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1 ZUSAMMENFASSUNG 

Die komplexe räumliche und zeitliche Regulation von zellulären Prozessen ist ein 

elementares Prinzip in Zellen und lebenden Organismen. Für ein tiefergehendes Verständnis 

dieser Prozesse werden Verfahren benötigt, die es ermöglichen dynamische 

Mengenveränderungen einzelner Proteine beobachten und quantifizieren zu können. Gemäß 

dem Credo „Seeing is believing“ ist die Fluoreszenzmikroskopie eines der wichtigsten 

Verfahren zur Entschlüsselung dieser grundlegenden Mechanismen. Diese Aufgabe wird bis 

dato hauptsächlich mit Hilfe von experimentellen in vitro Methoden bewältigt. Dabei 

beschränken sich die Analysen jedoch auf einzelne Momentaufnahmen und lösen sich vom 

nativen zellulären Kontext hin zu einer artifiziellen Umgebung. 

Um endogene Proteine in lebenden Zellen mit Hilfe der Fluoreszenzmikroskopie zu 

visualisieren, haben sich Chromobodies als molekulare in vivo Sonden etabliert. CBs sind  

Fusionsproteine, bestehend aus der variablen Domäne eines Einzeldomänenantikörpers und 

einem fluoreszierenden Protein, die als Intrabody von lebenden Zellen gebildet werden. Im 

Rahmen dieser Dissertation wurde gezeigt, dass die CB-Technologie nicht nur die 

Visualisierung der dynamischen Verteilung endogener Proteine, sondern auch eine 

Quantifizierung der Mengenveränderung eines Antigens in lebenden Zellen erlaubt. In dieser 

Arbeit wurde eine Abhängigkeit der Menge an intrazellulärem CB von der 

Proteinkonzentration des zugehörigen Antigens nachgewiesen und demonstriert, dass sich 

Mengenveränderungen an endogenem Antigen über die Fluoreszenzintensitäten des CBs 

auslesen lassen. Grundlage bildet ein bisher nicht systematisch untersuchtes Phänomen, das 

„Antigen-vermittelte (engl. Mediated) CB Stabilisierung“ (AMCBS) genannt wurde. Die 

Stabilisierung von CBs in Anwesenheit bzw. Depletion des entsprechenden Antigens wurde 

für vier etablierte CBs, die unterschiedlichste zelluläre Antigene binden, demonstriert. In 

Folge wurde durch gezielte Modifikation der CBs der dynamische Messbereich von 

AMCBS-basierten Quantifizierungen erweitert. Um den proteolytischen Abbau von nicht 

Antigen-gebundenem CB zu beschleunigen, wurden ausgewählte CBs unter Anwendung der 

„N-End Rule“ gentechnisch modifiziert, die erfolgreiche Optimierung im direkten Vergleich 

zwischen einem modifizierten und einem unmodifizierten β-Catenin bindenden CB gezeigt, 

und die Aktivität und Kinetik von β-Catenin modifizierenden Wirkstoffen mittels des 

AMCBS-Mechanismus quantitativ bestimmt. Abschließend wurde unter Verwendung der 

CRISPR/Cas9-Technologie ein Protokoll zur zielgerichteten Integration der genetischen 

Information AMCBS-optimierter CBs in das Genom von potentiellen Screening-Zelllinien 
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entwickelt und validiert. Zusammenfassend zeigt diese Arbeit, dass sich mit 

hochspezifischen und optimierten CBs dynamische Mengenveränderungen von endogenen 

Proteinen in lebenden Zellen über das AMCBS Phänomen bildbasiert quantifizieren lassen. 

Damit werden neue Einblicke in die Dynamik endogener Proteine z.B. nach 

Wirkstoffbehandlung möglich. Dieses Verfahren ist in der biomedizinischen Forschung breit 

einsetzbar, einfach zu implementieren und benötigt neben einem Fluoreszenzmikroskop 

keine aufwendige Ausrüstung.  
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2 ABSTRACT 

As key cellular processes are dynamic in nature and underlie sophisticated spatial and 

temporal orchestration within living cells and whole organisms “seeing is believing” has 

turned into a main principle in cell biology. By employing live-cell fluorescence imaging, 

these important mechanisms can be deciphered. Importantly, an in-depth understanding of 

cellular processes requires the determination of dynamic changes in the concentration of 

endogenous proteins. However, today this task is mainly fulfilled by in vitro end point 

assays, which contradicts the requirement of assessing dynamic protein changes under native 

conditions within living cells. 

During the last years fluorescently labeled nanobodies (chromobodies, CBs), implemented 

as intracellular molecular probes, have emerged as valuable tools to visualize the spatial and 

temporal localization of endogenous proteins in living cells. In this dissertation, a novel 

aspect of CBs was observed and illuminated: The intracellular CB amount directly depends 

on the concentration of its cognate antigen, which was termed “Antigen-Mediated CB 

Stabilization” (AMCBS). Employing this phenomenon allows an expansion of the CB 

technology from the visualization of the spatiotemporal distribution of the antigen towards 

a relative quantification of time-resolved changes in endogenous protein concentration by 

simply determining the CB fluorescence. This idea was confirmed by analyzing four 

previously generated CBs, targeting β-catenin, proliferating cell nuclear antigen (PCNA), 

vimentin and HIV capsid protein p24, in their performance to monitor dynamic up- and 

downregulation of their respective antigens. To improve the accuracy and dynamic range of 

AMCBS, turnover-accelerated versions of these CBs were generated by utilizing the concept 

of the N-end rule and comparative analysis revealed that fast and reversible changes can be 

assessed more precisely by quantitative live-cell imaging applying the novel generated 

turnover-accelerated CBs. To illustrate a possible application, the turnover-accelerated β-

catenin-specific CB was employed to monitor drug action and kinetics in living cells through 

AMCBS. Lastly, a protocol to generate stable cell lines expressing turnover-accelerated CBs 

was established by site-directed genetic integration into the adeno-associated virus 

integration site 1 (AAVS1) safe harbor locus of human cell lines using CRISPR/Cas9. 

In summary, AMCBS-based protein quantification in combination with highly specific and 

functional CBs allow an imaging-based quantification of endogenous proteins in living cells, 

thereby enabling unprecedented insights into protein dynamics. For the future, this method 
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is broadly applicable in biomedical research as it is straight-forward to implement and the 

only technical requirement is a fluorescence microscope. 
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3 INTRODUCTION 

3.1 Proteins - the key players in life 

Proteins are highly complex macromolecules orchestrating key processes in cells and whole 

organisms. Essential physiological processes such as proliferation, migration but also 

decisions whether a cell is allowed to survive or has to undergo the programmed cell death 

are controlled and decided by these important molecules. Besides being the chief executor 

within a cell, proteins themselves need to be highly regulated in order to correctly fulfill their 

duties and during the last years and decades a broad range of sophisticated regulatory 

mechanisms of protein function have been identified. 

The earliest observations of mechanisms regulating endogenous protein concentrations were 

obtained within the context of enzyme kinetics (Michaelis et al, 2011; Cornish-Bowden, 

2013). For the first time, scientists noticed and described regulatory mechanisms as the 

inhibitory function of a product onto an enzyme reaction. To date, it is verified that binding 

of small molecules to an enzyme can induce conformational changes, thereby modifying the 

architecture of the active center, an observation, which was termed allosteric regulation 

(Cooper, 2000). Besides binding of small molecules, also the direct interaction of a specific 

protein with other proteins has the potential to activate or inactivate a specific protein 

function, which often is accompanied by the formation of a multi-protein complex. In 

addition to this non-covalent interactions, a huge variety of covalent regulatory protein 

modifications have also been described in the past (reviewed in (Knorre et al, 2009)). 

Probably the most prominent example of these so-called post-translational modifications 

(PTMs) is the phosphorylation of serine and tyrosine residues, which can function as a 

molecular switch. Consequently, this site-directed addition of a small residue to a protein 

has the power to regulate the activation state of whole pathways within a living cell and is a 

key regulatory mechanism in cellular physiology. 

Finally, the abundance of a specific protein itself has a regulatory function under some 

circumstances and altering the amount of a specific protein can evoke a cellular response. A 

prominent example for a regulatory function orchestrated by protein abundance was 

described for the cell cycle, which is guided by changing levels of the cyclins. In this instance 

the cell cycle progression is achieved by recurring oscillations in the amount of the different 

members of the cyclin family (Morgan, op. 2007). Another illustrative example for a 

regulatory function depending on the respective protein amount represents the 
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transcriptional co-activator β-catenin (CTNNB1) mediating the expression of WNT-

responsive elements (Behrens et al, 1996; Korinek, 1997). In WNT-off condition, the 

intracellular level of CTNNB1 is strictly controlled by the destruction complex, resulting in 

continuous degradation of CTNNB1 (Aberle et al, 1997; Orford et al, 1997; Kimelman & 

Xu, 2006). In case of WNT activation, CTNNB1 accumulates within the cytosol and 

translocates into the nucleus, where it mediates gene expression of various genes involved 

in proliferation or differentiation (reviewed in (Clevers & Nusse, 2012)). 

In summary, cyclins and CTNNB1 are two well established examples how protein 

abundance and dynamic alterations in protein amount possess a crucial regulatory function. 

Based on this important role, it is not surprising that dysregulated protein amounts contribute 

to the development and progression of various diseases. Deciphering dynamic changes of 

endogenous proteins is therefore crucial to achieve an in-depth understanding of a protein’s 

functionality and the orchestrated cellular processes.  

3.2 Current methods to analyze and quantify endogenous proteins 

In the past, a broad spectrum of methods has been developed in order to detect changes in 

the concentration of endogenous proteins. Although the intention is to study protein 

dynamics within a cellular system, the analyses are mainly performed by in vitro endpoint 

assays. The most common methods to quantify a specific protein amount can be structured 

into two approaches: (i) mass spectrometry (MS)-based analyses and (ii) antibody-based 

techniques (Figure 1). 

 

Figure 1 Illustration of methods used for quantification of specific endogenous proteins.  
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The mainly applied approaches for protein quantification are either mass spectrometry (MS)- or antibody-

based. Among the antibody-based methods western blot, enzyme-linked immunosorbent assay (ELISA) and 

immunostaining techniques like immunofluorescence (IF) or flow cytometry are widely used to analyze specific 

proteins. 

Mass spectrometry-based proteomic analyses have become an important tool in the field of 

biology, allowing precise relative and absolute protein quantification (Lindemann et al, 

2017). By applying this technique in combination with bioinformatics, scientists nowadays 

are able to quantify thousands of proteins derived from complex samples. For a comparative 

proteome analysis, this method requires differential stable isotope labeling to create a 

specific mass tag, which provides the basis for quantification. Isotope incorporation into 

proteins and peptides can be accomplished by metabolic, chemical or enzymatical labeling 

(reviewed in (Bantscheff et al, 2007)). Stable isotope labeling by amino acids in cell culture 

(SILAC) depends on cellular protein synthesis to incorporate stable isotope-containing 

amino acids (e.g. 13C6 arginine or 13C6 lysine) into the proteome (Ong et al, 2002; Ong & 

Mann, 2006). For this purpose, cells are cultivated in growth media containing amino acids 

with heavy isotopes over five passages, which leads to the incorporation of these heavy 

amino acids into the endogenous proteins. In the following, cell populations containing 

heavy and normal (light) amino acids can be mixed and remain distinguishable by MS, 

thereby allowing accurate relative quantification (Ong & Mann, 2006). As metabolic 

labeling is restricted to cell culture systems, chemical labeling strategies like isotope-coded 

affinity tag (ICAT) further expand the possibilities of MS-based analyses to e.g. tissues 

(Gygi et al, 1999). By applying isobaric tags for relative and absolute quantification 

(iTRAQ) the sampling number could be expanded to up to eight samples by this approach 

(Choe et al, 2007; Wiese et al, 2007). 

Undoubtedly, MS strongly contributed to a comprehensive knowledge of protein 

functionality in the past and was further the main driver of the new field of systems biology 

(Sabidó et al, 2012). However, a drawback of this method is the requirement of expensive 

equipment and trained personnel. Therefore, this technology is mainly applied for large-

scale analyses rather than to study dynamic changes of only one specific protein within a 

complex sample. 

The number of antibodies for scientific research has increased tremendously in the last 

decades, resulting in more than four million commercially available antibodies in March 

2019, as listed in the largest antibody search machine (citeab.com). Among the antibody-

based techniques, western blot and enzyme-linked immunosorbent assay (ELISA) are 
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probably the most commonly used methods to quantify endogenous proteins and these 

methods were further developed into sophisticated systems such as multiplex assays or 

single molecule arrays in the last few years. Although these techniques have an undoubted 

impact in research, some scientific questions might remain unaddressed by applying one of 

the mentioned approaches to quantify an endogenous protein of interest (POI). Firstly, cells 

have to be lysed prior to the analysis by western blot, what leads to the loss of the 

intercellular resolution and thus only average protein amounts can be quantified. Secondly, 

tracing changes in protein concentration over time is laborious and time-consuming, thereby 

limiting the number of analytes. 

Immunofluorescence (IF) can overcome these limitations, as this in situ method allows to 

assess the subcellular localization as well as the relative concentration of POIs on single cell 

level. Moreover, the recent advances in imaging technology contributed to the success of 

this analysis method. Nowadays, a high number of images can be acquired in a short time 

frame and further smart software solutions allow automated analysis of these images 

(Mattiazzi Usaj et al, 2016). However, due to cell fixation and permeabilization dynamic 

changes of endogenous proteins cannot be analyzed in real-time. Moreover, it is essential 

that fixation and permeabilization have been tested and verified carefully, since both 

procedures obtain variabilities, which can introduce artifacts interfering with the analysis 

and might therefore not correctly reflect the in vivo situation (Stadler et al, 2010; Schnell et 

al, 2012). 

All mentioned antibody-based techniques have in common that the success of the method 

mainly is defined by the quality and specificity of the applied antibodies. For decades 

polyclonal antibodies derived from immunized animals have been applied in scientific 

research. But some shortcomings limit and endanger the reproducibility of polyclonal 

antibody applied in research. Firstly, post immunization only a small porportion of the 

antibodies in a polyclonal reagent bind to their intended target and secondly, the 

immunization of an animal never results in the same mix of antibodies (Bradbury & 

Plückthun, 2015). The hybridoma technology opened the door for high-yield production of 

monoclonal antibodies in continuous cell culture with high reproducibility (Köhler & 

Milstein, 1975). Although this technique was a clear progress towards standardization and 

reproducibility, a study from 2008 revealed that only ~50 % of 6,120 tested commercial 

antibodies within the Human Protein Atlas research project specifically recognized their 

target (Berglund et al, 2008). Commonly occurring problems caused by commercial 



INTRODUCTION 

9 

antibodies are non-specific binding, background and noise, or batch-to-batch variability 

(Voskuil, 2014). These shortcomings of antibodies lead further to the assumption of 

antibodies being the major driver of the present ‘reproducibility crisis’ in biomedical 

research (Baker, 2015). 

Nevertheless, given the predominant role of antibodies in research and diagnostics, it is not 

surprising that these methods have been extensively used during the last years and decades. 

In addition, methods like western blot or IF do not require expensive equipment and are easy 

to implement, both factors that mainly contributed to the high popularity of antibody-based 

techniques in research. 

3.3 Monitoring and quantification of endogenous proteins in living cells 

Considering that most cellular processes are dynamic in nature and rely on the 

spatiotemporal orchestration under native conditions, the assessment of time-dependent 

changes of endogenous protein level within the physiological context is highly preferred. 

One popular approach to analyze dynamic processes within living cells is realized by ectopic 

expression of a reporter-tagged transgene, wherein fluorescent proteins (FPs) applied as 

reporter are commonly used. Although this method does not allow the assessment of an 

endogenous protein, it is frequently used to study protein dynamics. But it has to be 

considered that ectopic expression in cells results in high protein levels, which might change 

the dynamics and functionality of a POI (Moriya, 2015). A possible approach to circumvent 

this drawback is to aim for a cell line displaying a stable and low expression of the respective 

fusion protein. Recently, this approach was used to study subcellular dynamics of CTNNB1 

in individual cells (Kafri et al, 2016). In this study, YFP-CTNNB1 was stably expressed in 

HEK293 cells, which was achieved by applying selection pressure post transfection to 

facilitate a random integration of the transgene. In the following, YFP-CTNNB1 low-

expressing cells were screened and collected by FACS. Thus, this approach enabled the 

visualization of YFP-CTNNB1 distribution and dynamics in response to Wnt3a within these 

cells. But it has to be considered that the absolute number of CTNNB1 molecules is not 

accurately represented by this method since only the ectopically introduced protein can be 

visualized by fluorescence imaging and the intracellular protein amount of CTNNB1 was 

altered within this generated cell line. 
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With increasing popularity and the progressing simplicity in application, the insertion of a 

FP transgene to the native genomic locus by gene editing techniques like CRISPR/Cas9, 

provides a straightforward approach to optically monitor and quantify the relative amount of 

an endogenous POI. Tagging an endogenous gene with a FP provides multiple information 

about a POI, such as localization, translocation, dynamic changes in protein concentration, 

as well as protein half-life. Besides all these advantages some issues need to be addressed 

when aiming for this method. Firstly, a low abundant protein could be hard to detect by using 

this technique, as the fluorescent signals might be below the detection limit. Secondly, the 

cell line utilized for a CRISPR/Cas9-mediated FP-tag knock-in has to possess a certain 

efficiency for homology-directed repair (HDR), which varies among different cell lines 

(Miyaoka et al, 2016). Furthermore, CRISPR/Cas9 requires a protospacer adjacent motif 

(PAM-motif) to effectively target the Cas9 nuclease (Mojica, F J M et al, 2009). Based on 

statistics, PAM-motifs are frequent and using an alternative nuclease provides additional 

diversity in the sequence to utilize, but some target sites might lack a suitable PAM-motif, 

thereby excluding this method. Lastly, considering that a FP is composed of ~280 amino 

acids (~27 kDa), FP tagging of an endogenous protein might interfere with the proteins 

characteristics and functionality such as turnover, localization, transport and the 

participation in multiprotein-complexes (Snapp, 2009; Skube et al, 2010; Stadler et al, 2013; 

Virant et al, 2018). Especially for proteins described to have a broad range of different 

interaction partners like CTNNB1 (reviewed in (Valenta et al, 2012)), fluorescent tagging of 

the endogenous protein should be carefully evaluated. Notably, from a technical point of 

view it is possible to tag endogenous CTNNB1 with a C-terminal FP, thereby generating an 

endogenous fusion protein (Zhang et al, 2017). However, analysis of ectopically expressed 

CTNNB1 comprising a C-terminal FP tag revealed an interference with its transcriptional 

activity (Cong et al, 2003).  

