflns                                    | 8401                                               | 10339               | 9763                | 13480               |
| Rint                                             | 0.0371                                             | 0.0476              | 0.0777              | 0.0362              |
| observed reflns (I>2σ)                           | 6562                                               | 8229                | 7940                | 12838               |
| Data/restraints/parameter                        | 8401 / 0 / 398                                     | 10339 / 0 / 398     | 9763 / 333 / 584    | 13480 / 0 / 500     |
| R1/wR2 (I>2ơ) <sup>[a]</sup>                     | 0.0365 / 0.0755                                    | 0.0273 / 0.0581     | 0.0333 / 0.0765     | 0.0172 / 0.0407     |
| R1/wR2 (all data) <sup>[a]</sup>                 | 0.0583 / 0.0821                                    | 0.0406 / 0.0637     | 0.0480 / 0.0826     | 0.0186 / 0.0413     |
| GOF <sup>[a]</sup>                               | 1.017                                              | 1.025               | 1.006               | 1.055               |
| largest diff. peak and hole [e Å <sup>-3</sup> ] | 0.536<br>and -0.704                                | 2.338<br>and -0.919 | 0.384<br>and -0.335 | 2.016<br>and -0.752 |

 $\boxed{[a] \ \mathsf{R1} = \Sigma(||\mathsf{F0}|-|\mathsf{Fc}||)/\Sigma|\mathsf{F0}|,\mathsf{F0}>4\mathsf{s}(\mathsf{F0}). \ \mathsf{wR2} = \{\Sigma[\mathsf{w}(\mathsf{F02}-\mathsf{Fc2})2/\Sigma[\mathsf{w}(\mathsf{F02})^2]\}^{1/2}.}$
### Table S1 continued.

Comprehensive crystallographic data for compounds 7-Y, 7-Lu, 8-Y, and 9-Lu

|                                                  | 7-Y                                                               | 7-Lu                                                               | 8-Y                                                   | 9-Lu                                                |
|--------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------|
| CCDC                                             | 1952863                                                           | 1952857                                                            | 1952867                                               | 1952864                                             |
| Formula                                          | C <sub>33</sub> H <sub>46</sub> BF <sub>6</sub> N <sub>6</sub> OY | C <sub>33</sub> H <sub>46</sub> BF <sub>6</sub> LuN <sub>6</sub> O | C <sub>57</sub> H <sub>95</sub> AIBN <sub>10</sub> OY | C <sub>39</sub> H <sub>62</sub> BLuN <sub>6</sub> O |
| M [g mol <sup>-1</sup> ]                         | 756.48                                                            | 842.54                                                             | 1063.12                                               | 816.72                                              |
| Crystal system                                   | monoclinic                                                        | monoclinic                                                         | triclinic                                             | monoclinic                                          |
| Space group                                      | P 2 <sub>1</sub>                                                  | P 2 <sub>1</sub> /c                                                | ΡĪ                                                    | P 2 <sub>1</sub> /c                                 |
| a [Å]                                            | 20.8816(15)                                                       | 20.8123(15)                                                        | 16.8784(16)                                           | 17.0580(12)                                         |
| b [Å]                                            | 21.1727(15)                                                       | 21.1757(15)                                                        | 20.723(2)                                             | 11.9100(9)                                          |
| c [Å]                                            | 18.8326(13)                                                       | 18.8646(14)                                                        | 20.752(2)                                             | 20.5209(15)                                         |
| α [°]                                            | 90                                                                | 90                                                                 | 61.930(2)                                             | 90                                                  |
| β [°]                                            | 116.7770(10)                                                      | 116.879(2)                                                         | 72.578(3)                                             | 110.9950(10)                                        |
| γ [°]                                            | 90                                                                | 90                                                                 | 79.844(3)                                             | 90                                                  |
| V [Å <sup>3</sup> ]                              | 7433.4(9)                                                         | 7415.7(9)                                                          | 6105.6(10)                                            | 3892.3(5)                                           |
| Z                                                | 2                                                                 | 8                                                                  | 4                                                     | 4                                                   |
| Т [К]                                            | 100(2)                                                            | 100(2)                                                             | 100(2)                                                | 100(2)                                              |
| ρ <sub>calcd</sub> [g cm <sup>-3</sup> ]         | 1.352                                                             | 1.509                                                              | 1.157                                                 | 1.394                                               |
| µ[mm <sup>-1</sup> ]                             | 1.633                                                             | 2.727                                                              | 1.014                                                 | 2.574                                               |
| F (000)                                          | 3136                                                              | 3392                                                               | 2288                                                  | 1688                                                |
| Θ range [°]                                      | 1.211 to 28.282                                                   | 1.097 to 30.032                                                    | 1.477 to 30.184                                       | 1.338 to 27.483                                     |
| total refins                                     | 148707                                                            | 21614                                                              | 265056                                                | 68987                                               |
| unique reflns                                    | 36898                                                             | 21614                                                              | 35933                                                 | 8921                                                |
| Rint                                             | 0.0836                                                            | 0.061                                                              | 0.1098                                                | 0.0928                                              |
| observed reflns (I>2σ)                           | 27179                                                             | 18206                                                              | 24681                                                 | 6770                                                |
| Data/restraints/parameter                        | 36898 / 3181 /<br>1908                                            | 21614 / 69 / 919                                                   | 35933 / 0 / 1341                                      | 8921 / 36 / 485                                     |
| R1/wR2 (I>2σ) <sup>[a]</sup>                     | 0.0508 / 0.1086                                                   | 0.0386 / 0.0863                                                    | 0.0475 / 0.0946                                       | 0.0284 / 0.0555                                     |
| R1/wR2 (all data) <sup>[a]</sup>                 | 0.0834 / 0.1225                                                   | 0.0509 / 0.0923                                                    | 0.0900 / 0.1088                                       | 0.0491 / 0.0617                                     |
| GOF <sup>[a]</sup>                               | 1.021                                                             | 1.073                                                              | 1.018                                                 | 1.017                                               |
| largest diff. peak and hole [e Å <sup>-3</sup> ] | 1.776<br>and -0.366                                               | 5.899<br>and -1.015                                                | 0.639 and -0.541                                      | 0.558<br>and -0.681                                 |

[a] R1 =  $\Sigma(||F0|-|Fc||)/\Sigma|F0|,F0> 4s(F0)$ . wR2 = { $\Sigma[w(F02-Fc2)2/\Sigma[w(F02)^2]$ }<sup>1/2</sup>.

## Cone angle calculations

To calculate the mathematically exact cone angles a series of .xyz files was generated from the final .cif files with ORTEP. The Mathematica package was downloaded free of charge from http://www.ccqc.uga.edu/references/software.php.

The supplemental file [cone angle data.xyz] contains the computed Cartesian coordinates of all of the molecules reported in this study. The file may be opened as a text file to read the coordinates, or opened directly by a molecular modeling program such as Mercury (version 3.3 or later, <u>http://www.ccdc.cam.ac.uk/pages/Home.aspx</u>) for visualization and analysis.

The adopted van der Waals radii were r = 1.20, 1.70, 1.55, 1.52, 1.92 Å for H, C, N, O, B in this order.



Tp<sup>tBu,Me</sup>YMe(AIMe<sub>4</sub>)\_a

Ligand atoms forming cone =  $\{19, 40, 57\}$ 

Cone angle (deg) = 280.65

Cone axis = {0.547789, 0.180831, -0.81684}

Tp<sup>tBu,Me</sup>YMe(AIMe<sub>4</sub>)\_b (cone depicted)

Ligand atoms forming cone = {29, 45, 68}

Cone angle (deg) = 276.12

Cone axis = {0.446285, 0.195798, -0.873208}



Tp<sup>*t*Bu,Me</sup>LuMe<sub>2</sub>

Ligand atoms forming cone = {25, 38, 63}

Cone angle (deg) = 277.06

Cone axis = { -0.894711, -6.37622×10-17, -0.446646}



Tp<sup>*t*Bu,Me</sup>Lu(OC<sub>6</sub>H<sub>3</sub>Me<sub>2</sub>-2,6)<sub>2</sub> (**1-Lu**)

Ligand atoms forming cone = {8, 48, 55} Cone angle (deg) = 276.07 Cone axis = {-0.225924, 0.939593, 0.257144}



Tp<sup>*t*Bu,Me</sup>Lu(OC<sub>6</sub>H<sub>3</sub>*i*Pr<sub>2</sub>-2,6)<sub>2</sub> (**2-Lu**)

Ligand atoms forming cone = {19, 31, 53} Cone angle (deg) = 272.526 Cone axis = {-0.166388, 0.92943, 0.329356}



 $Tp^{tBu,Me}Lu[OC_6H_3(CF_3)_2-3,5]_2$  (3-Lu)

Ligand atoms forming cone = {20, 26, 54} Cone angle (deg) = 280.424 Cone axis = {-0.71205, -0.687129, 0.144353}



 $Tp^{tBu,Me}LuMe(OC_6H_2tBu_2-2,6-Me-4)$  (4-Lu)

Ligand atoms forming cone = {21, 43, 44} Cone angle (deg) = 278.118 Cone axis = {-0.165494, 0.984032, -0.0655229}



 $Tp^{tBu,Me}YMe(OC_6H_3Me_2-2,6)$  (5-Y)

Ligand atoms forming cone = {23, 39, 57}

Cone angle (deg) = 273.902

Cone axis = {0.696277, -0.00548779, -0.717752}



 $Tp^{tBu,Me}LuMe(OC_6H_3Me_2-2,6)$  (5-Lu)

Ligand atoms forming cone = {8, 48, 55} Cone angle (deg) = 276.07 Cone axis = {-0.225924, 0.939593, 0.257144}



 $Tp^{tBu,Me}YMe(OC_6H_3iPr_2-2,6)$  (6-Y)

Ligand atoms forming cone = {13, 46, 67} Cone angle (deg) = 276.057 Cone axis = {-0.76823, -0.250027, -0.589329}



Tp<sup>*t*Bu,Me</sup>LuMe(OC<sub>6</sub>H<sub>3</sub>*i*Pr<sub>2</sub>-2,6) (**6-Lu**)

Ligand atoms forming cone = {23, 35, 60} Cone angle (deg) = 279.236 Cone axis = {-0.999597, -0.0067429, -0.0275751}



 $Tp^{tBu,Me}YMe[OC_6H_3(CF_3)_2-3,5]$  (7-Y)

Ligand atoms forming cone = {23, 34, 58}

Cone angle (deg) = 278.637

Cone axis = {-0.205908, 0.616546, -0.759917}



 $Tp^{tBu,Me}LuMe[OC_6H_3(CF_3)_2-3,5]$  (7-Lu)

Ligand atoms forming cone = {26, 46, 65} Cone angle (deg) = 280.343 Cone axis = {-0.627792, -0.76852, 0.123506}



 $[Tp^{tBu,Me}YMe(dmap)_2][Me_3AlOC_6H_2tBu_2-2,6-Me-4] (8-Y)$ Ligand atoms forming cone = {20, 40, 58} Cone angle (deg) = 276.798 Cone axis = {0.185673, -0.952331, -0.242058}



Tp<sup>tBu,Me</sup>Lu(BHT)<sub>activated</sub> (9-Lu)

Ligand atoms forming cone = {22, 43, 66} Cone angle (deg) = 286.297 Cone axis = {0.992352, -0.119976, 0.0290265}

Paper III

Elucidation of Cyclopentadienyl-Supported Rare-Earth-Metal Methylidene Complexes: Scope of Coligands and Tebbe olefination



# Elucidation of Cyclopentadienyl-Supported Rare-Earth-Metal Methylidene Complexes: Scope of Coligands and Tebbe Olfeination

Verena M. Birkelbach, H. Martin Dietrich, Christoph Stuhl, Cäcilia Maichle-Mössmer, and Reiner Anwander\*<sup>[a]</sup>

[a] V. M. Birkelbach, Dr. H. M. Dietrich, Dr. C. Stuhl, Dr. C. Maichle-Mössmer, Prof. Dr. R. Anwander, Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen (Germany) E-mail: reiner.anwander@uni-tuebingen.de

#### Supporting Information Placeholder

ABSTRACT: A series of different mixed halogenido/tetramethylaluminato rare-earth metal compounds with the general formula  $[Cp^{R}Ln(AlMe_{4})_{x}(X)_{y}]_{z}$  were synthesized from cyclopentadienyl-based bis(aluminato) rare-earth-metal precursors by utilizing mild halogenido transfer reagents SiMe<sub>3</sub>X (X = Cl, Br, I). Further donor-induced aluminato cleavage generated the mixed halogenido/methylidene rare-earth metal Treatment various half-sandwich complexes. of  $Cp^{R}Ln(AlMe_{4})_{2}$  complexes ( $Cp^{R} = C_{5}Me_{5}$ ,  $C_{5}Me_{4}SiMe_{3}$ , Ln = Y, La, Lu) with the mild halogenido transfer reagents SiMe<sub>3</sub>X (X = Cl, Br, I) resulted in efficient and selective halogenido/tetramethylaluminato exchange. Depending on the size of the rareearth metal, dimeric  $[Cp^{R}Ln(AlMe_{4})(\mu-X)]_{2}$  (Ln = Y, Lu) and decametallic  $[Cp_{3}La_{3}(AIMe_{4})_{2}(\mu-X)_{4}]_{2}$  could be obtained. Donor(THF)-induced tetrmethylaluminato cleavage gave access to new mixed "methyl-free" halogenido/methylidene complexes  $Cp_{3}^{R}Ln(\mu-X)_{3}(\mu_{3}-X)(\mu_{3}-CH_{2})(THF)_{3}$  for yttrium and lanthanum in good yields. Additionally, mixed halogenido/methylidene Y(III) complexes could be obtained via methyl/halogenido exchange employing  $(C_5Me_5)_3Y(\mu-Me)_3(\mu_3-Me_5)_3Y(\mu-Me)_3(\mu_3-Me_5)_3Y(\mu-Me)_3(\mu_3-Me_5)_3Y(\mu-Me)_3(\mu_3-Me_5)_3Y(\mu-Me)_3(\mu_3-Me_5)_3Y(\mu-Me)_3(\mu_3-Me_5)_3Y(\mu-Me)_3(\mu_3-Me_5)_3Y(\mu-Me)_3(\mu_3-Me_5)_3Y(\mu-Me)_3(\mu_3-Me_5)_3Y(\mu-Me)_3(\mu_3-Me_5)_3Y(\mu-Me)_3(\mu_3-Me_5)_3Y(\mu-Me)_3(\mu_3-Me_5)_3Y(\mu-Me)_3(\mu_3-Me_5)_3Y(\mu-Me)_3(\mu_3-Me_5)_3Y(\mu-Me)_3(\mu_3-Me_5)_3Y(\mu-Me)_3(\mu_3-Me_5)_3Y(\mu-Me)_3(\mu_3-Me_5)_3Y(\mu-Me)_3(\mu_3-Me_5)_3Y(\mu-Me)_3(\mu_3-Me_5)_3Y(\mu-Me)_3(\mu_3-Me_5)_3Y(\mu-Me)_3(\mu_3-Me_5)_3Y(\mu-Me)_3(\mu_3-Me_5)_3Y(\mu-Me)_3(\mu_3-Me_5)_3Y(\mu-Me)_3(\mu_3-Me_5)_3Y(\mu-Me)_3(\mu_3-Me_5)_3Y(\mu-Me)_3(\mu_3-Me_5)_3Y(\mu-Me)_3(\mu_3-Me_5)_3Y(\mu-Me)_3(\mu_3-Me_5)_3Y(\mu-Me)_3(\mu_3-Me_5)_3Y(\mu-Me)_3(\mu_3-Me_5)_3Y(\mu-Me)_3(\mu_3-Me_5)_3Y(\mu-Me)_3(\mu_3-Me_5)_3Y(\mu-Me)_3(\mu_3-Me_5)_3Y(\mu-Me)_3(\mu_3-Me_5)_3Y(\mu-Me)_3(\mu_3-Me_5)_3Y(\mu-Me)_3(\mu_3-Me_5)_3Y(\mu-Me)_3(\mu_3-Me_5)_3Y(\mu-Me)_3(\mu_3-Me_5)_3Y(\mu-Me)_3(\mu_3-Me_5)_3Y(\mu-Me)_3(\mu_3-Me_5)_3Y(\mu-Me)_3Y(\mu-Me)_3(\mu_3-Me_5)_3Y(\mu-Me)_3(\mu_3-Me_5)_3Y(\mu-Me)_3(\mu_3-Me_5)_3Y(\mu-Me)_3(\mu_3-Me_5)_3Y(\mu-Me)_3(\mu_3-Me_5)_3Y(\mu-Me)_3(\mu_3-Me_5)_3Y(\mu-Me)_3(\mu_3-Me_5)_3Y(\mu-Me)_3(\mu_3-Me_5)_3Y(\mu-Me)_3(\mu_3-Me_5)_3Y(\mu-Me)_3(\mu_3-Me_5)_3Y(\mu-Me)_3(\mu_3-Me_5)_3Y(\mu-Me)_3(\mu_3-Me_5)_3Y(\mu-Me)_3(\mu_3-Me_5)_3Y(\mu-Me)_3(\mu_3-Me_5)_3Y(\mu-Me)_3(\mu_3-Me_5)_3Y(\mu-Me)_3(\mu_3-Me_5)_3Y(\mu-Me)_3Y(\mu-Me)_3Y(\mu-Me)_3(\mu_3-Me_5)_3Y(\mu-Me)_3Y(\mu-Me)_3Y(\mu-Me)_3(\mu-Me)_3Y(\mu-Me)_3Y(\mu-Me)_3Y(\mu-Me)_3Y(\mu-Me)_3Y(\mu-Me)_3Y(\mu-Me)_3Y(\mu-Me)_3Y(\mu-Me)_3Y(\mu-Me)_3Y(\mu-Me)_3Y(\mu-Me)_3Y(\mu-Me)_3Y(\mu-Me)_3Y(\mu-Me)_3Y(\mu-Me)_3Y(\mu-Me)_3Y(\mu-Me)_3Y(\mu-Me)_3Y(\mu-Me)_3Y(\mu-Me)_3Y(\mu-Me)_3Y(\mu-Me)_3Y(\mu-Me)_3Y(\mu-Me)_3Y(\mu-Me)_3Y(\mu-Me)_3Y(\mu-Me)_3Y(\mu-Me)_3Y(\mu-Me)_3Y(\mu-Me)_3Y(\mu-Me)_3Y(\mu-Me)_3Y(\mu-Me)_3Y(\mu-Me)_3Y(\mu-Me)_3Y(\mu-Me)_3Y(\mu-Me)_3Y(\mu-Me)_3Y(\mu-Me)_3Y(\mu-Me)_3Y(\mu-Me)_3Y(\mu-Me)_3Y(\mu-Me)_3Y(\mu-Me)_3Y(\mu-Me)_3Y(\mu-Me)_3Y(\mu-Me)_3Y(\mu-Me)_3Y(\mu-Me)_3Y(\mu-Me)_3Y(\mu-Me)_3Y(\mu-Me)_3Y(\mu-Me)_3Y(\mu-Me)_3Y(\mu-Me)_3Y(\mu-Me)_3Y(\mu-Me)_3Y(\mu-Me)_3Y(\mu-Me)_3Y(\mu-Me)_3Y(\mu-Me)_3Y(\mu-Me)_3Y(\mu-Me)_3Y(\mu-Me)_3Y(\mu-Me)_3Y(\mu-Me)_3Y(\mu-Me)_3Y(\mu-Me)_3Y(\mu-Me)_3Y(\mu-Me)_3Y(\mu-Me)_3Y(\mu-Me)_3Y(\mu-Me)_3Y(\mu-Me)_3Y(\mu-Me)_3Y(\mu-Me)_3Y(\mu-Me)_3Y(\mu-Me)_3Y(\mu-Me)_3Y(\mu-Me)_3Y(\mu-Me)_3Y(\mu-Me)_3Y$ Me)( $\mu_3$ -CH<sub>2</sub>)(THF)<sub>3</sub> and SiMe<sub>3</sub>X via tetramethylsilane elimination. All methylidene complexes were probed in Tebbe olefination reactions and found to react as efficient Schrock-type nucleophilic carbenes with ketones and aldehydes affording the respective terminal alkenes. Such reactivity is as high as of the prominent Tebbe reagent, but less tolerant toward sterically demanding and functionalized substrates (like esters).

**INTRODUCTION:** The seminal discoveries by Schrock and Tebbe of discrete Cp<sub>2</sub>Ta(CH<sub>2</sub>)(CH<sub>3</sub>)<sup>1-2</sup> and Cp<sub>2</sub>Ti( $\mu$ -CH<sub>2</sub>)( $\mu$ -Cl)Al(CH<sub>3</sub>)<sub>2</sub>,<sup>3</sup> respectively, in the mid 70's marked a true breakthrough in molecular transition-metal alkylidene chemistry. The feasibility/stability of such "Schrock"-type nucleophilic carbenes and their applicability/superb performance in fundamental organic transformations such as olefin metathesis<sup>4-6</sup> and carbonyl methylenation (Wittig-type reactivity)<sup>4, 7</sup> triggered immense research activities.<sup>5, 8-9</sup> Tebbe 's compound Cp<sub>2</sub>Ti( $\mu$ -CH<sub>2</sub>)( $\mu$ -Cl)Al(CH<sub>3</sub>)<sub>2</sub>, also termed

Tebbe reagent, involving a Lewis acid (LA = AlClMe<sub>2</sub>)-stabilized [Ti=CH<sub>2</sub>] moiety,<sup>3, 10</sup> has featured a most efficient (rapid C=O to C=CH<sub>2</sub> conversion at ambient temperatures) and hence prominent carbonyl methylenation reagent in organic syntheses ever since.11-14 Crucially, in natural product synthesis the Tebbe reagent often outperforms the Wittig reagent CH<sub>2</sub>PMe<sub>3</sub> due to its enhanced functional group tolerance (e.g., ester or acetal) or the Petasis reagent  $Cp_2Ti(CH_3)_2$  which requires elevated temperatures (65 °C) to form the [Ti=CH<sub>2</sub>] moiety via methane elimination.<sup>15-20</sup> Drawbacks of the Tebbe reagent are its moisture-sensitivity, the co-formation of Ti(III) species when Cp<sub>2</sub>TiCl<sub>2</sub> is reacted with "reducing" agent AlMe3, and the viability of methylenation only.21-22 On the other hand reduced titanium species such as obtained from the ternary system CH2Br2/TiCl4/Zn and CH2Br2/TiCl4/Mg have been employed according to the Takai-Lombardo reaction for the mild methylenation of ketones counteracting enolization (thus counteracting any epimerization of  $\alpha$ -chiral centers; also high functional group tolerance).<sup>23-24</sup> Moreover, excess of divalent Cp<sub>2</sub>Ti[P(OEt)<sub>3</sub>]<sub>2</sub> (via Cp<sub>2</sub>TiCl<sub>2</sub>/Mg/P(OEt)<sub>3</sub>) is successfully used in the olefination of thioacetals with carbonyl compounds (Takeda reaction, characterized by a wide substrate scope).<sup>25</sup> Switching to group 6 reagents, the iodo-methylidene Cr(III) complex Cr<sub>2</sub>Cl<sub>4</sub>(CHI)(THF)<sub>4</sub> (Takai-olefination reagent) has been employed successfully to convert aldehydes to E-iodido-functionalized olefins accessible to further derivatization.26-29

Despite this eminent performance of early transitionmetal-based alkylidene complexes in olefination reactions, rare-earth-metal (Ln) variants showing this extraordinary reactivity came in the focus only recently. As with the Tebbe reagent, Lewis acids (mainly AlMe<sub>3</sub>) were shown to exert a stabilizing effect on increasingly ionic rare-earth metal methylidene compounds.<sup>30-32</sup> Most of such LAstabilized Ln(III) complexes, featuring [Ln( $\mu$ -CH<sub>2</sub>)( $\mu$ -CH<sub>3</sub>)Al] moieties, have revealed promising reactivity in methylidene transfer reactions, however, the bridging methyl groups can further engage in Ln(III)-size dependent carbonyl alkylation reactions forming alkoxy compounds as well.<sup>30, 33</sup> To obtain and ensure the unique and clean Wittig-type reactivity, homometallic compounds devoid of alkylating LAs seem necessary. So far, two structural motifs of rare-earth metal methylidene complexes were utilized in methylidene transfer reactions, comprising cubane-like tetrametallic [(L)Ln(CH<sub>2</sub>)]<sub>4</sub> (I; Ln = smaller-sized expensive rare-earth metals only) and trimetallic complexes (L)Ln( $\mu$ -X)<sub>3</sub>( $\mu$ <sub>3</sub>-CH<sub>2</sub>)(THF)<sub>n</sub> (II-VI) with L as a monoanionic ligand



#### Figure 1. Different types of tetra- and trimetallic rareearth metal methylidene complexes shown to be active in methylidene transfer reactions.