A promising approach to reduce the functional interference of covalently fused fluorescent 

reporters represents the use of a reporter with a smaller size. Recently, flavin-based 

fluorescent proteins (LOV-based FPs) have been established for cellular fluorescence 

imaging (Mukherjee & Schroeder, 2015). Comprising a molecular weight of only 12.1 kDa 

the derivate iLOV represents the smallest protein within this class and was reported to 

outperform GFP as real-time reporter of viral infection dynamics in plants (Buckley et al, 

2015). 
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Another possibility for real-time visualization and quantification of proteins in living cells 

is provided by using so-called self-labeling proteins like the SNAP- or CLIP-tag, which 

catalyze an auto-attachment of a fluorophore within a living cell (Thorn, 2017). In a recent 

study, the SNAP-tag was applied to estimate protein half-lives in living cells, whereby the 

protein degradation rates have been directly determined by monitoring the decay of 

fluorescence signal over time. This was achieved by washing out the unbound dye, leading 

to the effect that newly synthesized proteins cannot be labeled and therefore the protein 

degradation rate can be directly monitored (Mandic et al, 2017). The application of self-

labeling tags provides several advantages like enhanced photo-stability for fluorescence 

imaging as well as a high variety of commercially available fluorescent dyes, but some 

limitations need to be considered. The size of the SNAP- and CLIP-tag with approximately 

20 kDa is comparable to the size of a FP and has the same drawbacks as already mentioned 

for the FPs. Additionally, their usage is quite extensive in handling and costs since an 

addition of the fluorescent dye is required for each experiment. 

For optical monitoring of an endogenous protein without affecting its native state, a 

technique was recently described that is based on the co-translational separation of the POI 

and the fused FP. By applying CRISPR/Cas9 the endogenous locus of a POI is fused to a FP 

reporter and transcribed as bicistronic expression construct, followed by a co-translational 

separation, which is facilitated by a cis-acting hydrolase element (CHYSEL). This co-

translational separation of POI and FP results in an equimolar ratio, therefore the 

fluorescence within the cell can be directly utilized as readout parameter for the 

concentration of the POI. Thus, protein quantitation rationing (PQR) provides a simple and 

efficient tool to quantify the steady-state protein level within a cell, without endangering the 

functionality of the POI (Lo et al, 2015). However, the genome-engineered stable cell lines 

require critical validation, since probably only one allele was addressed by genome editing 

and possible off-target genomic integrations of the fluorescent reporter need to be excluded. 

Moreover, it has to be considered that not every protein is accompanied and regulated by 

concordant changes in the expression of corresponding mRNAs (Schwanhäusser et al, 2011; 

Lu et al, 2009). Consequently, this approach is not applicable for proteins such as CTNNB1, 

whose intracellular concentration is not primarily regulated by transcription. 
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3.4 Intrabodies to monitor and quantify proteins in living cells 

In the last decade the application of intracellular binding molecules to study specific 

endogenous proteins in living cells has become highly attractive in the field of biomedical 

research. The intracellular expression of affinity reagents (termed intrabodies) provides a 

versatile technique to examine cognate antigens within living cells. Intrabodies, expressed 

as FP fusions, serve as valuable tools to detect and continuously monitor spatiotemporal 

dynamics of a POI in real-time. Moreover, intrabodies can also be employed to actively 

modulate the respective target within a cell. In regards to visualization, the major benefit of 

this approach is that the endogenous POI remains in its native constitution and there is no 

further necessity to edit the endogenous gene locus of the POI. However, the impact of the 

molecular probe on the cognate antigen needs to be analyzed critically to exclude a possible 

interference with the functionality of the antigen. 

For the generation of functional intracellular binding molecules various peptide-, protein- or 

nucleic acid-based binding molecules can be utilized. This great diversity of different 

nanoprobes is further expanded by a large selection of different reporters (e.g. FP, luciferase, 

fluorophores), which can be fused or coupled to the intrabody, thus allowing the detection 

of the binding molecule within the cell. Based on their structure, these binding molecules 

can be classified as non-immunoglobulin (Ig) scaffolds (Figure 2) and immunoglobulin G 

(IgG) scaffolds (Figure 3). The following chapters provide an overview of different 

intrabody formats currently used for live-cell imaging of endogenous proteins. 

3.4.1 Visualization of intracellular targets by non-immunoglobulin 

scaffolds in living cells 

Although most affinity reagents are protein-based, also nucleic acids can adopt complex 3D 

structures, which allow specific binding to target structures. These ssDNA- or RNA-based 

binding molecules, referred to as aptamers, are generated by an in vitro selection procedure 

termed systematic evolution of ligands by exponential enrichment (SELEX) (Stoltenburg et 

al, 2007; Dunn et al, 2017). Recently, aptamers have been applied as fluorophore-marked 

nanobiosensor for real-time monitoring of transcription and translation of vascular 

endothelial growth factor (VEGF) in living cells. In this study, the nanoprobes have been 

chemically generated, which was followed by binding to gold nanorods to facilitate their 

cellular internalization (Wang et al, 2018). The use of aptamers as tool for imaging of 
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intracellular targets in living cells is limited to a few studies, which mostly are applied in the 

visualization of RNA dynamics (Autour et al, 2018; Sato et al, 2018). 

 

Figure 2 Overview of non-immunoglobulin scaffolds applied as intracellular affinity binder. 

Illustrated are structures and molecular weights of selected non-Ig scaffolds applied as intrabodies. Aptamer 

and lifeact are schematically displayed. Crystal structures of the protein-based non-Ig scaffolds are shown: 

affibody (PDB ID: 2KZI), DARPin (PDB ID: 5LW2), monobody (PDB ID: 3RZW). The images of the structures 

have been generated with PyMOL Molecular Graphics System, Version 2.0 Schrödinger, LCC.  

The majority of non-Ig scaffolds employed for molecular imaging are peptide- or protein-

based. The smallest affinity reagent currently applied for live-cell imaging is based on a 17 

amino acid peptide derived from the actin-binding protein (Adp140) of Saccharomyces 

cerevisiae, which was utilized to visualize F-actin in living cells. For the visualization of 

actin cytoskeleton dynamics by fluorescent microscopy, this small peptide is genetically 

fused to a N-terminal GFP (lifeact) and intracellularly expressed (Riedl et al, 2008; Riedl et 

al, 2010). 

Representing a new class of affinity reagents, affibodies were originally derived from the B-

domain within the immunoglobulin binding region of staphylococcal protein A. In this 

approach, specific binding is facilitated by a short cysteine-free peptide containing 58 amino 

acids (6.5 kDa) that folds into a three-helical bundle structure (Löfblom et al, 2010). 

Although affibodies have been mainly applied to stain and trace the internalization of cell 

surface receptors (Lyakhov et al, 2010), they have furthermore been applied as 

intracellularly expressed affinity reagents for the retention of the epidermal growth factor 

receptor in the secretory pathway (Vernet et al, 2009). Given this example, an application as 

intracellular molecular probes to visualize endogenous proteins would be conceivable.  

Another protein binding scaffold is represented by so-called repeat proteins, comprising 

“designed ankyrin repeat proteins” (DARPins). Due to their compact size (14 - 18 kDa) and 

the lack of cysteines, DARPins can be functionally expressed inside the cell, fused to a 

reporter of choice (Plückthun, 2015). Recently, DARPin-based intracellular binding 
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molecules recognizing different fluorescent proteins have been identified, thus allowing 

tracing and manipulation of FP-labeled target proteins like H2A-YFP or mTFP-Rab5c within 

this model system (Brauchle et al, 2014; Vigano et al, 2018). 

Lastly, naturally occurring protein scaffolds can be utilized in order to generate affinity 

reagents. One prominent example resulting in a wide range of affinity reagents is derived 

from the fibronectin type III domain (FN3) and led to the generation of so-called 

monobodies. Their small size, lack of disulfide-bonds and the formation of three loop 

structures that are comparable and modifiable like complementary determining regions 

(CDRs) of IgGs lead to a desirable intracellular application (Koide et al, 2012). In the field 

of neurological research, FP-fused monobodies enabled labeling and tracing of endogenous 

postsynaptic density protein 95 (PSD-95) and gephryin in living neurons, without affecting 

the morphology or functionality of neurons (Gross et al, 2013).  

3.4.2 IgG-based scaffolds to visualize endogenous targets in living cells 

As mentioned in chapter 3.2 conventional antibodies (IgGs) are indispensable tools for the 

detection and quantification of endogenous proteins in the field of biomedical research. 

However, because of their complex structure and size (~150 kDa), the use of full-length IgGs 

as intracellularly expressed affinity reagents is very limited. IgG molecules are composed of 

two different kinds of polypeptide chains: the heavy (H) chain with ~50 kDa and the 25 kDa 

light (L) chain. Each IgG molecule consists of two identical heavy and two identical light 

chains, thereby forming a heterotetrameric structure mediated by four disulfide bonds and 

resulting in two identical antigen-binding sites, which can bind simultaneously (Figure 3). 

Both chains can be divided into a constant domain (CH and CL respectively) and the amino-

terminal variable domain (VH or VL respectively), which confers the ability of specific 

antigen binding (Janeway, 2005). 
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Figure 3 Illustration of immunoglobulin scaffold-based intracellular affinity binder. 

Conventional IgG antibodies consist of two identical heavy (red, domains VH and CH1 - CH3) and two identical 

light (orange, domains VL and CL) chains, interconnected via disulfide bonds (yellow). The single chain 

variable fragment (scFv) is a synthetic fusion comprising the VH and VL domain of a conventional antibody, 

connected by a linking peptide, structure of a scFv (PDB ID: 4P49). Heavy-chain antibodies derived from 

camelids consist of only two disulfide-linked identical heavy chains comprising the domains CH2 - CH3 and 

VHH. The VHH fragment (nanobody) can be utilized as intrabody. Structure of an anti-GFP nanobody (PDB 

ID: 3OGO) with indicated complementarity determining regions (CDRs). The images of the structures have 

been generated with PyMOL Molecular Graphics System, Version 2.0 Schrödinger, LCC. 

The prerequisite for specific antigen binding is correct folding and disulfide bridge 

formation, thus the utilization of full-length IgGs as intrabodies is prevented by (i) the 

reducing environment of the cytosolic compartment and (ii) the size of ~150 kDa. 

Overcoming this natural restriction, recombinant antibody technology allows the fusion of 

the VH and VL domain by addition of a flexible peptide linker, commonly a (Gly4Ser)3 

decapentapeptide, resulting in a single-chain fragment variable (scFv) with a molecular 

weight of ~28 kDa (Figure 3) (Bird et al, 1988; Maynard & Georgiou, 2000). However, the 

reduction of an IgG to a scFv molecule does not necessarily result in a functional 

intracellularly expressible affinity molecule. The obligatory removal of the constant domain 

for an expression as scFv results in the exposition of hydrophobic amino acids located at the 

interface between the variable and the constant domain to the aqueous environment. 

Additionally, antibody variable domains contain a conserved interchain disulfide bridge 

linking the two β-sheets of the immunoglobulin domains. Therefore, a direct adoption of 

IgG-based sequences for the expression of scFv-based intrabodies is limited as the reducing 

conditions in vitro lead to denaturation and aggregation (Glockshuber et al, 1992; Cattaneo 

& Biocca, 1999). Interestingly, some naturally occurring antibodies lacking these cysteine 

residues still display functionality and specificity (Rudikoff & Pumphrey, 1986), thus 

leading to the assumption of disulfide bridge formation not being mandatory for functional 

folding of Ig domains. An understanding of these limitations gave rise to the targeted 
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engineering of scFvs as the utilization of the huge pool of available antibodies as ectopically 

expressed intrabodies would be highly desirable. Applications for live-cell imaging of a few 

scFv-based intrabodies have been described, in which they target different antigens involved 

in DNA replication like PCNA (Freund et al, 2014), modification-specific intracellular 

antibodies (mintbodies) recognizing epigenetic histone modifications (Sato et al, 2013; Sato 

et al, 2016), or studying dynamics of scaffold proteins like tubulin (Cassimeris et al, 2013) 

or gephyrin (Varley et al, 2011).  

In summary, the impact of scFv-based intrabodies for cellular imaging approaches was 

continuously expanded over the last few years. This development can mainly be explained 

by an extensive understanding of structure and binding mechanisms, which gave rise to the 

targeted engineering of scFv in order to adapt these molecules to the requirements of an 

intracellular expression and application. 

3.4.3 Nanobodies - naturally occurring single domain antibodies 

3.4.3.1 Heavy-chain only antibodies 

The modular composition and structure of antibody molecules in general is remarkably 

conserved among mammals. However, about 25 years ago a second type termed heavy-chain 

only antibodies (hcAbs) have been identified alongside conventional antibodies circulating 

in the blood of camelids (Old World camelids including Camelus dromedaries and Camelus 

bactrianus and New World camilds including Lama glama, Lama pacos, Lama guanicoe 

and Lama vicugna), contributing to the immune response in these animals (Hamers-

Casterman et al, 1993; Vincke & Muyldermans, 2012). In general, hcAbs represent 50 - 

75 % of total circulating antibodies within camelids and in comparison to conventional 

hetero-tetrameric IgGs these molecules are devoid of light chains and only composed of two 

identical heavy-chains resulting in a molecular weight of ~90 kDa (Figure 3). A lack of the 

CH1 domain is another characteristic of hcAbs compared to conventional IgGs (Hamers-

Casterman et al, 1993). The lack of the CH1 domain is explained by a specific genomic 

transition (G to A) in the splice signal at the 3’ site of the CH1 exon, causing the complete 

loss of the camelid CH1 exon during mRNA processing (Khong Nguyen et al, 1999). As the 

CH1 domain is crucial for the interaction between the light and the heavy chain in IgG 

molecules, correct IgG-like assembly is impossible in hcAbs. Consequently, the framework 

region 4 (FR4) of the variable domain is directly followed by the hinge region in hcAbs and 

antigen recognition is mediated by a single domain (VHH or nanobody), which is the smallest 



INTRODUCTION 

17 

(13 - 15 kDa) naturally occurring antigen binding format (Hamers-Casterman et al, 1993). 

Contrary to expectations, loss of the light chain did neither impair the diversity of the 

antigen-binding repertoire nor the antigen-reactivity resulting in a broad spectrum of highly 

affine hcAbs, which recognize various antigens (Flajnik et al, 2011). 

Although, VHHs and VHs share about 80 % identity in amino acid sequence, several 

important adaptions were acquired in order to compensate the absence of the light-chain 

variable domain. The amino acids mediating the typical antiparallel beta strand structure of 

the immunoglobulin fold are preserved between VH and VHH. Both domains contain four 

framework regions (FR1-4), which are interspersed by three complementary determining 

regions (CDR1-3), wherein scaffold stabilization is achieved by an intradomain disulfide 

bond (Cys22 and Cys92, according to Kabat numbering, (Kabat et al, 1992)). However, the 

hydrophobic amino acids constituting the VH-VL interface in FR2 of VHs are substituted in 

VHHs ((Val37Phe (or Tyr), Gly44Glu (or Gln), Leu45Arg (or Cys) and Trp47Gly (or Ser, 

Leu, Phe), Kabat numbering), resulting in an enhanced hydrophilicity (Desmyter et al, 1996; 

Muyldermans, 2001). These specific substitutions are referred to as hallmarks to distinguish 

between VHs and VHHs (Vu et al, 1997). 

Additionally to the adaptions at the VH-VL interface in hcAbs, the CDRs themselves within 

VHHs differ from those in VHs since antigen binding is mediated by only three CDRs in 

VHHs, whereas antigen recognition by conventional antibodies is achieved by six CDRs. 

Based on this major difference in VHHs, new mechanisms had to be adopted for retaining 

antigen binding diversity and specificity. The hypervariable domain of CDR1 is extended 

towards the N-terminus, thereby spreading into the loop between to β-strands, which in turn 

results in a higher variability. Probably the main compensatory mechanisms is accomplished 

by an elongated CDR3 resulting in an enhancement of the surface area available for antigen 

interaction. An additional stabilization of elongated CDR3s can be obtained by inter-CDR 

disulfide bonds, which frequently appear in camelid CDR3 loops, preferentially in the long 

ones (Vu et al, 1997; Muyldermans et al, 2001). Based on the illustrated structure, VHHs 

form a convex paratope, thereby expanding the spectrum of addressable epitopes, as VHHs 

can recognize epitopes that are not accessible for conventional antibodies (e.g. clefts) (Genst 

et al, 2006). Interestingly, immunization experiments of camelids revealed an antigen-type 

dependency regarding a conventional or heavy-chain IgG immune response, which 

underlines the hypothesis that hcAbs expand the accessible antigen repertoire (van der 

Linden et al, 2000). 
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Based on the unique characteristics of VHHs, including small size (13 - 15 kDa, ~2 x 4 nm), 

stability and tolerance of high salt concentrations, pH and temperature fluctuations as well 

as their solubility (van der Linden et al, 1999; Rothbauer et al, 2008), nanobodies have 

emerged as valuable tools ranging from biomedical research and diagnostics to clinical trials 

(Hassanzadeh-Ghassabeh et al, 2013; van Audenhove & Gettemans, 2016; Steeland et al, 

2016; Traenkle & Rothbauer, 2017). Moreover, high production yields can be achieved in 

different expression systems, including bacteria, fungi, mammalian cell lines, plants or insect 

cells (Meyer et al, 2014). An additional advantage is provided by the straight-forward 

approach in nanobody selection procedure as naïve, immunized or synthetic libraries can be 

employed to identify affinity binders by phage display (Romao et al, 2016).  

3.4.3.2 Monitoring of endogenous antigens by chromobodies 

The aforementioned properties in VHH structure and molecular composition substantially 

contributed to their successful utilization as intrabodies during the last years. A 

thermodynamically stable Ig-fold is required for ectopic expression of NBs in the reducing 

environment of the cytosol as the intradomain disulfide formation is blocked by this 

circumstance (Tanaka & Rabbitts, 2008). However, NBs containing an interdomain disulfide 

bond cannot be adapted as intracellularly expressed affinity reagents, since compensation of 

the lack in disulfide formation might interfere with the antigen binding capacity (Traenkle 

& Rothbauer, 2017). Consequently, different strategies (e.g. fluorescent-two-hybrid assay) 

for the identification of intracellularly functional binding molecules have been established 

(Zolghadr et al, 2008; Kaiser et al, 2014). Combining the advantages based on VHH nature 

with improved display and screening techniques, it is not surprising that until now various 

NBs have been implemented to trace or manipulate different endogenous proteins (Kaiser et 

al, 2014; Schumacher et al, 2018). 

With the development of the chromobody (CB) technology, comprising the chimeric genetic 

fusion of a nanobody and a FP followed by ectopic expression of the construct in mammalian 

cells, VHHs turned into indispensable tools for live-cell visualization of endogenous proteins. 

The breakthrough of the CB technology was initiated by a proof-of-concept study, wherein 

a RFP-fused GFP binding NB (GBP-RFP) was demonstrated to specifically label co-

expressed GFP-fusion proteins in different cellular compartments (Rothbauer et al, 2006). 

In the last years various specific CBs have been established to decipher the spatiotemporal 

dynamics of endogenous proteins. One group is classified by CBs tracing the reorganization 

of cytoskeleton components over time, such as lamin, F-actin or vimentin (Zolghadr et al, 
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2012; Panza et al, 2015; Maier et al, 2015). Furthermore, CBs tracing different endogenous 

nuclear components have been established. The cell cycle CB (CCC-CB) specifically targets 

the proliferating cell nuclear antigen (PCNA) resulting in the real-time assessment of cell 

cycle progression, which further enables a high-content approach to identify cell cycle 

modulating compounds (Schorpp et al, 2016). By implementing a poly(ADP-ribose) 

polymerase 1 (PARP1)-specific CB, PARP1 recruitment to compound-induced DNA 

damage sites can be monitored (Buchfellner et al, 2016). Furthermore, the chromatibody has 

been used to elucidate chromatin dynamics (Jullien et al, 2016). Illustrating the great 

potential of CBs, a binder specifically recognizing an activated version of G protein-coupled 

receptor (GPCR) β2-adrenoreceptor was established to visualize receptor trafficking after an 

activation-induced conformational change (Irannejad et al, 2013). Additionally, CBs 

targeting different virus components of HIV-1 or influenza A virus allow a functional 

analysis of virus morphogenesis (Helma et al, 2012; Ashour et al, 2015).  

Taken together, CBs are emerging tools to monitor spatiotemporal dynamics of endogenous 

proteins in living cells without affecting the endogenous antigen. These benefits resulted in 

the establishment of a broad range of CBs targeting different kinds of antigens to monitor 

endogenous antigens in living cells. Notably, several CBs have been already applied in vivo 

to monitor endogenous proteins in whole organisms without an interference in antigen 

functionality (Panza et al, 2015; Jullien et al, 2016). 

3.4.3.3 Chromobodies as tools to quantify changes in endogenous protein 

concentration 

As illustrated (chapter 3.1 - 3.3), monitoring the dynamic behavior of intracellular proteins 

such as endogenous CTNNB1 is highly desirable but also very challenging. For CTNNB1 

this can mainly be explained by the numerous interacting proteins and the strictly controlled 

intracellular level of CTNNB1 (reviewed in (Valenta et al, 2012)). Recently, a CB (BC1-

CB) was described, which specifically binds to soluble hypo-phosphorylated CTNNB1 

(Traenkle et al, 2015). The BC1-CB was stably introduced into HeLa cells (HeLa_BC1-CB) 

and the cells were treated with different compounds known to elevate the level of 

endogenous CTNNB1. Beside monitoring a nuclear translocation of CTNNB1 with the BC1-

CB (Figure 9 of Traenkle et al, 2015), a global elevation in CB fluorescence upon induction 

of CTNNB1 was observed (Figure 4). Subsequent immunoblot analysis (Figure 11 of 

Traenkle et al, 2015) confirmed a correlation of compound-induced increase in CTNNB1 
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accompanied by elevated BC1-CB protein amounts. As the transcriptional level of the CB 

was not altered through compound treatment, it was speculated that the elevation of 

CTNNB1 led to a concomitant stabilization of the CB on protein level. This hypothesized 

novel mechanism of “Antigen-Mediated CB Stabilization” (AMCBS) might provide a new 

approach to quantify changes in endogenous protein concentration within living cells by 

simply following the CB fluorescence signal. Interestingly, another study reported an 

analogous observation of antigen-mediated VHH stabilization in mammalian cells, by 

analyzing the amount of bacterially injected VHHs in presence or absence of the cognate 

antigen (Blanco-Toribio et al, 2010). 

 

Figure 4 Time-lapse microscopy of compound-treated HeLa_BC1-CB cells. 

HeLa_BC1-CB cells were treated with the indicated compounds or the respective controls followed by time-

lapse imaging starting 5 h after compound treatment (Traenkle et al, 2015). 
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3.5 Aims and objectives 

Elucidating the dynamics of endogenous proteins in real-time substantially contributes to a 

better understanding of physiological processes and disease generation, which consequently 

might promote drug discovery research. To date this task is mainly fulfilled by application 

of in vitro endpoint assays such as MS- or antibody-based techniques like quantitative 

western blotting, ELISA or immunofluorescence staining. However, the endpoint assay 

nature of these methods does not allow real-time assessment of dynamic changes and 

probing samples over time can be time consuming and labor-intensive.  

Overcoming these limitations, chromobodies allow to monitor spatiotemporal dynamics of 

endogenous proteins in living cells under native conditions. The observation that an increase 

in CTNNB1 antigen level was accomplished by an increase in BC1-CB fluorescence led to 

the suggestion of a mechanism termed “Antigen-Mediated ChromoBody Stabilization” 

(AMCBS). 

Within this dissertation, the first task was to analyze whether AMCBS is also evident for 

other CB-antigen combinations, which would suggest AMCBS as a general characteristic of 

CBs. Next, the respondency of CBs to monitor rapid and reversible changes of endogenous 

antigens was addressed. For this purpose three different strategies to generate destabilized 

or turnover-accelerated CBs were tested. Post testing of CB improvements in transient 

cellular systems, the next task was to generate and characterize cell lines stably expressing 

an optimized BC1-CB. A newly generated HeLa cell line was therefore compared to the 

originally described HeLa_BC1-CB cell line (Traenkle et al, 2015) regarding the CB 

respondency and dynamic range for image-based quantification of CTNNB1. The last task 

was to establish a protocol, which allows site-directed integration of optimized CBs into the 

AAVS1 safe harbor locus of a host cell by applying the CRISPR/Cas9 gene editing 

technology. 
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4 MATERIAL AND METHODS 

4.1 Material 

4.1.1 Chemicals and solutions 

Chemical / solution Manufacturer 

10x RIPA buffer ChromoTek, Martinsried, Germany 

10x T4 DNA-Ligase reaction buffer New England Biolabs, Frankfurt, Germany 

2-Propanol Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

5x Phusion GC-Buffer New England Biolabs, Frankfurt, Germany 

5x Phusion HF-Buffer New England Biolabs, Frankfurt, Germany 

6x DNA Loading Dye ThermoFisher Scientific, Schwerte, Germany 

Acrylamide Bisacrylamide Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

Agarose, molecular biology grade Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

Ammonium persulfate (APS) Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

Ampicillin Applichem GmbH, Darmstadt, Germany 

Antibleaching live cell visualization medium DMEMgfp-2 Evrogen, Moscow, Russia  

Bovine Serum Albumin (BSA, lyophilized powder) Sigma-Aldrich Chemie GmbH, Munich, Germany 

DAPI (4,6-diamiddino-2-phenylindole) Roche Diagnostics GmbH, Mannheim, Germany 

DMEM, high glucose, with phenolred ThermoFisher Scientific, Schwerte, Germany 

DMSO ≥99 % Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

DNAse I Applichem GmbH, Darmstadt, Germany 

dNTP Solution Mix New England Biolabs, Frankfurt, Germany 

Ethanol, absolute grade Sigma-Aldrich Chemie GmbH, Munich, Germany 

Ethanol, denatured Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

Ethidiumbromide solution (0.025%) Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

Ethylenediaminetetraacetic acid (EDTA) Applichem GmbH, Darmstadt, Germany 

Fetal Bovine Serum (FBS) ThermoFisher Scientific, Schwerte, Germany 

Formaldeyde (37 %) Applichem GmbH, Darmstadt, Germany 

G418 ThermoFisher Scientific, Schwerte, Germany 

GeneRuler 1kB plus DNA Ladder ThermoFisher Scientific, Schwerte, Germany 

Gibson Assembly® Master Mix New England Biolabs GmbH, Frankfurt, Germany 

Glycine Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

Hoechst33258 ThermoFisher Scientific, Schwerte, Germany 

Kanamycin Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

L-Glutamine  ThermoFisher Scientific, Schwerte, Germany 

Lipofectamine 2000 ThermoFisher Scientific, Schwerte, Germany 

Lipofectamine LTX ThermoFisher Scientific, Schwerte, Germany 

Luria Broth (LB) Medium  Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

Magnesium chloride  Sigma-Aldrich Chemie Gmbh, Munich, Germany 

Methanol, min. 99 %  Sigma-Aldrich Chemie GmbH, Munich, Germany 

Midiprep System PureYield Plasmid Promega GmbH, Mannheim, Germny  

Midiprep System PureYield Plasmid Qiagen N.V., Venlo, Netherlands 

Milkpowder, Blotting Grade  Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

N′-tetramethylethylenediamine (TEMED) Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

NEB-Buffer 1-4, Cut Smart New England Biolabs, Frankfurt, Germany 

NP-40 Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

NucleoSpin Gel and PCR Clean-up Kit Macherey-Nagel, Düren Germany 

NucleoSpin Plasmid Kit  Macherey-Nagel, Düren Germany 

Opti-MEM, reduced serum media ThermoFisher Scientific, Schwerte, Germany 

PageRuler™ Prestained Protein Ladder Plus Fermentas GmbH, St.Leon-Rot, Germany  

Penicillin Streptomycin  ThermoFisher Scientific, Schwerte, Germany 

Phenylmethanesulfonylfluoride (PMSF)  SERVA Electrophoresis GmbH, Heidelberg, Germany 

Phosphate Buffered Saline (PBS), 1x  ThermoFisher Scientific, Schwerte, Germany 

Phusion™ High-Fidelity DNA Polymerase  New England Biolabs, Frankfurt, Germany 

Polyethyleneimine Sigma-Aldrich Chemie GmbH, Munich, Germany  

Ponceau S  Sigma-Aldrich Chemie Gmbh, Munich, Germany  

Potassium chloride  Sigma-Aldrich Chemie Gmbh, Munich, Germany  
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Protease Inhibitor Mix M  SERVA Electrophoresis GmbH, Heidelberg, Germany  

Puromycin Sigma-Aldrich Chemie Gmbh, Munich, Germany 

Q5®Site-Directed Mutagenesis Kit New England Biolabs GmbH, Frankfurt, Germany 

Red Mastermix (2x) Taq Matermix Genaxxon bioscience GmbH, Ulm, Germany 

Restrictionenzymes  New England Biolabs GmbH, Frankfurt, Germany 

Sodium dodecyl sulfate (SDS)  Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

T4 Ligation Kit  New England Biolabs GmbH, Frankfurt, Germany 

Triton X-100 Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

Trypsin-EDTA (0.25 %), phenol red ThermoFisher Scientific, Schwerte, Germany 

Tween20 Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

β-Mercaptoethanol Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

 

4.1.2 Devices 

Device Manufacturer 

Autoclave VX-95   Systec GmbH, Wettenberg, Germany  

CASY TT Cell Counter System 
OLS OMNI Life Science GmbH & Co. KG, Bremen, 

Germany 

Cell Observer SD   Zeiss AG, Oberkochen, Germany  

Centrifuge 5415R   Eppendorf AG, Hamburg, Germany  

Centrifuge 5424   Eppendorf AG, Hamburg, Germany  

Centrifuge 5810R   Eppendorf AG, Hamburg, Germany  

Centrifuge Universal 2S   Hettich GmbH & Co KG, Tuttlingen, Germany  

CO2-Incubator CB150 Binder GmbH, Tuttlingen, Germany  

Elektrophoresis Chamber Bio-Rad Laboratories GmbH, München, Germany  

GFL water bath 1002   
GFL Gesellschaft für Labortechnik mbH, Burgwedel, 
Germany  

GFL water bath 1083   
GFL Gesellschaft für Labortechnik mbH, Burgwedel, 

Germany  

High-content microscope MetaXpressXL system   Molecular Devices, Biberach, Germany  

Incubator shaker C25   New Brunswick Scientific, Nürtingen, Germany  

INTAS UV documentation system   INTAS, Goettingen, Germany  

Light microscope TMS-F   Nikon, Duesseldorf, Germany  

Magnet stirrer RCTbasic   IKA-Werke GmbH, Staufen, Germany  

Microscope Axiovert 200M   Zeiss AG, Oberkochen, Germany  

Multipipet plus   Eppendorf AG, Hamburg, Germany  

Mupid One electrophoresis unit   NIPPON Genetics EUROPE GmbH, Dueren, Germany  

Neubauer chamber   Brand, Wertheim, Germany  

Overhead rotator   Bachofer, Reutlingen, Germany  

PCR device Primus 96 plus   MWG Biotech AG, Ebersberg, Germany  

pH meter   Mettler-Toledo GmbH, Giessen, Germany  

PHERAstar plate reader  BMG Labtech, Offenburg, Germany  

Pipet HandyStep   Brand GmbH & Co KG, Wertheim, Germany  

Pipettes 10 µl, 20 µl, 100 µl, 200 µl, 1000 µl Brand GmbH & Co KG, Wertheim, Germany  

Pipettboy   Integra BioSciences, Fernwald, Germany  

Pipette, 8-Kanal, 0.5 µl - 1200 µl Eppendorf AG, Hamburg,  Germany  

Power supply gel elektrophoresis MP-300V   Major Science, USA  

PowerPac Basic Power Supply   Bio-Rad Laboratories GmbH, München, Germany  

Semi-Dry transfer cell   Bio-Rad Laboratories GmbH, München, Germany  

Spectrometer NanoDrop 2000   ThermoFisher Scientific, Schwerte, Germany  

StepOneTM Plus Real-Time PCR System ThermoFisher Scientific, Schwerte, Germany 

Steril hood   BDK GmbH, Sonnenbühl-Genkingen, Germany  

Thermomixer comfort   Eppendorf AG, Hamburg,  Germany  

Typhoon TRIO   GE Healthcare Life Sciences  

 

4.1.3 Consumables 

Consumable Manufacturer 

µClear 96-well microplate Greiner Bio-One, Frickenhausen, Germany 
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Blotting Paper Grade 703 Bio-Rad Laboratories GmbH, Munich, Germany 

Cell Culture Flasks T-25, T-75, T-125 Corning GmbH, Wiesbaden, Germany 

100 mm cell culture dish Corning GmbH, Wiesbaden, Germany 

Falcon Tubes (15 and 50 ml) Sarstedt AG & Co., Nümbrecht, Germany 

Falcon-Tubes 15ml und 50ml Greiner Bio-One, Frickenhausen, Germany 

GFP-Trap ChromoTek GmbH, Martinsried, Germany 

Parafilm Brand GmbH & Co. KG, Wertheim, Germany 

PCR-Reaction tube, 200 µl Sarstedt AG & Co., Nümbrecht, Germany 

Petridish, 92 x 16 mm Sarstedt AG & Co., Nümbrecht, Germany 

pH Indicatorstrips, pH 0-14 Merck KGaA, Darmstadt, Germany 

Pipettes (2, 5, 10 und 25 ml) Sarstedt AG & Co., Nümbrecht, Germany 

Amersham Protan 0,45 µm Nitrocellulose GE Healthcare, Uppsala, Sweden 

Pipettetips (10, 20, 200, 1000, 1250 µl) Starlab GmbH, Hamburg, Germany 

Multiwell plate: 6, 12, 24, 48, 96 well Corning GmbH, Wiesbaden, Germany 

Reaction tube 1.5 ml / 2 ml Sarstedt AG & Co., Nümbrecht, Germany 

Cryotubes, 1.8 ml Greiner Bio-One, Frickenhausen, Germany 

 

4.1.4 Antibodies 

Antibody Dilutionfactor Company 

Primary   

anti-CTNNB1 (mouse, mAb) 1000 BD Biosciences, Heidelberg, Germany 

anti-GAPDH FL335 (rabbit, pAb)  1000 Santa Cruz, Dallas, USA  

anti-GFP 3H9 (rat, mAb) 1000 ChromoTek GmbH, Munich, Germany  

anti-PCNA 16D10 1000 ChromoTek GmbH, Munich, Germany  

anti-RFP 6G6 (mouse, mAb) 5000 ChromoTek GmbH, Munich, Germany  

anti-TagRFP AB233 (rabbit, mAb)   1000 Evrogen, Moscow, Russia  

   

Secondary   

anti-mouse (goat) Alexa 488/546/647 conjugates 2000 ThermoFisher Scientific, Schwerte, Germany 

anti-rabbit (goat) Alexa 488/546/647 conjugates 2000 ThermoFisher Scientific, Schwerte, Germany 

anti-rat (goat) Alexa 488/546/647 conjugates 2000 ThermoFisher Scientific, Schwerte, Germany 