and X either methyl or halogenido moieties (Figure 1). Key step for the synthesis of these rare-earth-metal methylidene complexes is the intermediate formation of very reactive Ln–Me moieties. For example, the generation of the cubane-like lutetium complex stabilized by the electron rich cyclopentadienyl ligand  $C_5Me_4SiMe_3$  (Cp'), was achieved by C-H bond activation of the dimethyl precursor [Cp'Lu(CH<sub>3</sub>)<sub>2</sub>]<sub>3</sub> via release of CH<sub>4</sub>.<sup>34</sup> Another method for the generation of the Ln-Me moiety is the reaction of a LA with the precursor  $[(L)Ln(R)_2]$  (II:  $R = CH_2C_6H_4NMe_2$ , L = $PhC(NC_6H_3iPr_2-2,6)_2$  for Ln = Sc, Y, Er, Lu; III: L = $(C_6H_4NMe_2)CH_2C(NC_6H_3iPr_2-2,6)_2$  for Ln = Lu; IV: R =  $CH_2SiMe_3$ ,  $L = C_5Me_4SiMe_3$ , Ln = Tm)<sup>34-37</sup> or through donorinduced cleavage of organoaluminum stabilized "alkyls in disguise" (L)Ln(AlMe<sub>4</sub>)<sub>2</sub> (V<sup>Y</sup>: L C<sub>5</sub>Me<sub>5</sub>, Ln = Y; VI: L =  $N(C_6H_3iPr_2-2,6)(SiMe_3)$ , Ln = Y, Nd, Ho, Lu; II: L =  $PhC(NC_6H_3iPr_2-2,6)_2$ , Ln = Sc, Lu) for bridging methyl groups<sup>33, 35, 38-39</sup> or  $[(L)Ln(AIMe_4)_x(CI)_y]_z$  (V: L = C<sub>5</sub>Me<sub>5</sub>, Ln = Y with x = y, z = 2, La with 2x = y, z = 6) for bridging chlorido units,4º in all cases followed by inter- or intramolecular C-H activation. To selectively achieve clean conversion of carbonylic substrates into terminal alkenes, the bridging positions need to carry unreactive ligands such as halogenido, as in  $(C_5Me_5)_3Ln_3(\mu-Cl)_3(\mu_3-Cl)(\mu_3-CH_2)(THF)_3$ (V: Ln = Y, La).<sup>40</sup> Herein, we present a full account of the synthesis of complexes of the type  $Cp_{3}Ln_{3}(\mu-X)_{3}(\mu_{3}-X)(\mu_{3}-X)$ CH<sub>2</sub>)(THF)<sub>3</sub> giving consideration to effective synthesis protocols, scope of the bridging ligand X, implications of the Ln(III) size, and application in methylidene transfer reactions. For the latter olefination reactions, comparison is drawn to the illustrious Tebbe reagent.41

#### **RESULTS AND DISCUSSION**

**Mixed Ligand AlMe**<sub>4</sub>/X **Precursor Synthesis: Scope and Molecular Composition**. Recently, we reported on a convenient method for the synthesis of mixed chlorido/tetramethylaluminato heterobimetallic rare-earth-metal complexes of different nuclearity depending on the size of the Ln(III) center.<sup>42</sup> This procedure required the treatment of half-sandwich complexes ( $C_5Me_5$ )Ln(AlMe<sub>4</sub>)<sub>2</sub> with the chlorido transfer reagent Me<sub>2</sub>AlCl at low temperatures. In



Scheme 1. Synthesis pathway toward different heterobimetallic complexes  $[Cp^{R}Ln(AlMe_{4})(\mu-X)]_{2}$ , and  $[Cp^{R}_{3}La_{3}(AlMe_{4})_{2}(\mu-X)_{4}]_{2}$ .

search of milder and adjustable halogenido transfer reagents, we opt for trimethylsilyl halide reagents, inspired by the work of Orpen et al. on SiMe<sub>3</sub>I (TMSI)-promoted alkyl/idodio exchange reactions.43 We anticipated/envisaged that these increasingly versatile reagents SiMe<sub>3</sub>X could reveal the impact of less electronegative halogens (X) not only on the heterobimetallic cluster synthesis but also (if the latter succeed) on the olefination reactions. To probe any Ln(III)-size and "cyclopentadienyl" effects we chose  $Cp^{R}Ln(AlMe_{4})_{2}$  ( $Cp^{R} = C_{5}Me_{5}$ ,  $C_{5}Me_{4}SiMe_{3}$ ; Ln = Y, La, Lu) as representative precursors. As found earlier for the chlorido derivative  $[(C_5Me_5)Y(AlMe_4)(\mu-Cl)]_2$ , treatment of the bis(alkylaluminato) half-sandwich complexes containing the smaller-sized rare-earth metals yttrium and lutetiumwith 0.9 equiv. or less of the halogenido transfer reagent led to the successful single AlMe<sub>4</sub>-/X exchange and the formation of dimeric complexes  $[Cp^{R}Ln(AlMe_{4})(\mu-X)]_{2}$  in good yields (1-Ln<sup>X</sup>, Scheme 1, left).42,44



Scheme 2. Ligand redistribution of complexes 1\*-Ln<sup>X</sup> and 1'-Ln<sup>X</sup> over time in aromatic solvents identified with NMR spectroscopy.

Elemental analyses and crystal structural analyses confirmed the general composition, however, the NMR data showed two different sets of signal, one belonging to unreacted Cp<sup>R</sup>Ln(AlMe<sub>4</sub>)<sub>2</sub>. A closer look at this apparent discrepancy between solid-state analytics and NMR measurements indicated the occurrence of ligand redistribution in aromatic solvents over time (Scheme 2). Such intermolecular ligand exchange would involve the co-formation of putative [Cp<sup>R</sup>LnX<sub>2</sub>], but the hardly soluble byproducts were not further characterized. Furthermore, the true nature of the composition of the complexes 1-Ln was validated with elemental analysis as well as various cell checks confirming the product crystallized from the mother liquor in *n*-hexane as exclusive product when not being re-dissolved in aromatic solvents. The ambient temperature <sup>1</sup>H NMR spectra of all complexes  $[(C_5Me_5)Ln(AlMe_4)(\mu-X)]_2$ clearly display one signal for the Cp-CH<sub>3</sub> groups as well as one for the AlMe<sub>4</sub> moieties as expected from the C<sub>i</sub> symmetry of the complexes, and further one set of signals of  $(C_5Me_5)Ln(AlMe_4)_2$  due to the afore mentioned behavior in solution (spectra shown in the ESI). For all compounds, a clear trend was found for the Cp-CH<sub>3</sub> signals with a shift downfield for each respective metal from Cl to I (1\*-Y<sup>Cl</sup>: 1.89 ppm, 1\*-Y<sup>Br</sup>: 1.92 ppm, 1\*-Y<sup>I</sup>: 1.98 ppm; 1\*-Lu<sup>CI</sup>: 1.93 ppm, 1\*-Lu<sup>Br</sup>: 1.96 ppm, 1\*-Lu<sup>I</sup>: 2.00 ppm) as well as for the Ln-Me signals (1\*-Y<sup>Cl</sup>: -0.20 ppm, 1\*-Y<sup>Br</sup>: -0.18 ppm, 1\*-Y<sup>I</sup>: -0.15 ppm; 1\*-Lu<sup>Cl</sup>: -0.05 ppm, 1\*-Lu<sup>Br</sup>: -0.00 ppm, 1\*-Lu<sup>I</sup>: 0.04 ppm). Furthermore, the signals compare well with those of the starting compounds (C<sub>5</sub>Me<sub>5</sub>)Ln(AlMe<sub>4</sub>)<sub>2</sub> (Y: 1.72 ppm, - 0.33 ppm; Lu: 1.75 ppm, -0.18 ppm). Exactly the same Clto-I trend was observed for all complexes  $[(C_5Me_4SiMe_3)Ln(AlMe_4)(\mu-X)]_2$ . The proton NMR spectra show four different signals, two for the Cp-Me moieties (1'-Y<sup>Cl</sup>: 2.15/1.85 ppm, 1'-Y<sup>Br</sup>: 2.17/1.86 ppm, 1'-Y<sup>I</sup>: 2.22/1.93 ppm; 1'-Lu<sup>CI</sup>: 2.17/1.87 ppm, 1'-Lu<sup>Br</sup>: 2.19/1.88 ppm, 1'-Lu<sup>I</sup>: 2.23/1.86 ppm), one for the Si-Me unit and one for the Al-Me moieties (1'-Y<sup>Cl</sup>: -0.18 ppm, 1'-Y<sup>Br</sup>: -0.15 ppm, 1'-Y<sup>I</sup>: -0.13 ppm; 1'-Lu<sup>Cl</sup>: -0.05 ppm, 1'-Lu<sup>Br</sup>: 0.01 ppm, 1'-Lu<sup>I</sup>: 0.01 ppm). Again, the signals compare well with those of the starting compounds  $(C_5Me_4SiMe_3)Ln(AlMe_4)_2$  (Y: 2.00/1.75 ppm, -0.31 ppm; Lu: 1.99/1.75 ppm, -0.14 ppm). For the yttrium half-sandwich complexes, a doublet for the AlMe<sub>4</sub> signal with a  ${}^{2}J(YH)$  coupling constant around 2.3 Hz was observed, except for 1\*-Y<sup>Cl</sup> indicating a highly fluxional nature. The respective Lu complexes display very broad signals for the Lu-Me moiety, indicating a less pronounced dynamic behavior of the bridging and terminal Me groups in solution as expected for the smaller-sized Lu(III) center. The <sup>13</sup>C NMR spectra clearly shows the same trend of the halogenido ligands on the 13C chemical shift and, as expected, two signals for  $C_5Me_5$  and six signals for  $C_5Me_4SiMe_3$ , respectively. For most of the complexes, the Al-CH<sub>3</sub> signals could not be detected, due to their low solubility as well as the relatively fast ligand redistribution process, which is consistent with literature.<sup>42</sup> The <sup>89</sup>Y NMR resonances from <sup>1</sup>H-<sup>8</sup>9Y HSQC measurements revealed also highfield-shifted signals in the presence of the more electron-withdrawing halogenido ligand (e.g., 1\*-Y<sup>Cl</sup>: 208 ppm versus 1\*-YBr: 246 ppm), but only a marginal effect of the cyclopentadienyl ligand (e.g., 1\*-Y<sup>Cl</sup>: 208 ppm versus 1'-Y<sup>Cl</sup>: 206 ppm). For comparison, the starting compounds Cp<sup>R</sup>Y(AlMe<sub>4</sub>)<sub>2</sub> display <sup>89</sup>Y NMR resonances at 175 ppm (Cp<sup>R</sup> =  $C_5Me_5$ ) and 170 ppm ( $Cp^R = C_5Me_4SiMe_3$ ). Due to solubility issues, long measurement periods, and rapid ligand redistribution, <sup>1</sup>H-<sup>89</sup>Y HSQC spectra could not be obtained for 1\*-Y<sup>I</sup> and 1'-Y<sup>I</sup> (detection of precursors only). X-ray diffraction (XRD) analyses were performed on 1\*-YBr. 1\*-YI, and 1\*-Lu<sup>Br</sup> (Figures 2, S59 and S60). The mentioned  $[(C_5Me_5)Ln(AlMe_4)(\mu-X)]_2$  complexes revealed the dimeric solid-state structure with seven-coordinate Ln centers: the monoanionic Cp ligand occupies three coordination sites and the methyl groups as well as the bridging halogenido ligands occupy two each. The crystal structures are isostructural to 1\*-Y<sup>Cl</sup>.<sup>42</sup> The Y-C(Me) distance appears slightly decreased for the heavier halide complexes 1\*-Y<sup>Br</sup> and 1\*-YI as an impact of the changed halogen electronegativity (1\*-Y<sup>Cl</sup>: av. 2.573 Å,42 1\*-Y<sup>Br</sup>: 2.531(2)/2.566(2) Å, 1\*- $Y^{I}$ : 2.529(4)/2.563(4) Å,), but compare well with the reactant (C<sub>5</sub>Me<sub>5</sub>)Y(AlMe<sub>4</sub>)<sub>2</sub> (2.549(3)-2.655(3) Å).<sup>45</sup> As expected, the Lu-C(Me) bond lengths in 1\*-LuBr are shortened (2.486(3)/2.529(3) Å) compared to 1\*-YBr, reflecting the smaller Ln(III) size. This is further supported by the differences in the Ln-Br distances (1\*-YBr: 2.8493(8)/2.8687(10)

teratomic distances ( $1^*-Y^{Cl}$ : 3.0584(12) Å,<sup>42</sup>  $1^*-Y^{Br}$ : 3.0970(10) Å,  $1^*-Lu^{Br}$ : 3.0434(10) Å). Only few complexes with bromido ligands bridging two rare-earth-metal centers are known including dimeric 3-(2,6-*i*Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)-1-[2-(1

Å, 1\*-Lu<sup>Br</sup>: 2.7961(7)/2.8257(8) Å) as well as the Ln…Al in-



Figure 2. ORTEP representation of the crystal structure of  $1^*-Y^{Br}$  with atomic displacement parameters set at the 50 % level. Hydrogen atoms are omitted for clarity. Selected bond lengths [Å] and angles [°] for  $1^*-Y^{Br}$ : Y1–Br1 2.8493(8), Y1–Br1 2.8687(10), Y1–C1 2.531(2), Y1–C2 2.566(2), Y1···Al1 3.0970(10), Y1···Ct1 2.310, Al1–C1 2.073(2), Al1–C2 2.079(2), Al1–C3 1.981(2), Al1–C4 1.969(2); Br1–Y–Br1' 79.54(3), Y1–Br1–Y1' 100.46(3), C1–Y1–C2 83.26(8), Y1–C1–Al1 83.90(8), Y1–C2–Al1 82.92(8).

-(4,7-Me<sub>2</sub>)indenyl)propyl]imidazol-2-ylidene(trimethylsilylmethyl)-bromido yttrium (Y–Br bond lengths: 2.8645(7) and 2.8747(7) Å),<sup>46</sup> [Y( $\eta^{5}$ -Me<sub>2</sub>C<sub>5</sub>H<sub>3</sub>)<sub>2</sub>Br]<sub>2</sub> (2.857(1) and 2.868(1) Å),<sup>47</sup> and [( $\eta^{5}$ , $\eta^{5}$ -Cp-CMe<sub>2</sub>-flurenyl)Y( $\mu$ -Br)]<sub>2</sub> (2.8055(13)/2.8065(12) Å)<sup>48</sup> the latter showing shorter Y–Br distances compared to 1\*-Y<sup>Br</sup>.

The tetramethylaluminato/halogenido exchange was also probed for the lanthanum complexes  $Cp^{R}La(AlMe_{4})_{2}$ . Treatment of the respective bis(tetramethylaluminato) half-sandwich complexes with 1.3 equiv. of TMSX resulted in the formation of hexalanthanum clusters of the general composition  $[Cp_{3}R_{3}(AlMe_{4})_{2}(\mu-X)_{4}]_{2}$ . All reactions yielded colorless crystals from resting *n*-hexane solutions at ambient temperatures, and XRD analyses were carried out exemplarily for **2**\*-**La**<sup>Br</sup> and **2**'-**La**<sup>Cl</sup> (Figures S61 and 3). Due to the insolubility of all complexes 2-La in non-polar and aromatic NMR solvents, solution NMR spectroscopic analysis was not accessible. The crystal structures of 2\*-La<sup>Br</sup> and 2'-La<sup>CI</sup> with formally 8-coordinate La(III) centers are isostructural to the previously reported complex  $(C_5Me_5)_6La_6{(\mu-Me)_3AlMe}_4(\mu_3-Cl)_2(\mu-Cl)_6$  (2\*-La<sup>Cl</sup>).<sup>42</sup> Two  $La_{3}Al_{2}$  subunits, related by  $C_{2}$ -symmetry feature distinctly coordinating halogenido ligands ( $\mu_2$ ,  $\mu_3$ ) and a strand of ( $\mu$ - $\eta^2$ -Me<sub>2</sub>)Al(Me)( $\mu$ - $\eta^1$ -Me)-interconnecting aluminato ligands. Striking is the Ln:X ratio of 1:1.3 which is different from that of the dimeric yttrium and lutetium complexes in this work (1:1). Unsurprisingly, the La-X bond lengths of 2\*-La<sup>I</sup> (3.2323(4)-3.3455(4) Å) are elongated compared to 2\*-La<sup>C1</sup> (La-Cl: 2.8049(9)-3.0708(9) Å),42 while the La-C(Me) bond lengths as well as the La…Al distance appear slightly shortened (2\*-La<sup>Cl</sup>: La-C(Me) 2.774(4)-2.955(3) Å; La…Al 3.3150(11)-3.3534(11) Å,42 2\*-LaI: La-C(Me) 2.771(4)-2.777(4) Å, La…Al 3.3159(12)-3.3192(12) Å). For further comparison, the precursor (C5Me5)La(AlMe4)249 displays La-C(Me) bond lengths (2.694(3)-2.802(4) Å) as well as La…Al distances (3.0141(9)-3.2687(9) Å) which are shorter than in 2\*-La<sup>Cl</sup> and 2\*-La<sup>l</sup>. Overall, the different Cp<sup>R</sup> ligand in 2'-La<sup>CI</sup> has only a small impact on the molecular structure,



Figure 3. ORTEP representation of the crystal structure of 2'-La<sup>Cl</sup> with atomic displacement parameters set at the 50 % level. Hydrogen atoms are omitted for clarity. Selected bond lengths [Å] and angles [°] for 2'-La<sup>Cl</sup>: La1-Cl1 3.0787(6), La1-Cl2 2.8382(7), La1-Cl3 2.8298(7), La2-Cl1 3.0725(7), La2-Cl2 2.8421(7), La2-Cl4 2.8395(7), La3-Cl1 3.0111(6), La3-Cl3 2.8101(7), La3-Cl4 2.8087(7), La1-C1 2.809(3), La1-C2 2.774(3), La2-C5 2.742(3), La2-C6 2.764(3), La3-C3' 2.947(3), La3-C7' 2.970(3), La1--Ct1 2.507, La2...Ct2 2.507, La3...Ct3 2.501, La1...Al2 3.3371(9), La2...Al1 3.2849(9);Laı-Clı-La2 100.878(19), La1-Cl1-La3 100.870(18), La1-Cl2-La2 113.20(2), La1-Cl3-La3 112.70(2), La2-Cl1-La3 100.579(19), La2-Cl4-La3 111.91(2), La1-C1-Al2 85.28(10), La1-C2-Al2 86.40(10), La2-C5-Al1 85.40(10), La2-C6-Ali 84.78(10), C1-La1-C2 75.19(9), C5-La2-C6 76.58(9), C3'-La3-C7' 77.39(9).

but the bond lengths become significantly elongated from  $2^*-La^{Cl}$  to  $2'-La^{Cl}$  (La-Cl, 2.8087(7) to 3.0787(6) Å; La-C(Me), 2.742(3)-2.970(3) Å; La-Ml, 3.2849(9)-3.3371(9) Å).

The introduction of electron-withdrawing pseudohalogenido ligands such as triflato (OTf) proved more difficult but was successful for the system  $(C_5Me_5)La(AlMe_4)_2/SiMe_3OTf$  yielding crystalline heterobimetallic complex  $(C_5Me_5)_3La_3(AIMe_4)(\mu-OTf)_3(\mu_3 OTf)_2(THF)_2$  (3\*-La<sup>OTf</sup>) (Scheme 3). The solubility of this complex in non-polar and aromatic solvents is limited, while decomposition to several C-F-bond cleavage products occurred in THF over time (monitored with <sup>1</sup>H NMR spectroscopy), if not prevented by lower temperatures.

Scheme 3. Reactivity of  $(C_5Me_5)La(AlMe_4)_2$  toward pseudo-halogenido-transfer reagent SiMe<sub>3</sub>OTf.



An XRD analysis of  $3^*$ -La<sup>OTf</sup> (crystallized from THF) revealed a tetrametallic complex with three  $\mu_{2^-}$  and two  $\mu_{3^-}$ 

bridging triflato ligands. The core structure can be best described as a 12-membered ring consisting of three [La–O– S–O] units with two  $\mu_3$ -coordinating triflato caps. An eightfold coordination of the lanthanum centers is accomplished by the peripheral cyclopentadienyl rings, two THF



Figure 4. ORTEP representation of the crystal structure of  $3^*$ -La<sup>OTf</sup> with atomic displacement parameters set at the 50 % level. Hydrogen atoms and the disorder in the Cp rings as well as the CF<sub>3</sub> groups are omitted for clarity. Selected bond lengths [Å] for  $3^*$ -La<sup>OTf</sup>: La1-··Ct1 2.564, La2-··Ct2 2.463, La3-··Ct3 2.498, La-C31 2.942(7), La1-O1 2.477(5), La1-O4 2.441(6), La1-O7 2.520(5), La1-O10 2.496(5), La2-O2 2.490(5), La2-O8 2.529(5), La2-O11 2.553(5), La2-O13 2.436(5), La3-O5 2.591(5), La3-O9 2.601(4), La2-O12 2.575(4), La2-O14 2.584(5), La3-C31 2.942(7), La3-··Al1 4.971.

molecules, and one remaining AlMe<sub>4</sub><sup>-</sup> ligand, which coordinates one lanthanum center in a  $\eta^1$ -fashion. The La…Ct distances (2.463-2.564 Å) match those detected in the other **2-La**. Further, the La–O distances range between 2.436(5) and 2.591(5) Å for  $\mu_2$ -bridging triflato ligands and 2.496(5) to 2.575(4) for  $\mu_3$ -bridging triflato moieties. The La– C(Me) distance of 2.942(7) Å is located in the upper range of complexes **2-La**.

Donor-Induced Methylidene Formation from Mixed Ligand AlMe<sub>4</sub>/X Ln(III) Complexes. We communicated previously that ligand mixed complexes  $[(C_5Me_5)Ln(AlMe_4)_x(Cl)_y]_z$  (Ln = Y with x = y, z = 2, La with 2x = y, z = 6) can selectively undergo donor(THF)promoted alkylaluminate cleavage (separation of AlMe<sub>3</sub>(THF)) and engage in subsequent C-H-bond activation of the emerging terminal Ln-CH<sub>3</sub> moiety. Accordingly, complexes 1 and 2 were suspended in toluene and treated with excess of THF at ambient temperature (Scheme 4, Path A). As found earlier for the pentamethylcyclopentadienyl ancillary ligand and the chlorido coligand, the yttrium and lanthanum reactions formed trimetallic rare-earth-metal methylidene complexes derivatives complexes  $Cp^{R}Ln(\mu-X)_{3}(\mu_{3}-X)(\mu_{3}-CH_{2})(THF)_{3}$  (3\*-Ln<sup>X</sup> and **3'-Ln**<sup>X</sup>; Ln = Y, La) for all halogenido ligands

Despite major efforts, the respective lutetium methylidene complexes could not be synthesized via this protocol (presumably Lu(III) is too small). Furthermore, the combination of Y/I/CH<sub>2</sub> could not be achieved, most likely because of another Ln(III)/halogenido size mismatch (Y(III) middle-sized, I- too big). <sup>1</sup>H NMR spectroscopic studies revealed the formation of methyl/iodido species  $[Cp^{R}YMeI(THF)_{x}]_{n}$ and di(iodide) complexes  $[Cp^{R}YI_{2}(THF)_{x}]_{n}$  upon addition of THF to  $\mathbf{1}^{*}$ - $\mathbf{Y}^{I}$  and  $\mathbf{1}^{*}$ - $\mathbf{Y}^{I}$ , but any cluster formation was not observed. For all probed methylidene clusters, their formation is strongly dependent on the chosen reaction conditions. More precisely, if the synthesis is carried out below ambient temperatures, Cp-stabilized di(halogenido) Ln(III) complexes Cp<sup>R</sup>LnX<sub>2</sub>(THF)<sub>3</sub> could be isolated, which is exemplarily evidenced by the crystal structure of (C5Me5)LaI2(THF)3 (Figure S62). In addition, while the formation of the lanthanum methylidene derivatives follows a stoichiometrically correct pathway (8 X<sup>-</sup> + 4 AlMe<sub>4</sub><sup>-</sup>  $\rightarrow$  2[4 X<sup>-</sup> + CH<sub>2</sub><sup>2-</sup> + 2 AlMe<sub>3</sub> + CH<sub>4</sub>]), there is an obvious stoichiometric mismatch for the yttrium reactions (1.5  $[2 X^{-} + 2 AlMe_{4}^{-}] \rightarrow 3 X^{-} + CH_{2}^{2-}$ + 2AlMe<sub>3</sub> + CH<sub>4</sub>]), clearly indicating a shortage of



Scheme 4. Different synthesis pathways for the generation of mixed halogenido/methylidene rare-earth-metal complexes.

halogenido ligands. Although the formation of the targeted methyl-free complexes **4-Y** seems favored under the chosen crystallization conditions, halogenido-deficient mixed methyl/halogenido/methylene Ln(III) complexes of the type  $Cp_3^RY_3(\mu_2-CH_3)_x(\mu_2-X)_y(\mu_3-X)(\mu_3-CH_2)(THF)_3$  (x+y=3) can be identified and isolated as well (Figure S58 Supporting Information). Spurred by these obvious drawbacks, we implemented an alternative synthesis protocol.

Methyl/Methylidene to X/Methylidene Transformation. Having in mind the very rigid methylidene cluster entities (as evidenced by NMR spectroscopy, vide infra), we envisaged the mixed methyl/methylidene cluster complex  $(C_5Me_5)_3Y_3(\mu-Me)_3(\mu_3-Me)(\mu_3-CH_2)(THF)_2$  V<sup>Y</sup> as potential precursor for 4-type complexes. Compound  $V^{Y}$  can be readily obtained from (C<sub>5</sub>Me<sub>5</sub>)Y(AlMe<sub>4</sub>)<sub>2</sub>.<sup>39</sup> Much to our delight treatment of  $V^{Y}$  with 4 equiv. of halogenido transfer reagent SiMe<sub>3</sub>X in THF gave the desired complexes 4\*-Y<sup>CI</sup> and 4\*-YBr via tetramethylsilane elimination. However, once again, the yttrium methylidene complex with bridging iodido moieties, that is putative 4\*-YI was not feasible, and only degradation of the inner core and an ill-defined product mixture were found. It is noteworthy, that protonolyses of complex V<sup>Y</sup> are more difficult to control. For example the reaction of  $V^{Y}$  with 4 equiv. of neopentanol was rather unselective and afforded the bis(alkoxy) yttrium half-sandwich complex  $[(C_5Me_5)Y(OCH_2tBu)(\mu -$ OCH<sub>2</sub>*t*Bu)]<sub>2</sub> 5\*-Y (Scheme 4, crystal structure is depicted in Figure S63), involving the alcoholysis of both the methyl and methylidene ligands.