 

4.1.5 Oligonucleotides 

4.1.5.1 Primer for DNA amplification 

Primer name Primer sequence, 5’ - 3’ 

4GS-linker-oligo1 
CAG GTC ACC GTC TCC TCC GGA GGC GGG GGA AGC GGA GGC GGG GGA 
AGC GGA GGC GGG GGA TCC ATG AGC GGG GGC GAG G 

4GS-linker-oligo2 
CCT CGC CCC CGC TCA TGG ATC CCC CGC CTC CGC TTC CCC CGC CTC CGC 

TTC CCC CGC CTC CGG AGG AGA CGG TGA CCT G 

AAVS1-CB-donor-fragment-2-for TAG AGG CGG CAA TTG TTC A 

AAVS1-CB-donor-fragment-2-rev TGT TGT TAA CTT GTT TAT TGC AGC 

BC1-2GS-rev GGA GAC GGT GAC CTG GGT CC 

BC1-for ATG GCT CAG GTG CAG CTG CAG 

BC1-NB-C92Y-for CCG TGT ATT ACT ATA ACG CTC TAT C 

BC1-NB-C92Y-rev CCG TGT CCT CAG GTT TC 

BC1-NB-S113F-for CCG TCT CCT TCA GAA GCT TCG 

BC1-NB-S113F-rev TGA CCT GGG TCC CCT G 

BC1-NB-S70R-for GGG CCG GTT CAC CAT CCG CAG AGA CAA AGC C 

BC1-NB-S70R-rev TTC ACG GAG TCT TGA TAG TTT GTG 

BC1-rev 
GCT TCC CCC GCC TCC GCT TCC CCC GCC TCC GGA GGA GAC GGT GAC CTG 

GGT C 

BC1-TagGFP2-PEST-for 
TAT ATA TCT AGA TCA TGG CTT CCC GCC GGA GGT GGA GGA GCA GGA 
TGA TGG CAC GCT GCC CAT GTC TTG TGC CCA GGA GAG CGG GAT GGA CC 

BC1-TagGFP2-PEST-rev TAT ATA CAA TTG CTA GGT CCA TCC CGC TCT CCT GG 

BspEI-ins-for TCC GGA ACC GCG GGC CCG GGA TCC 
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BspEI-ins-rev ACC GTC GAC TGC AGA ATT CGA AGC 

eGFP-for ATA TAT GGA TCC ATG GTG AGC AAG GGC GAG G 

eGFP-rev ATA TAT TCT AGA TCA CTT GTA CAG CTC GTC CAT  

genPCR-AAVS1-int-for TCG ACT TCC CTT CTT CCG ATG 

genPCR-AAVS1-int-rev CTC AGA TTC TGG GAG AGG GTA 

mCherry-CTNNB1-for GGA GGT ACC GCT ACT CAA GCT GAT TTG 

mCherry-CTNNB1-rev CTT GGA TCC TCA CAG GTC AGT ATC AAA C 

mCherry-for CCA GGA CGG CGA GTT CAT C 

mCherry-rev ATA TAT TCT AGA TCA CTT GTA CAG CTC GTC CAT  

mCherry-silent-mut-for CCA GGA CTC CTC CCT CCA GGA CGG CGA G 

mCherry-silent-mut-rev GTC ACG GTC ACC ACG CCG CCG TC 

NB-N-term-A-mut-for CGT CTC AGA GGT GGG GCG GCT CAG GTG CAG CTG 

NB-N-term-C-mut-for CGT CTC AGA GGT GGG TGC GCT CAG GTG CAG CTG 

NB-N-term-D-mut-for CGT CTC AGA GGT GGG GAC GCT CAG GTG CAG CTG 

NB-N-term-E-mut-for CGT CTC AGA GGT GGG GAG GCT CAG GTG CAG CTG 

NB-N-term-F-mut-for CGT CTC AGA GGT GGG TTC GCT CAG GTG CAG CTG 

NB-N-term-G-mut-for CGT CTC AGA GGT GGG GGG GCT CAG GTG CAG CTG 

NB-N-term-H-mut-for CGT CTC AGA GGT GGG CAC GCT CAG GTG CAG CTG 

NB-N-term-I-mut-for CGT CTC AGA GGT GGG ATC GCT CAG GTG CAG CTG 

NB-N-term-K-mut-for CGT CTC AGA GGT GGG AAG GCT CAG GTG CAG CTG 

NB-N-term-L-mut-for CGT CTC AGA GGT GGG CTG GCT CAG GTG CAG CTG 

NB-N-term-N-mut-for CGT CTC AGA GGT GGG AAC GCT CAG GTG CAG CTG 

NB-N-term-P-mut-for CGT CTC AGA GGT GGG CCG GCT CAG GTG CAG CTG 

NB-N-term-Q-mut-for CGT CTC AGA GGT GGG CAG GCT CAG GTG CAG CTG 

NB-N-Term-rev GAG TAC CAG GTG CAG GGT GG 

NB-N-term-R-mut-for CGT CTC AGA GGT GGG AGG GCT CAG GTG CAG CTG 

NB-N-term-S-mut-for CGT CTC AGA GGT GGG AGC GCT CAG GTG CAG CTG 

NB-N-term-T-mut-for CGT CTC AGA GGT GGG ACC GCT CAG GTG CAG CTG 

NB-N-term-V-mut-for CGT CTC AGA GGT GGG GTG GCT CAG GTG CAG CTG 

NB-N-term-W-mut-for CGT CTC AGA GGT GGG TGG GCT CAG GTG CAG CTG 

NB-N-term-Y-mut-for CGT CTC AGA GGT GGG TAC GCT CAG GTG CAG CTG 

NB-uni-for ATA TAT CTG CAG GAG TCT GGG GGA GGC TTG GTG CA 

NB-uni-rev ATA TAT TCC GGA GGA GAC GGT GAC CTG GGT CCC 

Seq-AAVS1-CB-donor-1 TAT GGA AAA ACG CCA GCA AC 

Seq-AAVS1-CB-donor-2 ATG TGG CTC TGG TTC TGG G 

Seq-AAVS1-CB-donor-3 AGC GGC TCG GCT TCA C 

Seq-AAVS1-CB-donor-4 CCT TAG ATG TTT TAC TAG CCA GAT 

TagGFP2-2GS-for GGA GGC GGG GGA TCC ATG AGC GGG G 

TagGFP2-2GS-for ATG AGC GGG GGC GAG GAG CTG 

TagGFP2-for 
GGA GGC GGG GGA AGC GGA GGC GGG GGA TCC ATG AGC GGG GGC GAG 
GAG C 

TagGFP2-rev 
GTG GTA TGG CTG ATT ATG ATC TAG ATC ACC TGT ACA GCT CGT CCA TGC 

C 

TagRFP-for ATA TAT GGA TCC ATG GTG TCT AAG GGC GAA G 

TagRFP-rev ATA TAT TCT AGA TCA ATT AAG TTT GTG CCC CAG TTT G 

Ub-G76V-mut-rev CAC ACC TCT GAG ACG GAG TAC C 

ubiquitin-for 
TTT AGT GAA CCG TCA GAT CCG CTA GCG CCA CCA TGC AGA TCT TCG TGA 
AGA CTC TG 

ubiquitin-rev CAG CTG CAC CTG AGC CAT CCC ACC TCT GAG ACG GAG TAC 

αCA-mCherry -PEST-rev TAT ATA TCT AGA CTA GGT CCA TCC CGC TCT CCT GG 

αCA-mCherry-PEST-for 
TAT ATA TGT ACA AGC ATG GCT TCC CGC CGG AGG TGG AGG AGC AGG 
ATG ATG GCA CGC TGC CCA TGT CTT GTG CCC AGG AGA GCG GGA TGG 

ACC 

β-actin-promoter-for GGA ATT AAT ACT GCC TGG CCA CTC CAT G 

β-actin-promoter-mut-PstI-for AGA GCT CCT TGT GCA GGA GCG 

β-actin-promoter-rev TCC GCT AGC TCG GCA AAG GCG AGG C 

β-actin-promotoe-mut-PstI-rev TGG AGG GCA TGG AGT GGC 
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4.1.5.2 gBlocks® gene fragments and synthesized plasmids 

Sequence name Primer sequence, 5’ - 3’ 

EF1-α promoter  

gBlock® gene fragment 
 

TTACCGCCATGCATTAGTTATTAATGGCTCCGGTGCCCGTCAGTGGGCAGAGCGCACAT

CGCCCACAGTCCCCGAGAAGTTGGGGGGAGGGGTCGGCATTTGAACCGGTGCCTAGAGA

AGGTGGCGCGGGGTAAACTGGGAAAGTGATGTCGTGTACTGGCTCCGCCTTTTTCCCGA

GGGTGGGGGAGAACCGTATATAAGTGCAGTAGTCGCCGTGAACGTTCTTTTTCGCAACG

GGTTTGCCGCCAGAACACAGGTAAGTGCCGTGTGTGGTTCCCGCGGGCCTGGCCTCTTT

ACGGGTTATGGCCCTTGCGTGCCTTGAATTACTTCCACCTGGCTCCAGTACGTGATTCT

TGATCCCGAGCTTCGGGTTGGAAGTGGGTGGGAGAGTTCGAGGCCTTGCGCTTAAGGAG

CCCCTTCGCCTCGTGCTTGAGTTGAGGCCTGGCCTGGGCGCTGGGGCCGCCGCGTGCGA

ATCTGGTGGCACCTTCGCGCCTGTCTCGCTGCTTTCGATAAGTCTCTAGCCATTTAAAA

TTTTTGATGACCTGCTGCGACGCTTTTTTTCTGGCAAGATAGTCTTGTAAATGCGGGCC

AAGATCTGCACACTGGTATTTCGGTTTTTGGGGCCGCGGGCGGCGACGGGGCCCGTGCG

TCCCAGCGCACTTGTTCGGCGAGGCGGGGCCTGCGAGCGCGGCCACCGAGAATCGGACG

GGGGTAGTCTCAAGCTGGCCGGCCTGCTCTGGTGCCTGGTCTCGCGCCGCCGTGTATCG

CCCCGCCCTGGGCGGCAAGGCTGGCCCGGTCGGCACCAGTTGCGTGAGCGGAAAGATGG

CCGCTTCCCGGCCCTGCTCCAGGGAGCTCAAAATGGAGGACGCGGCGCTCGGGAGAGCG

GGCGGGTGAGTCACCCACACAAAGGAAAAGGGCCTTTCCGTCCTCAGCCGTCGCTTCAT

GTGACTCCACGGAGTACCGGGCGCCGTCCAGGCACCTCGATTAGTTCTCGAGCTTTTGG

AGTACGTCGTCTTTAGGTTGGGGGGAGGGGTTTTATGCGATGGAGTTTCCCCACACTGA

GTGGGTGGAGACTGAAGTTAGGCCAGCTTGGCACTTGATGTAATTCTCCTTGGAATTTG

CCCTTTTTGAGTTTGGATCTTGGTTCATTCTCAAGCCTCAGACAGTGGTTCAAAGTTTT

TTTCTTCCATTTCAGGTGTCGTGAGCTAGCGCCACCATGCAGATCTTCG 

AAVS1-CB-donor fragment 1 
gene synthesis, plasmid DNA 

CCTTTTGCTGGCCTTTTGCTCACATGTTGCTTTCTCTGACCAGCATTCTCTCCCCTGGG

CCTGTGCCGCTTTCTGTCTCCAGCTTGTGGCCTGGGTCACCTCTACGGCTGGCCCAGAT

CCTTCCCTGCCGCCTCCTTCAGGTTCCGTCTTCCTCCACTCCCTCTTCCCCTTGCTCTC

TGCTGTGTTGCTGCCCAAGGATGCTCTTTCCGCAGCACTTCCTTCTCGGCGCTGCACCA

CGTGATGTCCTCTGAGCGCATCCTCCCCGTGTCTGGGTCCTCTCCGGGCATCTCTCCTC

CCTCACCCAACCCCATGCCGTCTTCACTCGCTGGGTTCCCTTTTCCTTCTCCTTCTGGG

GCCTGTGCCATCTCTCGTTTCTTAGGATGGCCTTCTCCGACGGATGTCTCCCTTGCGTC

CCGCCTCCCCTTCTTGTAGGCCTGCATCATCACCGTTTTTCTGGACAACCCCAAAGTAC

CCCGTCTCCCTGGCTTTAGCCACCTCTCCATCCTCTTGCTTTCTTTGCCTGGACACCCC

GTTCTCCTGTGGATTCGGGTCACCTCTCACTCCTTTCATTTGGGCAGCTCCCCTACCCC

CCTTACCTCTCTAGTCTGTGCAAGCTCTTCCAGCCCCCTGTCATGGCATCTTCCAGGGG

TCCGAGAGCTCAGCTAGTCTTCTTCCTCCAACCCGGGCCCCTATGTCCACTTCAGGACA

GCATGTTTGCTGCCTCCAGGCATCCTGTGTCCCCGAGCTGGGACCACCTTATATTCCCA

GGGCCGGTTAATGTGGCTCTGGTTCTGGGTACTTTTATCTGTCCCCTCCACCCCACAGT

GGGGCAAGCTTCTGACCTCTTCTCTTCCTCCCACAGGGCCTCGAGAGATCTGGCAGCGG

AGAGGGCAGAGGAAGTCTTCTAACATGCGGTGACGTGGAGGAGAATCCCGGCCCTAGGC

TCGAGATGACAGAATACAAACCCACGGTGCGGCTCGCGACTCGCGATGACGTGCCCCGA

GCGGTGAGAACATTGGCAGCAGCGTTCGCAGACTATCCGGCTACGCGGCATACTGTCGA

TCCTGATCGACATATTGAACGGGTCACCGAGTTGCAGGAGCTTTTCCTCACACGCGTTG

GATTGGATATTGGCAAAGTATGGGTCGCGGACGACGGGGCAGCTGTCGCCGTGTGGACC

ACCCCCGAGTCAGTGGAGGCTGGAGCGGTATTCGCTGAGATCGGCCCTCGGATGGCAGA

ATTGAGCGGCTCCAGACTGGCGGCTCAACAGCAGATGGAAGGGCTCCTCGCCCCTCATA

GACCTAAGGAACCTGCTTGGTTCCTCGCAACCGTGGGCGTCTCACCAGACCATCAGGGG

AAGGGCCTTGGGTCTGCGGTGGTCTTGCCGGGGGTCGAGGCaGCAGAGAGAGCTGGGGT

ACCCGCGTTTTTGGAAACAAGTGCGCCCCGAAACCTCCCGTTTTACGAACGGCTTGGCT

TTACAGTCACAGCAGATGTTGAAGTACCGGAGGGACCAAGGACCTGGTGCATGACCCGC

AAGCCGGGAGCTTGATCAAGAGGGCCCGTTTAAACCCGCTGATCAGCCTCGACTGTGCC

TTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTCCCCCGTGCCTTCCTTGACCCTGGAAG

GTGCCACTCCCACTGTCCTTTCCTAATAAAATGAGGAAATTGCATCGCATTGTCTGAGT

AGGTGTCATTCTATTCTGGGGGGTGGGGTGGGGCAGGACAGCAAGGGGGAGGATTGGGA

AGACAATAGCAGGCATGCTGGGGATGCGGTGGGCTCTATGGACTAGTATTAATTAAATC

TAGAGGCGGCAATTGTTCACTCCTCAGGTGCAGGC 

AAVS1-CB-donor fragment 2 

AAATCTAGAGGCGGCAATTGTTCACTCCTCAGGTGCAGGCTGCCTATCAGAAGGTGGTG

GCTGGTGTGGCCAATGCCCTGGCTCACAAATACCACTGAGATCTTTTTCCCTCTGCCAA

AAATTATGGGGACATCATGAAGCCCCTTGAGCATCTGACTTCTGGCTAATAAAGGAAAT

TTATTTTCATTGCAATAGTGTGTTGGAATTTTTTGTGTCTCTCACTCGGAAGGACATAT

GGGAGGGCAAATCATTTAAAACATCAGAATGAGTATTTGGTTTAGAGTTTGGCAACATA

TGCCATATGCTGGCTGCCATGAACAAAGGTGGCTATAAAGAGGTCATCAGTATATGAAA

CAGCCCCCTGCTGTCCATTCCTTATTCCATAGAAAAGCCTTGACTTGAGGTTAGATTTT

TTTTATATTTTGTTTTGTGTTATTTTTTTCTTTAACATCCCTAAAATTTTCCTTAGATG

TTTTACTAGCCAGATTTTTCCTCCTCTCCTGACTACTCCCAGTCATAGCTGTCCCTCTT

CTCGTCGACAGTACTAAGCTTTGACAGAAAAGCCCCATCCTTAGGCCTCCTCCTTCCTA

GTCTCCTGATATTGGGTCTAACCCCCACCTCCTGTTAGGCAGATTCCTTATCTGGTGAC

ACACCCCCATTTCCTGGAGCCATCTCTCTCCTTGCCAGAACCTCTAAGGTTTGCTTACG

ATGGAGCCAGAGAGCATCCTGGGAGGGAGAGCTTGGCAGGGGGTGGGAGGGAAGGGGGG

GATGCGTGACCTGCCCGGTTCTCAGTGGCCACCCTGCGCTACCCTCTCCCAGAACCTGA

GCTGCTCTGACGCGGCTGTCTGGTGCGTTTCACTGATCCTGGTGCTCCAGCTTCCTTAC

ACTTCCCAAGAGGAGAAGCAGTTTGGAAAAACAAAATCAGAATAAGTTGGTCCTGAGTT

CTAACTTTGGCTCTTCACCTTTCTAGTCCCCAATTTATATTGTTCCTCCGTGCGTCAGT

TTTACCTGTGAGATAAGGCCAGTAGCCAGCCCCGTCCTGGCAGGGCTGTGGTGAGGAGG

GGGGTGTCCGTGTGGAAAACTCCCTTTGTGAGAATGGTGCGTCCTAGGTGTTCACCAGG

TCGTGGCCGCCTCTACTCCCTTTCTCTTTCTCCATCCTTCTTTCCTTAAAGAGTCCCCA

GTGCTATCTGGGACATATTCCTCCGCCCAGAGCAGGGTCCCGCTTCCCTAAGGCCCTGC
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TCTGGGCTTCTGGGTTTGAGTCCTTGGCAAGCCCAGGAGAGGCGCTCAGGCTTCCCTGT

CCCCCTTCCTCGTCCACCATCTCATGCCCCTGGCTCTCCTGCCCCTTCCCTACAGGGGT

TCCTGGCTCTGCTCTCAATTGTTGTTGTTAACTTGTTTATTGCAGCTTATAATGG 

 

4.1.6 Expression constructs 

Expression construct Origin 

AAVS1_Ub-R-ActinNB-eGFP this study 

AAVS1_Ub-R-BC1-eGFP this study 

Actin-CB  (Panza et al, 2015), kindly provided by Chromotek 

BC1-TagGFP2 (Traenkle et al, 2015) 

BC1-TagGFP2-PEST Master thesis Kathy-Ann Secker 

BC1-TagGFP-PEST Master thesis Kathy-Ann Secker 

Cas9_AAVS1-gRNA (Oceguera-Yanez et al, 2016) 

CCC-TagRFP (Burgess et al, 2012; Schorpp et al, 2016), kindly provided by Chromotek 

EF1-α_Ub-R-BC1-eGFP this study 

GFP-CA (Ivanchenko et al, 2009; Lampe et al, 2007) 

LMN-CB (Zolghadr et al, 2012) 

mCherry (Toulany et al, 2017) 

mCherry-CTNNB1 this study 

pEGFP-N1  Clonetech 

Ub-A-BC1-eGFP this study 

Ub-A-BC1-mCherry this study 

Ub-A-BC1-TagGFP2 this study 

Ub-A-BC1-TagRFP this study 

Ub-A-VB6-TagGFP2 this study 

Ub-A-αCA-TagGFP2 this study 

Ub-C-BC1-TagGFP2 this study 

Ub-D-BC1-TagGFP2 this study 

Ub-E-BC1-TagGFP2 this study 

Ub-F-BC1-eGFP this study 

Ub-F-BC1-mCherry this study 

Ub-F-BC1-TagGFP2 this study 

Ub-F-BC1-TagRFP this study 

Ub-F-VB6-TagGFP2 this study 

Ub-F-αCA-TagGFP2 this study 

UbG76V-M-BC1-TagGFP2 this study 

Ub-G-BC1-TagGFP2 this study 

Ub-H-BC1-TagGFP2 this study 

Ub-I-BC1-TagGFP2 this study 

Ub-K-BC1-TagGFP2 this study 

Ub-L-BC1-TagGFP2 this study 

Ub-M-BC1-(G4S)2-TagGFP2 this study 

Ub-M-BC1-(G4S)4-TagGFP2 this study 

Ub-M-BC1-eGFP this study 

Ub-M-BC1-mCherry this study 

Ub-M-BC1-TagGFP2 this study 

Ub-M-BC1-TagRFP this study 

Ub-M-LMN-CB this study 

Ub-M-VB6-TagGFP2 this study 

Ub-M-αCA-TagGFP2 this study 

Ub-N-BC1-TagGFP2 this study 

Ub-P-BC1-TagGFP2 this study 

Ub-Q-BC1-TagGFP2 this study 

Ub-R-BC1-eGFP this study 

Ub-R-BC1-mCherry this study 

Ub-R-BC1-TagGFP2 this study 

Ub-R-BC1-TagRFP this study 

Ub-R-LMN-CB this study 
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Ub-R-VB6-TagGFP2 this study 

Ub-R-αCA-TagGFP2 this study 

Ub-S-BC1-eGFP  this study 

Ub-S-BC1-mCherry this study 

Ub-S-BC1-TagGFP2 this study 

Ub-S-BC1-TagRFP this study 

Ub-S-VB6-TagGFP2 this study 

Ub-S-αCA-TagGFP2 ( this study 

Ub-T-BC1-TagGFP2 this study 

Ub-V-BC1-TagGFP2 this study 

Ub-W-BC1-TagGFP2 this study 

Ub-Y-BC1-TagGFP2 this study 

VB6-eGFP (Maier et al, 2015) 

VB6-TagRFP (Maier et al, 2015) 

αCA-mCherry (Helma et al, 2012) 

αCA-mCherry-PEST Master thesis Kathy-Ann Secker 

αCA-mCherry-PEST Master thesis Kathy-Ann Secker 

β-actin promoter  (Damdindorj et al, 2014), pAAV-hBACT-PIGA, a gift from Hiroyuki Konishi 

β-actin_Ub-R-BC1-eGFP this study 

 

4.1.7 RNAi constructs 

siRNA Distributor  Sequence or order-ID 

siCTR1 Dharmacon ON-Target plus non-targeting siRNA #1 (D-001810-01) 

siCTR2 Dharmacon ON-Target plus non-targeting siRNA #1 (D-001810-02) 

siPCNA1 ambion, life technologies 5’-CGUAUAUGCCGAGAUCUCAtt-3‘ 

siPCNA2 ambion, life technologies 5‘-GGAGUGAAAUUUUCUGCAAtt-3‘ 

siPCNA3 ambion, life technologies 5‘-GAAGAUAUCAUUACACUAAtt-3‘ 

siVIM1 ambion, life technologies 5‘-GGUUGAUACCCACUCAAAAtt-3’ 

siVIM2 ambion, life technologies 5‘-GAGGGAAACUAAUCUGGAUtt-3‘ 

siVIM3 ambion, life technologies 5‘-GUCUUGACCUUGAACGCAAtt-3‘ 

 

4.1.8 PrimeTime® qPCR assay primer 

Gene name  Assay name RefSeqNumber Exon location 

AXIN2 Hs.PT.58.39305692 NM_004655 3-4 

CCND1 Hs.PT.56a.4930170 NM_053056 1-2 

CTNNB1 Hs.PT.58.40551289 NM_00109821 10-11 

GAPDH Hs.PT.39a.22214836 NM_002046 2-3 

MYC Hs.PT.58.26770695 NM_002467 2-3 

 

4.1.9 Cell lines 

4.1.9.1 Parental cell lines 

Cell line Additional information Obtained from 

DLD-1 
CCL-221 

human colorectal adenocarcinoma 
ATCC 

HCT116 
CCL-247 
human colorectal carcinoma 

ATCC 

HEK293T 
CRL-3216 

human embryonic kidney 
ATCC 

HeLa Kyoto 
Cellosaurus no. CVCL_1922 
human cervix adenocarcinoma 

Kyoto University, Japan 

U2OS 
HTB-96 

human bone osteosarcoma 
ATCC 
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4.1.9.2 Stably transfected cell lines 

Cell line Origin 

A549_VB6-eGFP (Maier et al, 2015) 

A549_VB6-TagRFP unpublished cell line generated by Dr. Julia Maier, University of Tuebingen 

DLD-1_AAVS1_Ub-R-BC1-eGFP this study 

DLD-1_BC1-TagGFP2 unpublished cell line generated by Bettina-Maria Keller, University of Tuebingen 

HCT116_AAVS1_Ub-R-BC1-eGFP this study 

HeLa_AAVS1_Ub-R-ACT-eGFP this study 

HeLa_ACT-eGFP unpublished cell line generated by Dr. Björn Tränkle, University of Tuebingen 

HeLa_BC1-TagGFP2 (Traenkle et al, 2015) 

HeLa_CCC-TagRFP (Panza et al, 2015) 

HeLa_Ub-R-BC1-eGFP this study 

HeLa_αCA-mCherry (Helma et al, 2012) 

U2OS_Ub-R-BC1-eGFP this study 

 

4.2 Methods 

4.2.1 Molecular biological methods  

4.2.1.1 Polymerase chain reaction  

To amplify DNA fragments and to introduce specific restriction sites, polymerase chain 

reaction (PCR) was performed. The standard PCR set-up contained the following 

components: (1) template DNA, (2) DNA primers (listed in oligonucleotides) 

complementary to 3’- ends of the sense and anti-sense strand, (3) thermostable DNA 

polymerase, (4) deoxynucleotide triphosphates (dNTPs) mix, (5) reaction buffer (Table 1). 

PCR was carried out according to the conditions shown in Table 2, wherein the annealing 

temperature was adjusted to the nucleotide composition of the DNA primers and the 

extension time to the length of the amplicon. 

Table 1 Standard PCR reaction setup 
Component Volume Final concentration 

5X Phusion HF or Buffer  10 µl 1X 

10 mM dNTP mix 1 µl 200 µM 

10 µM forward primer 2.5 µl 0.5 µM 

10 µM reverse primer 2.5 µl 0.5 µM 

Template DNA (10 ng/µl) 1 µl 10 ng 

Phusion DNA Polymerase 0.5 µl 1.0 units/50 µl PCR 

ddH2O 32.5 µl - 

 

Table 2 Standard PCR cycling conditions 
Step Temperature Time Number of cycles 

Initial denaturation 98 °C 30 s 1 

Denaturation 

Annealing 
Extension 

98 °C 

53 – 62 °C 
72 °C 

10 s 

15 s 
15 s per kb 

 

30x 
 

Final extension 72 °C 10 min 1 

Hold 4 °C ∞  
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4.2.1.2 Restriction analysis 

Enzymatic digestion of amplified DNA fragments and plasmids was performed using 

restriction enzymes from New England Biolabs according to the manufacturer’s instruction. 

For analytical purposes, 500 – 1000 ng DNA and for plasmid preparation 10 µg DNA were 

digested by restriction enzymes. 

4.2.1.3 Agarose gel electrophoresis  

Agarose gel electrophoresis was used for size separation, analysis and purification of DNA 

samples from enzymatic restriction and / or PCR reaction. The separation was carried out on 

0.8 - 1.5 % agarose dissolved in 1X Tris-acetate-EDTA buffer containing 0.025 µg/ml 

ethidium bromide to allow detection of DNA under UV exposure. DNA samples were mixed 

with 6X DNA loading dye and loaded on the gel for size separation. As standard Generuler 

1 kb Plus DNA Ladder was used. Ethidium bromide-stained DNA was detected with an Intas 

UV system (Intas Science Imaging). In case of a preparative gel respective DNA bands were 

cut out from the gel and purified using the NucleoSpin Gel and PCR clean-up Kit (Macherey-

Nagel) according to the manufacturer's instructions. 

4.2.1.4 Colony PCR 

To determine the presence or absence of an insert within DNA plasmid constructs, colony 

PCR was performed. Therefore individual transformants were directly picked from the agar 

plate and transferred into a PCR tube containing Genaxxon Red Mastermix (2X), 0.25 µM 

of the respective forward and reverse primer, and ddH2O. After running a PCR program as 

described in Table 2 PCR amplicons were analyzed by agarose gel electrophoresis. 

4.2.1.5 Site-directed mutagenesis  

Using site-directed mutagenesis (SDM) targeted mutations were introduced in plasmid 

DNA. First, primers containing the desired mutation were designed by the NEBase Changer 

online software (version 1.2.8). In the next step, these primers carrying the desired mutation 

were used in a PCR (Table 3), resulting in the amplification of the whole plasmid. 

Table 3 Standard PCR reaction setup for SDM 
Component 25 µl reaction Final concentration 

Q5 Hot Start High-fidelity 2X Master Mix 12.5 µl 1X 

10 µM forward primer 1.25 µl 0.5 µM 

10 µM reverse primer 1.25 µl 0.5 µM 

Template DNA (10 ng/µl) 1 µl 10 ng 
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Nuclease-free water 9 µl  

 

PCR was carried out according to the conditions shown in Table 4, wherein the annealing 

temperature was adjusted to the nucleotide composition of the DNA primers and the 

extension time to the length of the amplicon. 

Table 4 PCR thermocycling conditions for SDM 
Step Temperature Time Number of cycles 

Initial denaturation 98 °C 30 s 1 

Denaturation 
Annealing 

Extension 

98 °C 
50– 72 °C 

72 °C 

10 s 
20 s 

20 s per kb 

 
25X 

 

Final extension 72 °C 2 min 1 

Hold 4 °C ∞ - 

 

Following the PCR, the kinase, ligase and DpnI (KLD) treatment was carried out (Table 5) 

for ligation and template removal by using a methylation-dependent endonuclease.  

Table 5 Kinase, ligase and DpnI (KLD) treatment 
Component 25 µl reaction Final concentration 

PCR product 1 µl  

2X KLD reaction buffer 5 µl 1X 

10X KLD enzyme mix 1 µl 1X 

Nuclease-free water 3 µl  

 

KLD reaction mixture was incubated at room temperature for 5 min and subsequently 5 µl 

of the mixture was transformed in chemically competent E. coli. 

4.2.1.6 Gibson assembly 

For the generation of plasmids consisting of multiple DNA fragments Gibson assembly 

(Gibson et al, 2009) was performed. Cloning strategy and amplification primers were 

designed using the NEBuilder Assembly Tool online software (version 1.12.18). DNA insert 

fragments containing appropriate overlaps were amplified using standard PCR as previously 

described (Table 1 and Table 2). The linearized vector backbone was generated by a 

restriction digest. All fragments were analyzed on an agarose gel and purified using the 

NucleoSpin Gel and PCR Clean-up kit (Macherey-Nagel) according to manufacturer’s 

instruction. Concentrations of all DNA fragments were determined using the NanoDrop2000 

spectrometer. Gibson Assembly reaction was set up as described in Table 6 and incubated 

at 50 °C for 60 min. Subsequently, 5 µl of the reaction were transformed into chemically 

competent E. coli. 
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Table 6 Gibson assembly protocol 
Component 2-3 fragment assembly 4-6 fragment assembly 

Vector amount 50 ng 50 ng 

Inserts amount 2-3 fold excess* 2-3 fold excess* 

Total amount of fragments 0.02 – 0.5 pmol 0.2 – 1 pmol 

Gibson Assembly Master Mix (2X) 10 µl 10 µl 

Nuclease-free ddH2O 10 µl – x µl 10 µl – x µl 

Total volume 20 µl 20 µl 

* 5 times more of insert if the size was less than 200 bps was applied. 

4.2.1.7 DNA ligation  

In order to construct a recombinant plasmid containing the DNA insert and the linearized 

vector backbone, DNA ligation was performed by the NEB T4 DNA ligase enzyme. The 

used molar ratios for ligation differed from 1:1 to 7:1 (insert to vector ratio). If the insert size 

was similar to the size of the digested vector backbone a ratio of 1:1 was chosen, whereas 

high molar ratios (7:1) were preferred for small DNA inserts. Ligation reactions (Table 7) 

were incubated at room temperature for 1 - 2 h or 16 °C for overnight and afterwards 

transformed into chemically competent E. coli. To determine the background due to 

undigested vector or vector re-circularization the digested backbone without insert was 

employed as ligation control. 

Table 7 Standard ligation reaction 
Component 20 µl reaction 

T4 DNA Ligase Buffer 2 µl 

Vector DNA  100 ng 

Insert 1 – 7X excess 

T4 DNA Ligase 2 µl 

ddH2O up to 20 µl 

 

4.2.1.8 Transformation of bacteria  

Chemically competent E. coli XL1 blue or E. coli INV110 (dam and dcm methylation 

negative) were used for the transformation of plasmids into bacteria. Bacteria were thawed 

on ice and per transformation 50 µl of bacteria were transferred into a pre-chilled reaction 

tube. Subsequently ~10 ng of plasmid or 5 µl of the ligation reaction were added to the cells 

and mixed by flicking the reaction tube. Cells were continuously incubated on ice for 30 min 

followed by a heat shock at 42 °C for 30 s. Tubes were again placed on ice for 2 min 

followed by the addition of 250 µl SOC media to the bacteria. Tubes were placed at 37 °C 

for 60 min and shaken at 600 rpm. After the incubation cells were plated on agar plates with 

appropriate selection antibiotics and incubated overnight at 37 °C. 
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4.2.1.9 Plasmid isolation from E. coli (mini- and midipreps)  

For small scale DNA preparation (miniprep) a single bacterial colony of transformed E.coli 

was inoculated in 5 ml of LB media containing appropriate selection antibiotics and grown 

over night at 37 °C under continuous shaking, whereas for high DNA amounts (midipreps) 

50 ml LB medium containing selection antibiotics were inoculated. Bacteria were harvested 

by centrifugation (6,000 x g for 5 min at RT). Small scale DNA amounts were isolated with 

the NucleoSpin® Plasmid Kit (Macherey-Nagel) and large DNA amounts were purified 

using the QIAGEN Plasmid Plus Kit according to the manufacturer’s protocol. Each plasmid 

concentration was determined using the NanoDrop2000 spectrometer. All generated 

expression constructs were confirmed by sequence analysis utilizing an appropriate 

sequencing primer by Eurofins Genomics. 

4.2.1.10 Cloning procedure of expression constructs generated in this study 

All plasmids generated in this dissertation were either generated by classical cloning, site-

directed mutagenesis (SDM) or Gibson assembly. For simplicity the procedure for each 

construct containing template, insert, amplification primers and the cloning method is 

described in Table 8. 