Characterization of Methylidene Complexes 4-Ln. The ambient temperature 'H NMR spectra of all crystalline compounds  $Cp_{3}^{R}Ln_{3}(\mu-X)_{3}(\mu_{3}-X)(\mu_{3}-CH_{2})(THF)_{3}$  recorded in  $[D_8]$ THF show one set of signals for the ancillary Cp ligands, in accordance with their symmetry in the solid state (spectral data pictured in the ESI). As detected for the precursors 1\*-YX and 1'-YX, the shift of the CH<sub>2</sub> group is significant for each introduced halogenido ligand and shows a clear trend from Cl<sup>-</sup> to I<sup>-</sup> for the respective ligand set. The methylidene signal of all yttrium complexes features a quartet due to the coupling with the three <sup>89</sup>Y nuclei (4\*-Y<sup>Cl</sup>: -0.35 ppm, 4\*-Y<sup>Br</sup>: -0.33 ppm, 4'-Y<sup>Cl</sup>: -0.42 ppm, 4'-Y<sup>Br</sup>: -0.42 ppm), while shifted to higher field compared to that in V<sup>Y</sup> (-0.31 ppm).<sup>39</sup> It is noteworthy, that complex 4'-Y<sup>Br</sup> showed decomposition in THF after 30 minutes. For all lanthanum compounds, the methylidene signal exhibits a singlet markedly shifted to higher field compared to the yttrium congeners. As indicated by the same shift range (4\*-La<sup>Cl</sup>: -0.93 ppm, 4\*-La<sup>Br</sup>: -0.93 ppm, 4\*-La<sup>I</sup>: -0.97 ppm; 4'-La<sup>Cl</sup>: -0.96 ppm, 4'-La<sup>Br</sup>: -0.97 ppm, 4'-La<sup>I</sup>: -0.96 ppm), the halogenido ligand exerts only a minor influence on lanthanum-bound CH<sub>2</sub><sup>2-</sup> group. As expected, the <sup>13</sup>C NMR spectra show one set of signals for the respective Cp ligand, however the <sup>13</sup>C signal for the CH<sub>2</sub> group could not be detected even after 18 h of measuring time. Moreover, 1H-89Y HSQC NMR spectra reinforce the dependency of the <sup>89</sup>Y shift on the halogenido ligand (4\*-Y<sup>Cl</sup>: 163 ppm, 4\*-Y<sup>Br</sup>: 196 ppm; 4'-Y<sup>Cl</sup>: 150 ppm, 4'-Y<sup>Br</sup>: 183 ppm) and clearly display a highfield shift compared to the respective starting compounds.



Figure 5. ORTEP representation of the molecular structure of  $4^*-Y^{Br}$  (left) and  $4^{2}-La^{Cl}$  (right) with atomic displacement parameters set at the 50 % level. Hydrogen atoms except for the CH<sub>2</sub> group and lattice solvent as well as the disorder in the Cp-rings are omitted for clarity. Selected bond lengths [Å] and angles [°] for  $4^*-Y^{Br}$ : Y1–C1 2.484(3), Y2–C1 2.532(3), Y3–C1 2.431(3), Y1–Br2 3.0807(5), Y1–Br3 2.8870(5), Y1–Br4 2.8699(5), Y2–Br1 2.8538(5), Y2–Br2 3.0609(5), Y2–Br3 2.8757(5), Y3–Br1 2.8853(5), Y3–Br2 3.0578(5), Y3–Br4 2.8781(5), Y1–C1 2.388, Y2–Ct2 2.387, Y3–Ct3 2.400, Y1–O2 2.420(3), Y2–O3 2.406(3), Y3–O1 2.460(3); Y1–C1–Y2 100.45(13), Y2–C1–Y3 98.12(12), Y1–C1–Y3 97.44(12), Y1–Br3–Y2 83.984(14), Y1–Br4–Y3 79.971(14), Y2–Br1–Y3 81.585(13), Y1–Br2–Y2 77.770(13), Y1–Br2–Y3 73.985(13), Y2–Br2–Y3 75.585(13); Selected bond lengths [Å] and angles [°] for  $4^*-La^{C1}$ : La1–C1 2.572(3), La2–C1 2.580(3), La3–C1 2.576(3), La1–C1 2.8796(7), La1–C1 2.8782(8), La1–Cl 4 3.0326(7), La2–Cl 3 2.8828(8), La2–Cl 4 3.0314(8), La3–Cl 2 2.8783(8), La3–Cl 3 2.8834(9), La2–Cl 4 3.0326(7), La2–Cl 2 2.449, La3–Ct3 2.544, La1–O1 2.527(13), La2–O2 2.593(3), La3–O3 2.611(2), La1–C1–La2 98.63(10), La2–C1–La3 98.03(10), La1–C1–La2 85.24(2), La1–Cl2–La3 84.93(2), La2–Cl3–La3 85.36(2), La1–Cl4–La2 80.234(19), La1–Cl4–La3 79.859(19), La2–Cl4–La3 80.434(18).

Crystallization of the obtained methylidene complexes could be achieved from saturated solutions in a mixture of toluene and THF at -40 °C. XRD analyses were carried out for 4\*-Y<sup>Br</sup>, 4\*-La<sup>Br</sup> as well as 4'-La<sup>Cl</sup> and the obtained crystal structures are depicted in Figure 5 and Figure S64 for 4\*- $La^{Br}$ . As detected previously for  $4^*-Ln^{Cl}$  (Ln = Y, La), the three Ln(III) centers adopt a distorted pseudooctahedral geometry involving one shielding  $C_5Me_5$  site, one  $\mu_3$ -bridging and three  $\mu_2$ -halogenido ligands, THF donor ligands, as well as the  $\mu_3$ -bridging methylidene moiety, protruding from the Ln<sub>3</sub>X<sub>3</sub> plane. Comparison of 4\*-Y<sup>Cl</sup> with 4\*-Y<sup>Br</sup> revealed elongated bond lengths for both Y-X ( $4^*$ - $Y^{Cl}$ :  $\mu_2$ : 2.7028(6)-2.72787(6) Å, μ<sub>3</sub>: 2.8522(5)-2.8897(5) Å;<sup>40</sup> 4\*-Y<sup>Br</sup>: μ<sub>2</sub>: 2.8538(5)-2.8870(5) Å; μ<sub>3</sub>: 3.0578(5)-3.0807(5) Å) and Y- $C(CH_2)$  (4\*-Y<sup>Cl</sup>: 2.424(2)-2.450(2) Å;<sup>40</sup> 4\*-Y<sup>Br</sup>: 2.431(3)-2.532(3) Å) of the bromido derivative. The same trend can be found for the distances of 4\*-La<sup>Cl</sup> and 4\*-La<sup>Br</sup> comparing La–X (**4**\*-L**a**<sup>Cl</sup>:  $\mu_2$ : 2.8614(8)-2.8929(8) Å,  $\mu_3$ : 3.0014(7)-3.0334(7) Å;<sup>40</sup> **4**\*-L**a**<sup>Br</sup>:  $\mu_2$ : 3.0047(5)-3.0385(5) Å;  $\mu_3$ : 3.1670(4)-3.2074(4) Å) and La-C(CH<sub>2</sub>) (4\*-La<sup>CI</sup>: 2.537(3)-2.635(3) Å;40 4\*-LaBr: 2.553(3)-2.646(4) Å). 4'-LaCl (2.572(3)-2.580(3) Å) showed slightly shortened La-C(CH<sub>2</sub>) bond lengths compared to 4'-La<sup>Cl</sup> however, similar La-Cl bond lengths ( $\mu_2$ : 2.8782(8)-2.8906(7) Å;  $\mu_3$ : 3.0226(7)- 3.0325(8) Å). As  $\mu_3$  bridging methylidene complexes of lanthanum are still elusive, comparison can be drawn to the tris(pyrazolyl)borato-supported rare-earth-metal variant of the Tebbe reagent  $Tp^{tBu,Me}La(CH_2)(AlMe_3)_2$  with a La-C(CH<sub>2</sub>) bond length of 2.519(2) Å.30 The Y-C(CH<sub>2</sub>) distances in complexes 4-Y can be compared to complex VI<sup>Y</sup> (see Figure 1, 2.345(5)-2.424(4) Å,<sup>33</sup> V<sup>Y</sup> (2.283(4)-2.477(3) Å)<sup>39</sup> and  $(NCN^{dipp})_{3}Y_{3}(\mu-Me)_{3}(\mu_{3}-CH_{2})(\mu_{3}-CCTMS)$ (2.382(6) -2.418(6) Å),<sup>37</sup> which tend to be shorter. Overall, trimetallic rare-earth metal methylidene complexes mentioned above in Figure 1 show similar average  $Ln-C(CH_2)$  bond lengths considering the different ionic radii of the rare-earth metal centers, e.g. II<sup>Sc</sup> 2.367 Å, 35 II<sup>Er</sup> 2.388 Å, 37 II<sup>Lu</sup> 2.376 Å, 35 IV<sup>Tm</sup> 2.346 Å,  $^{34}$  VI  $^{Nd}$  2.475 Å,  $^{38}$  VI  $^{Ho}$  2.391 Å,  $^{38}$  and VI  $^{Lu}$  2.347 Å.  $^{33}$ 

Methylidene-Transfer Reactions: Carbonyl Methylenation and Lacton Polymerization. Naturally, we were interested in the reactivity of these new methylidene complexes to enlighten any Ln(III) size effect and impact of the halogenido ligand. With addition of carbonylic substrates, it was demonstrated previously that the methylidene complexes under study act as Schrock-type nucleophilic carbenes. Accordingly, reactivity studies were carried out by monitoring the transformations of 2 equiv. of cyclohexanone, benzaldehyde, 9-fluorenone, and dihydrocoumarin with methylidene complexes 4-Ln in [D<sub>8</sub>]THF at ambient temperature. The yields were determined after 15 minutes (exact procedure recorded in the ESI). For comparison, the established Tebbe reagent was tested under the same conditions in [D<sub>6</sub>]benzene (Tebbe reagent decomposes in THF). The sole formation of the respective olefinic product in decent to excellent yields revealed the intended suppression of undesired methylated side products (Table 1). Strikingly, complexes bearing bridging iodides (4\*-La<sup>I</sup> and 4'-La<sup>I</sup>) are not capable of converting sterically demanding 9fluorenone (entry A) even after prolonged reaction time (> 12 h), likely attributable to the decreased accessibility of the CH<sub>2</sub> moiety, less protruding being efficiently shielded by the bulky iodide ligands. Despite this, the yttrium complexes convert all tested ketones and aldehydes in very good yields, equaling the performance of the Tebbe reagent  $Cp_2Ti(\mu-CH_2)(\mu-Cl)AlMe_2$ . The lanthanum-based methylidene complexes also convert the carbonyl functionalities in good yields and reactivity increases from the clorido to bromido derivatives, however, the conversion decreases again with the introduction of iodido ligands in the bridging positions. The conversion of cyclohexanone (entry C) proceeds in good yields for all complexes. Furthermore, the presence of the silyl-substituted Cp ancillary ligand does not only increase the solubility of these complexes, but even increased all yields, except for 4'-La<sup>Br</sup> with 9-fluorenone (entry A), possibly due to the increased steric bulk implied by SiMe<sub>3</sub> substituents. Unfortunately, no reaction

Table 1. Methylidene-transfer reactivity of rare-earth metal complexes  $4^*$ -Ln and  $4^{\prime}$ -Ln in  $[D_8]$ THF, probed for 9-fluorenone (A), benzaldehyde (B), cyclohexanone (C), dihydrocoumarin (D),  $\delta$ -valerolactone (E).



|   | 4*-Y <sup>Cl</sup>  | 4*-Y <sup>Br</sup>  | 4'-Y <sup>C1</sup>  | 4'-Y <sup>Br</sup>  | 4*-La <sup>Cl</sup> | 4*-La <sup>Br</sup> | 4*-La <sup>I</sup>  | 4'-La <sup>Cl</sup> | 4'-La <sup>Br</sup> | 4'-La <sup>I</sup>  | Tebbe <sup>[a]</sup> |
|---|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|----------------------|
| Α | >99%                | >99 %               | >99 %               | >99 %               | 62 %                | 95 %                | o %                 | 62 %                | 44 %                | o %                 | >99 %                |
| В | >99%                | >99 %               | >99 %               | >99 %               | 53 %                | 57 %                | 59 %                | 64 %                | 72 %                | 78 %                | >99 %                |
| C | >99%                | >99 %               | >99 %               | >99 %               | 62 %                | 85 %                | 55 %                | >99 %               | >99 %               | >99 %               | >99 %                |
| D | o %                 | o %                 | o %                 | o %                 | o %                 | o %                 | o %                 | o %                 | o %                 | o %                 | 67 %                 |
| E | 76 % <sup>[P]</sup> | 86 % <sup>[P]</sup> | 60 % <sup>[P]</sup> | 51 % <sup>[P]</sup> | 67 <sup>%[P]</sup>  | 87 % <sup>[P]</sup> | 23 % <sup>[P]</sup> | 88 % <sup>[P]</sup> | 85 % <sup>[P]</sup> | 70 % <sup>[P]</sup> | >99 %                |

<sup>[a]</sup> in C<sub>6</sub>D<sub>6</sub>, <sup>[P]</sup> polymerization

was observed for dihydrocoumarin (entry **D**) as it was shown for the Tebbe reagent. Interestingly, the reaction of cyclic esters as  $\delta$ -valerolactone with the mixed halogenide/methylidene complexes showed polymerization in moderate to good yields contrary to the methylidene transfer performed by the Tebbe reagent (the exact procedure for the polymerization is given in the ESI). Additionally, the reactivity of complexes 3-La was tested for their capability for *in situ* methylidene transfer, however Tebbe-like olefination was not observed.

Re-visiting the Tebbe Reagent. It was only recently that Mindiola and coworkers reported on the complicated but successful structural elucidation of the prominent Tebbe reagent.<sup>21</sup> They could show, that the Tebbe reagent favorably co-crystallizes from a mixture of *n*-pentane and toluene, with the trivalent decomposition product  $Cp_2Ti(\mu$ -Cl)<sub>2</sub>AlMe<sub>2</sub> (site occupancy 0.38). Similar to their results, we obtained crystals of it from a saturated solution of a mixture of *n*-pentane and toluene but the crystal structure analysis revealed only a minor amount (site occupancy 0.06) of side product  $Cp_2Ti(\mu-Cl)_2AlMe_2$ . Not surprisingly, the Ti-C(CH<sub>2</sub>) bond lengths of Mindiola's and our studies differ significantly (this work: 2.058(3) Å, Mindiola's work: 2.095(5) Å),<sup>21</sup> and further, also the Ti–Cl bond lengths vary (this work: 2.455 and 2.456(7) Å, Mindiola's work: 2.5585(7) Å),<sup>21</sup> which can only be attributed to the different quantities of side product present in the crystal.



Figure 6. ORTEP representation of the crystal structure of the Tebbe reagent  $Cp_2Ti(\mu-Cl_2)(\mu-Cl)AlMe_2$  (94 %) and  $Cp_2Ti(\mu-Cl)_2AlMe_2$  (6%) with atomic displacement parameters set at the 50% level. Hydrogen atoms except for the CH<sub>2</sub> group and lattice toluene are omitted for clarity. Selected bond lengths [Å] for  $Cp_2Ti(\mu-Cl_2)(\mu-Cl)AlMe_2$ : Tin-C1 2.058(3), Tin-Cli 2.455, Tin-Cli 2.456(7), Tin-Cli 2.054, Tin-Cli 2.061, Aln-CH2 2.067(2), Aln-Cli 2.3090(5), Aln-Cli 2.074(8).

#### CONCLUSION

In summary, treatment of the half-sandwich precursors  $Cp^{R}Ln(AlMe_{4})_{2}$  with mild halogenido transfer reagents  $SiMe_{3}X$  led to the formation of various mixed tetramethyl-aluminato/halogenido rare-earth-metal cluster compounds  $[(Cp^{R})Ln(AlMe_{4})_{x}(Cl)_{y}]_{z}$  stabilized by sterically and

electronically distinct cyclopentadienyl ligands. The nuclearity of these clusters could be identified with XRD measurements and revealed isostructural behavior to their chloride analogues. Interestingly, the cluster nuclearity is strongly dependent on the rare-earth-metal size, however, the impact of the varying cyclopentadienyl and halogenido ligands on the solid-state structure showed solely minor influence. Further work will be carried out for the better understanding of the fluxional behavior of the smaller cluster compounds in aromatic solvents. The transformation of such mixed tetramethylaluminato/halogenido Ln(III) halfsandwich complexes into methylidene complexes  $Cp_{3}Ln_{3}(\mu-X)_{3}(\mu_{3}-X)(\mu_{3}-CH_{2})(THF)_{3}$  is (a) temperature dependent (< ambient temperatures mainly give bis(halogenido) Ln(III) complexes  $Cp^{R}LnX_{2}(THF)_{3}$ ), (b) Ln(III)-size dependent (respective Lu(III) methylidene were not obtained), and (c) halogenido-size dependent  $Cp^{R}_{3}Y_{3}(\mu-I)_{3}(\mu_{3}-I)(\mu_{3}-CH_{2})(THF)_{3}$  were not obtained). Furthermore, a silane elimination protocol starting from  $(C_5Me_5)_3Y_3(\mu-Me)_3(\mu_3-Me)(\mu_3-CH_2)(THF)_2$ was implemented for the synthesis of the respective halogenide/methylidene complex. Such rare-earth-metal methylidene complexes can be fine-tuned (via Ln(III) and the halogenido ligand) to match the performance of the Tebbe reagent in methylenation reactions of ketones and aldehydes. However, the "Ln<sub>3</sub>(CH<sub>2</sub>)" moieties are less tolerant toward bulky and functionalized substrates, as evidenced for the polymerization of  $\delta$ -valerolactone.

#### **EXPERIMENTAL SECTION**

All operations were performed with rigorous exclusion of air and water by using standard Schlenk, high-vacuum, and glovebox techniques (MBraun 200B; <0.1 ppm O<sub>2</sub>, <0.1 ppm H<sub>2</sub>O). Solvents were purified by using Grubbs columns (MBraun SPS, solvent purification system) and stored inside a glovebox. [D<sub>6</sub>]benzene, [D<sub>8</sub>]toluene, and [D<sub>8</sub>]THF were obtained from Sigma-Aldrich, degassed, and [D<sub>6</sub>]benzene and [D<sub>8</sub>]THF were dried over NaK alloy for two days, [D<sub>8</sub>]toluene was stored over Na. Both were filtered prior to use. SiMe<sub>3</sub>Cl, SiMe<sub>3</sub>Br, and SiMe<sub>3</sub>OTf were purchased from Sigma Aldrich were used as received. SiMe<sub>3</sub>I was purchased from ABCR and filtered prior to use. Neopentanol was purchased from Alfa Aesar and sublimed. Trimethylaluminum was purchased from ABCR and used as received. Cp2TiCl2 was purchased from Sigma Aldrich and sublimed prior to use. 9-fluorenone was purchased from Sigma Aldrich and sublimed, benzaldehyde and cyclohexanone was purchased from Acros Organics and distilled, dihydrocoumawas purchased from TCI and distilled. rin  $(C_5Me_5)Ln(AlMe_4)_{2}^{49}$   $(C_5Me_4SiMe_3)Ln(AlMe_4)_{2}^{44}$ and  $(C_5Me_5)_3Y_3(\mu-Me)_3(\mu_3-Me)(\mu_3-CH_2)(THF)_2^{39}$  were synthesized according to literature procedures. The NMR spectra of air- and moisture-sensitive compounds were recorded by using J. Young valve NMR tubes on a Bruker AVII+400 spectrometer (1H, 400.13 MHz, 13C, 100.61 MHz), and on a Bruker AVII+500 spectrometer (1H, 500.13 MHz, 13C, 125.76 MHz, <sup>89</sup>Y, 24.51 MHz). IR spectra were recorded on a Thermo Fisher Scientific NICOLET 6700 FTIR spectrometer using a DRIFT chamber with dry KBr/sample mixture and KBr windows; IR (DRIFT) data were converted by using the Kubelka-Munk refinement Elemental analyses were performed on an Elementar Vario MICRO Cube.

# General procedure for the synthesis of $[Cp^{R}Ln(AlMe_{4})(\mu-X)]_{2}$ (Ln = Y, Lu; X = Cl, Br, I; $Cp^{R} = C_{5}Me_{5}$ , $C_{5}Me_{4}SiMe_{3}$ )

A solution of 0.9 equiv.  $SiMe_3X$  in *n*-hexane (2 mL) was added to a solution of  $(C_5Me_5)Ln(AlMe_4)_2$  in *n*-hexane (2 mL). The reaction mixture was heated to 70 °C for 1 h. The mixture was allowed to cool to ambient temperatures and crystals suitable for XRD were grown within 2-4 days at ambient temperatures. Stirring the crystals shortly in cold toluene and decanting of the solution can remove potential impurities of the starting compound.

 $[(C_5Me_5)Y(AlMe_4)(\mu-Cl)]_2$  (1\*-Y<sup>Cl</sup>): Following the procedure described above, SiMe<sub>3</sub>Cl (49.1 mg, 452 µmol) and  $(C_5 M e_5) Y(AlM e_4)_2$  (200 mg, 502  $\mu mol)$  yielded  $1^{\ast}\text{-}Y^{Cl}$  as white powder (148 mg, 213 µmol, 85 %). <sup>1</sup>H NMR (500 MHz, [D<sub>8</sub>]toluene, 26 °C): δ 1.89 (s, 30H, Cp-CH<sub>3</sub>), -0.20 (d,  $^{2}J(YH) = 2.3 Hz, 24H, Al-CH_{3}) ppm. ^{13}C{^{1}H} NMR (101 MHz, 101 MHz)$  $[D_8]$ toluene, 26 °C):  $\delta$  123.0 (d,  ${}^{1}J(YC) = 1.7$  Hz,  $C_5Me_5$ ), 12.0 (Cp-CH<sub>3</sub>) ppm; <sup>13</sup>C resonances for the AlMe<sub>4</sub> groups could not be detected. 89Y NMR (from 1H-89Y HSQC, 25 MHz, [D<sub>8</sub>]toluene, 26 °C): δ 208 ppm. IR (KBr): ν̃ = 2948 (s), 2907 (s), 2859 (m), 1488 (w), 1454 (m), 1433 (m), 1387 (w), 1379 (m), 1194 (w), 1065 (vw), 1024 (w), 803 (vw), 705 (vs), 690 (s), 592 (vw), 576 (w), 401 (m) cm<sup>-1</sup>; elemental analysis calcd (%) for C28H54Al2Cl2Y2: C 48.50, H 7.85; found C 48.32, H 7.30. The analytical data were consistent with those previously published.42

 $[(C_5Me_5)Y(AlMe_4)(\mu-Br)]_2$  (1\*-Y<sup>Br</sup>): Following the procedure described above, SiMe<sub>3</sub>Br (69.2 mg, 452 µmol) and  $(C_5Me_5)Y(AlMe_4)_2$  (200 mg, 502 µmol) yielded 1\*-Y<sup>Br</sup> as white powder (104 mg, 150 µmol, 60 %). <sup>1</sup>H NMR (400 MHz,  $[D_8]$ toluene, 26 °C):  $\delta_{1.92}$  (s, 30H, Cp–CH<sub>3</sub>), -0.18 (d, <sup>2</sup>J(YH) = 2.3 Hz, 24H, Al-CH<sub>3</sub>) ppm.  ${}^{13}C{}^{1}H{}$  NMR (101 MHz,  $[D_8]$ toluene, 26 °C):  $\delta$  123.5 (d,  ${}^1J(YC) = 1.5$  Hz,  $C_5Me_5$ ), 12.3 (Cp-CH<sub>3</sub>) ppm; <sup>13</sup>C resonances for the AlMe<sub>4</sub> groups could not be detected. <sup>89</sup>Y NMR (from <sup>1</sup>H-<sup>89</sup>Y HSQC, 25 MHz,  $[D_8]$ toluene, 26 °C):  $\delta$  246 ppm. IR (KBr):  $\tilde{v}$  = 2929 (m), 2914 (m), 2888 (w), 2863 (w), 2823 (w), 2789 (vw), 1487 (vw), 1446 (w), 1234 (w), 1419 (w), 1434 (vw), 1380 (w), 1219 (m), 1188 (w), 1022 (vw), 801 (vw), 715 (vs), 697 (vs), 608 (w), 587 (s), 482 (w), 457 (w), 422 (w) cm<sup>-1</sup>; elemental analysis calcd (%) for C<sub>28</sub>H<sub>54</sub>Al<sub>2</sub>Br<sub>2</sub>Y<sub>2</sub>: C 42.99, H 6.96; found C 42.66, H 7.30.