Table 8 Molecular cloning procedure of expression constructs generated in this dissertation. 
generated expression 

construct 

template / digested 

backbone   
insert(s) amplification primer cloning method 

BC1-TagGFP2-PEST  BC1-TagGFP  - 

BC1-TagGFP2-PEST-
for 

BC1-TagGFP2-PEST-

rev 

SDM 

αCA-mCherry-PEST  αCA-mCherry-PEST - 

αCA-mCherry-PEST-
for 

αCA-mCherry -PEST-

rev 

SDM 

Ub-M-BC1-TagGFP2  

pEGFP-N1  

(NheI and XbaI 

digested) 

(1) ubiquitin  
 

(2) BC1 

 
(3) GS-linker 

(generated by 

hybridization of 
4GS-linker-oligo1 

4GS-linker-oligo2) 

 

(4) TagGFP2 

ubiquitin-for 

ubiquitin-rev 

BC1-for 
BC1-rev 

 

 
 

 

 
 

TagGFP2-for 

TagGFP2-rev 

Gibson assembly 

Ub-D-BC1-TagGFP2  Ub-M-BC1-TagGFP2 - 
NB-N-term-D-mut-for 

NB-N-Term-rev 
SDM 

Ub-E-BC1-TagGFP2  Ub-M-BC1-TagGFP2 - 
NB-N-term-E-mut-for 

NB-N-Term-rev 
SDM 

Ub-F-BC1-TagGFP2  Ub-M-BC1-TagGFP2 - 
NB-N-term-F-mut-for 

NB-N-Term-rev 
SDM 

Ub-G-BC1-TagGFP2  Ub-M-BC1-TagGFP2 - 
NB-N-term-G-mut-for 

NB-N-Term-rev 
SDM 

Ub-A-BC1-TagGFP2  Ub-M-BC1-TagGFP2 - 
NB-N-term-A-mut-for 

NB-N-Term-rev 
SDM 

Ub-C-BC1-TagGFP2  Ub-M-BC1-TagGFP2 - 
NB-N-term-C-mut-for 

NB-N-Term-rev 
SDM 
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Ub-L-BC1-TagGFP2  Ub-M-BC1-TagGFP2 - 
NB-N-term-L-mut-for 

NB-N-Term-rev 
SDM 

Ub-N-BC1-TagGFP2  Ub-M-BC1-TagGFP2 - 
NB-N-term-N-mut-for 

NB-N-Term-rev 
SDM 

Ub-H-BC1-TagGFP2  Ub-M-BC1-TagGFP2 - 
NB-N-term-H-mut-for 

NB-N-Term-rev 
SDM 

Ub-I-BC1-TagGFP2  Ub-M-BC1-TagGFP2 - 
NB-N-term-I-mut-for 

NB-N-Term-rev 
SDM 

Ub-K-BC1-TagGFP2   Ub-M-BC1-TagGFP2 - 
NB-N-term-K-mut-for 

NB-N-Term-rev 
SDM 

Ub-T-BC1-TagGFP2  Ub-M-BC1-TagGFP2 - 
NB-N-term-T-mut-for 

NB-N-Term-rev 
SDM 

Ub-W-BC1-TagGFP2  Ub-M-BC1-TagGFP2 - 
NB-N-term-W-mut-for 

NB-N-Term-rev 
SDM 

Ub-V-BC1-TagGFP2  Ub-M-BC1-TagGFP2 - 
NB-N-term-V-mut-for 

NB-N-Term-rev 
SDM 

Ub-Q-BC1-TagGFP2 Ub-M-BC1-TagGFP2 - 
NB-N-term-Q-mut-for 

NB-N-Term-rev 
SDM 

Ub-P-BC1-TagGFP2  Ub-M-BC1-TagGFP2 - 
NB-N-term-P-mut-for 

NB-N-Term-rev 
SDM 

Ub-S-BC1-TagGFP2  Ub-M-BC1-TagGFP2 - 
NB-N-term-S-mut-for 

NB-N-Term-rev 
SDM 

Ub-R-BC1-TagGFP2  Ub-M-BC1-TagGFP2 - 
NB-N-term-R-mut-for 

NB-N-Term-rev 
SDM 

Ub-Y-BC1-TagGFP2  Ub-M-BC1-TagGFP2 - 
NB-N-term-Y-mut-for 

NB-N-Term-rev 
SDM 

UbG76V-M-BC1- Ub-M-BC1-TagGFP2 - 
BC1-for 

Ub-G76V-mut-rev 
SDM 

Ub-M-BC1-(G4S)2-

TagGFP2  
Ub-M-BC1-TagGFP2  

(1) ubiquitin  

 
(2) BC1 

 

(3) TagGFP2 

ubiquitin-for 
ubiquitin-rev 

BC1-for 

BC1-2GS-rev  
TagGFP2-2GS-for 

TagGFP2-rev 

Gibson assembly 

Ub-M-BC1-(G4S)4- 

Ub-M-BC1-TagGFP2 

(NheI and XbaI 
digested) 

(1) ubiquitin  

 

(2) BC1 
 

(3) TagGFP2 

ubiquitin-for 

ubiquitin-rev 
BC1-for 

BC1-4GS-rev  

TagGFP2-4GS-for 
TagGFP2-rev 

Gibson assembly 

Ub-M-BC1-eGFP 

Ub-M-BC1-TagGFP2 

(BamHI and XbaI 

digested) 

eGFP 
eGFP-for 

eGFP-rev 

restriction enzyme 

cloning 

Ub-F-BC1-eGFP 

Ub-F-BC1-TagGFP2 

(BamHI and XbaI 

digested) 

eGFP 
eGFP-for 
eGFP-rev 

restriction enzyme 
cloning 

Ub-A-BC1-eGFP 

Ub-A-BC1-TagGFP2 

(BamHI and XbaI 

digested) 

eGFP 
eGFP-for 
eGFP-rev 

restriction enzyme 
cloning 

Ub-R-BC1-eGFP 
Ub-R-BC1-TagGFP2 
(BamHI and XbaI 

digested) 

eGFP 
eGFP-for 

eGFP-rev 

restriction enzyme 

cloning 

Ub-S-BC1-eGFP 
Ub-S-BC1-TagGFP2 
(BamHI and XbaI 

digested) 

eGFP 
eGFP-for 

eGFP-rev 

restriction enzyme 

cloning 

Ub-M-BC1-mCherry 
Ub-M-BC1-TagGFP2 
(BamHI and XbaI 

digested) 

mCherry 
mCherry-for 

mCherry-rev 

restriction enzyme 

cloning 

Ub-F-BC1-mCherry 

Ub-F-BC1-TagGFP2 

(BamHI and XbaI 
digested) 

mCherry 
mCherry-for 

mCherry-rev 

restriction enzyme 

cloning 

Ub-A-BC1-mCherry 

Ub-A-BC1-TagGFP2 

(BamHI and XbaI 
digested) 

mCherry 
mCherry-for 

mCherry-rev 

restriction enzyme 

cloning 

Ub-R-BC1-mCherry 

Ub-R-BC1-TagGFP2 

(BamHI and XbaI 

digested) 

mCherry 
mCherry-for 
mCherry-rev 

restriction enzyme 
cloning 

Ub-S-BC1-mCherry 

Ub-S-BC1-TagGFP2 

(BamHI and XbaI 

digested) 

mCherry 
mCherry-for 
mCherry-rev 

restriction enzyme 
cloning 

Ub-M-BC1-TagRFP  
Ub-M-BC1-TagGFP2 
(BamHI and XbaI 

digested) 

TagRFP 
TagRFP-for 

TagRFP-rev 

restriction enzyme 

cloning 

Ub-F-BC1-TagRFP  
Ub-F-BC1-TagGFP2 
(BamHI and XbaI 

digested) 

TagRFP 
TagRFP-for 

TagRFP-rev 

restriction enzyme 

cloning 
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Ub-A-BC1-TagRFP  

Ub-A-BC1-TagGFP2 

(BamHI and XbaI 

digested) 

TagRFP 
TagRFP-for 

TagRFP-rev 

restriction enzyme 

cloning 

Ub-R-BC1-TagRFP  

Ub-R-BC1-TagGFP2 

(BamHI and XbaI 
digested) 

TagRFP 
TagRFP-for 

TagRFP-rev 

restriction enzyme 

cloning 

Ub-S-BC1-TagRFP  

Ub-S-BC1-TagGFP2 

(BamHI and XbaI 

digested) 

TagRFP 
TagRFP-for 
TagRFP-rev 

restriction enzyme 
cloning 

Ub-M-αCA-TagGFP2 

Ub-M-BC1-TagGFP2 

(PstI and BspEI 

digested) 

αCA 
NB-uni-for 
NB-uni-rev 

restriction enzyme 
cloning 

Ub-F-αCA-TagGFP2 
Ub-F-BC1-TagGFP2 
(PstI and BspEI 

digested) 

αCA 
NB-uni-for 

NB-uni-rev 

restriction enzyme 

cloning 

Ub-A-αCA-TagGFP2 
Ub-A-BC1-TagGFP2 
(PstI and BspEI 

digested) 

αCA 
NB-uni-for 

NB-uni-rev 

restriction enzyme 

cloning 

Ub-R-αCA-TagGFP2 

Ub-R-BC1-TagGFP2 

(PstI and BspEI 
digested) 

αCA 
NB-uni-for 

NB-uni-rev 

restriction enzyme 

cloning 

Ub-S-αCA-TagGFP2  

Ub-S-BC1-TagGFP2 

(PstI and BspEI 
digested) 

αCA 
NB-uni-for 

NB-uni-rev 

restriction enzyme 

cloning 

Ub-M-VB6-TagGFP2  

Ub-M-BC1-TagGFP2 

(PstI and BspEI 
digested) 

VB6 
NB-uni-for 
NB-uni-rev 

restriction enzyme 
cloning 

Ub-F-VB6-TagGFP2  

Ub-F-BC1-TagGFP2 

(PstI and BspEI 

digested) 

VB6 
NB-uni-for 
NB-uni-rev 

restriction enzyme 
cloning 

Ub-A-VB6-TagGFP2  

Ub-A-BC1-TagGFP2 

(PstI and BspEI 

digested) 

VB6 
NB-uni-for 
NB-uni-rev 

restriction enzyme 
cloning 

Ub-R-VB6-TagGFP2  
Ub-R-BC1-TagGFP2 
(PstI and BspEI 

digested) 

VB6 
NB-uni-for 

NB-uni-rev 

restriction enzyme 

cloning 

Ub-S-VB6-TagGFP2  
Ub-S-BC1-TagGFP2 
(PstI and BspEI 

digested) 

VB6 
NB-uni-for 

NB-uni-rev 

restriction enzyme 

cloning 

mCherry-CTNNB1 

pmCherry-C1  

(KpnI and BamHI 
digested) 

CTNNB1 
mCherry-CTNNB1-for 

mCherry-CTNNB1-rev 

restriction enzyme 

cloning 

BC1-TagGFP-PEST 

(Master thesis Kathy-

Ann Secker) 

BC1-TagGFP2 - 

BC1-TagGFP2-PEST-

for 
BC1-TagGFP2-PEST-

rev 

SDM 

αCA-mCherry-PEST 

(Master thesis Kathy-

Ann Secker) 

αCA-mCherry - 

αCA-mCherry-PEST-

for 
αCA-mCherry-PEST-

rev 

SDM 

EF1-α_Ub-R-BC1-

eGFP 

Ub-R-BC1-eGFP 
(AseI and NheI 

digested) 

EF1-α promoter 
EF1-α promoter 
(gBlock® gene 

fragment) 

Gibson assembly 

β-actinPstI_Ub-R-BC1-

eGFP  

Ub-R-BC1-eGFP 
(AseI and NheI 

digested) 

β-actin promoter 
β-actin-promoter-for 

β-actin-promoter-rev 

restriction enzyme 

cloning 

β-actin_Ub-R-BC1-
eGFP  

β-actinPstI_Ub-R-BC1-
eGFP 

- 

β-actin-promoter-

mutPstI-for 
β-actin-promoter-

mutPstI-for 

SDM 

AAVS1-CB-donor 
plasmid  

- described separately 

in the following section  

- - - - 

 

4.2.1.11 Molecular cloning of AAVS1-CB donor plasmid 

For molecular cloning of the AAVS1-CB donor plasmid two gene fragments were produced 

by gene synthesis. At first, the synthesized plasmid AAVS1-CB-donor fragment 1 was 

digested using PciI and MfeI and directly ligated into pEGFP-N1 digested with the same 
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restriction enzymes. Secondly, the resulting plasmid was digested with MfeI and XbaI, 

which was then completed with AAVS1-CB-donor fragment 2 amplified with the primer set 

AAVS1-CB-donor-fragment-2-for and AAVS1-CB-donor-fragment-2-rev. Donor plasmid 

sequence was verified using the sequencing primers Seq-AAVS1-CB-donor-1 - 4. To 

generate an AAVS1-CB donor plasmid containing the (EF1α)-Ub-R-BC1-eGFP AseI and 

XbaI restriction sites were used within the donor plasmid. The BC1-NB within the plasmid 

was exchanged towards Actin-NB by utilizing PstI and BspEI restriction site. 

4.2.1.12 Genomic DNA isolation from mammalian cells  

To isolate genomic DNA from mammalian cells 3 x 106 cells were seeded into 100 mm cell 

culture dishes and were incubated for 24 h under standard conditions. Cells were washed 2 

times with ice cold PBS, harvested by cell scraping and collected by centrifugation (500 x g, 

5 min, 4 °C). Afterwards, genomic DNA was isolated using the QIAmp DNA Mini Kit 

(QIAGEN) according to the manufacturer’s instructions. Concentration of genomic DNA 

was determined with the NanoDrop 2000 system. 

4.2.1.13 RNA isolation and cDNA synthesis 

Mammalian cells were seeded at a density of 2.5 x 105 cells per well into 6 well plates and 

incubated for 24 h under standard conditions. Cells were stimulated with 10 µM 

CHIR99021, harvested after 8 or 16 h of treatment by cell scraping and collected by 

centrifugation (500 x g, 5 min, 4 °C). Isolation of RNA was carried out using the 

NucleoSpin® RNA Kit (Macherey-Nagel) as described by the manufacturer. RNA 

concentration was determined with the NanoDrop2000 spectrometer. For synthesis of 

complementary DNA (cDNA) based on mRNA templates NEB First Strand cDNA Synthesis 

Kit was used. First, denaturation of template mRNA was performed by a 5 min incubation 

of the mRNA-primer mix at 65 °C (Table 9). 

Table 9 Initial mRNA denaturation reaction 
Component Volume 

mRNA 1 µg 

Random Primer mix (60 µM) 1 µl 

10 mM dNTPs 1 µl 

Nuclease-free H2O up to 10 µl 

After denaturation, the samples were put immediately on ice and the following components 

listed in Table 10 were added: 
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Table 10 Standard cDNA synthesis reaction 
Component Volume 

10x M-MuLV buffer 2 µl 

M-MuLV Reverse Transcriptease (200 U/µl) 1 µl 

RNase Inhibitor (40 U/µl) 0.2 µl 

Nuclease-free H2O 6.8 µl 

cDNA synthesis reaction was incubated at 25 °C for 5 min followed by an incubation for 1 h 

at 42 °C. Subsequently enzymes were inactivated at 65 °C for 20 min. The cDNA products 

were stored at -20 °C prior use in qRT-PCR. 

4.2.1.14 Quantitative real-time PCR (qRT-PCR) 

Analysis of gene expression was achieved by qRT-PCR of specific target genes from 

mammalian cells. For this purpose, IDT PrimeTime® qPCR Probe Assays consisting of a 

specific primer pair and a 5’ nuclease probe were selected. qRT-PCR was performed in 96-

well format and a total volume of 25 µl (Table 11). 

Table 11 qRT-PCR reaction mixture. 
Component Volume per 20 µl reaction 

PrimeTime® Gene Expression Master Mix (2X) 10 µl 

PrimeTime® qPCR Assay (20X) 1 µl 

cDNA template 2 µl 

Nuclease-free H2O 7 µl 

Preparation of qRT-PCR reaction mixture was carried out on ice, avoiding strong light 

exposure. PCR reaction (Table 12) and subsequent data analysis were both performed using 

the ThermoFisher StepOnePlusTM Real-Time PCR System. Quantification was carried out 

using the ΔΔCt method, using Ct-values obtained with GAPDH-specific primer as reference 

(ΔCt). Next, these values were normalized to the values obtained from non-treated control 

cells, leading to the illustration of a fold change in mRNA expression between non-treated 

and treated cells. 

Table 12 qRT-PCR cycling protocol 
Step Temperature Time Number of cycles 

Polymerase activation 95 °C 3 min 1 

Denaturation 

Annealing/Extension 

95 °C 

60 °C 

15 s 

1 min 
40x 

 

4.2.2 Biochemical methods 

4.2.2.1 Mammalian cell lysis 

Depending on the aim of the experiment 7.5 x 105 – 3 x 106 cells were seeded in 100 mm 

cell culture dishes (Corning) and grown for 24 h under standard conditions. Hereafter, cells 
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were either treated with compounds or subjected to plasmid DNA transfection. 

Subsequently, cells were washed and harvested in PBS, snap-frozen in liquid nitrogen and 

stored at -20 °C. Cell pellets were homogenized in 100 µl NP40 lysis buffer by repeated 

pipetting and / or vortexing for 30 - 60 min on ice. Lysates were clarified by centrifugation 

for 15 min at 18,000 x g and 4 °C. Protein concentrations of the soluble supernatants were 

determined by Bradford Protein Assay (Biorad) and accordingly adjusted to equal 

concentrations. 

4.2.2.2 SDS-PAGE and western blot  

For size dependent separation of proteins denaturing polyacrylamide gel electrophoresis was 

performed using the BIO-RAD Mini-PROTEAN® Tetra Cell System (Table 13 and Table 

14). Protein samples were boiled in 2X reducing SDS sample buffer for 10 min at 95 °C. 

Denatured samples were loaded onto the acrylamide gel and separated at 120 – 200 V in 

SDS-PAGE running buffer. As standard PageRuler Plus prestained protein ladder was used. 