[(C<sub>5</sub>Me<sub>5</sub>)Y(AlMe<sub>4</sub>)( $\mu$ -I)]<sub>2</sub> (1\*-Y<sup>1</sup>): Following the procedure described above, SiMe<sub>3</sub>I (90.4 mg, 452  $\mu$ mol) and (C<sub>5</sub>Me<sub>5</sub>)Y(AlMe<sub>4</sub>)<sub>2</sub> (200 mg, 502  $\mu$ mol) yielded 1\*-Y<sup>1</sup> as white powder (165 mg, 188  $\mu$ mol, 75 %). <sup>1</sup>H NMR (400 MHz, [D<sub>8</sub>]toluene, 26 °C): δ 1.98 (s, 30H, Cp-CH<sub>3</sub>), -0.15 (br s,

24H, Al–CH<sub>3</sub>) ppm. <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, [D<sub>8</sub>]toluene, 26 °C): δ 124.1 ( $C_5$ Me<sub>5</sub>), 11.4 (Cp–CH<sub>3</sub>) ppm; <sup>13</sup>C resonances for the AlMe<sub>4</sub> groups could not be detected. IR (KBr):  $\tilde{v} = 2968$  (w), 2917 (m), 2885 (m), 2862 (w), 2823 (w), 2731 (vw), 1683 (vw), 1669 (vw), 1575 (w), 1568 (w), 1532 (vw), 1520 (w), 1506 (vw), 1472 (w), 1455 (w), 1446 (w), 1435 (w), 1418 (w), 1394 (vw), 1379 (w), 1218 (w), 1188 (m), 1063 (vw), 1022 (w), 800 (vw), 714 (vs), 697 (vs), 691 (vs), 604 (w), 580 (s), 536 (vw), 527 (vw), 518 (vw), 482 (w), 479 (w), 458 (w), 419 (vw), 401 (w) cm<sup>-1</sup>; elemental analysis calcd (%) for C<sub>28</sub>H<sub>54</sub>Al<sub>2</sub>I<sub>2</sub>Y<sub>2</sub>: C 38.38, H 6.21; found C 38.19, H 6.07.

[(C<sub>5</sub>Me<sub>5</sub>)Lu(AlMe<sub>4</sub>)( $\mu$ -Cl)]<sub>2</sub> (1\*-Lu<sup>Cl</sup>): Following the procedure described above, SiMe<sub>3</sub>Cl (21.0 mg, 193 μmol) and (C<sub>5</sub>Me<sub>5</sub>)Lu(AlMe<sub>4</sub>)<sub>2</sub> (100 mg, 212 μmol) yielded 1\*-Lu<sup>Cl</sup> as white powder (52.0 mg, 60.1 μmol, 57 %). <sup>1</sup>H NMR (400 MHz, [D<sub>8</sub>]toluene, 26 °C):  $\delta$  1.93 (s, 30H, Cp–CH<sub>3</sub>), –0.05 (br s, 24H, Al–CH<sub>3</sub>) ppm. <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, [D<sub>8</sub>]toluene, 26 °C):  $\delta$  121.4 (C<sub>5</sub>Me<sub>5</sub>), 12.1 (Cp–CH<sub>3</sub>) ppm; <sup>13</sup>C resonances for the AlMe<sub>4</sub> groups could not be detected. IR (KBr):  $\tilde{\nu}$  = 3013 (vw), 2975 (w), 2916 (m), 2888 (m), 2840 (w), 2823 (w), 2736 (vw), 1558 (vw), 1539 (vw), 1520 (vw), 1506 (w), 1488 (vw), 1455 (w), 1435 (w), 1418 (w), 1379 (vw), 1374 (vw), 1219 (w), 1192 (m), 1021 (vw), 800 (vw), 715 (vs), 700 (vs), 693 (vs), 668 (m), 582 (s), 471 (m), 457 (m), 419 (vw) cm<sup>-1</sup>; elemental analysis calcd (%) for C<sub>28</sub>H<sub>54</sub>Al<sub>2</sub>Cl<sub>2</sub>Lu<sub>2</sub>: C 38.86, H 6.29; found C 38.91, H 6.27.

[(C<sub>3</sub>Me<sub>5</sub>)Lu(AlMe<sub>4</sub>)( $\mu$ -Br)]<sub>2</sub> (1\*-Lu<sup>Br</sup>): Following the procedure described above, SiMe<sub>3</sub>Br (29.2 mg, 191 µmol) and (C<sub>5</sub>Me<sub>5</sub>)Lu(AlMe<sub>4</sub>)<sub>2</sub> (100 mg, 212 µmol) yielded 1\*-Lu<sup>Br</sup> as white powder (67.0 mg, 70.2 µmol, 66 %). <sup>1</sup>H NMR (400 MHz, [D<sub>8</sub>]toluene, 26 °C): δ 1.96 (s, 30H, Cp–CH<sub>3</sub>), 0.00 (br s, 24H, Al–CH<sub>3</sub>) ppm. <sup>13</sup>C[<sup>1</sup>H NMR (101 MHz, [D<sub>8</sub>]toluene, 26 °C): δ 121.8 (C<sub>5</sub>Me<sub>5</sub>), 12.3 (Cp–CH<sub>3</sub>) ppm; <sup>13</sup>C resonances for the AlMe<sub>4</sub> groups could not be detected. IR (KBr):  $\tilde{\nu}$  = 3014 (w), 2976 (w), 2917 (s), 2887 (m), 2841 (m), 2824 (w), 2734 (vw), 1556 (vw), 1486 (vw), 1435 (w), 1418 (w), 1391 (vw), 1379 (vw), 1219 (m), 1192 (m), 1022 (w), 800 (vw), 713 (vs), 697 (vs), 613 (m), 578 (s), 473 (m), 459 (m), 413 (vw) cm<sup>-1</sup>; elemental analysis calcd (%) for C<sub>28</sub>H<sub>54</sub>Al<sub>2</sub>Br<sub>2</sub>Lu<sub>2</sub>: C 35.24, H 5.70; found C 35.22, H 5.51.

[(C<sub>3</sub>Me<sub>5</sub>)Lu(AlMe<sub>4</sub>)( $\mu$ -I)]<sub>2</sub> (1\*-Lu<sup>I</sup>): Following the procedure described above, SiMe<sub>3</sub>I (38.1 mg, 190 µmol) and (C<sub>5</sub>Me<sub>5</sub>)Lu(AlMe<sub>4</sub>)<sub>2</sub> (100 mg, 212 µmol) yielded 1\*-Lu<sup>I</sup> as white powder (74.0 mg, 70.6 µmol, 67 %). <sup>1</sup>H NMR (400 MHz, [D<sub>8</sub>]toluene, 26 °C): δ 2.00 (s, 30H, Cp–CH<sub>3</sub>), 0.04 (br s, 24H, Al–CH<sub>3</sub>) ppm. <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, [D<sub>8</sub>]toluene, 26 °C): δ 122.6 (C<sub>5</sub>Me<sub>5</sub>), 13.1 (Cp–CH<sub>3</sub>) ppm; <sup>13</sup>C resonances for the AlMe<sub>4</sub> groups could not be detected. IR (KBr):  $\tilde{\nu}$  = 2969 (w), 2915 (m), 2886 (m), 2862 (w), 1444 (w), 1433 (w), 1419 (w), 1379 (w), 1226 (w), 1190 (w), 1022 (vw), 712 (vs), 696 (vs), 580 (s), 480 (w), 473 (w), 459 (w), 402 (w) cm<sup>-1</sup>; elemental analysis calcd (%) for C<sub>28</sub>H<sub>54</sub>Al<sub>2</sub>I<sub>2</sub>Lu<sub>2</sub>: C 32.08, H 5.19; found C 31.94, H 5.01.

 $[(C_5Me_4SiMe_3)Y(AlMe_4)(\mu-Cl)]_2$  (1'-Y<sup>Cl</sup>): Following the procedure described above, SiMe<sub>3</sub>Cl (21.4 mg, 197 µmol) and (C<sub>5</sub>Me<sub>4</sub>SiMe<sub>3</sub>)Y(AlMe<sub>4</sub>)<sub>2</sub> (100 mg, 219 µmol) yielded 1'- $Y^{C1}$  as white powder (40.0 mg, 49.4 µmol, 45 %). <sup>1</sup>H NMR (400 MHz, [D<sub>8</sub>]toluene, 26 °C): δ 2.15 (s, 12H, Cp–CH<sub>3</sub>-2,5), 1.85 (s, 12H, Cp-CH<sub>3</sub>-3,4), 0.32 (s, 18H, Si-CH<sub>3</sub>), -0.18 (d,  $^{2}J(YH) = 2.4 \text{ Hz}, 24\text{H}, \text{Al}-CH_{3}) \text{ ppm.} \ ^{13}C{^{1}H} \text{ NMR} (101 \text{ MHz}, 101 \text{ MHz})$ [D<sub>8</sub>]toluene, 26 °C): δ 132.3 (2,5-C<sub>5</sub>Me<sub>4</sub>SiMe<sub>3</sub>), 128.4 (3,4-C<sub>5</sub>Me<sub>4</sub>SiMe<sub>3</sub>), 120.3 (1-C<sub>5</sub>Me<sub>4</sub>SiMe<sub>3</sub>), 15.7 (Cp-CH<sub>3</sub>), 11.9 (Cp-CH<sub>3</sub>), 2.1 (Si-Me), 0.3 (br, Al-Me) ppm. <sup>89</sup>Y NMR (from <sup>1</sup>H-<sup>89</sup>Y HSQC, 25 MHz, [D<sub>8</sub>]toluene, 26 °C): δ 206 ppm. IR (KBr):  $\tilde{v} = 2948$  (m), 2918 (m), 2892 (m), 2826 (w), 2794 (vw), 1456 (w), 1448 (w), 1436 (vw), 1429 (vw), 1419 (vw), 1406 (vw), 1322 (w), 1248 (m), 1219 (w), 1187 (w), 1019 (vw), 846 (vs), 838 (vs), 756 (m), 715 (vs), 697 (vs), 633 (w), 608 (w), 583 (s), 481 (w), 459 (vw), 425 (w) cm<sup>-1</sup>; elemental analysis calcd (%) for C<sub>32</sub>H<sub>66</sub>Al<sub>2</sub>Cl<sub>2</sub>Si<sub>2</sub>Y<sub>2</sub>: C 47.47, H 8.22; found C 47.58, H 7.94. The analytical data were consistent with those previously published.44

 $[(C_5Me_4SiMe_3)Y(AlMe_4)(\mu-Br)]_2$  (1'-Y<sup>Br</sup>): Following the procedure described above, SiMe<sub>3</sub>Br (30.2 mg, 197 µmol) and (C<sub>5</sub>Me<sub>4</sub>SiMe<sub>3</sub>)Y(AlMe<sub>4</sub>)<sub>2</sub> (100 mg, 219 µmol) yielded 1'-Y<sup>Br</sup> as white powder (60.0 mg, 66.8 µmol, 61 %). <sup>1</sup>H NMR (400 MHz, [D<sub>8</sub>]toluene, 26 °C): δ 2.17 (s, 12H, Cp-CH<sub>3</sub>-2,5), 1.86 (s, 12H, Cp-CH<sub>3</sub>-3,4), 0.33 (s, 18H, Si-CH<sub>3</sub>), -0.15 (d,  ${}^{2}J(YH) = 2.4 \text{ Hz}, 24\text{H}, \text{Al}-CH_{3}) \text{ ppm. }{}^{13}C\{{}^{1}H\} \text{ NMR (101 MHz, 101 MHz)}$ [D<sub>8</sub>]toluene, 26 °C): δ 132.8 (2,5-C<sub>5</sub>Me<sub>4</sub>SiMe<sub>3</sub>), 128.3 (3,4-C<sub>5</sub>Me<sub>4</sub>SiMe<sub>3</sub>), 120.5 (1-C<sub>5</sub>Me<sub>4</sub>SiMe<sub>3</sub>), 15.8 (Cp-CH<sub>3</sub>), 12.3 (Cp-CH<sub>3</sub>), 2.8 (br, Al-Me), 2.2 (Si-Me) ppm. <sup>89</sup>Y NMR (from 'H-89Y HSQC, 25 MHz, [D8]toluene, 26 °C): δ 240 ppm. IR (KBr):  $\tilde{v} = 2955$  (w), 2918 (m), 2892 (w), 2824 (w), 2790 (vw), 1482 (vw), 1448 (vw), 1408 (vw), 1388 (vw), 1377 (vw), 1344 (vw), 1321 (w), 1248 (m), 1219 (w), 1190 (w), 1128 (vw), 1019 (vw), 846 (vs), 838 (vs), 756 (m), 716 (vs), 697 (vs), 633 (w), 611 (w), 582 (w), 482 (w), 460 (w), 426 (m) cm<sup>-</sup> <sup>1</sup>; elemental analysis calcd (%) for C<sub>32</sub>H<sub>66</sub>Al<sub>2</sub>Br<sub>2</sub>Si<sub>2</sub>Y<sub>2</sub>: C 42.77, H 7.40; found C 42.81, H 7.34.

 $[(C_5Me_4SiMe_3)Y(AIMe_4)(\mu-I)]_2$  (1'-Y<sup>I</sup>): Following the procedure described above, SiMe<sub>3</sub>I (39.4 mg, 197 µmol) and  $(C_5Me_4SiMe_3)Y(AlMe_4)_2$  (100 mg, 219 µmol) yielded 1'-Y<sup>I</sup> as white powder (70.0 mg, 70.5 µmol, 64 %). <sup>1</sup>H NMR (400 MHz, [D<sub>8</sub>]toluene, 26 °C): δ 2.22 (s, 12H, Cp–CH<sub>3</sub>-2,5), 1.93 (s, 12H, Cp-CH<sub>3</sub>-3,4), 0.37 (s, 18H, Si-CH<sub>3</sub>), -0.13 (s, 24H, Al-CH<sub>3</sub>)ppm.  ${}^{13}C{}^{1}H$  NMR (101 MHz, [D<sub>8</sub>]toluene, 26 °C):  $\delta$ 133.3  $(2,5-C_5Me_4SiMe_3)$ , 129.4  $(3,4-C_5Me_4SiMe_3)$ , 121.4 (1-C<sub>5</sub>Me<sub>4</sub>SiMe<sub>3</sub>), 16.3 (Cp–CH<sub>3</sub>), 13.2 (Cp–CH<sub>3</sub>), 3.7 (br, Al–Me), 2.1 (Si-Me) ppm. IR (KBr):  $\tilde{v} = 2948$  (m), 2898 (m), 2870 (w), 2736 (vw), 1504 (vw), 1481 (vw), 1454 (w), 1447 (w), 1417 (w), 1404 (vw), 1388 (vw), 1374 (vw), 1345 (vw), 1321 (w), 1263 (w), 1253 (m), 1246 (m), 1216 (w), 1194 (w), 1127 (vw), 1020 (w), 987 (vw), 848 (s), 836 (vs), 755 (m), 736 (w), 707 (vs), 698 (vs), 693 (s), 687 (s), 638 (w), 630 (w), 601 (w), 579 (w), 559 (w), 526 (vw), 515 (w), 508 (vw), 496 (vw), 472 (vw), 457 (vw), 421 (m), 405 (vw) cm<sup>-1</sup>; elemental analysis calcd (%) for  $C_{32}H_{66}Al_2I_2Si_2Y_2$ : C 38.72, H 6.70; found C 38.58, H 6.64.

[(C<sub>5</sub>Me<sub>4</sub>SiMe<sub>3</sub>)Lu(AlMe<sub>4</sub>)(µ-Cl)]<sub>2</sub> (1'-Lu<sup>Cl</sup>): Following the procedure described above, SiMe<sub>3</sub>Cl (18.0 mg, 166 µmol) and (C<sub>5</sub>Me<sub>4</sub>SiMe<sub>3</sub>)Lu(AlMe<sub>4</sub>)<sub>2</sub> (100 mg, 184 µmol) yielded 1'-Lu<sup>Cl</sup> as white powder (36.1 mg, 36.7 µmol, 40 %). <sup>1</sup>H NMR (400 MHz, [D<sub>8</sub>]toluene, 26 °C): δ 2.17 (s, 12H, Cp-CH<sub>3</sub>-2,5), 1.87 (s, 12H, Cp–CH<sub>3</sub>-3,4), 0.32 (s, 18H, Si–CH<sub>3</sub>), -0.05 (br s, 24H, Al-CH<sub>3</sub>) ppm. <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, [D<sub>8</sub>]toluene, 26 °C): δ 130.9 (2,5-C<sub>5</sub>Me<sub>4</sub>SiMe<sub>3</sub>), 126.8 (3,4-C<sub>5</sub>Me<sub>4</sub>SiMe<sub>3</sub>), 118.4 (1-C<sub>5</sub>Me<sub>4</sub>SiMe<sub>3</sub>), 15.8 (Cp-CH<sub>3</sub>), 11.8 (Cp-CH<sub>3</sub>), 2.1 (Si-CH<sub>3</sub>) ppm; <sup>13</sup>C resonances for the AlMe<sub>4</sub> groups could not be detected. IR (KBr):  $\tilde{v} = 2949$  (vw), 2887 (w), 2771 (w), 2730 (vw), 1485 (vw), 1448 (w), 1327 (vw), 1243 (w), 1185 (m), 1131 (w), 1107 (vw), 845 (w), 758 (m), 687 (s), 630 (m), 505 (s), 459 (m), 445 (m), 418 (vw) cm<sup>-1</sup>; elemental analysis calcd (%) for  $C_{32}H_{66}Al_2Cl_2Lu_2Si_2$ : C 39.15, H 6.78; found C 39.22, H 6.86.

 $[(C_5Me_4SiMe_3)Lu(AlMe_4)(\mu-Br)]_2$  (1'-Lu<sup>Br</sup>): Following the procedure described above, SiMe<sub>3</sub>Br (25.4 mg, 166 µmol) and  $(C_5Me_4SiMe_3)Lu(AlMe_4)_2$  (100 mg, 184 µmol) yielded 1'-Lu<sup>Br</sup> as white powder (44.0 mg, 41.1 µmol, 45 %). <sup>1</sup>H NMR (400 MHz, [D<sub>8</sub>]toluene, 26 °C): δ 2.19 (s, 12H, Cp–CH<sub>3</sub>-2,5), 1.88 (s, 12H, Cp-CH<sub>3</sub>-3,4), 0.34 (s, 18H, Si-CH<sub>3</sub>), 0.01 (br s, 24H, Al-CH<sub>3</sub>) ppm. <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, [D<sub>8</sub>]toluene, 26 °C): δ 131.4 (2,5-C<sub>5</sub>Me<sub>4</sub>SiMe<sub>3</sub>), 127.1 (3,4-C<sub>5</sub>Me<sub>4</sub>SiMe<sub>3</sub>), 120.4 (1-C<sub>5</sub>Me<sub>4</sub>SiMe<sub>3</sub>), 15.9 (Cp-CH<sub>3</sub>), 12.2 (Cp-CH<sub>3</sub>), 2.2 (Si-CH<sub>3</sub>) ppm; <sup>13</sup>C resonances for the AlMe<sub>4</sub> groups could not be detected. IR (KBr):  $\tilde{v} = 3014$  (w), 2970 (m), 2947 (m), 2920 (m), 2892 (m), 2825 (w), 2740 (vw), 1484 (vw), 1447 (w), 1433 (w), 1408 (w), 1388 (vw), 1377 (vw), 1371 (vw), 1344 (w), 1321 (m), 1248 (s), 1227 (w), 1188 (w), 1129 (vw), 1020 (vw), 846 (vs), 837 (vs), 756 (s), 715 (vs), 701 (vs), 633 (m), 613 (m), 582 (s), 530 (w), 476 (w), 463 (w), 425 (w), 405 (vw) cm<sup>-1</sup>; elemental analysis calcd (%) for C<sub>32</sub>H<sub>66</sub>Al<sub>2</sub>Br<sub>2</sub>Lu<sub>2</sub>Si<sub>2</sub>: C 35.90, H 6.21; found C35.68, H 5.95.

 $[(C_5Me_4SiMe_3)Lu(AIMe_4)(\mu-I)]_2$  (1'-Lu<sup>I</sup>): Following the procedure described above, SiMe<sub>3</sub>I (33.2 mg, 166 µmol) and  $(C_5Me_4SiMe_3)Lu(AlMe_4)_2$  (100 mg, 184 µmol) yielded 1'-Lu<sup>I</sup> as white powder (48.0 mg, 41.2 µmol, 45 %). <sup>1</sup>H NMR (400 MHz, [D<sub>8</sub>]toluene, 26 °C): δ 2.23 (br s, 12H, Cp–CH<sub>3</sub>-2,5), 1.86 (s, 12H, Cp-CH<sub>3</sub>-3,4), 0.33 (s, 18H, Si-CH<sub>3</sub>), 0.01 (br s, 24H, Al-CH<sub>3</sub>) ppm. <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, [D<sub>8</sub>]toluene, 26 °C): δ 132.1 (2,5-C<sub>5</sub>Me<sub>4</sub>SiMe<sub>3</sub>), 127.6 (3,4-C<sub>5</sub>Me<sub>4</sub>SiMe<sub>3</sub>), 123.0 (1-C<sub>5</sub>Me<sub>4</sub>SiMe<sub>3</sub>), 16.2 (Cp-CH<sub>3</sub>), 12.6 (Cp-CH<sub>3</sub>), 1.7 (Si-CH<sub>3</sub>) ppm; <sup>13</sup>C resonances for the AlMe<sub>4</sub> groups could not be detected. IR (KBr):  $\tilde{v} = 2973$  (w), 2948 (w), 2905 (w), 2860 (w), 2731 (vw), 1575 (w), 1485 (vw), 1455 (w), 1436 (w), 1436 (w), 1428 (w), 1418 (w), 1405 (w), 1386 (vw), 1374 (vw), 1345 (vw), 1321 (m), 1249 (m), 1129 (vw), 1085 (vw), 1021 (w), 989 (vw), 952 (vw), 847 (vs), 839 (vs), 756 (m), 688 (w), 668 (vw), 630 (w), 570 (vw), 424 (m), 404 (w) cm<sup>-1</sup>; elemental analysis calcd (%) for C<sub>32</sub>H<sub>66</sub>Al<sub>2</sub>I<sub>2</sub>Lu<sub>2</sub>Si<sub>2</sub>: C 33.00, H 5.71; found C 33.64, H 5.67.

General procedure for the synthesis of  $[Cp_{3}La_{3}(AlMe_{4})_{2}(\mu-X)_{4}]_{2}$  (X = Cl, Br, I;  $Cp^{R} = C_{5}Me_{5}$ ,  $C_{5}Me_{4}SiMe_{3}$ )

A solution of 1.3 equiv. SiMe<sub>3</sub>X in *n*-hexane (2 mL) was added to a solution of  $(C_5Me_5)La(AlMe_4)_2$  in *n*-hexane (2 mL). The reaction was stirred overnight at ambient temperatures. The precipitate was allowed to settle, washed with *n*-hexane (3 x 1 mL), and dried *in vacuo*. Crystals can be obtained by performing the reaction under the same conditions without stirring. Due to poor solubility any meaningful NMR spectra could not be obtained.

[(**C**<sub>5</sub>**Me**<sub>5</sub>)<sub>3</sub>**La**<sub>3</sub>(**AIMe**<sub>4</sub>)<sub>2</sub>(*μ*-**Cl**)<sub>4</sub>]<sub>2</sub> (**2**\*-**La**<sup>Cl</sup>): Following the procedure described above, SiMe<sub>3</sub>Cl (63.0 mg, 580 μmol) and (C<sub>5</sub>Me<sub>5</sub>)La(AIMe<sub>4</sub>)<sub>2</sub> (200 mg, 446 μmol) yielded **2**\*-**La**<sup>Cl</sup> as white powder (119 mg, 50.4 μmol, 68 %). IR (KBr):  $\tilde{v} = 2911$  (s), 2858 (m), 1488 (vw), 1439 (w), 1379 (vw), 1190 (m), 1043 (w), 1027 (w), 763 (w), 696 (vs), 623 (m), 587 (m), 531(w) cm<sup>-1</sup>; elemental analysis calcd for C<sub>7</sub>6H<sub>138</sub>Al<sub>4</sub>Cl<sub>8</sub>La<sub>6</sub> x C<sub>6</sub>H<sub>14</sub>: C 41.68 H 6.48; found C 41.46, H 6.50. The analytical data were consistent with those previously published.<sup>42</sup>

[(C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>La<sub>3</sub>(AlMe<sub>4</sub>)<sub>2</sub>(μ-Br)<sub>4</sub>]<sub>2</sub> (2\*-La<sup>Br</sup>): Following the procedure described above, SiMe<sub>3</sub>Br (88.8 mg, 580 μmol) and (C<sub>5</sub>Me<sub>5</sub>)La(AlMe<sub>4</sub>)<sub>2</sub> (200 mg, 446 μmol) yielded 2\*-La<sup>Br</sup> as white powder (139 mg, 51.1 μmol, 69 %). IR (KBr):  $\tilde{v} = 2954$  (m), 2912 (s), 2858 (m), 1449 (w), 1436 (w), 1420 (w), 1379 (w), 1039 (w), 1036 (m), 768 (w), 700 (vs), 621 (s), 585 (m), 558 (w), 530 (w) cm<sup>-1</sup>; elemental analysis calcd for C<sub>76</sub>H<sub>138</sub>Al<sub>4</sub>Br<sub>8</sub>La<sub>6</sub> x C<sub>6</sub>H<sub>14</sub>: C 36.23, H 5.64; found C 36.60, H 5.54.

[(C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>La<sub>3</sub>(AlMe<sub>4</sub>)<sub>2</sub>( $\mu$ -I)<sub>4</sub>]<sub>2</sub> (2\*-La<sup>I</sup>): Following the procedure described above, SiMe<sub>3</sub>I (116 mg, 580 μmol) and (C<sub>5</sub>Me<sub>5</sub>)La(AlMe<sub>4</sub>)<sub>2</sub> (200 mg, 446 μmol) yielded 2\*-La<sup>I</sup> as white powder (200 mg, 64.6 μmol, 87%). IR (KBr):  $\tilde{v}$  = 2954 (s), 2915 (s), 2857 (m), 1487 (w), 1454 (m), 1436 (m), 1419 (w), 1388 (vw), 1378 (w), 1195 (m), 1037 (m), 1026 (m), 768 (w), 698 (vs), 616 (s), 583 (m), 555 (w), 523 (w) cm<sup>-1</sup>; elemental analysis calcd for C<sub>76</sub>H<sub>138</sub>Al<sub>4</sub>I<sub>8</sub>La<sub>6</sub> x C<sub>6</sub>H<sub>14</sub>: 31.83, H 4.95; found C 32.26, H 4.76.