Table 13 Resolving gel preparation 
Component Final concentration 

Acrylamide 8-15 % (v/v) 

Tris/HCl pH 8.8 375 mM 

SDS 0.1 % (w/v) 

APS 0.05 % (w/v) 

TEMED 0.1 % (v/v) 

 

Table 14 Stacking gel preparation 
Component Final concentration 

Acrylamide 5 % (v/v) 

Tris/HCl pH 6.8 60 mM 

SDS 0.1 % (w/v) 

APS 0.05 % (w/v) 

TEMED 0.1 % (v/v) 

By semi-dry western blotting (BIO-RAD Trans-Blot Semi-Dry Transfer Cell or BIO-RAD 

Trans-Blot Turbo Transfer System) the separated proteins were transferred from SDS-gel 

onto a nitrocellulose membrane (GE Healthcare). Protein transfer was carried out at 2.5 mA 

per cm2 for 30 min – 2 h using Towbin blotting buffer. Membranes were incubated for 5 min 

with Ponceaus S solution to reversibly stain proteins immobilized on the membrane. Specific 

proteins were detected by incubation of the membranes with primary antibodies diluted in 

M-TBST over night at 4 °C. On the next day membranes were washed trice with TBST for 

10 min followed by an incubation with fluorescently labeled species-specific secondary 

antibody diluted in M-TBST for 2 h at room temperature. Membranes were washed three 

times with TBST for 10 min and were allowed to dry at room temperature. Subsequently, 
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fluorescent signals were detected using a Typhoon-Trio laser scanning system (GE 

Healthcare) and analyzed with the GE Healthcare ImageQuantTL software (version 8.1). 

4.2.2.3 Intracellular immunoprecipitation 

Intracellular immunoprecipitation (IC-IP) of the CBs was performed using either transiently 

or stable CB expressing cells. For transient CB expression 3 x 106 HEK293T cells were 

transfected with equal amounts of expression vectors encoding for the respective CB 

constructs. Transfection efficiency was controlled by fluorescence microscopy and the cells 

were harvested and lysed 24 h after transfection as described (chapter 4.2.2.1). For IC-IP 

from stable cell lines 3 x 106 stable CB expressing cell lines were seeded onto 100 mm cell 

culture dishes and harvested after 48 h. Subsequently, GFP-CA, BC1-CB variants or eGFP 

were precipitated using the GFP-Trap (ChromoTek) according to the manufacturer’s 

protocol. Input and bound fractions were subjected to SDS-PAGE followed by western blot 

analysis using appropriate antibodies. 

4.2.3 Cell culture methods 

4.2.3.1 Culturing of mammalian cell lines 

All cell lines used in this study were grown according to standard procedures (Table 15). 

Cells were passaged using 0.05 % trypsin-EDTA (ThermoFisher Scientific) and incubated 

at 37 °C in a humidified chamber with a 5 % CO2 atmosphere. All cell lines were tested 

negative for mycoplasma using the PCR mycoplasma kit Venor GeM Classic (Minerva 

Biolabs) and the Taq DNA polymerase (Minerva Biolabs). Since this study does not include 

cell line-specific analysis, all cell lines were used without additional authentication. 

Table 15 Medium composition for growing mammalian cell lines  
Cell line Cell culture media Supplements 

HeLa Kyoto 

 

DMEM, high glucose, pyruvate, 

GlutaMAX 

10 % FCS 

1 % Pen/Strep 

HEK293T 
DMEM, high glucose, pyruvate, 
GlutaMAX 

10 % FCS 
1 % Pen/Strep 

U2OS 
DMEM, high glucose, pyruvate, 

GlutaMAX 

10 % FCS 

1 % Pen/Strep 

A549 DMEM/F-12, high glucose, pyruvate 
10 % FCS 
1 % Pen/Strep 

1 % L-Glutamine 

DLD-1 RPMI 1640 
10 % FCS 
1 % Pen/Strep 

HCT116 
DMEM, high glucose, pyruvate, 

GlutaMAX 

10 % FCS 

1 % Pen/Strep 

HeLa_BC1_TagGFP2 
DMEM, high glucose, pyruvate, 

GlutaMAX 

10 % FCS 
1 % Pen/Strep 

3 µg/ml Blasticidine 

A549_VB6-eGFP DMEM/F-12, high glucose, pyruvate 
10 % FCS 
1 % Pen/Strep 

1 % L-Glutamine 
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80 µg/ml Hygromycin 

A549_VB6-TagRFP DMEM/F-12, high glucose, pyruvate 

10 % FCS 

1 % Pen/Strep 

1 % L-Glutamine 

1 µg/ml Puromycin 

HeLa_CCC-TagRFP 
DMEM, high glucose, pyruvate, 

GlutaMAX 

10 % FCS 
1 % Pen/Strep 

0.5 mg/ml G418 

HeLa_αCA-mCherry 
DMEM, high glucose, pyruvate, 

GlutaMAX 

10 % FCS 
1 % Pen/Strep 

0.5 mg/ml G418 

HeLa_Ub-R-BC1-eGFP 
DMEM, high glucose, pyruvate, 

GlutaMAX 

10 % FCS 

1 % Pen/Strep 
0.5 mg/ml G418 

U2OS_Ub-R-BC1-eGFP 
DMEM, high glucose, pyruvate, 

GlutaMAX 

10 % FCS 

1 % Pen/Strep 
0.5 mg/ml G418 

HeLa_ACT-TagGFP2 
DMEM, high glucose, pyruvate, 

GlutaMAX 

10 % FCS 

1 % Pen/Strep 
3 µg/ml Blasticidine 

HeLa_AAVS1_ Ub-R-ACT-eGFP 
DMEM, high glucose, pyruvate, 

GlutaMAX 

10 % FCS 

1 % Pen/Strep 

DLD-1_BC1-TagGFP2 
DMEM, high glucose, pyruvate, 
GlutaMAX 

10 % FCS 
1 % Pen/Strep 

DLD-1_AAVS1_ Ub-R-BC1-eGFP 
DMEM, high glucose, pyruvate, 

GlutaMAX 

10 % FCS 

1 % Pen/Strep 

HCT116_AAVS1_ Ub-R-BC1-eGFP 
DMEM, high glucose, pyruvate, 
GlutaMAX 

10 % FCS 
1 % Pen/Strep 

 

4.2.3.2 Cell seeding and treatment  

For cell seeding all adherent cell lines were detached using 0.05 % trypsin-EDTA and cell 

number was determined by using the CASY Cell Counter system or the Neubauer chamber. 

For microscopical analyses 1,500 – 10,000 cells were seeded per well into µClear 96-well 

plates and were allowed to grow for 24 to 72 h under standard conditions. For time-lapse 

imaging cell culture media was replaced by Evrogen Antibleaching DMEM-gfp medium 

containing 2 µg/ml Hoechst33258 about 3 h before starting the time-lapse experiment. For 

biochemical analyses and isolation of genomic DNA 7.5 x 105 – 3 x 106 cells were seeded 

into 100 mm cell culture dishes and subjected to transient transfection and/or compound 

treatment. For RNA isolation 2.5 x 105 cells were seeded in 6 well plates and treated 24 h 

after seeding until the indicated time points. 

4.2.3.3 Transfection  

Plasmid DNA was transfected using the following transfection reagents: Lipofectamine 

2000 (ThermoFisher Scientific) for U2OS cells, Lipofectamine LTX (ThermoFisher 

Scientific) for A549 cells, polyethylenimine (PEI, Sigma) for HeLa Kyoto and HEK293T 

cells and Mirus TransIT-X2 for HCT116 and DLD-1. Prior to transfection, cells were 

allowed to grow to ~70 % confluency. To generate DNA/PEI complexes for transfection in 

a 96-well plate format 100 - 200 ng DNA were mixed with 0.5 µg PEI in 20 µl serum-free 
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medium. Transfection mixture was incubated for 15 min at room temperature and 

subsequently was added to the adherent cells. Transfections using Lipofectamine 2000, 

Lipofectamine LTX or Mirus TransIT-X2 were carried out according to the manufacturer’s 

protocol. RNA interference-mediated knockdown of PCNA and vimentin was accomplished 

using Lipofectamine RNAiMax (ThermoFisher Scientific) for all cell lines according to 

manufacturer’s instructions. Analysis of a siRNA-mediated knockdown was performed 72 h 

post transfection via immunofluorescence staining. 

4.2.3.4 Generation of stable cell lines via plasmid transfection and 

selection  

Stable cell lines HeLa_Ub-R-BC1-eGFP and U2OS_Ub-R-BC1-eGFP were generated by 

plasmid transfection of the indicated chromobody construct using Lipofectamine 2000 

(ThermoFisher Scientific) according to the manufacturer’s protocol. 24 h post transfection 

cells were subjected to a three-week selection period using 0.5 mg/ml G418 (Roth) followed 

by single cell separation. Single clones were analyzed regarding Ub-R-BC1-eGFP 

expression and response to CTNNB1 elevating compounds. 

4.2.3.5 Stable CB integration into AAVS1 locus using CRISPR/Cas9 

technology 

For site-directed integration of the CBs into the AAVS1 locus of host cell lines (DLD-1, 

HCT116 and HeLa), cells were co-transfected with equal amounts of plasmids coding for 

Cas9-AAVS1-gRNA (kindly provided by (Oceguera-Yanez et al, 2016)) and the AAVS1-

CB-donor plasmid using standard transfection method for the respective cell lines (chapter 

4.2.3.3). 24 h post transfection cells were subjected to a 48 h long selection using 0.6 µg/ml 

puromycin dihydrochloride (Sigma Aldrich). 48 h post transfection non-treated control cells 

were completely killed by the antibiotic. Puromycin-resistant cells were allowed to grow for 

one week before single cell clones were isolated and analyzed regarding the CB expression 

level. To verify site-directed integration of the CB-donor plasmid at the AAVS1-locus, 

genotyping was performed using a primer set (genPCR-AAVS1-int-for and genPCR-

AAVS1-int-rev), which bind in the genomic part of AAVS1 and the transgene, resulting in 

an amplicon of ~1,400 bps.  
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4.2.3.6 Immunocytochemistry and fluorescence microscopy 

Parental and stable CB expressing cells were seeded at 2,000 – 5,000 cells per well in µClear 

96-well plates (Greiner) and grown for 24 - 48 h. For fixation, cells were washed twice with 

PBS and fixed with 4 % formaldehyde (v/v, PFA, Applichem) in PBS. Subsequently, cells 

were blocked and permeabilized using 5 % bovine serum albumin (w/v, BSA) and 0.3 % 

Triton X-100 (v/v) in PBS. Primary and fluorochrome-conjugated secondary antibodies 

were diluted in 1 % BSA and 0.3 % Triton X-100 in PBS and antibody staining was carried 

out according to standard procedures. Fluorescence images were acquired using MetaXpress 

Micro XL system (Molecular Devices) and 20X or 40X magnification. 

4.2.3.7 Time-lapse imaging  

For time-lapse imaging cells were seeded at a concentration of 1,500 – 5,000 cells cells per 

well in µClear 96-well plates (Greiner) and were allowed to adhere for 24 h to 48 h. Cells 

were either directly seeded into Evrogen antibleaching live cell visualization medium or 

media was exchanged ~4 h before starting the experiment in order to allow cells to 

equilibrate and adapt to imaging medium. Nuclei were stained with 2 µg/ml Hoechst33258. 

Depending on the aim of the experiment, cells were treated with the indicated compounds 

and directly subjected to time-lapse microscopy. Live-cell imaging was performed using the 

MetaXpress Micro XL system (Molecular Devices) and 20 X magnification at 37 °C in a 

humidified atmosphere containing 5 % CO2. Fluorescence images were acquired for up to 

48 h, in which the time interval of image acquisition was depending on the experimental 

setup.  

4.2.3.8 Automated image segmentation and analysis 

Fluorescence images acquired with the ImageXpress Micro XL system were analyzed by the 

MetaXpress software (64 bit, 5.1.0.41, Molecular Devices). To allow automated nuclei 

segmentation, nuclei of live cells were stained with 2 µg/ml Hoechst33258 and nuclei of 

fixed cells were stained with DAPI.  
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Figure 5 Schematic overview of automated analysis of fluorescence images. 

(A) Fluorescence images of HeLa_BC1-CB cells showing CB-signal (green, left image) and nuclei stained with 

DAPI (blue, right image), scale bar: 100 µm. On the right side segmentation masks (light blue) to determine 

average fluorescence intensity within the nuclei and the background are shown. (B) Representative image 

segmentation of transiently transfected cells. The first row displays HeLa cells co-transfected with mCherry 

(red) and the BC1-CB (green), nuclei of fixed cells were stained with DAPI (blue) (Hoechst was used for live-

cell imaging only), scale bar: 100 µm. The second row shows utilization of the mCherry signal to generate a 

segmentation mask (light blue) within the fluorescence intensity of the co-transfected CB was measured. The 

determination of the background signal (light blue) was performed as showed in the third row. 

To determine the average fluorescence intensity within the nuclei region an algorithm 

determining the intensity above the local background for the DAPI channel was applied. The 

settings to identify the regions of interest (ROI) were: (i) an approximate minimum width of 

10 µm, (ii) an approximate maximum width of 30 µm and (iii) a minimum intensity of 
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120 (AU) above the local background. From these identified ROIs a segmentation mask was 

generated and an overlay with the fluorescence image was generated to determine the 

average fluorescence intensity of CBs and/or immunofluorescence within the nuclei (Figure 

5A). This algorithm was applied to images generated from stably CB-expressing cells and 

immunofluorescence stainings. For the determination of background fluorescence the signal 

of identified nuclei was enlarged to a size of 80 pixels and applied as a negative marker and 

the background signal was determined in the remaining region. 

For the segmentation of transiently transfected cells, this algorithm could not be applied 

because it has to be considered, that a transfection efficiency is usually at around 30-70 % 

(depending on transfected plasmids and used cell line). Therefore it was essential to exclude 

the impact of non-transfected cells in the quantification and another segmentation strategy 

had to be applied. To segment the whole cell (nuclear and cytosolic compartment) the signal 

of the ectopic expressed antigen or its respective control (mCherry signal in Figure 5B) was 

utilized for the generation of the segmentation mask. The settings to identify the mCherry 

signal were: (i) an approximate minimum width of 13 µm, (ii) an approximate maximum 

width of 35 µm and (iii) a minimum intensity of 200 above the local background. Next, the 

same algorithm as explained above was used to ensure that only cells containing an intact 

nucleus were segmented. The generated segmentation mask was the applied to the 

fluorescence image in order to determine the fluorescence intensity within the whole cell. 

Background segmentation was performed with the same algorithm as described above.  

For both segmentation strategies either the fluorescence intensity per cell (population-wide 

analysis) or the average fluorescence intensity for each image was subjected to automated 

image analysis, followed by subtraction of the background intensity. From the different 

images per condition, the average fluorescence intensity and standard deviation were 

calculated and for statistical analysis student’s t-test was used. In favor of a more 

comprehensible data presentation, the calculated fluorescence intensities were normalized 

to the respective control.  
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5 RESULTS 

5.1 Quantitative image analysis of antigen-mediated stabilization of a 

CTNNB1- specific CB (BC1-CB) 

As previously shown in Traenkle et al., CHIR-treatment of HeLa_BC1-CB cells not only 

led to an increase of endogenous CTNNB1 protein level but further this increase was 

accompanied by rising levels of the BC1-CB, which was demonstrated by fluorescence time-

lapse imaging (Figure 4) and western blot analysis (Traenkle et al, 2015). 

To verify these observations using an image-based readout, HeLa_BC1-CB (hereafter 

referred to as HeLa_BC1-TagGFP2) cells were treated with CHIR for 20 h and the levels of 

endogenous CTNNB1 and BC1-TagGFP2 were analyzed in situ by immunofluorescence 

staining using a CTNNB1-specific antibody and simultaneous detection of BC1-TagGFP2 

fluorescence. The immunostaining revealed that CHIR treatment led to a strong increase in 

CTNNB1 protein amount in HeLa_BC1-TagGFP2 and parental HeLa cells. Detection of 

BC1-TagGFP2 fluorescence showed a corresponding increase in CB fluorescence (Figure 

6A). 

 

Figure 6 CTNNB1-mediated stabilization of the BC1-CB in HeLa_BC1-TagGFP2 cells. 

(A) Representative fluorescence images of parental HeLa cells and HeLa_BC1-TagGFP2 cells, which were 

either treated with 10 µM CHIR99021 for 20 h or left non-treated (nt). Cells were fixed and endogenous 

CTNNB1 was detected by antibody staining while the CB signal was directly detected via the TagGFP2 

fluorescence. Nuclei were stained with DAPI, scale bar: 50 µm. (B) Population-wide comparison of CTNNB1 

immunofluorescence staining and BC1-TagGFP2 signal intensity of HeLa_BC1-TagGFP2 cells and parental 

HeLa cells. CTNNB1 staining and CB signal were determined for each cell and fluorescence intensities of 

CHIR treatment were normalized to the non-treated control. Shown are the fluorescence values within the 5th 
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to 95th percentile of analyzed cells. Number of cells within this interval were: HeLa_BC1-TagGFP2 - nt: 

n=591; +CHIR: n=504; parental HeLa - nt: n= 889; +CHIR: n=1077. Squares illustrate mean fluorescence 

intensity of the analyzed population. Error bars: standard deviation (S.D.). 

To allow for a representative quantification of the fluorescence signals an automated image 

segmentation algorithm was established, wherein a population-wide quantitative analysis 

comprising hundreds of cells was performed (algorithm described in detail in section 

4.2.3.8). By applying this algorithm, fluorescence signals derived from CTNNB1 antibody 

staining and BC1-TagGFP2 were determined for individual cells (Figure 6B). The 

quantification of the CTNNB1 signal in non-treated and CHIR-treated cells confirmed a 

strong increase of signal intensities in parental HeLa and HeLa_BC1-TagGFP2 cells, 

illustrated by a shift in the direction of the y-axis of the population-wide analysis. As the 

CHIR-induced increase of CTNNB1 in parental HeLa and HeLa_BC1-TagGFP2 cells was 

similar, this result suggests that the presence of the CB did not affect the endogenous level 

of CTNNB1. Notably, this analysis reveals an increase in BC1-TagGFP2 fluorescence in 

HeLa_BC1-TagGFP2 cells upon CHIR treatment as it was previously observed by 

quantitative western blot analysis (Traenkle et al, 2015). 

In favor of a more comprehensible data representation, the entirety of individual cell 

fluorescence is depicted as a population-wide mean fluorescence. Applying this analysis, 

CHIR-treated HeLa_BC1-TagGFP2 cells displayed a 19-fold increase in CTNNB1 

accompanied by a 4.6-fold increase in CB fluorescence (Figure 7A, B).  