[(C<sub>5</sub>Me<sub>4</sub>SiMe<sub>3</sub>)<sub>3</sub>La<sub>3</sub>(AlMe<sub>4</sub>)<sub>2</sub>(μ-Cl)<sub>4</sub>]<sub>2</sub> (2'-La<sup>Cl</sup>): Following the procedure described above, SiMe<sub>3</sub>Cl (55.8 mg, 514 μmol) and (C<sub>5</sub>Me<sub>4</sub>SiMe<sub>3</sub>)La(AlMe<sub>4</sub>)<sub>2</sub> (200 mg, 395 μmol) yielded 2'-La<sup>Cl</sup> as white powder (80.0 mg, 34.7 μmol, 46 %). IR (KBr):  $\tilde{v} = 2950$  (w), 2906 (w), 2861 (w), 1482 (vw), 1452 (w), 1431 (vw), 1386 (vw), 1375 (vw), 1344 (vw), 1325 (w), 1261 (w), 1247 (m), 1195 (w), 1124 (vw), 1043 (w), 1029 (w), 1019 (w), 847 (vs), 836 (vs), 755 (m), 704 (m), 627 (m), 584 (w), 532 (w), 418 (m) cm<sup>-1</sup>; elemental analysis calcd for C<sub>88</sub>H<sub>174</sub>Si<sub>6</sub>Al<sub>4</sub>Cl<sub>8</sub>La<sub>6</sub>: C 40.25, H 6.68; found C 40.40, H 6.64.

[(C<sub>5</sub>Me<sub>4</sub>SiMe<sub>3</sub>)<sub>3</sub>La<sub>3</sub>(AlMe<sub>4</sub>)<sub>2</sub>(μ-Br)<sub>4</sub>]<sub>2</sub> (2'-La<sup>Br</sup>): Following the procedure described above, SiMe<sub>3</sub>Br (78.6 mg, 513 μmol) and (C<sub>5</sub>Me<sub>4</sub>SiMe<sub>3</sub>)La(AlMe<sub>4</sub>)<sub>2</sub> (200 mg, 395 μmol) yielded 2'-La<sup>Br</sup> as white powder (160 mg, 52.2 μmol, 79 %). IR (KBr):  $\tilde{v} = 2951$  (w), 2906 (w), 1482 (vw), 1451 (w), 1430 (vw), 1406 (vw), 1387 (vw), 1375 (vw), 1344 (vw), 1324 (w), 1260 (w), 1247 (m), 1195 (w), 1123 (vw), 1039 (w), 1022 (w), 844 (vs), 836 (vs), 755 (m), 701 (m), 626 (m), 585 (w), 533 (vw), 418 (w) cm<sup>-1</sup>; elemental analysis calcd for  $C_{88}H_{174}Si_6Al_4Br_8La_6 \ge C_6H_{14}$ : C 36.80, H 6.18; found C 36.46, H 6.09.

[(C<sub>5</sub>Me<sub>4</sub>SiMe<sub>3</sub>)<sub>3</sub>La<sub>3</sub>(AlMe<sub>4</sub>)<sub>2</sub>( $\mu$ -I)<sub>4</sub>]<sub>2</sub> (2'-La<sup>I</sup>): Following the procedure described above, SiMe<sub>3</sub>I (103 mg, 515 µmol) and (C<sub>5</sub>Me<sub>4</sub>SiMe<sub>3</sub>)La(AlMe<sub>4</sub>)<sub>2</sub> (200 mg, 395 µmol) yielded 2'-La<sup>I</sup> as white powder (100 mg, 28.3 µmol, 43 %). IR (KBr):  $\tilde{v} = 2954$  (m), 2904 (m), 2861 (w), 1485 (w), 1454 (w), 1387 (vw), 1375 (w), 1344 (w), 1323 (m), 1249 (m), 1196 (w), 1123 (vw), 1037 (w), 1018 (w), 847 (vs), 836 (vs), 754 (s), 697 (s), 618 (m), 585 (w), 554 (w), 519 (w), 420 (w) cm<sup>-1</sup>; elemental analysis calcd for C<sub>88</sub>H<sub>174</sub>Si<sub>6</sub>Al<sub>4</sub>I<sub>8</sub>La<sub>6</sub> x 2 C<sub>6</sub>H<sub>14</sub>: C 34.03, H 5.77; found C 33.92, H 5.84.

(C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>La<sub>3</sub>(AIMe<sub>4</sub>)(μ-OTf)<sub>3</sub>(μ<sub>3</sub>-OTf)<sub>2</sub> (3\*-La<sup>OTf</sup>): Following the procedure described for 2-La, SiMe<sub>3</sub>OTf (64.4 mg, 290 μmol) and (C<sub>5</sub>Me<sub>5</sub>)La(AIMe<sub>4</sub>)<sub>2</sub> (100 mg, 223 μmol) yielded 3\*-La<sup>OTf</sup> as white powder (105 mg, 58.9 μmol, 79 %). IR (KBr):  $\tilde{v} = 2919$  (w), 2872 (w), 1505 (vw), 1455 (w), 1446 (w), 1436 (w), 1380 (w), 1325 (w), 1312 (vs), 1287 (vs), 1260 (s), 1245 (s), 1227 (s), 1209 (s), 1195 (s), 1104 (vw) 1043 (vs), 941 (vw), 771 (w), 763 (w), 719 (m), 694 (m), 687 (m), 668 (w), 636 (s), 631 (s), 588 (w), 582 (w), 559 (w), 518 (m), 509 (m), 490 (vw) cm<sup>-1</sup>; elemental analysis calcd (%) for C<sub>47</sub>H<sub>58</sub>AIF<sub>15</sub>La<sub>3</sub>O<sub>17</sub>S<sub>5</sub> C 31.64, H 3.28; found C 32.71, H 4.49. Due to the high F and S content no better elemental analysis could be obtained. The yield is determined in relation to the metal.

General procedure for the synthesis of  $Cp_{3}^{R}Y_{3}(\mu - X)_{3}(\mu_{3}-X)(\mu_{3}-CH_{2})(THF)_{3}$  (X = Cl, Br, I,  $Cp^{R} = C_{5}Me_{5}$ ,  $C_{5}Me_{4}SiMe_{3}$ )

#### (C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>Y<sub>3</sub>( $\mu$ -X)<sub>3</sub>( $\mu$ <sub>3</sub>-X)( $\mu$ <sub>3</sub>-CH<sub>2</sub>)(THF)<sub>3</sub> (4-Y<sup>X</sup>):

**Route A:**  $[Cp^{R}Y(A|Me_{4})(\mu-X)]_{2}$  **1-** $Y^{X}$  was suspended in toluene (1 mL) and THF (2 mL) was added. The reaction was shaken several times, filtered and allowed to stand at ambient temperatures for 3-4 days. A color change to yellow-orange occurred, the mixture was concentrated and stored at -40 °C to yield crystalline material. The yield was determined in relation to the halogenido content.

**Route B:** A solution of 4 equiv. of SiMe<sub>3</sub>X in THF (1 mL) were added to a solution of  $(C_5Me_5)_3Y_3(\mu-Me)_3(\mu_3-Me)(\mu_3-CH_2)(THF)_2 V^{Y}$  in THF (4 mL). The solution was allowed to stir for 46 h at ambient temperature. Removal of the solvent and washing with *n*-hexane gave the products as white powder. Crystals were obtained from saturated solutions in THF at -40 °C.

### (C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>Y<sub>3</sub>(µ-Cl)<sub>3</sub>(µ<sub>3</sub>-Cl)(µ<sub>3</sub>-CH<sub>2</sub>)(THF)<sub>3</sub> (4\*-Y<sup>Cl</sup>):

Following route A described above,  $1^{*}$ - $Y^{Cl}$  (0.100 mg, 144 µmol) yielded  $4^{*}$ - $Y^{Cl}$  as colorless crystals (68.0 mg, 65.2 µmol, 91 %).

Following route B described above, SiMe<sub>3</sub>Cl (48.8 mg, 449  $\mu mol),$  and  $V^{Y}$  (100 mg, 112  $\mu mol)$  yielded  $4^{*}\text{-}Y^{Cl}$  as white powder (70.0 mg, 67.0 µmol, 64 %). 1H NMR (400 MHz, [D8]THF, 26 °C): δ 3.61 (m, 12H, THF), 1.98 (s, 45H, Cp- $CH_3$ ), 1.77 (m, 12H, THF), -0.35 (q, <sup>2</sup>J(YH) = 4.4 Hz, 2H, Y-CH<sub>2</sub>) ppm. <sup>13</sup>C NMR (101 MHz, [D<sub>8</sub>]THF, 26 °C): δ 118.0 (C<sub>5</sub>Me<sub>5</sub>), 67.4 (THF), 25.3 (THF), 12.2 (Cp-CH<sub>3</sub>) ppm; <sup>13</sup>C resonances for the CH<sub>2</sub> group could not be detected. <sup>89</sup>Y NMR (from <sup>1</sup>H-<sup>89</sup>Y HSQC, 25 MHz, [D<sub>8</sub>]THF, 26 °C): δ 163 ppm. IR (KBr):  $\tilde{v} = 2967$  (s), 2930 (vs), 2896 (vs), 2856 (vs), 2751 (w), 2719 (w), 1484 (w), 1450 (s), 1374 (m), 1344 (w), 1313 (w), 1295 (w), 1248 (w), 1176 (w), 1065 (m), 1024 (vs), 920 (m), 878 (s), 804 (w), 661 (m), 635 (m), 594 (m), 505 (s), 438 (s), 428 (s), 415 (s), 407 (s) cm<sup>-1</sup>; elemental analysis calcd (%) for C43H71Cl4Y3O3: C 49.44, H 6.85; found C 49.19, H 6.81. The analytical data is inconsistent to those previously published.40

#### $(C_5Me_5)_3Y_3(\mu-Br)_3(\mu_3-Br)(\mu_3-CH_2)(THF)_3(4^*-Y^{Br}):$

Following route A described above,  $1^*-Y^{Br}$  (0.100 mg, 128  $\mu$ mol) yielded  $4^*-Y^{Br}$  as colorless crystals (60.0 mg, 49.1  $\mu$ mol, 77 %).

Following route B described above, SiMe<sub>3</sub>Br (68.7 mg, 44.9  $\mu mol),$  and  $V^{Y}$  (100 mg, 112  $\mu mol)$  yielded  $4^{*}\text{-}Y^{Br}$  as white powder (80.0 mg, 65.4 µmol, 63 %). 1H NMR (400 MHz, [D<sub>8</sub>]THF, 26 °C): δ 3.62 (m, 12H, THF), 2.01 (s, 45H, Cp-CH<sub>3</sub>), 1.77 (m, 12H, THF), -0.33 (q, <sup>2</sup>J(YH) = 4.4 Hz, 2H, Y-CH<sub>2</sub>) ppm. <sup>13</sup>C NMR (101 MHz, [D<sub>8</sub>]THF, 26 °C): δ 118.7 (C<sub>5</sub>Me<sub>5</sub>), 67.4 (THF), 25.2 (THF), 12.7 (Cp-CH<sub>3</sub>) ppm; <sup>13</sup>C resonances for the CH2 group could not be detected. 89Y NMR (from <sup>1</sup>H-<sup>8</sup>9Y HSQC, 25 MHz, [D<sub>8</sub>]THF, 26 °C): δ 196 ppm. IR (KBr):  $\tilde{v}$  = 2968 (s), 2937 (s), 2892 (s), 2853 (s), 2719 (vw), 1568 (vw), 1557 (vw), 1539 (vw), 1506 (w), 1520 (w), 1471 (w), 1455 (m), 1436 (m), 1374 (w), 1343 (vw), 1314 (vw), 1295 (vw), 1246 (vw), 1185 (vw), 1063 (w), 1020 (vs), 921 (m), 874 (vs), 667 (m), 594 (w), 499 (m), 484 (m), 471 (m), 458 (m), 437 (m), 419 (vs), 412 (s) cm<sup>-1</sup>; elemental analysis calcd (%) for C<sub>43</sub>H<sub>71</sub>Br<sub>4</sub>Y<sub>3</sub>O<sub>3</sub>: C 42.25, H 5.85; found C 42.74, H 5.89.

#### (C<sub>5</sub>Me<sub>4</sub>SiMe<sub>3</sub>)<sub>3</sub>Y<sub>3</sub>(µ-Cl)<sub>3</sub>(µ<sub>3</sub>-Cl)(µ<sub>3</sub>-CH<sub>2</sub>)(THF)<sub>3</sub> (4'-Y<sup>Cl</sup>):

Following route A described above,  $\mathbf{1'}$ - $\mathbf{Y}^{C1}$  (0.100 mg, 123 µmol) yielded  $\mathbf{4'}$ - $\mathbf{Y}^{C1}$  as colorless crystals (64.0 mg, 53.0 µmol, 86 %). <sup>1</sup>H NMR (400 MHz, [D<sub>8</sub>]THF, 26 °C):  $\delta$  3.61 (m, 12H, THF), 2.11 (s, 18H, Cp–CH<sub>3</sub>-2,5), 2.06 (s, 18H, Cp–CH<sub>3</sub>-3,4), 1.77 (m, 12H, THF), 0.24 (s, 27H, Si–Me), -0.42 (q, <sup>2</sup>/(YH) = 4.4 Hz, 2H, Y–CH<sub>2</sub>) ppm. <sup>13</sup>C NMR (101 MHz, [D<sub>8</sub>]THF, 26 °C):  $\delta$  127.6 (2,5- $C_5$ Me<sub>4</sub>SiMe<sub>3</sub>), 123.8 (3,4- $C_5$ Me<sub>4</sub>SiMe<sub>3</sub>), 113.9 (1- $C_5$ Me<sub>4</sub>SiMe<sub>3</sub>), 67.5 (THF), 25.2 (THF), 15.2 (Cp–CH<sub>3</sub>), 13.0 (Cp–CH<sub>3</sub>), 2.8 (Si–Me) ppm; <sup>13</sup>C resonances for the CH<sub>2</sub> group could not be detected. <sup>89</sup>Y NMR (from <sup>1</sup>H-<sup>89</sup>Y HSQC, 25 MHz, [D<sub>8</sub>]THF, 26 °C):  $\delta$  150 ppm. IR (KBr):  $\tilde{\nu}$  = 2979 (m), 2948 (s), 2894 (s), 2861 (m), 2360 (vw), 1558 (w), 1539 (w), 1520 (w), 1506 (w), 1496 (w), 1488 (w), 1472 (w), 1456 (m), 1447 (m), 1436 (m), 1418 (w), 1404 (w), 1386 (vw), 1373 (vw), 1326 (m), 1245 (m), 1186 (vw), 1130

(w), 1106 (vw), 1020 (m), 917 (w), 847 (vs), 834 (vs), 752 (s), 684 (s), 668 (s), 641 (m), 628 (m), 571 (w), 559 (w), 518 (w), 502 (w), 489 (w), 473 (w), 457 (m), 435 (w), 419 (m) cm<sup>-1</sup>; elemental analysis calcd (%) for  $C_{49}H_{77}Cl_4O_3Si_3Y_3$ : C 48.76, H 6.43; found C 48.90, H 7.22.

#### $(C_5Me_4SiMe_3)_3Y_3(\mu-Br)_3(\mu_3-Br)(\mu_3-CH_2)(THF)_3(4'-Y^{Br}):$

Following route A described above, 1'-YBr (0.100 mg, 111 µmol) yielded 4'-YBr as colorless crystals (56.9 mg, 41.1 µmol, 74 %).<sup>1</sup>H NMR (400 MHz, [D<sub>8</sub>]THF, 26 °C): δ 3.62 (m, 12H, THF), 2.14 (s, 18H, Cp-CH<sub>3</sub>-2,5), 2.10 (s, 18H, Cp-CH<sub>3</sub>-3,4), 1.78 (m, 12H, THF), 0.25 (s, 27H, Si-Me), -0.42 (q,  ${}^{2}J(YH) = 4.4$  Hz, 2H, Y–CH<sub>2</sub>) ppm.  ${}^{13}C$  NMR (101 MHz, [D<sub>8</sub>]THF, 26 °C): δ 128.3 (2,5-C<sub>5</sub>Me<sub>4</sub>SiMe<sub>3</sub>), 124.5 (3,4-*C*<sub>5</sub>Me<sub>4</sub>SiMe<sub>3</sub>), 115.1 (1-*C*<sub>5</sub>Me<sub>4</sub>SiMe<sub>3</sub>), 67.6 (THF), 25.4 (THF), 15.7 (Cp-CH<sub>3</sub>), 13.7 (Cp-CH<sub>3</sub>), 2.9 (Si-Me) ppm; <sup>13</sup>C resonances for the CH<sub>2</sub> group could not be detected. <sup>89</sup>Y NMR (from <sup>1</sup>H-<sup>8</sup><sup>9</sup>Y HSQC, 25 MHz, [D<sub>8</sub>]THF, 26 °C): δ 183 ppm. IR (KBr):  $\tilde{v} = 2980$  (m), 2949 (m), 2894 (m), 2727 (vw), 1494 (vw), 1454 (w), 1405 (vw), 1384 (vw), 1372 (vw), 1344 (w), 1324 (m), 1243 (m), 1183 (vw), 1130 (vw), 1081 (vw), 1019 (m), 916 (w), 875 (m), 845 (vs), 834 (vs), 754 (s), 729 (m), 694 (w), 684 (w), 640 (w), 628 (m), 573 (vw), 511 (w), 499 (vw), 491 (vw), 476 (w), 466 (w), 451 (m), 422 (m), 410 (w) cm<sup>-1</sup>; elemental analysis calcd (%) for C<sub>49</sub>H<sub>77</sub>Br<sub>4</sub>O<sub>3</sub>Si<sub>3</sub>Y<sub>3</sub> x OC<sub>4</sub>H<sub>8</sub>: C 43.70, H 5.88; found C 43.59, H 5.86.

General procedure for the synthesis of  $Cp_{3}^{R}La_{3}(\mu - X)_{3}(\mu_{3}-X)(\mu_{3}-CH_{2})(THF)_{3}$  (4-La<sup>X</sup>): (X = Cl, Br, I,  $Cp^{R} = C_{5}Me_{5}, C_{5}Me_{4}SiMe_{3})$ 

 $[Cp_{3}R_{4}(AlMe_{4})_{2}(\mu-X)_{4}]_{2}$  **2-La**<sup>X</sup> was suspended in toluene (1 mL) and THF (2 mL) was added. The reaction was shaken several times, filtered and allowed to stand at ambient temperatures for 3-4 days. A color change to yellow-orange occurred, the mixture was concentrated and stored at -40 °C to yield crystalline material.

 $(C_5Me_5)_3La_3(\mu-Cl)_3(\mu_3-Cl)(\mu_3-CH_2)(THF)_3$  (4\*-La<sup>Cl</sup>): Following the procedure described above, 2\*-La<sup>Cl</sup> (200 mg, 84.6 μmol) yielded 4\*-La<sup>Cl</sup> as light yellow powder (27.8 mg, 23.3 μmol, 55 %). <sup>1</sup>H NMR (400 MHz, [D<sub>8</sub>]THF, 26 °C): δ 3.65 (m, 12H, THF), 2.09 (s, 45H, Cp-CH<sub>3</sub>), 1.81 (m, 12H, THF), -0.93 (s 2H, La-CH<sub>2</sub>) ppm. <sup>13</sup>C NMR (101 MHz, [D<sub>8</sub>]THF, 26 °C): δ 117.2 (C<sub>5</sub>Me<sub>5</sub>), 67.3 (THF), 25.3 (THF), 10.8 (Cp-CH<sub>3</sub>) ppm; <sup>13</sup>C resonances for the CH<sub>2</sub> group could not be detected. IR (KBr):  $\tilde{v} = 2981$  (s), 2890 (vs), 2803 (m), 2729 (vw), 1488 (w), 1437 (m), 1420 (w), 1376 (w), 1172 (m), 1023 (s), 992 (s), 920 (w), 870 (m), 840 (w), 717 (vs), 671 (s), 595 (m), 565 (s), 544 (s), 462 (vw), 451 (vw), 434 (vw), 419 (vw), 405 (vw) cm<sup>-1</sup>; elemental analysis calcd (%) for C<sub>43</sub>H<sub>71</sub>Cl<sub>4</sub>La<sub>3</sub>O<sub>3</sub>: C 43.23, H 5.99; found C 43.77, H 6.10. The analytical data were consistent with those previously published.40

 $(C_5Me_5)_3La_3(\mu$ -Br $)_3(\mu_3$ -Br $)(\mu_3$ -CH $_2)(THF)_3$  (4\*-La<sup>Br</sup>): Following the procedure described above, 2\*-La<sup>Br</sup> (200 mg,

73.6 μmol) yielded **4**\*-**La**<sup>Br</sup> as light yellow powder (36.4 mg, 26.5 μmol, 72 %). <sup>1</sup>H NMR (400 MHz, [D<sub>8</sub>]THF, 26 °C): δ 3.66 (m, 12H, THF), 2.10 (s, 45H, Cp–C*H*<sub>3</sub>), 1.81 (m, 12H, THF), -0.93 (s 2H, La–C*H*<sub>2</sub>) ppm. <sup>13</sup>C NMR (101 MHz, [D<sub>8</sub>]THF, 26 °C): δ 120.8 (*C*<sub>5</sub>Me<sub>5</sub>), 67.3 (THF), 25.2 (THF), 12.0 (Cp–CH<sub>3</sub>) ppm; <sup>13</sup>C resonances for the CH<sub>2</sub> group could not be detected. IR (KBr):  $\tilde{v} = 2961$  (s), 2891 (vs), 2856 (vs), 2752 (w), 2723 (w), 1558 (w), 1532 (vw), 1506 (w), 1495 (w), 1488 (w), 1471 (w), 1456 (m), 1447 (m), 1436 (m), 1375 (w), 1344 (vw), 1247 (vw), 1185 (vw), 1061 (vw), 1021 (vs), 916 (w), 875 (s), 729 (vw), 694 (w), 667 (w), 633 (w), 623 (w), 590 (w), 550 (vw), 517 (vw), 501 (vw), 457 (w), 423 (w), 418 (m), 405 (s) cm<sup>-1</sup>; elemental analysis calcd (%) for C<sub>43</sub>H<sub>71</sub>Br<sub>4</sub>La<sub>3</sub>O<sub>3</sub>: C 37.63, H 5.21; found C 37.70, H 5.68.

(C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>La<sub>3</sub>(μ-I)<sub>3</sub>(μ<sub>3</sub>-I)(μ<sub>3</sub>-CH<sub>2</sub>)(THF)<sub>3</sub> (4\*-La<sup>1</sup>): Following the procedure described above, **2**\*-La<sup>I</sup> (200 mg, 64.6 µmol) yielded **4**\*-La<sup>I</sup> as light yellow powder (39.7 mg, 25.5 µmol, 79 %). <sup>1</sup>H NMR (400 MHz, [D<sub>8</sub>]THF, 26 °C): δ 3.62 (m, 12H, THF), 2.14 (s, 45H, Cp-CH<sub>3</sub>), 1.77 (m, 12H, THF), -0.97 (s 2H, La-CH<sub>2</sub>) ppm. <sup>13</sup>C NMR (101 MHz, [D<sub>8</sub>]THF, 26 °C): δ 123.2 (C<sub>5</sub>Me<sub>5</sub>), 67.3 (THF), 25.2 (THF), 13.2 (Cp-CH<sub>3</sub>) ppm; <sup>13</sup>C resonances for the CH<sub>2</sub> group could not be detected. IR (KBr):  $\tilde{v} = 2975$  (m), 2934 (m), 2890 (s), 1487 (w), 1455 (m), 1432 (w), 1377 (vw), 1367 (vw), 1343 (vw), 1294 (vw), 1243 (w), 1176 (w), 1062 (vw), 1035 (s), 1012 (vs), 949 (w), 920 (m), 912 (m), 854 (vs), 839 (s), 834 (s), 665 (w) cm<sup>-1</sup>; elemental analysis calcd (%) for C<sub>43</sub>H<sub>71</sub>I<sub>4</sub>La<sub>3</sub>O<sub>3</sub>: C 33.10, H 4.59; found C 33.69, H 4.75.

 $(C_5Me_4SiMe_3)_3La_3(\mu-Cl)_3(\mu_3-Cl)(\mu_3-CH_2)(THF)_3$  (4'-La<sup>Cl</sup>): Following the procedure described above, **2'-La<sup>Cl</sup>** (200 mg, 73.7 μmol) yielded **4'-La<sup>Cl</sup>** as light yellow powder (40.0 mg, 29.2 μmol, 79 %). <sup>1</sup>H NMR (400 MHz, [D<sub>8</sub>]THF, 26 °C): δ 3.62 (m, 12H, THF), 2.19 (s, 18H, Cp-CH<sub>3</sub>-2,5), 2.14 (s, 18H, Cp-CH<sub>3</sub>-3,4), 1.77 (m, 12H, THF), 0.25 (s, 27H, Si-Me), -0.96 (s, 2H, La-CH<sub>2</sub>) ppm. <sup>13</sup>C NMR (101 MHz, [D<sub>8</sub>]THF, 26 °C):  $\delta$  129.5 (2,5- $C_5$ Me<sub>4</sub>SiMe<sub>3</sub>), 126.0 (3,4- $C_5$ Me<sub>4</sub>SiMe<sub>3</sub>), 117.2 (1-C<sub>5</sub>Me<sub>4</sub>SiMe<sub>3</sub>), 67.4 (THF), 25.3 (THF), 14.5 (Cp-CH<sub>3</sub>-2,5), 12.5 (Cp-CH<sub>3</sub>-3,4), 2.7 (Si-Me) ppm; <sup>13</sup>C resonances for the CH<sub>2</sub> group could not be detected. IR (KBr):  $\tilde{v} = 2969$ (m), 2949 (m), 2889 (m), 2858 (m), 2757 (vw), 1558 (w), 1539 (vw), 1520 (w), 1506 (vw), 1489 (w), 1472 (w), 1456 (m), 1447 (w),1435 (w), 1418 (w), 1404 (w), 1385 (vw), 1373 (vw), 1326 (m), 1243 (m), 1128 (vw), 1025 (m), 916 (w), 871 (m), 835 (vs), 754 (m), 730 (w), 685 (m), 668 (w), 629 (w), 417 (s), 403 (m) cm<sup>-1</sup>; elemental analysis calcd (%) for C<sub>49</sub>H<sub>89</sub>Cl<sub>4</sub>La<sub>3</sub>O<sub>3</sub>Si<sub>3</sub> x C<sub>4</sub>H<sub>8</sub>O: C 44.63, H 6.73; found C 44.66, H 6.76.

(C<sub>5</sub>Me<sub>4</sub>SiMe<sub>3</sub>)<sub>3</sub>La<sub>3</sub>(μ-Br)<sub>3</sub>(μ<sub>3</sub>-Br)(μ<sub>3</sub>-CH<sub>2</sub>)(THF)<sub>3</sub> (4'-La<sup>Br</sup>): Following the procedure described above, 2'-La<sup>Br</sup> (200 mg, 65.2 μmol) yielded 4'-La<sup>Br</sup> as light yellow powder (40.0 mg, 25.9 μmol, 79 %).<sup>1</sup>H NMR (400 MHz, [D<sub>8</sub>]THF, 26 °C): δ 3.61 (m, 12H, THF), 2.22 (s, 18H, Cp–CH<sub>3</sub>-2,5), 2.18 (s, 18H, Cp–CH<sub>3</sub>-3,4), 1.77 (m, 12H, THF), 0.26 (s, 27H, Si–Me), -0.97 (s, 2H, La–CH<sub>2</sub>) ppm. <sup>13</sup>C NMR (101 MHz, [D<sub>8</sub>]THF, 26 °C): δ 130.1 (2,5-C<sub>5</sub>Me<sub>4</sub>SiMe<sub>3</sub>), 126.6 (3,4-C<sub>5</sub>Me<sub>4</sub>SiMe<sub>3</sub>), 118.0 (1-C<sub>5</sub>Me<sub>4</sub>SiMe<sub>3</sub>), 67.3 (THF), 25.2 (THF), 15.0 (Cp–CH<sub>3</sub>-2,5), 13.1 (Cp–CH<sub>3</sub>-3,4), 2.8 (Si–Me) ppm; <sup>13</sup>C resonances for the CH<sub>2</sub> group could not be detected. IR (KBr):  $\tilde{v} = 2976$  (w), 2971 (w), 2951 (w), 2890 (w), 2860 (w), 1456 (w), 1447 (w), 1436 (w), 1343 (vw), 1326 (w), 1242 (m), 1021 (m), 914 (vw), 870 (m), 848 (vs), 835 (vs), 754 (m), 684 (w), 668 (vw), 638 (vw), 628 (w), 442 (vw), 420 (w), 408 (w), 403 (w) cm<sup>-1</sup>; elemental analysis calcd (%) for C<sub>49</sub>H<sub>89</sub>Br<sub>4</sub>La<sub>3</sub>O<sub>3</sub>Si<sub>3</sub>: C 38.05, H 5.80; found C 38.09, H 5.72.

 $(C_5Me_4SiMe_3)_3La_3(\mu-I)_3(\mu_3-I)(\mu_3-CH_2)(THF)_3(4'-La^I)$ : Following the procedure described above, 2'-La<sup>I</sup> (200 mg, 56.7 µmol) yield 4'-La<sup>I</sup> as light yellow powder (47.9 mg, 27.7 µmol, 85 %). <sup>1</sup>H NMR (400 MHz, [D<sub>8</sub>]THF, 26 °C): δ 3.62 (m, 12H, THF), 2.19 (s, 18H, Cp–CH<sub>3</sub>-2,5), 2.19 (s, 18H, Cp– *CH*<sub>3</sub>-3,4), 1.77 (m, 12H, THF), 0.36 (s, 27H, Si–Me), -0.96 (s, 2H, La-CH<sub>2</sub>) ppm. <sup>13</sup>C NMR (101 MHz, [D<sub>8</sub>]THF, 26 °C): δ 131.3 (2,5-C<sub>5</sub>Me<sub>4</sub>SiMe<sub>3</sub>), 128.7 (3,4-C<sub>5</sub>Me<sub>4</sub>SiMe<sub>3</sub>), 120.7 (1-C<sub>5</sub>Me<sub>4</sub>SiMe<sub>3</sub>), 67.3 (THF), 25.2 (THF), 15.3 (Cp-CH<sub>3</sub>-2,5), 13.8 (Cp-CH<sub>3</sub>-3,4), 3.3 (Si-Me) ppm; <sup>13</sup>C resonances for the CH<sub>2</sub> group could not be detected. IR (KBr):  $\tilde{v} = 2973$  (w), 2950 (w), 2893 (w), 1481 (vw),1471 (w), 1454 (vw), 1447 (w), 1405 (vw), 1386 (vw), 1375 (vw), 1324 (w), 1246 (m), 1124 (vw), 1013 (w), 948 (vw), 914 (vw), 847 (vs), 837 (vs), 754 (w), 686 (w), 636 (vw), 627 (w), 422 (w) cm<sup>-1</sup>; elemental analysis calcd (%) for C49H89I4La3O3Si3: C 33.92, H 5.17; found C 34.20, H 5.67.

 $[(C_5Me_5)Y(OCH_2tBu)(\mu - OCH_2tBu)]_2$  (5\*-Y): Following route **B** described for 4-**Y**, HOCH<sub>2</sub>*t*Bu (36.6 mg, 41.5 μmol) and  $[(C_5Me_5)_3Y_3(\mu-Me)_3(\mu_3-Me)(\mu_3-CH_2)(THF)_2]$  (100 mg, 112  $\mu$ mol) yielded 5\*-Y as white powder (49.0 mg, 61.5  $\mu$ mol, 30 %). The yield is determined in relation to HOCH<sub>2</sub>tBu. <sup>1</sup>H NMR (400 MHz, [D<sub>8</sub>]THF, 26 °C): δ 3.69 (s, 4H, CH<sub>2</sub>), 3.49 (s, 4H, CH<sub>2</sub>), 2.15 (s, 30H, Cp-CH<sub>3</sub>), 0.99 (s, 18H, CH<sub>3</sub>), 0.91 (s, 18H, CH<sub>3</sub>) ppm. <sup>13</sup>C NMR (101 MHz, [D<sub>8</sub>]THF, 26 °C): δ 117.7 (C<sub>5</sub>Me<sub>5</sub>), 78.6 (CH<sub>2</sub>), 76.6 (CH<sub>2</sub>), 33.7 (C(CH<sub>3</sub>)<sub>3</sub>), 33.1  $(C(CH_3)_3)$ , 27.1  $(C(CH_3)_3)$ , 26.6  $(C(CH_3)_3)$ , 11.4  $(Cp-CH_3)$ ppm. <sup>89</sup>Y NMR (from <sup>1</sup>H-<sup>89</sup>Y HSQC, 25 MHz, [D<sub>8</sub>]THF, 26 °C): δ 1021 ppm. IR (KBr):  $\tilde{v}$  = 2948 (vs), 2906 (s), 2862 (s), 2812 (m), 2726 (vw), 2695 (w), 1506 (vw), 1478 (m), 1457 (m), 1437 (w), 1418 (vw), 1392 (w), 1361 (w), 1256 (vw), 1132 (vs), 1047 (s), 1017 (s), 933 (w), 898 (w), 752 (vw), 615 (s), 559 (m), 440 (m), 420 (s), 411 (m) cm<sup>-1</sup>; elemental analysis calcd (%) for C40H74O4Y2: C 60.29, H 9.36; found C 59.63, H 8.63.

**Cp<sub>2</sub>Ti(μ-Cl)(μ-CH<sub>2</sub>)AlMe<sub>2</sub>:** Cp<sub>2</sub>TiCl<sub>2</sub> (500 mg, 2.01 mmol), was dissolved in toluene (15 mL) and a solution of AlMe<sub>3</sub> (290 mg, 4.02 mmol) in *n*-hexane (5 mL) was added. The solution turned dark red within 5 min. The solution was allowed to rest at ambient temperatures for 48 h. The solvent was removed *in vacuo*. The remaining oily solid was extracted with *n*-pentane (3 x 5 mL). The solution was concentrated and toluene (1 mL) was added for better crystallization. Red crystals grew from a saturated solution at – 40 °C within one day. <sup>1</sup>H NMR (400 MHz, [D<sub>6</sub>]benzene, 26 °C): δ 8.28 (s, 2H, CH<sub>2</sub>), 5.60 (s, 10H, Cp-H), –0.26 (s, 6H, AlCH<sub>3</sub>) ppm.

# X-ray Crystallography and Crystal Structure Determinations

Single crystals of 1\*-Ln<sup>Br</sup>, 1\*-Y<sup>1</sup>, 2\*-La<sup>I</sup>, 2'-La<sup>CI</sup>, 3\*-La<sup>OTF</sup>, 4\*-Ln<sup>Br</sup>, 5\*-Y, (C<sub>5</sub>Me<sub>5</sub>)LaI<sub>2</sub>(THF)<sub>3</sub>, and Cp<sub>2</sub>Ti( $\mu$ -CH<sub>2</sub>)( $\mu$ -Cl)AlMe<sub>2</sub> were grown by standard techniques from saturated solutions in *n*-hexane, toluene or THF at -35 °C as stated in the experimental section. Suitable crystals were collected in a glovebox and coated with Parabar 10312 (previously known as Paratone N, Hampton Research) and fixed on a nylon loop/glass fiber.

X-ray data for compounds of 1\*-Ln<sup>Br</sup>, 1\*-Y<sup>I</sup>, 2\*-La<sup>I</sup>, 2'-La<sup>CI</sup>, 3\*-La<sup>OTf</sup>, 4\*-Ln<sup>Br</sup>, 5\*-Y, (C<sub>5</sub>Me<sub>5</sub>)LaI<sub>2</sub>(THF)<sub>3</sub>, and Cp<sub>2</sub>Ti(µ-CH<sub>2</sub>)(µ-Cl)AlMe<sub>2</sub> were collected on a Bruker APEX II DUO instrument equipped with an IµS microfocus sealed tube and QUAZAR optics for MoK<sub> $\alpha$ </sub> ( $\lambda$  = 0.71073 Å) and CuK<sub> $\alpha$ </sub> ( $\lambda$ = 1.54184 Å) radiation. The data collection strategy was determined using COSMO<sup>50</sup> employing ω-scans. Raw data were processed using APEX,51 and SAINT,52 corrections for absorption effects were applied using SADABS.53 The structures were solved by direct methods and refined against all data by full-matrix least-squares methods on F2 using SHELXTL<sup>54</sup> and ShelXle.<sup>55</sup> Disorder models are calculated using DSR, a program for refining structures in ShelXl.<sup>56</sup> All graphics were produced employing ORTEP-357 and POV-Ray.58 Further details of the refinement and crystallographic data are listed in Table S1 (ESI) and in the CIF files. CCDC depositions xxx contain all the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures/.

#### ASSOCIATED CONTENT

#### **Supporting Information**

The Supporting Information is available free of charge on theACSPublicationswebsite.

#### AUTHOR INFORMATION

#### **Corresponding Author**

to whom correspondence should be addressed: E-mail: reiner.anwander@uni-tuebingen.de

#### ACKNOWLEDGMENT

We are grateful to the German Science Foundation for support (grant: AN 238/15-2).

#### REFERENCES

1. Guggenberger, L. J.;Schrock, R. R., Structure of bis(cyclopentadienyl)methylmethylenetantalum and the estimated barrier to rotation about the tantalum-methylene bond. *J. Am. Chem. Soc.* **1975**, *97*, 6578-6579.

2. Schrock, R. R., Alkylidene complexes of niobium and tantalum. *Acc. Chem. Res.* **2002**, *12*, 98-104.

3. Tebbe, F. N.; Parshall, G. W.;Reddy, G. S., Olefin homologation with titanium methylene compounds. *J. Am. Chem. Soc.* **1978**, *100*, 3611-3613.

4. Meinhart, J. D.; Anslyn, E. V.;Grubbs, R. H., Synthesis, reactivity and kinetic studies of bis(η<sup>5</sup>cyclopentadienyl)titanium methylidene phosphine complexes. *Organometallics* **1989**, *8*, 583-589.

5. Grubbs, R. H., Olefin metathesis. *Tetrahedron* **2004**, 60, 7117-7140.

 Astruc, D., The metathesis reactions: from a historical perspective to recent developments. *New. J. Chem.* 2005, 29, 42.

7. Petasis, N. A.;Bzowej, E. I., Titanium-mediated carbonyl olefinations. 1. Methylenations of carbonyl compounds with dimethyltitanocene. *J. Am. Chem. Soc.* **1990**, *112*, 6392-6394.

8. Holton, J.; Lappert, M. F.; Pearce, R.;Yarrow, P. I. W., Bridged hydrocarbyl or hydrocarbon binuclear transition metal complexes: classification, structures, and chemistry. *Chem. Rev.* **1983**, *83*, 135-201.

9. Schrock, R. R.;Hoveyda, A. H., Molybdenum and tungsten imido alkylidene complexes as efficient olefinmetathesis catalysts. *Angew. Chem. Int. Ed.* **2003**, *42*, 4592-633. *Angew. Chem.* **2003**, *115*, *38*, 4740-4782.

 Kickham, J. E.; Guérin, F.;Stephan, D. W., Divergent Pathways of C–H Bond Activation: Reactions of (*t*-Bu<sub>3</sub>PN)<sub>2</sub>TiMe<sub>2</sub> with Trimethylaluminum. *J. Am. Chem. Soc.* 2002, 124, 11486-11494.

 Howard, T. R.; Lee, J. B.;Grubbs, R. H., Titanium metallacarbene-metallacyclobutane reactions: stepwise metathesis. *J. Am. Chem. Soc.* **1980**, *102*, 6876-6878.
 Cannizzo, L. F.;Grubbs, R. H., Reactions of

"Cp2Ti=CH<sub>2</sub>" sources with acid anhydrides and imides. *J. Org. Chem.* **1985**, 50, 2316-2323.

13. Pine, S. H.; Shen, G. S.;Hoang, H., Ketone Methylenation Using the Tebbe and Wittig Reagents - A Comparison. *Synthesis* **1991**, *1991*, 165-167.

 Hartley, R. C.;McKiernan, G. J., Titanium reagents for the alkylidenation of carboxylic acid and carbonic acid derivatives. *J. Chem. Soc., Perkin Trans.* 1 2002, 2763-2793.
 Crowther, D. J.; Baenziger, N. C.;Jordan, R. F.,

Group 4 metal dicarbollide chemistry. Synthesis, structures, and reactivity of electrophilic alkyl complexes  $(C_{P} \times (C_{P} \times$ 

 $(Cp^*)(C_2B_9H_{11})M(R), M = Hf, Zr. J. Am. Chem. Soc. 1991, 113, 1455-1457.$ 

16. Petasis, N. A.; Lu, S. P.; Bzowej, E. I.; Fu, D. K.; Staszewski, J. P.; Akritopoulou-Zanze, I.; Patane, M. A.;Hu, Y. H., Organotitanium compounds in organic synthesis. *Pure Appl. Chem.* **1996**, *68*, 667-670.

17. Scoles, L.; Minhas, R.; Duchateau, R.; Jubb, J.;Gambarotta, S., Synthesis and Characterization of Novel Titanium(III) and -(IV) Alkyls and Carbenes Supported by Amide Ligands. Crystal Structure of  $[(Cy_2N)_2Ti(\mu-CH_2)]_2$ . Organometallics **1994**, 13, 4978-4983.

 Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H., Synthesis and Activity of a New Generation of Ruthenium-Based Olefin Metathesis Catalysts Coordinated with 1,3-Dimesityl-4,5-dihydroimidazol-2-ylidene Ligands. *Org. Lett.* 1999, *1*, 953-956.

19. Hogenbirk, M.; Schat, G.; Akkerman, Otto S.; Bickelhaupt, F.; Schottek, J.; Albrecht, M.; Fröhlich, R.; Kehr, G.; Erker, G.; Kooijman, H.;Spek, Anthony L., (μ-Methylene)bis(methylzirconocene): Preparation, Molecular Structure, and Thermal Disproportionation. *Eur. J. Inorg. Chem.* **2004**, 2004, 1175-1182.

Grant, L. N.; Ahn, S.; Manor, B. C.; Baik, M. 20. H.;Mindiola, D. J., Structural elucidation of a mononuclear titanium methylidene. Chem. Commun. 2017, 53, 3415-3417. Thompson, R.; Nakamaru-Ogiso, E.; Chen, C.-H.; 21. Pink, M.;Mindiola, D. J., Structural Elucidation of the Illustrious Tebbe Reagent. Organometallics 2013, 33, 429-432. Ott, K. C.; De Boer, E. J. M.; Grubbs, R. H., An 22 investigation of the reaction of bis(cyclopentadienyl)titanium dichlorides with trimethylaluminum. Mechanism of an  $\alpha$ -hydrogen abstraction reaction. Organometallics 1984, 3, 223-230. Takai, K.; Hotta, Y.; Oshima, K.; Nozaki, H., 23. Effective methods of carbonyl methylenation using CH2I2-Zn-Me3Al and CH2Br2-Zn-TiCl4 system. Tetrahedron Letters 1978, 19, 2417-2420.

24. Lombardo, L., Methylenation of carbonyl compounds with Zn<sup>D</sup>CH<sub>2</sub>Br<sub>2</sub><sup>D</sup>TiCl<sub>4</sub>. Application to gibberellins. *Tetrahedron Letters* 1982, 23, 4293-4296.
25. Horikawa, Y.; Watanabe, M.; Fujiwara, T.;Takeda, T., New Carbonyl Olefination Using Thioacetals. *J. Am.*

*Chem. Soc.* **1997**, *119*, 1127-1128.

26. Takai, K.; Nitta, K.;Utimoto, K., Simple and selective method for aldehydes (RCHO) to (E)-haloalkenes (RCH=CHX) conversion by means of a haloform-chromous chloride system. *J. Am. Chem. Soc.* 1986, *108*, 7408-7410.
27. Okazoe, T.; Takai, K.;Utimoto, K., (E)-Selective olefination of aldehydes by means of gem-dichromium reagents derived by reduction of gem-diiodoalkanes with

chromium(II)chloride. J. Am. Chem. Soc. 1987, 109, 951-953.
28. Murai, M.; Taniguchi, R.; Hosokawa, N.; Nishida, Y.; Mimachi, H.; Oshiki, T.;Takai, K., Structural Characterization and Unique Catalytic Performance of Silyl-Group-Substituted Geminal Dichromiomethane Complexes Stabilized with a Diamine Ligand. J. Am. Chem. Soc. 2017, 139, 13184-13192.
29. Werner, D.;Anwander, R., Unveiling the Takai Olefination Reagent via Tris( tert-butoxy)siloxy Variants. J. Am. Chem. Soc. 2018, 140, 14334-14341.

30. Litlabø, R.; Zimmermann, M.; Saliu, K.; Takats, J.; Törnroos, K. W.;Anwander, R., A rare-earth metal variant of the Tebbe reagent. *Angew. Chem. Int. Ed.* **2008**, *47*, 9560-9564. *Angew. Chem.* **2008**, *12*0, 9702-9706.

31. Scott, J.; Fan, H.; Wicker, B. F.; Fout, A. R.; Baik, M. H.;Mindiola, D. J., Lewis acid stabilized methylidene and oxoscandium complexes. *J. Am. Chem. Soc.* **2008**, *130*, 14438-9.

32. Bojer, D.; Neumann, B.; Stammler, H. G.;Mitzel, N. W., Subtle Size Effects in C-H Activation Reactions of Lanthanum and Praseodymium Tetramethylaluminates by Neutral Trinitrogen Bases. *Eur. J. Inorg. Chem.* **2011**, 3791-3796.

33. Zimmermann, M.; Rauschmaier, D.; Eichele, K.; Törnroos, K. W.;Anwander, R., Amido-stabilized rare-earth metal mixed methyl methylidene complexes. *Chem. Commun.* **2010**, *46*, 5346-8.

34. Zhang, W. X.; Wang, Z.; Nishiura, M.; Xi, Z.;Hou, Z., Ln<sub>4</sub>(CH<sub>2</sub>)<sub>4</sub> cubane-type rare-earth methylidene complexes

consisting of " $(C_5Me_4SiMe_3)LnCH_2$ " units (Ln = Tm, Lu). *J. Am. Chem. Soc.* **2011**, *133*, 5712-5715.

35. Hong, J.; Zhang, L.; Yu, X.; Li, M.; Zhang, Z.; Zheng, P.; Nishiura, M.; Hou, Z.;Zhou, X., Syntheses, structures, and reactivities of homometallic rare-earth-metal multimethyl methylidene and oxo complexes. *Chem. Eur. J.* **2011**, *17*, 2130-7.

36. Hong, J.; Zhang, L.; Wang, K.; Zhang, Y.; Weng, L.;Zhou, X., Methylidene rare-earth-metal complex mediated transformations of C=N, N=N and N-H bonds: new routes to imido rare-earth-metal clusters. *Chem. Eur. J.* **2013**, *19*, 7865-73.

37. Hong, J.; Li, Z.; Chen, Z.; Weng, L.; Zhou, X.;Zhang, L., Small molecule activation by mixed methyl/methylidene rare earth metal complexes. *Dalton Trans.* **2016**, *45*, 6641-9.

38. Schädle, D.; Meermann-Zimmermann, M.; Maichle-Mössmer, C.; Schädle, C.; Törnroos, K. W.;Anwander, R., Rare-earth metal methylidene complexes with  $Ln_3(\mu^{3-}CH_2)(\mu^{3-}Me)(\mu^{2-}Me)_3$  core structure. *Dalton Trans.* **2015**, *44*, 18101-18110.

39. Hollfelder, C. O.; Jende, L. N.; Dietrich, H. M.; Eichele, K.; Maichle-Mössmer, C.;Anwander, R., 1,3-Diene Polymerization Promoted by Half-Sandwich Rare-Earth-Metal Dimethyl Complexes: Active Species Clustering and Cationization/Deactivation Processes. *Chem. Eur. J.* **2019**, *25*, 7298-7302.

40. Dietrich, H. M.; Törnroos, K. W.;Anwander, R., "Ionic carbenes": synthesis, structural characterization, and reactivity of rare-earth metal methylidene complexes. *J. Am. Chem. Soc.* **2006**, *128*, 9298-9.

41. Scott, J.;Mindiola, D. J., A tribute to Frederick Nye Tebbe. Lewis acid stabilized alkylidyne, alkylidene, and imides of 3d early transition metals. *Dalton Trans.* **2009**, 8463-8472.

42. Dietrich, H. M.; Schuster, O.; Törnroos, K. W.;Anwander, R., Heterobimetallic half-lanthanidocene clusters: novel mixed tetramethylaluminato/chloro coordination. *Angew. Chem. Int. Ed.* **2006**, *45*, 4858-63. *Angew. Chem.* **2006**, *18*, 4977.

43. Van der Heijden, H.; Schaverien, C. J.;Orpen, A. G., The first salt- and solvent-free monocyclopentadienyl lanthanide dialkyl complex. X-ray structure determinations of La( $\eta^5$ -C<sub>5</sub>Me<sub>5</sub>)[CH(SiMe<sub>3</sub>)<sub>2</sub>]<sub>2</sub> and of its tetrahydrofuran adduct: compounds containing agostic silicon-carbon bonds. *Organometallics* **1989**, *8*, 255-258.

44. Zimmermann, M.; Törnroos, K. W.; Sitzmann, H.;Anwander, R., Half-sandwich bis(tetramethylaluminate) complexes of the rare-earth metals: synthesis, structural chemistry, and performance in isoprene polymerization. *Chem. Eur. J.* **2008**, *14*, 7266-77.

45. Dietrich, H. M.; Törnroos, K. W.; Herdtweck, E.;Anwander, R., Tetramethylaluminate and Tetramethylgallate Coordination in Rare-Earth Metal Half-Sandwich and Metallocene Complexes. *Organometallics* **2009**, *28*, 6739-6749.

46. Downing, S. P.; Guadaño, S. C.; Pugh, D.; Danopoulos, A. A.; Bellabarba, R. M.; Hanton, M.; Smith, D.;Tooze, R. P., Indenyl- and Fluorenyl-Functionalized N-Heterocyclic Carbene Complexes of Titanium, Zirconium, Vanadium, Chromium, and Yttrium. *Organometallics* **2007**, *26*, 3762-3770. 47. Kunze, M. R.; Steinborn, D.; Merzweiler, K.;
Wagner, C.; Sieler, J.;Taube, R., Synthese, Struktur und
Reaktivität von Tris-, Bis- und Mono(2,4dimethylpentadienyl)-Komplexen des Neodyms, Lanthans
und des Yttriums. Z. Anorg. Allg. Chem. 2007, 633, 1451-1463.
48. Kirillov, E.; Lehmann, C. W.; Razavi, A.;Carpentier,
J.-F., Synthesis, Structure, and Polymerization Activity of
Neutral Halide, Alkyl, and Hydrido Yttrium Complexes of
Isopropylidene-Bridged Cyclopentadienyl-Fluorenyl Ligands.
Organometallics 2004, 23, 2768-2777.

49. Dietrich, H. M.; Zapilko, C.; Herdtweck, E.;Anwander, R., Ln(AlMe<sub>4</sub>)<sub>3</sub> as New Synthetic Precursors in Organolanthanide Chemistry: Efficient Access to Half-Sandwich Hydrocarbyl Complexes. *Organometallics* **2005**, **2**4, 5767-5771.

50. COSMO v. 1.61; Bruker AXS Inc.: Madison, WI, 2012.
 51. APEX 3 v. 2017.3-0; Bruker AXS Inc.: Madison, WI, 2017.

52. SAINT v. 8.38A; Bruker AXS Inc.: Madison, WI, 2017.

53. Krause, L.; Herbst-Irmer, R.; Sheldrick, G. M.; Stalke, D., *J. Appl. Cryst.* **2015**, *48*, 3-10.

54. Sheldrick, G., Crystal structure refinement with

SHELXL. Acta Crystallogr. Sect. C: Cryst. Struct. Commun. 2015, 71, 3-8.

55. Hübschle, C. B.; Sheldrick, G. M.;Dittrich, B., ShelXle: a Qt graphical user interface for SHELXL. *J. Appl. Crystallogr.* **2011**, *44*, 1281-1284.

56. Kratzert, D.; Holstein, J. J.; Krossing, I., DSR:

enhanced modelling and refinement of disordered structures with SHELXL. J. Appl. Cryst. 2015, 48, 933-938.

57. Farrugia, L., WinGX and ORTEP for Windows: an update *J. Appl. Crystallogr.* **2012**, 849-854.

58. *POV-Ray v. 3.6*; Persistence of Vision Raytracer Pty. Ltd.: Williamstown, Australia, 2004; http://www.povray.org.

# Supporting Information

# Elucidation of Cyclopentadienyl-Supported Rare-Earth-Metal Methylidene Complexes: Scope of Coligands and Tebbe Olefination

Verena M. Birkelbach, H. Martin Dietrich, Christoph Stuhl, Cäcilia Maichle-Mössmer, and Reiner Anwander\*

Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen (Germany)

\* to whom correspondence should be addressed: E-Mail reiner.anwander@uni-tuebingen.de

# Table of contents

# NMR spectroscopy

| <sup>1</sup> H, <sup>13</sup> C{ <sup>1</sup> H}, and <sup>1</sup> H- <sup>89</sup> Y HSQC NMR spectra of complex <b>1*-Y<sup>CI</sup></b> | Page S3-S4   |
|--------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| <sup>1</sup> H, <sup>13</sup> C{ <sup>1</sup> H}, and <sup>1</sup> H- <sup>89</sup> Y HSQC NMR spectra of complex <b>1*-Y<sup>Br</sup></b> | Page S4-SS5  |
| <sup>1</sup> H, and <sup>13</sup> C{ <sup>1</sup> H} NMR spectra of complex <b>1*-Y</b> <sup>I</sup>                                       | Page S6      |
| <sup>1</sup> H, and <sup>13</sup> C{ <sup>1</sup> H} NMR spectra of complex <b>1*-Lu<sup>CI</sup></b>                                      | Page S7      |
| <sup>1</sup> H, and <sup>13</sup> C{ <sup>1</sup> H} NMR spectra of complex <b>1*-Lu<sup>Br</sup></b>                                      | Page S8      |
| <sup>1</sup> H, and <sup>13</sup> C{ <sup>1</sup> H} NMR spectra of complex <b>1*-Lu<sup>I</sup></b>                                       | Page S9      |
| <sup>1</sup> H, <sup>13</sup> C{ <sup>1</sup> H}, and <sup>1</sup> H- <sup>89</sup> Y HSQC NMR spectra of complex <b>1'-Y<sup>CI</sup></b> | Page S10-S11 |
| <sup>1</sup> H, <sup>13</sup> C{ <sup>1</sup> H}, and <sup>1</sup> H- <sup>89</sup> Y HSQC NMR spectra of complex <b>1'-Y<sup>Br</sup></b> | Page S11-S13 |
| <sup>1</sup> H, and <sup>13</sup> C{ <sup>1</sup> H} NMR spectra of complex <b>1'-Y</b> <sup>I</sup>                                       | Page S13-S14 |
| <sup>1</sup> H, and <sup>13</sup> C{ <sup>1</sup> H} NMR spectra of complex <b>1'-Lu<sup>CI</sup></b>                                      | Page S14-S15 |
| <sup>1</sup> H, and <sup>13</sup> C{ <sup>1</sup> H} NMR spectra of complex <b>1'-Lu<sup>Br</sup></b>                                      | Page S15-S16 |
| <sup>1</sup> H, and <sup>13</sup> C{ <sup>1</sup> H} NMR spectra of complex <b>1'-Lu<sup>I</sup></b>                                       | Page S16-S17 |
| <sup>1</sup> H, and <sup>13</sup> C{ <sup>1</sup> H}, <sup>1</sup> H- <sup>89</sup> Y HSQC NMR spectra of complex <b>4*-Y<sup>CI</sup></b> | Page S17-S18 |
| <sup>1</sup> H, and <sup>13</sup> C{ <sup>1</sup> H}, <sup>1</sup> H- <sup>89</sup> Y HSQC NMR spectra of complex <b>4*-Y<sup>Br</sup></b> | Page S19-S20 |
| <sup>1</sup> H, <sup>13</sup> C{ <sup>1</sup> H}, and <sup>1</sup> H- <sup>89</sup> Y HSQC NMR spectra of complex <b>4'-Y<sup>CI</sup></b> | Page S20-S21 |
| <sup>1</sup> H, <sup>13</sup> C{ <sup>1</sup> H}, and <sup>1</sup> H- <sup>89</sup> Y HSQC NMR spectra of complex <b>4'-Y<sup>Br</sup></b> | Page S22-S23 |
| <sup>1</sup> H, and <sup>13</sup> C{ <sup>1</sup> H} NMR spectra of complex <b>4*-La<sup>CI</sup></b>                                      | Page S23-S24 |
| <sup>1</sup> H, and <sup>13</sup> C{ <sup>1</sup> H} NMR spectra of complex <b>4*-La<sup>Br</sup></b>                                      | Page S24-S25 |
| <sup>1</sup> H, and <sup>13</sup> C{ <sup>1</sup> H} NMR spectra of complex <b>4*-La<sup>I</sup></b>                                       | Page S25-S26 |
| <sup>1</sup> H, and <sup>13</sup> C{ <sup>1</sup> H} NMR spectra of complex <b>4'-La<sup>CI</sup></b>                                      | Page S26-S27 |
| <sup>1</sup> H, and <sup>13</sup> C{ <sup>1</sup> H} NMR spectra of complex <b>4'-La<sup>Br</sup></b>                                      | Page S27-S28 |
| <sup>1</sup> H, and <sup>13</sup> C{ <sup>1</sup> H} NMR spectra of complex <b>4'-La</b> <sup>I</sup>                                      | Page S28-S29 |
| <sup>1</sup> H, <sup>13</sup> C{ <sup>1</sup> H}, and <sup>1</sup> H- <sup>89</sup> Y HSQC NMR spectra of complex <b>5*-Y</b>              | Page S29-S30 |
| <sup>1</sup> H NMR spectrum of the Tebbe reagent Cp <sub>2</sub> Ti(µ-CH <sub>2</sub> )(µ-CI)AIMe <sub>2</sub>                             | Page S31     |
| <sup>1</sup> Η NMR spectrum of (C₅Me₅)₃Y₃(μ-CH₃)(μ-Cl)₂(μ₃-Cl)(μ₃-CH₂)(thf)₃                                                               | Page S31     |

### Reactivity studies and Polymerization

| General procedure for methylidene transfer                          | Page S32 |
|---------------------------------------------------------------------|----------|
| General procedure for the polymerization of $\delta$ -valerolactone | Page S33 |

### X-ray structure analyses

ORTEP representation of the molecular structure for compounds  $1^*-Y^1$ ,  $1^*-Lu^{Br}$ , Page S34-35  $2^*-La^1$ , ( $C_5Me_5$ )Lal<sub>2</sub>(thf)<sub>3</sub>, and  $5^*-Y$ 

 $\begin{array}{ll} \mbox{Comprehensive crystallographic data for compounds $1^{+}Y^{Br}$, $1^{+}Y^{I}$, $1^{+}Lu^{Br}$, $2^{+}La^{I}$, $Page S36-S38 $2^{+}La^{CI}$, $3^{+}La^{OTf}$, $4^{+}Y^{Br}$, $4^{+}La^{Br}$, $4^{+}La^{CI}$, $(C_{5}Me_{5})Lal_{2}(thf)_{3}$, and $5^{+}Y$ } \end{array} \right.$ 

### NMR spectroscopy

The solvent residual peaks are marked with an asterisk (\*)



**Figure S1.** <sup>1</sup>H NMR spectrum (400 MHz, [D<sub>8</sub>]toluene) of complex **1\*-Y<sup>CI</sup>** at 26 °C and [(C<sub>5</sub>Me<sub>5</sub>)Y(AIMe<sub>4</sub>)<sub>2</sub>] (#), formed upon dissolving *via* ligand redistribution.



**Figure S2.** <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (101 MHz, [D<sub>8</sub>]toluene) of complex **1\*-Y<sup>CI</sup>** at 26 °C and  $[(C_5Me_5)Y(AIMe_4)_2]$  (#), formed upon dissolving *via* ligand redistribution. The <sup>13</sup>C NMR signal for the Al–Me groups could not be detected.



**Figure S3.** <sup>1</sup>H-<sup>89</sup>Y HSQC NMR spectrum (25 MHz, [D<sub>8</sub>]toluene) of complex **1\*-Y<sup>CI</sup>** at 26 °C and  $[(C_5Me_5)Y(AIMe_4)_2]$  (175 ppm), formed upon dissolving *via* ligand redistribution.



**Figure S4.** <sup>1</sup>H NMR spectrum (400 MHz, [D<sub>8</sub>]toluene) of complex  $1^*-Y^{Br}$  at 26 °C and [(C<sub>5</sub>Me<sub>5</sub>)Y(AIMe<sub>4</sub>)<sub>2</sub>] (#), formed upon dissolving *via* ligand redistribution.



**Figure S5.** <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (101 MHz, [D<sub>8</sub>]toluene) of complex **1\*-Y<sup>Br</sup>** at 26 °C and  $[(C_5Me_5)Y(AIMe_4)_2]$  (#), formed upon dissolving *via* ligand redistribution. The <sup>13</sup>C NMR signal for the AI–Me groups could not be detected.



**Figure S6.** <sup>1</sup>H-<sup>89</sup>Y HSQC NMR spectrum (25 MHz, [D<sub>8</sub>]toluene) of complex **1\*-Y<sup>Br</sup>** at 26 °C and [(C<sub>5</sub>Me<sub>5</sub>)Y(AlMe<sub>4</sub>)<sub>2</sub>] (175 ppm), formed upon dissolving *via* ligand redistribution.



**Figure S7.** <sup>1</sup>H NMR spectrum (400 MHz, [D<sub>8</sub>]toluene) of complex **1\*-Y<sup>I</sup>** at 26 °C and [(C<sub>5</sub>Me<sub>5</sub>)Y(AIMe<sub>4</sub>)<sub>2</sub>] (#), formed upon dissolving *via* ligand redistribution.



**Figure S8.** <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (101 MHz, [D<sub>8</sub>]toluene) of complex **1\*-Y**<sup>1</sup> at 26 °C and  $[(C_5Me_5)Y(AIMe_4)_2]$  (#), formed upon dissolving *via* ligand redistribution.



**Figure S9.** <sup>1</sup>H NMR spectrum (400 MHz, [D<sub>8</sub>]toluene) of complex **1\*-Lu<sup>CI</sup>** at 26 °C and [(C<sub>5</sub>Me<sub>5</sub>)Lu(AlMe<sub>4</sub>)<sub>2</sub>] (#), formed upon dissolving *via* ligand redistribution.



**Figure S10.** <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (101 MHz, [D<sub>8</sub>]toluene) of complex **1\*-Lu<sup>CI</sup>** at 26 °C. The <sup>13</sup>C NMR signal for the AI–Me groups could not be detected.



**Figure S11.** <sup>1</sup>H NMR spectrum (400 MHz, [D<sub>8</sub>]toluene) of complex **1\*-Lu<sup>Br</sup>** at 26 °C and [(C<sub>5</sub>Me<sub>5</sub>)Lu(AlMe<sub>4</sub>)<sub>2</sub>] (#), formed upon dissolving *via* ligand redistribution.



**Figure S12.** <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (101 MHz, [D<sub>8</sub>]toluene) of complex **1\*-Lu<sup>Br</sup>** at 26 °C and  $[(C_5Me_5)Lu(AIMe_4)_2]$  (#), formed upon dissolving *via* ligand redistribution. The <sup>13</sup>C signal for the Al–Me groups could not be detected.



**Figure S13.** <sup>1</sup>H NMR spectrum (400 MHz, [D<sub>8</sub>]toluene) of complex **1\*-Lu<sup>I</sup>** at 26 °C and [(C<sub>5</sub>Me<sub>5</sub>)Lu(AlMe<sub>4</sub>)<sub>2</sub>] (#), formed upon dissolving *via* ligand redistribution.



**Figure S14.** <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (101 MHz, [D<sub>8</sub>]toluene) of complex **1\*-Lu**<sup>I</sup> at 26 °C and  $[(C_5Me_5)Lu(AIMe_4)_2]$  (#), formed upon dissolving *via* ligand redistribution. The <sup>13</sup>C signal for the AI–Me groups could not be detected.


**Figure S15.** <sup>1</sup>H NMR spectrum (400 MHz,  $[D_8]$ toluene) of complex **1'-Y**<sup>CI</sup> at 26 °C and  $[(C_5Me_4SiMe_3)Y(AIMe_4)_2]$  (#), formed upon dissolving *via* ligand redistribution.



**Figure S16.** <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (101 MHz,  $[D_8]$ toluene) of complex **1'-Y<sup>CI</sup>** at 26 °C and  $[(C_5Me_4SiMe_3)Y(AIMe_4)_2]$  (#), formed upon dissolving *via* ligand redistribution.



**Figure S17.** <sup>1</sup>H-<sup>89</sup>Y HSQC NMR spectrum (25 MHz, [D<sub>8</sub>]toluene) of complex **1'-Y<sup>CI</sup>** at 26 °C and [(C<sub>5</sub>Me<sub>4</sub>SiMe<sub>3</sub>)Y(AIMe<sub>4</sub>)<sub>2</sub>] (170 ppm), formed upon dissolving *via* ligand redistribution.



**Figure S18.** <sup>1</sup>H NMR spectrum (400 MHz, [D<sub>8</sub>]toluene) of complex **1'-Y**<sup>Br</sup> at 26 °C and [(C<sub>5</sub>Me<sub>4</sub>SiMe<sub>3</sub>)Y(AIMe<sub>4</sub>)<sub>2</sub>] (#), formed upon dissolving *via* ligand redistribution.



**Figure S19.** <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (101 MHz, [D<sub>8</sub>]toluene) of complex **1'-Y<sup>Br</sup>** at 26 °C and  $[(C_5Me_4SiMe_3)Y(AIMe_4)_2]$  (#), formed upon dissolving *via* ligand redistribution. The signal of the *C*-SiMe<sub>3</sub> unit is detected in <sup>1</sup>H-<sup>13</sup>C HMBC (Figure S20).



Figure S20. <sup>1</sup>H-<sup>13</sup>C HMBC NMR spectrum (101 MHz, [D<sub>8</sub>]toluene) of complex 1'-Y<sup>Br</sup> at 26 °C.



**Figure S21.** <sup>1</sup>H-<sup>89</sup>Y HSQC NMR spectrum (25 MHz,  $[D_8]$ toluene) of complex **1'-Y**<sup>Br</sup> at 26 °C and  $[(C_5Me_4SiMe_3)Y(AIMe_4)_2]$  (170 ppm), formed upon dissolving *via* ligand redistribution.



**Figure S22.** <sup>1</sup>H NMR spectrum (400 MHz,  $[D_8]$ toluene) of complex **1'-Y<sup>I</sup>** at 26 °C and  $[(C_5Me_4SiMe_3)Y(AIMe_4)_2]$  (#) and other dissolution products (+), formed upon dissolving *via* ligand redistribution.



**Figure S23.** <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (101 MHz, [D<sub>8</sub>]toluene) of complex **1'-Y**<sup>1</sup> at 26 °C and  $[(C_5Me_4SiMe_3)Y(AIMe_4)_2]$  (#), formed upon dissolving *via* ligand redistribution.



Figure S24. <sup>1</sup>H NMR spectrum (400 MHz, [D<sub>8</sub>]toluene) of complex 1'-Lu<sup>CI</sup> at 26 °C.



**Figure S25.** <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (101 MHz, [D<sub>8</sub>]toluene) of complex **1'-Lu<sup>Cl</sup>** at 26 °C. <sup>13</sup>C resonances for the AIMe<sub>4</sub> groups could not be detected.



**Figure S26.** <sup>1</sup>H NMR spectrum (400 MHz, [D<sub>8</sub>]toluene) of complex **1'-Lu<sup>Br</sup>** at 26 °C and [(C<sub>5</sub>Me<sub>4</sub>SiMe<sub>3</sub>)Lu(AIMe<sub>4</sub>)<sub>2</sub>] (#), formed upon dissolving *via* ligand redistribution.



**Figure S27.** <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (101 MHz,  $[D_8]$ toluene) of complex **1'-Lu<sup>Br</sup>** at 26 °C and  $[(C_5Me_4SiMe_3)Lu(AIMe_4)_2]$  (#), formed upon dissolving *via* ligand redistribution. <sup>13</sup>C resonances for the AIMe<sub>4</sub> groups could not be detected.



**Figure S28.** <sup>1</sup>H NMR spectrum (400 MHz, [D<sub>8</sub>]toluene) of complex **1'-Lu<sup>I</sup>** at 26 °C and  $[(C_5Me_4SiMe_3)Lu(AIMe_4)_2]$  (#) and other dissolution products (+), formed upon dissolving *via* ligand redistribution.



**Figure S29.** <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (101 MHz, [D<sub>8</sub>]toluene) of complex **1'-Lu<sup>I</sup>** at 26 °C and  $[(C_5Me_4SiMe_3)Lu(AIMe_4)_2]$  (#), formed upon dissolving *via* ligand redistribution. <sup>13</sup>C resonances for the AIMe<sub>4</sub> groups could not be detected.



Figure S30. <sup>1</sup>H NMR spectrum (400 MHz, [D<sub>8</sub>]thf) of complex 4\*-Y<sup>CI</sup> at 26 °C.



**Figure S31.** <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (101 MHz, [D<sub>8</sub>]thf) of complex  $4^*-Y^{CI}$  at 26 °C. <sup>13</sup>C resonances for the CH<sub>2</sub> group could not be detected.



Figure S32. <sup>1</sup>H-<sup>89</sup>Y HSQC NMR spectrum (25 MHz, [D<sub>8</sub>]thf) of complex 4\*-Y<sup>CI</sup> at 26 °C.



Figure S33. <sup>1</sup>H NMR spectrum (400 MHz, [D<sub>8</sub>]thf) of complex 4\*-Y<sup>Br</sup> at 26 °C.



**Figure S34.** <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (101 MHz,  $[D_8]$ thf) of complex **4\*-Y<sup>Br</sup>** at 26 °C. <sup>13</sup>C resonances for the CH<sub>2</sub> group could not be detected.



Figure S35. <sup>1</sup>H-<sup>89</sup>Y HSQC NMR spectrum (25 MHz, [D<sub>8</sub>]thf) of complex 4\*-Y<sup>Br</sup> at 26 °C.



Figure S36. <sup>1</sup>H NMR spectrum (400 MHz, [D<sub>8</sub>]thf) of complex 4'-Y<sup>CI</sup> at 26 °C.



**Figure S37.** <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (101 MHz,  $[D_8]$ thf) of complex **4'-Y<sup>CI</sup>** at 26 °C. <sup>13</sup>C resonances for the CH<sub>2</sub> group could not be detected.



Figure S38. <sup>1</sup>H-<sup>89</sup>Y HSQC NMR spectrum (25 MHz, [D<sub>8</sub>]thf) of complex 4'-Y<sup>CI</sup> at 26 °C.



Figure S39. <sup>1</sup>H NMR spectrum (400 MHz, [D<sub>8</sub>]thf) of complex 4'-Y<sup>Br</sup> at 26 °C.



**Figure S40.** <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (101 MHz,  $[D_8]$ thf) of complex **4'-Y<sup>Br</sup>** at 26 °C. <sup>13</sup>C resonances for the CH<sub>2</sub> group could not be detected.



Figure S41. <sup>1</sup>H-<sup>89</sup>Y HSQC NMR spectrum (25 MHz,  $[D_8]$ thf) of complex 4'-Y<sup>Br</sup> at 26 °C with decomposition products.



Figure S42. <sup>1</sup>H NMR spectrum (400 MHz, [D<sub>8</sub>]thf) of complex 4\*-La<sup>CI</sup> at 26 °C.



**Figure S43.** <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (101 MHz, [D<sub>8</sub>]thf) of complex **4\*-La<sup>CI</sup>** at 26 °C. <sup>13</sup>C resonances for the CH<sub>2</sub> group could not be detected.



Figure S44. <sup>1</sup>H NMR spectrum (400 MHz, [D<sub>8</sub>]thf) of complex 4\*-La<sup>Br</sup> at 26 °C.



**Figure S45.** <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (101 MHz,  $[D_8]$ thf) of complex **4\*-La<sup>Br</sup>** at 26 °C. <sup>13</sup>C resonances for the CH<sub>2</sub> group could not be detected.



Figure S46. <sup>1</sup>H NMR spectrum (400 MHz, [D<sub>8</sub>]thf) of complex 4\*-La<sup>I</sup> at 26 °C.



**Figure S47.** <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (101 MHz,  $[D_8]$ thf) of complex **4\*-La<sup>I</sup>** at 26 °C. <sup>13</sup>C resonances for the CH<sub>2</sub> group could not be detected.



Figure S48. <sup>1</sup>H NMR spectrum (400 MHz, [D<sub>8</sub>]thf) of complex 4'-La<sup>CI</sup> at 26 °C.



**Figure S49.** <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (101 MHz,  $[D_8]$ thf) of complex **4'-La<sup>CI</sup>** at 26 °C. <sup>13</sup>C resonances for the CH<sub>2</sub> group could not be detected.



Figure S50. <sup>1</sup>H NMR spectrum (400 MHz, [D<sub>8</sub>]thf) of complex 4'-La<sup>Br</sup> at 26 °C.



**Figure S51.** <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (101 MHz,  $[D_8]$ thf) of complex **4'-La<sup>Br</sup>** at 26 °C. <sup>13</sup>C resonances for the CH<sub>2</sub> group could not be detected.



Figure S52. <sup>1</sup>H NMR spectrum (400 MHz, [D<sub>8</sub>]thf) of complex 4'-La<sup>I</sup> at 26 °C.



**Figure S53.** <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (101 MHz,  $[D_8]$ thf) of complex **4'-La<sup>I</sup>** at 26 °C. <sup>13</sup>C resonances for the CH<sub>2</sub> group could not be detected.



Figure S54. <sup>1</sup>H NMR spectrum (500 MHz, [D<sub>6</sub>]benzene) of complex 5\*-Y at 26 °C.



Figure S55. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (101 MHz, [D<sub>6</sub>]benzene) of complex 5\*-Y at 26 °C.



Figure S56. <sup>1</sup>H-<sup>89</sup>Y HSQC NMR spectrum (25 MHz, [D<sub>6</sub>]benzene) of complex 5\*-Y at 26 °C.



Figure S57. <sup>1</sup>H NMR spectrum (400 MHz, [D<sub>6</sub>]benzene) of the Tebbe reagent at 26 °C.



**Figure S58.** <sup>1</sup>H NMR spectrum (400 MHz, [D<sub>6</sub>]thf) of complex  $(C_5Me_5)_3Y_3(\mu$ -CH<sub>3</sub>) $(\mu$ -Cl)<sub>2</sub> $(\mu_3$ -Cl) $(\mu_3$ 

# Reactivity studies

# Methylidene transfer:

All reactions were monitored *via* <sup>1</sup>H NMR spectroscopy and performed according to the following protocol:

The respective methylidene complex (5 mg) was dissolved in 0.3 ml of  $[D_8]$ thf in a J.Youngvalved NMR tube. Two equivalents of the carbonylic reagent dissolved in 0.2 ml of  $[D_8]$ thf were added. The NMR tube was shaken several times within 15 min and then a Proton NMR was immediately recorded. The yields of all reactions were calculated from the integral ratio olefinic functionality/Cp<sup>R</sup> (CH<sub>2</sub>/Cp–Me or CH<sub>2</sub>/SiMe<sub>3</sub>) or from the integral ratio olefinic functionality/Y– CH<sub>2</sub> depending on the accessibility of the respective signals.

The reactivity studies with the Tebbe reagent were performed under the same conditions except the solvent. For the Tebbe reagent  $[D_6]$ benzene was chosen, concerning its decomposition in thf.

Exemplary, the reactivity of **4'-La<sup>Br</sup>** with 9-fluorenone for the generation of 9-methylidene-fluorene is shown in the following.





Polymerization of  $\delta$ -valerolactone:

In a glovebox the respective methylidene complex (0.005 mmol) was weighed into a vial, dissolved in 2 mL of THF and  $\delta$ -valerolactone (5 mmol) in 2 mL THF was added. The mixture was allowed to stir for 15 minutes. Then the vial was exposed to air and quenched with 10 ml of *n*-hexane. The mixture was allowed to stir for 30 minutes and the solvent decanted. The formed polymer was washed with *n*-hexane (3 x 5 mL) and dried. The crude poly-valerolactone (PVL) was characterized as a THF solution for GPC measurements.

# X-ray structure analyses



| 1*-Y <sup>ı</sup> | Selected bond lengths<br>[Å] |
|-------------------|------------------------------|
| Y1–I1/I1'         | 3.0695(4)/3.1016(4)          |
| Y1-C11/C12        | 2.563(4)/2.529(4)            |
| Y1–Al1            | 3.0902(11)                   |
| Y1–Ct1            | 2.305                        |

**Figure S59**. ORTEP representation of the crystal structure of **1\*-Lu<sup>Br</sup>** with atomic displacement parameters set at the 50% level. Hydrogen atoms are omitted for clarity.



| 1*-Lu <sup>Br</sup> | Selected bond lengths |  |  |
|---------------------|-----------------------|--|--|
| Lu1–Br1/Br1'        | 2.7961(7)/2.8257(8)   |  |  |
| Lu1–C1/C2           | 2.529(3)/2.486(3)     |  |  |
| Lu1–Al1             | 3.0434(10)            |  |  |
| Lu1–Ct1             | 2.258                 |  |  |

**Figure S60**. ORTEP representation of the crystal structure of **1\*-Lu<sup>Br</sup>** with atomic displacement parameters set at the 50% level. Hydrogen atoms are omitted for clarity.



| 2*-La <sup>i</sup> | Selected bond lengths [Å]     |
|--------------------|-------------------------------|
| La1-I1/I2/I3       | 3.4366(4)/3.2327(4)/3.2470(4) |
| La2-11/12/14       | 3.3981(4)/3.2379(4)/3.2605(4) |
| La3-11/13/14       | 3.3455(4)/3.2323(4)/3.2096(4) |
| La-Ct              | 2.512/2.509/2.503             |
| La1-C1/C2          | 2.773(4)/2.771(4)             |
| La2-C5/C6          | 2.777(4)/2.771(4)             |
| La1–Al2            | 3.3192(12)                    |
| La2–Al1            | 3.3159(12)                    |
| La3–C3'/C7'        | 2.954(4)/ 2.966(3)            |

**Figure S61.** ORTEP representation of the crystal structure of **2\*-La<sup>I</sup>** with atomic displacement parameters set at the 50% level. Hydrogen atoms and lattice *n*-hexane are omitted for clarity.



| $[(C_5Me_5)Lal_2(thf)_3]$ | Selected bond lengths [Å]  |
|---------------------------|----------------------------|
| La1-I1/I2                 | 3.1974(9)/3.2453(7)        |
| La1-Ct1                   | 2.540                      |
| La1-01/02/03              | 2.629(6)/2.546(4)/2.533(4) |

**Figure S62.** ORTEP representation of the crystal structure of  $[(C_5Me_5)Lal_2(thf)_3]$  with atomic displacement parameters set at the 50% level. Hydrogen atoms and the disorder in one thf molecule are omitted for clarity.



**Figure S63.** ORTEP representation of the crystal structure of **5\*-Y** with atomic displacement parameters set at the 50% level. Hydrogen atoms are omitted for clarity.



| 4*-La <sup>Br</sup> | Selected bond lengths [Å]     |
|---------------------|-------------------------------|
| La1–Br1/3/4         | 3.0307(5)/3.0279(4)/3.2074(4) |
| La2–Br2/3/4         | 3.0047(5)/3.0274(4)/3.1670(4) |
| La3–Br1/2/4         | 3.0307(4)/3.0385(5)/3.1849(4) |
| La1/2/3-CH2         | 2.572(3)/2.646(4)/2.553(3)    |

**Figure S64.** ORTEP representation of the crystal structure of  $4^*$ -La<sup>Br</sup> with atomic displacement parameters set at the 50% level. Hydrogen atoms except for CH<sub>2</sub> and solvent toluene are omitted for clarity.

|                                                  | 1*-Y <sup>Br</sup>        | 1*-Y <sup>I</sup>        | 1*-Lu <sup>Br</sup>        | 2*-La <sup>l</sup>         |
|--------------------------------------------------|---------------------------|--------------------------|----------------------------|----------------------------|
| CCDC                                             |                           |                          |                            |                            |
| Formula                                          | $C_{28}H_{54}Al_2Br_2Y_2$ | $C_{28}H_{54}AI_2I_2Y_2$ | $C_{28}H_{54}AI_2Br_2Lu_2$ | $C_{88}H_{166}AI_4I_8La_6$ |
| M [g mol <sup>-1</sup> ]                         | 782.31                    | 876.29                   | 954.43                     | 3180.78                    |
| Crystal system                                   | orthorhombic              | orthorhombic             | orthorhombic               | triclinic                  |
| Space group                                      | Pbca                      | Pbca                     | Pbca                       | Р                          |
| a [Å]                                            | 9.649(4)                  | 9.6420(3)                | 9.716(3)                   | 15.1879(17)                |
| b [Å]                                            | 14.704(6)                 | 15.1683(4)               | 14.542(5)                  | 15.4891(18)                |
| c [Å]                                            | 25.105(10)                | 25.5125(7)               | 24.882(8)                  | 15.6522(18)                |
| α [°]                                            | 90                        | 90                       | 90                         | 103.083(3)                 |
| β [°]                                            | 90                        | 90                       | 90                         | 118.426(2)                 |
| γ [°]                                            | 90                        | 90                       | 90                         | 104.865(3)                 |
| V [Å <sup>3</sup> ]                              | 3562(2)                   | 3731.27(18)              | 3515.8(19)                 | 2854.7(6)                  |
| Z                                                | 4                         | 4                        | 4                          | 1                          |
| T [K]                                            | 100(2)                    | 100(2)                   | 100(2)                     | 100(2)                     |
| ρ <sub>calcd</sub> [g cm <sup>−3</sup> ]         | 1.459                     | 1.560                    | 1.803                      | 1.850                      |
| µ[mm <sup>-1</sup> ]                             | 5.549                     | 4.811                    | 7.920                      | 4.423                      |
| F (000)                                          | 1584                      | 1728                     | 1840                       | 1512                       |
| Θ range [°]                                      | 1.622-29.125              | 1.596-28.275             | 2.651-28.274               | 1.491-30.077               |
| total reflns                                     | 35167                     | 43739                    | 65293                      | 122186                     |
| unique reflns                                    | 4777                      | 4630                     | 4362                       | 16728                      |
| Rint                                             | 0.0560                    | 0.0427                   | 0.0440                     | 0.0781                     |
| observed reflns (I>2σ)                           | 3864                      | 3858                     | 3893                       | 14086                      |
| Data/restraints/parameter                        | 4777/185/0                | 4630/0/185               | 4362/185/0                 | 16728/615/259              |
| R1/wR2 (I>2σ) <sup>[a]</sup>                     | 0.0257/0.0517             | 0.0331/0.0609            | 0.0222/0.0405              | 0.0329/0.0798              |
| R1/wR2 (all data) <sup>[a]</sup>                 | 0.0401/0.0554             | 0.0480/0.0652            | 0.0177/0.0388              | 0.0417/0.0861              |
| GOF <sup>[a]</sup>                               | 1.011                     | 1.106                    | 1.098                      | 1.064                      |
| largest diff. peak and hole [e Å <sup>-3</sup> ] | 0.604 and –<br>0.341      | 0.878 and –<br>0.760     | 1.075 and –<br>0.626       | 2.204 and - 1.147          |

 Table S1. Comprehensive crystallographic data for compounds 1\*-Y<sup>Br</sup>, 1\*-Y<sup>I</sup>, 1\*-Lu<sup>Br</sup>, and 2\*-La<sup>I</sup>

 $[a] \ R1 = \Sigma(||F_0| - |F_c||) / \Sigma |F_0|, F_0 > 4\sigma(F_0). \ wR2 = \{\Sigma[w(F_0^2 - F_c^2)^2 / \Sigma[w(F_0^2)^2]\}^{1/2}.$ 

|                                                  | 2'-La <sup>CI</sup> | 3*-La <sup>OTf</sup>   | 4*-Y <sup>Br</sup>          | 4*-La <sup>Br</sup>                                                               |
|--------------------------------------------------|---------------------|------------------------|-----------------------------|-----------------------------------------------------------------------------------|
| CCDC                                             |                     |                        |                             |                                                                                   |
| Formula                                          | C88H174Al4Cl8La6Si6 | C94H146Al2F30La6O34S10 | $C_{60.50}H_{91}Br_4Y_3O_3$ | C <sub>60.50</sub> H <sub>91</sub> Br <sub>4</sub> La <sub>3</sub> O <sub>3</sub> |
| M [g mol <sup>-1</sup> ]                         | 2625.78             | 3598.12                | 1452.70                     | 1602.70                                                                           |
| Crystal system                                   | monoclinic          | triclinic              | triclinic                   | triclinic                                                                         |
| Space group                                      | C 2/c               | <i>P</i> -1            | Р                           | Р                                                                                 |
| a [Å]                                            | 34.9606(16)         | 14.6570(15)            | 14.1530(6)                  | 14.3915(7)                                                                        |
| b [Å]                                            | 13.4774(6)          | 14.9347(15)            | 15.8798(7)                  | 16.0503(8)                                                                        |
| c [Å]                                            | 26.2883(12)         | 18.1390(19)            | 16.5355(6)                  | 16.7132(8)                                                                        |
| α [°]                                            | 90                  | 102.5380(10)           | 102.7230(10)                | 102.5370(10)                                                                      |
| β[°]                                             | 106.8900(10)        | 103.4360(10)           | 114.0310(10)                | 114.2580(10)                                                                      |
| γ [°]                                            | 90                  | 96.6000(10)            | 105.3420(10)                | 104.6900(10)                                                                      |
| V [Å <sup>3</sup> ]                              | 11852.2(9)          | 3712.2(7)              | 3037.8(2)                   | 3170.7(3)                                                                         |
| Z                                                | 4                   | 1                      | 2                           | 2                                                                                 |
| Т [К]                                            | 150(2)              | 100(2)                 | 100(2)                      | 100(2)                                                                            |
| ρ <sub>calcd</sub> [g cm <sup>-3</sup> ]         | 1.472               | 1.610                  | 1.588                       | 1.679                                                                             |
| µ[mm <sup>-1</sup> ]                             | 2.421               | 1.940                  | 5.514                       | 4.545                                                                             |
| F (000)                                          | 5264                | 1780                   | 1470                        | 1578                                                                              |
| Θ range [°]                                      | 1.217-30.172        | 2.954-27.103           | 1.433-28.282                | 1.408-29.209                                                                      |
| total reflns                                     | 251615              | 16328                  | 83784                       | 130276                                                                            |
| unique reflns                                    | 17537               | 16328                  | 15065                       | 17141                                                                             |
| Rint                                             | 0.0653              |                        | 0.0921                      | 0.0397                                                                            |
| observed reflns (I>2σ)                           | 14294               | 12846                  | 10729                       | 15187                                                                             |
| Data/restraints/parameter                        | 17537/534/0         | 16328/624/1051         | 15065/693/95                | 17141/693/64                                                                      |
| R1/wR2 (I>2σ) <sup>[a]</sup>                     | 0.0310/0.0645       | 0.0461/0.0913          | 0.0408/0.0821               | 0.0385/0.0940                                                                     |
| R1/wR2 (all data) <sup>[a]</sup>                 | 0.0461/0.0722       | 0.0763/0.1084          | 0.0744/0.0935               | 0.0323/0.0904                                                                     |
| GOF <sup>[a]</sup>                               | 1.108               | 1.077                  | 1.023                       | 1.054                                                                             |
| largest diff. peak and hole [e Å <sup>-3</sup> ] | 1.314 and -0.695    | 2.227 and -1.955       | 1.566 and<br>-0.913         | 1.366 and<br>-2.902                                                               |

Table S1 continued. Comprehensive crystallographic data for compounds 2'-La<sup>CI</sup>, 3\*-La<sup>OTf</sup>, 4\*-Y<sup>Br</sup>, and 4\*-La<sup>Br</sup>.

 $[a] \ R1 = \Sigma(||F_0| - |F_c||) / \Sigma |F_0|, F_0 > 4\sigma(F_0). \ wR2 = \{\Sigma[w(F_0^2 - F_c^2)^2 / \Sigma[w(F_0^2)^2]\}^{1/2}.$ 

|                                                  | 4'-La <sup>cı</sup>                        | $[(C_5Me_5)Lal_2(thf)_3]$                                       | 5*-Y                  | Tebbe reagent                         |
|--------------------------------------------------|--------------------------------------------|-----------------------------------------------------------------|-----------------------|---------------------------------------|
| CCDC                                             |                                            |                                                                 |                       |                                       |
| Formula                                          | $C_{60.50}H_{91}CI_{2.50}La_3O_{1.50}Si_2$ | C <sub>22</sub> H <sub>39</sub> I <sub>2</sub> LaO <sub>3</sub> | $C_{40}H_{74}O_4Y_2$  | $C_{32.85}H_{43.70}Al_2Cl_{2.15}Ti_2$ |
| M [g mol <sup>-1</sup> ]                         | 592.55                                     | 744.24                                                          | 796.81                | 664.55                                |
| Crystal system                                   | triclinic                                  | trigonal                                                        | monoclinic            | monoclinic                            |
| Space group                                      | <i>P</i> -1                                | <i>R</i> -3:H                                                   | <i>P</i> 21/ <i>c</i> | C2/c                                  |
| a [Å]                                            | 15.2944(6)                                 | 42.437(13)                                                      | 11.8884(13)           | 22.2702(13)                           |
| b [Å]                                            | 16.6590(7)                                 | 42.437                                                          | 17.8190(18)           | 11.8790(7)                            |
| c [Å]                                            | 16.8144(7)                                 | 9.155(3)                                                        | 20.366(2)             | 15.1179(17)                           |
| α [°]                                            | 119.0030(10)                               | 90                                                              | 90                    | 90                                    |
| β[°]                                             | 91.5250(10)                                | 90                                                              | 99.491(2)             | 125.5250(10)                          |
| γ [°]                                            | 108.6950(10)                               | 120                                                             | 90                    | 90                                    |
| V [Å <sup>3</sup> ]                              | 3462.5(2)                                  | 14278(10)                                                       | 4255.2(8)             | 3255.0(5)                             |
| Z                                                | 2                                          | 18                                                              | 4                     | 4                                     |
| T [K]                                            | 100(2)                                     | 160(2)                                                          | 100(2)                | 100(2)                                |
| ρ <sub>calcd</sub> [g cm <sup>-3</sup> ]         | 0.568                                      | 1.558                                                           | 1.244                 | 1.356                                 |
| µ[mm <sup>-1</sup> ]                             | 1.939                                      | 3.307                                                           | 2.748                 | 0.742                                 |
| F (000)                                          | 515                                        | 6444                                                            | 1696                  | 1389                                  |
| Θ range [°]                                      | 1.643-28.282                               | 0.960-25.022                                                    | 2.079-26.411          | 2.186 to 30.072                       |
| total reflns                                     | 152989                                     | 24793                                                           | 82006                 | 38797                                 |
| unique reflns                                    | 17172                                      | 5617                                                            | 8700                  | 4771                                  |
| Rint                                             | 0.0319                                     | 0.1211                                                          | 0.1141                | 0.0413                                |
| observed reflns (I>2σ)                           | 15005                                      | 3643                                                            | 5897                  | 4340                                  |
| Data/restraints/parameter                        | 17172/1978/810                             | 5617/494/304                                                    | 8700/0/437            | 4771/0/193                            |
| R1/wR2 (I>2σ) <sup>[a]</sup>                     | 0.0353/0.0866                              | 0.0353/0.0639                                                   | 0.0382/0.0754         | 0.0294/0.0762                         |
| R1/wR2 (all data) <sup>[a]</sup>                 | 0.0426/0.0939                              | 0.0669/0.0713                                                   | 0.0763/0.0888         | 0.0326/0.0790                         |
| GOF <sup>[a]</sup>                               | 1.038                                      | 0.803                                                           | 1.004                 | 1.041                                 |
| largest diff. peak and hole [e Å <sup>-3</sup> ] | 2.331 and -2.279                           | 0.712 and –0.760                                                | 0.427 and –<br>0.426  | 0.429 and -0.288                      |

Table S1 continued. Comprehensive crystallographic data for compounds  $4'-La^{Cl}$ , [( $C_5Me_5$ )Lal<sub>2</sub>(thf)<sub>3</sub>],  $5^*-Y$ , and the Tebbe reagent.

 $[a] \ R1 = \Sigma(||F_0| - |F_c||) / \Sigma|F_0|, F_0 > 4\sigma(F_0). \ wR2 = \{\Sigma[w(F_0^2 - F_c^2)^2 / \Sigma[w(F_0^2)^2]\}^{1/2}.$ 

# F

# Appendix

# Appendix

Analytical data of compounds not included in the main results or manuscripts





Tp<sup>*t*Bu,Me</sup>Y(µ-CH<sub>2</sub>)(AlMe<sub>3</sub>)(AlMe<sub>2</sub>CH<sub>2</sub>) VB-324A Serendipitous finding

R<sub>1</sub>[I>sigma(I)] 5.80%, wR<sub>2</sub>(all data) 13.39%

 $a = 12.0899(17) \text{ Å}, \alpha = 90^{\circ}$ 

 $b = 35.475(5) \text{ Å}, \beta = 109.581(3)^{\circ}$ 

c = 10.1556(14) Å,  $\gamma = 90^{\circ}$ 



-40

 $Tp^{tBu,Me}LaBn_2 VB-328$ 

$$\begin{split} &R_1[I>sigma(I)] \ 3.05\%, \ wR_2(all \ data) \ 7.68\% \\ &a = 17.275(2) \ \text{\AA}, \ \alpha = 90^\circ \\ &b = 11.4136(13) \ \text{\AA}, \ \beta = 105.182(2)^\circ \\ &c = 19.647(2) \ \text{\AA}, \ \gamma = 90^\circ \\ &Additional \ analyses: \ ^1H \ NMR, \ ^{11}B \ NMR \end{split}$$

[(Tph)<sub>2</sub>N<sub>3</sub>]AlMe<sub>2</sub>(thf) VB-51

$$\begin{split} R_1[I>sigma(I)] & 3.92\%, \ wR_2(all \ data) \ 10.05\% \\ a &= 9.0383(2) \ \text{\AA}, \ \alpha &= 92.453(2)^\circ \\ b &= 10.7498(3) \ \text{\AA}, \ \beta &= 95.5340(10)^\circ \\ c &= 26.6079(7) \ \text{\AA}, \ \gamma &= 111.3010(10)^\circ \end{split}$$



Cp'La(AlMe<sub>4</sub>)<sub>2</sub> VB-118

$$\begin{split} &R_1[I>sigma(I)] \ 1.65\%, \ wR_2(all \ data) \ 3.91\% \\ &a = 9.490(3) \ \text{\AA}, \ \alpha = 90^\circ \\ &b = 20.227(7) \ \text{\AA}, \ \beta = 110.153(6)^\circ \\ &c = 12.819(4) \ \text{\AA}, \ \gamma = 90^\circ \\ &\text{Additional analyses: } \ ^1\text{H NMR}, \ ^{13}\text{C NMR} \end{split}$$



La(AlMe<sub>4</sub>)<sub>3</sub> VB-84

$$\begin{split} &R_1[I>sigma(I)] \ 1.85\%, \ wR_2(all \ data) \ 4.20\%\\ &a = 17.7818(18) \ \text{\AA}, \ \alpha = 90^\circ\\ &b = 18.2278(18) \ \text{\AA}, \ \beta = 108.3444(13)^\circ\\ &c = 13.7359(14) \ \text{\AA}, \ \gamma = 90^\circ \end{split}$$



 $(C_5Me_5)La(AlMe_4)(thf) VB-100_2$ Serendipitous finding

$$\begin{split} R_1[I>sigma(I)] & 2.74\%, \ wR_2(all \ data) \ 5.53\% \\ a &= 18.808(16) \ \text{\AA}, \ \alpha = 90^\circ \\ b &= 8.677(7) \ \text{\AA}, \ \beta = 113.609(11)^\circ \\ c &= 19.029(16) \ \text{\AA}, \ \gamma = 90^\circ \end{split}$$



### [(C<sub>5</sub>Me<sub>4</sub>H)LaCl<sub>2</sub>]<sub>9</sub> VB-143

 $R_1$ [I>sigma(I)] 5.72%, wR<sub>2</sub>(all data) 16.77%

a = 44.546(2) Å,  $\alpha = 90^{\circ}$ 

b = 14.9053(8) Å,  $\beta = 90^{\circ}$ 

c = 25.5401(13)Å,  $\gamma = 90^{\circ}$ 



[(SiMe<sub>3</sub>)(Me<sub>2</sub>-2,6-C<sub>6</sub>H<sub>3</sub>)N]La(AlMe<sub>4</sub>)<sub>2</sub> VB-63\_02

$$\begin{split} R_1[I>sigma(I)] \ 1.99\%, \ wR_2(all \ data) \ 4.83\% \\ a &= 10.132(3) \ \text{\AA}, \ \alpha = 90^\circ \\ b &= 12.890(3) \ \text{\AA}, \ \beta = 102.684(5)^\circ \\ c &= 20.586(5) \ \text{\AA}, \ \gamma = 90^\circ \\ \ \mbox{Additional analyses: $^1$H NMR, EA} \end{split}$$



 $\begin{array}{c} VB & 169\_01 & [(SiMe_3)(Me_2-3,5-C_6H_3)N]La_3(AlMe_4)_2C(AlMe_2CH_2)(AlMe_3)_2 \\ Serendipitous finding \end{array}$ 

R<sub>1</sub>[I>sigma(I)] 2.35%, wR<sub>2</sub>(all data) 5.25%

a = 10.639(3) Å,  $\alpha = 91.553(6)^{\circ}$ 

b = 14.127(4) Å,  $\beta = 106.460(7)^{\circ}$ 

c = 16.197(5) Å,  $\gamma = 105.528(9)^{\circ}$ 



[Mes<sub>2</sub>-2,6-C<sub>6</sub>H<sub>3</sub>N(SiMe<sub>3</sub>)]K VB-188

$$\begin{split} &R_1[I>sigma(I)] \ 3.61\%, \ wR_2(all \ data) \ 8.12\%\\ &a=25.3050(18) \ \text{\AA}, \ \alpha=90^\circ\\ &b=6.9947(5) \ \text{\AA}, \ \beta=90^\circ\\ &c=13.7134(10) \ \text{\AA}, \ \gamma=90^\circ\\ &Additional \ analyses: \ ^1H \ NMR, \ ^{29}Si \ NMR \end{split}$$



K[N(SiMe<sub>3</sub>)(Me<sub>2</sub>-2,6-C<sub>6</sub>H<sub>3</sub>)]

[(Me<sub>2</sub>-2,6-C<sub>6</sub>H<sub>3</sub>)N]<sub>2</sub>La(AlMe<sub>4</sub>)(AlMe<sub>3</sub>) VB-169\_02 Serendipitous finding

R1[I>sigma(I)] 1.53%, wR2(all data) 3.87%

a = 12.5093(4) Å,  $\alpha = 90^{\circ}$ 

b = 17.8012(5) Å,  $\beta = 91.7610(10)^{\circ}$ 

c = 16.2480(5) Å,  $\gamma = 90^{\circ}$ 



 $(C_5Me_5)[Mes_2-2,6-C_6H_3N(SiMe_3)]YMe VB-317$ 



[(SiMe<sub>3</sub>)(Me<sub>2</sub>-2,6-C<sub>6</sub>H<sub>3</sub>)N]<sub>3</sub>Y<sub>3</sub>Me<sub>4</sub>CH<sub>2</sub>(thf)<sub>3</sub>

# VB-170

$$\begin{split} &R_1[I{>}sigma(I)] \ 2.14\%, \ wR_2(all \ data) \ 4.93\% \\ &a = 21.1598(16) \ \text{\AA}, \ \alpha = 90^\circ \\ &b = 21.1598(16) \ \text{\AA}, \ \beta = 90^\circ \\ &c = 11.3203(9) \ \text{\AA}, \ \gamma = 120^\circ \\ &Additional \ analyses: \ ^1H \ NMR, \ EA \end{split}$$
## **Curriculum Vitae**

#### **Personal Details**

| Name:                 | Vere | Verena Margareta Birkelbach                                 |  |
|-----------------------|------|-------------------------------------------------------------|--|
| Date of Birth:        | Nov  | November 06, 1991                                           |  |
| Place of Birth:       | Forc | Forchheim, Germany                                          |  |
| Nationality:          | Gerr | nan                                                         |  |
| Education             |      |                                                             |  |
| Nov. 2015 – Nov. 2019 |      | PhD studies                                                 |  |
|                       |      | Eberhard Karls Universität Tübingen                         |  |
| Sep. 2013 – Sep. 2015 |      | Study of Chemistry (Master of Science)                      |  |
|                       |      | Friedrich-Alexander Universität Erlangen                    |  |
|                       |      | Master thesis: "Well-defined Molecular Alumoxanes: Modeling |  |
|                       |      | Structural Aspects of MAO"                                  |  |
|                       |      | Supervisor: Prof. Dr. Sjoerd Harder                         |  |
| May 2011 – Aug. 2013  |      | Study of Chemistry (Bachelor of Science)                    |  |
|                       |      | Regular Progress of Semesters 3-6                           |  |
|                       |      | Fast track 2in1 Bachelor studies of Semesters 1 and 2       |  |
|                       |      | Bachelor thesis: "Synthetische und Sensorische              |  |
|                       |      | Charakterisierung von Terpenthioethern"                     |  |
|                       |      | Supervisor: Prof. Dr. Andrea Büttner                        |  |
| Sep. 2002 – May 2     | 011  | Ehrenbürg Gymnasium Forchheim                               |  |
|                       |      | Allgemeine Hochschulreife                                   |  |
| Sep. 1998 – Jul. 20   | 002  | Anna-Grundschule Forchheim                                  |  |

## Structurally characterized complexes

On the following pages all X-ray structurally characterized compounds are listed as *ChemDraw* sketches.







# Cyclopentadienyl-ligand supported rare-earth-metal complexes and TEBBE reagent



#### Silylamido-supported rare-earth-metal complexes (unpublished)