 

Figure 7 Population-wide mean fluorescence of the BC1-CB and CTNNB1 in HeLa_BC1-TagGFP2 cells. 

(A) Bar chart of mean CB fluorescence of HeLa_BC1-TagGFP2 cells analyzed in Figure 6B, error bars: S.D. 

(B) Bar chart of mean CTNNB1 antibody staining of non-treated and CHIR-treated parental HeLa and 

HeLa_BC1-TagGFP2 cells from Figure 6B. Error bars: S.D., for statistical analysis student’s t-test was 

performed, *** p < 0.001. 
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To confirm antigen binding of the CB within HeLa_BC1-TagGFP2 cells, intracellular 

immunoprecipitation (IC-IP) was performed in non-treated and CHIR-treated cells. Western 

blot analysis after IC-IP proved an efficient binding of CTNNB1 by BC1-TagGFP2 (Figure 

8). 

 

Figure 8 Endogenous CTNNB1 is precipitated by the BC1-CB in HeLa_BC1-TagGFP2 cells.  

HeLa_BC1-TagGFP2 cells were either left non-treated or were treated with 10 µM CHIR for 20 h. Cells were 

lysed using NP40 lysis buffer and precipitation of the CBs from the soluble protein fractions was performed 

with the GFP-Trap. 1 % of input and 20 % of the bound fraction were subjected to SDS-PAGE followed by 

western blot analysis using CTNNB1- or GFP-specific antibodies.  

Next, it was analyzed whether the BC1-CB can also be stabilized by ectopically expressed 

CTNNB1. By Traenkle et al. it was demonstrated that treatment with CHIR did not alter the 

CB transcription level in HeLa_BC1-TagGFP2 cells. Here, it was additionally tested 

whether a compound-independent approach to elevate the amount of CTNNB1 can induce 

an increase in CB signal according to AMCBS. For this purpose, parental HeLa cells were 

co-transfected with plasmids coding for BC1-TagGFP2 and mCherry-CTNNB1 or mCherry 

as control (Figure 9A). After transient transfection the expression levels of CB and antigen 

differed among individual cells, but on average a stabilization of the BC1-CB was 

observable. In mCherry-CTNNB1 expressing cells BC1-TagGFP2 fluorescence was 

increased 1.7-fold compared to CB fluorescence of mCherry-transfected cells (Figure 9B). 
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Figure 9 CTNNB1-mediated BC1-CB stabilization in transiently transfected HeLa cells.  

Parental HeLa cells were transiently co-transfected with plasmids coding for the BC1-TagGFP2 in 

combination with either mCherry or mCherry-CTNNB1. 24 h after transfection cells were PFA-fixed and 

nuclei were stained with DAPI. (A) Representative fluorescence images of parental HeLa cells transiently 

expressing BC1-TagGFP2 and mCherry or mCherry-CTNNB1, scale bar: 50 µM. (B) Bar chart of mean CB 

fluorescence intensity detected in mCherry- or mCherry-CTNNB1 expressing cells. CB fluorescence intensity 

was normalized to CB signal intensity detected in mCherry transfected cells. Mean fluorescence was calculated 

from three different samples (n=3), comprising >200 cells. Error bars: S.D., for statistical analysis student’s 

t-test was performed, *** p < 0.001. 

The results of this section clearly support the idea of a CTNNB1-mediated stabilization of 

the BC1-CB as previously stated (Traenkle et al, 2015). Notably, increasing CB levels were 

detected upon CHIR treatment in stable HeLa_BC1-TagGFP2 as well as in parental HeLa 

cells after ectopic expression of the BC1-CB and CTNNB1.

5.2 Observation of antigen-mediated stabilization of chromobodies 

targeting further antigens 

After demonstrating an antigen-mediated CB stabilization for the BC1-CB, the next question 

was whether this phenomenon is also evident for other CB-antigen combinations. For this 

purpose, a set of three previously described CBs was analyzed: (i) an HIV p24 capsid protein 

(CA)-specific CB (αCA-mCherry (Helma et al, 2012)), (ii) a proliferating cell nuclear 

antigen (PCNA)-specific CB (CCC-TagRFP (Schorpp et al, 2016)) and (iii) vimentin (VIM)-

specific CBs (VB6-eGFP and VB6-TagRFP (Maier et al, 2015)). Figure 10 shows a multiple 

sequence alignment of the binding moieties of these three CBs and the BC1-CB.  
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Figure 10 Multiple sequence alignment of BC1-, CCC-, VB6- and αCA-CB binding moiety. 

Multiple sequence alignment was performed with Clustal Omega (version 1.2.4) provided by EMBL-EBI, 

(Goujon et al, 2010; Sievers et al, 2011). Framework regions (FR1-4) and complementary determining regions 

(CDR1-3) are indicated by headers. Hallmarks to distinguish between VH and VHH are highlighted in red. 

This sequence analysis for the four binding moieties of the compared CBs illustrates a 

substantial sequence homology within the framework regions (~70 %, determined by 

multiple sequence alignment of the framework regions using GeneBee). Further, amino acid 

sequence of FR2 reveals that BC1 and αCA carry more hydrophilic amino acids (Gln/Ala, 

Arg) as compared to CCC and VB6, which instead comprise hydrophobic amino acids in 

this region (Ile/Val, Leu, Tyr). Previous studies have shown that this substitution towards 

hydrophilic amino acids in FR2 is typically for VHH fragments, whereas the presence of 

hydrophobic amino acids is characteristic for VH domains (Muyldermans, 2001; Li et al, 

2016). These specific substitutions (Val37Phe/Tyr, Gly44Glu/Gln, Leu45Arg, 

Trp47Gly/Leu) are referred to as hallmarks to distinguish VHH from VH (Vu et al, 1997). A 

detailed description of these characteristics can be found in section 3.4.3.1. 

Taken together, three more CBs were analyzed, carrying binding moieties derived from VHH 

(αCA) as well as VH (CCC and VB6), regarding a possible CB-stabilization mediated by the 

corresponding antigens. 

5.2.1 HIV-capsid protein (CA)-specific CB (αCA-mCherry) 

The first chromobody, which was tested regarding the AMCBS phenomenon was the HIV 

p24 capsid protein (CA)-specific chromobody αCA-mCherry (Helma et al, 2012). To 

address this question, a previously established stable CB expressing cell line HeLa_αCA-

mCherry was used (Helma et al, 2012). All experiments described in this chapter were 
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performed and analyzed independently by the former Master student Kathy-Ann Secker 

(Secker, 2016). 

At first, it was analyzed whether the stably expressed αCA-mCherry CB binds to the cognate 

antigen GFP-CA within the stable HeLa_αCA-mCherry cell line. Thus, HeLa_αCA-

mCherry cells were transfected with the corresponding antigen GFP-CA or GFP as control 

followed by intracellular co-immunoprecipitation using the GFP-Trap. Western blot analysis 

revealed co-precipitation of αCA-mCherry, thereby demonstrating binding of the CB to its 

antigen in living cells (Figure 11A). Next, it was tested whether AMCBS is observable for 

this antigen-CB combination by fluorescence microscopy. HeLa_αCA-mCherry were 

transfected with either GFP-CA or GFP and fluorescence images were acquired (Figure 

11B). The images illustrate that cells expressing GFP-CA displayed an increased αCA-

mCherry signal compared to non-transfected cells (indicated by white arrows) and no 

difference in CB fluorescence was detected for GFP expressing cells. Moreover, in the 

absence of GFP-CA the CB was homogenously distributed between cytoplasm and nucleus, 

whereas in presence of the antigen the CB strongly co-localized with its target within the 

cytoplasm. Using software-assisted image segmentation, αCA-mCherry fluorescence was 

quantified in nuclear, cytoplasmic or whole-cell area of GFP- or GFP-CA expressing cells 

resulting in a 2.5-, 6.0-, or 4.3-fold increase, respectively (Figure 11C). 
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Figure 11 Antigen-mediated stabilization of an HIV CA-specific CB in stable HeLa-αCA-mCherry cells. 

(Secker, 2016), (A-E) For the analysis of antigen-mediated CB stabilization of the αCA-CB stably expressing 

HeLa_αCA-mCherry cells were used. Cells were transiently transfected with the corresponding antigen 

GFP-gag-pol (GFP-CA) or GFP as control and analyzed 24 h post transfection. (A) αCA-mCherry binds its 

antigen within living cells. Transfected HeLa_αCA-mCherry cells were lysed using a 0.5 % NP-40 lysis buffer, 

followed by an intracellular immunoprecipitation of GFP and GFP-CA from the soluble lysate proportion 

using the GFP-Trap. 0.5 % of input and 20 % of the bound fraction were subjected to SDS-PAGE followed by 

western blot analysis. (B) Representative fluorescence images of living HeLa_αCA-mCherry cells transfected 

with GFP-CA or GFP as control. Non-transfected cells are indicated with white arrows. Nuclei were stained 

with Hoechst33258, scale bar: 50 µM. (C) Optical quantification of αCA-mCherry signal intensity in 

HeLa_αCA-mCherry cells after ectopic antigen expression. Mean αCA-mCherry fluorescence was detected in 

the cytoplasm, the nuclei and in the whole cellular area of GFP- or GFP-CA-expressing cells. Mean 

fluorescence was calculated from three samples (n=3; >200 cells). (D) Biochemical analysis of the 

HeLa_αCA-mCherry transfected with GFP or GFP-CA. Cells were lysed using 0.5 % NP40 lysis buffer and 

equal protein amounts of the soluble fraction were subjected to SDS-PAGE followed by western blot analysis. 

(E) Densiometric analysis of αCA-mCherry level in presence and absence of the corresponding antigen GFP-

CA. Signal intensities were quantified from three biological replicates (N=3). (C and E) Error bars: S.D.; for 

statistical analysis student’s t-test was performed. 

Finally, quantitative western blot analysis was performed to test if the antigen-mediated 

stabilization of αCA-mCherry can also be observed using a biochemical approach (Figure 

11D and E). Post transfection of HeLa_αCA-mCherry with plasmids coding for GFP-CA or 

GFP, cells were lysed and equal amounts of soluble protein lysates were subjected to SDS-

PAGE followed by western blot analysis. Compared to GFP-transfected cells an increase in 

αCA-mCherry band intensity could be observed and densiometric analysis of three 

biological replicates revealed a 2.2-fold enrichment of the CB in presence of the antigen. 
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Considering a transfection efficiency of ~50 % this biochemical result is comparable to the 

values determined by fluorescence microscopy. 

5.2.2 Proliferating Cell Nuclear Antigen binding cell-cycle-CB (CCC-

TagRFP) 

The next CB analyzed within the context of AMCBS was CCC-TagRFP (Panza et al, 2015) 

recognizing endogenous PCNA, a key factor in DNA replication and cell cycle regulation 

(reviewed in (Strzalka & Ziemienowicz, 2011)). To test whether the fluorescence intensities 

of the CB also respond to antigen depletion, endogenous PCNA level were downregulated 

using small interfering RNAs (siRNAs) in HeLa cells stably expressing CCC-TagRFP 

(HeLa_CCC-TagRFP). 72 h post transfection of siRNAs targeting either PCNA or with non-

targeting control siRNAs fluorescence images were acquired followed by quantification of 

CB signal intensity within the nuclear region (Figure 12A, B). Compared to control siRNAs, 

knockdown of PCNA led to a ~70 % reduction in CCC-TagRFP fluorescence, which was 

evident for all three PCNA targeting siRNAs. In addition, the results obtained from 

microscopic analysis were confirmed using a biochemical assay approach. Western blot 

analysis of HeLa_CCC-TagRFP 72 h after siRNA transfection illustrates that PCNA protein 

levels were efficiently downregulated by the respective siRNAs. Accordingly, immunoblot 

analysis revealed a strong reduction of CCC-TagRFP protein level (Figure 12C). 

 

Figure 12 siRNA-mediated depletion of PCNA can be monitored by the CCC-TagRFP fluorescence. 

(A-C) HeLa_CCC-TagRFP cells were transfected with either two control siRNAs (siCTR1, siCTR2) or three 

different siRNAs (siPCNA1-3) mediating knockdown of endogenous PCNA. 72 h after transfection of the 

siRNAs the analyses were performed. (A) Representative fluorescence images of HeLa_CCC-TagRFP after 

siRNA transfection, scale bar: 50 µM. (B) Bar chart shows mean nuclear CCC-TagRFP fluorescence 

normalized to signal of cells transfected with siCTR1 of three different samples (n=3; >200 cells). Error bars: 

S.D., for statistical analysis student’s t-test was used, *** p < 0.001. (C) Biochemical analysis of HeLa_CCC-
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TagRFP after siRNA-mediated PCNA depletion. 72 h post transfection cells were lysed and equal protein 

amounts of the soluble fraction were subjected to SDS-PAGE followed by western blot analysis using 

antibodies targeting TagRFP, PCNA and GAPDH as loading control. 

5.2.3 Vimentin targeting VB6-CBs  

Finally AMCBS was tested for a nanobody targeting the intermediate filament vimentin 

(VIM). VIM is ubiquitously expressed in mesenchymal cells, where it maintains cellular 

integrity. Furthermore, VIM is reported to be overexpressed in various epithelial cancers and 

has become an important marker for epithelial-mesenchymal transition (Satelli & Li, 2011). 

As ectopic VIM expression directly affects shape, adhesion and motility of the cells (Mendez 

et al, 2010), it is highly desirable to study endogenous VIM. Recently, VIM targeting CBs 

were developed and stably CB expressing cell lines (A549_VB6_eGFP and 

A546_VB6_TagRFP) were established (Maier et al, 2015). Using these cell lines, it was 

analyzed whether an induction of VIM by treatment with the transforming growth factor-β 

(TGF-β) or an siRNA-mediated depletion of VIM is accompanied by corresponding changes 

in CB fluorescence. Previously, it was shown by western blot analysis that both treatments 

were highly effective to raise or deplete the cellular levels of endogenous VIM in these cell 

models (Maier et al, 2015). The experiments reported in this chapter were performed by 

Dr. Julia Maier, whereas the data analysis was done independently by adapting the described 

segmentation strategy to the A549_VB6-eGFP and A549_VB6-TagRFP cell lines. 

A549_VB6-eGFP cells were treated with TGF-β for up to 72 h to induce expression of 

endogenous vimentin. Fluorescence images were acquired every 12 h revealing a continuous 

increase of the CB signal with a ~4-fold elevation after 72 h estimated by quantification of 

the CB fluorescence (Figure 13A, B).  

 

Figure 13 TGF-β-induced vimentin expression can be quantified by following the CB fluorescence intensity 

in A549 cells stably expressing the VB6-CB. 

(A) A549_VB6-eGFP cells were either stimulated with 5 ng/ml TGF-β or left non-treated. Fluorescence images 

were continuously acquired at indicated time points, scale bar: 50 µM. (B) Quantification of mean VB6-eGFP 
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cellular fluorescence derived from time-lapse imaging after stimulation with 5 ng/ml TGF-β. Mean 

fluorescence intensities were normalized to the CB-signal intensity at 0 h, (N=3. > 200 cells each), error bars: 

S.D. 

After showing that VIM induction can be monitored by visualizing the CB signal, siRNA-

mediated depletion of VIM was performed in A549_VB6-TagRFP cells. The results showed 

that 72 h after siRNA treatment CB signal intensity was decreased to ~20 % compared to 

control siRNAs (Figure 14A, B). 

 

Figure 14 Visualization of siRNA-mediated VIM depletion by observing the VB6-TagRFP fluorescence. 

(A-B) A549 cells stably expressing the VIM binding VB6-TagRFP (A549_VB6-TagRFP) were transfected with 

either two control siRNAs (siCTR1, siCTR2) or three different siRNAs (siVIM1-3) mediating knockdown of 

endogenous vimentin. 72 h post transfection of respective siRNAs the cells were analyzed by fluorescence 

microscopy. (A) Representative fluorescence images of A549_VB6-TagRFP after siRNA transfection, scale 

bar: 50 µM. (B) Bar chart shows mean VB6-TagRFP fluorescence intensity normalized to the signal of cells 

transfected with siCTR1 of three different samples (n=3; >200 cells). Error bars: S.D., for statistical analysis 

student’s t-test was used, *** p < 0.001.  

 

5.2.4 AMCBS as general CB phenomenon 

Taken together, the results obtained from experiments using CBs targeting different antigens 

such as CTNNB1, CA, PCNA and VIM strongly support the hypothesis that AMCBS is a 

general phenomenon. Notably, by utilizing the AMCBS phenomenon an increase in antigen 

concentration (CA, VIM) as well as depletion of the antigen (PCNA, VIM) could be 

monitored by simply following the CB signal over time. Furthermore, the results were 

obtained from different cell lines (HeLa and A549 cells) and the CBs stably integrated in 

these cell lines comprised different fluorescent moieties (TagGFP2, eGFP, mCherry and 

TagRFP). In addition, these results strongly suggest that AMCBS is a universal effect, which 

is observable for VHH- but also for VH-derived CBs.
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5.3 Optimization of chromobody turnover 

In most of current CB expression constructs, CB expression is driven from strong promotors 

such as the cytomegalovirus (CMV) promotor, which results in high yields of intracellularly 

available CB. If the protein level of the CB is higher than the amount of the antigen, the 

signal of antigen-bound CB might be masked due to elevated amounts of the unbound CB, 

thereby preventing the detection of small changes. 

 

Figure 15 Strategies to reduce the basal amount of unbound CB within a cellular expression system. 

(A) Schematic illustration of CB fluorescence reduction by enhancing CB turnover. (B) Pursued strategies to 

enhance CB turnover in this study. 

As a low basal antigen-independent CB level is desirable, three different strategies to reduce 

the CB ground level were followed in this thesis (illustrated in Figure 15): (i) by addition of 

mutations into the framework region of the nanobody moiety destabilized BC1-CB variants 

were generated. Recently, these specific framework mutations have been described to 

rapidly create a conditional system, in which the stability of a NB depended on binding to 

its cognate antigen. Consequently, the antigen-independent NB fraction was degraded, 

resulting in a system suitable for the detection and quantification of endogenous antigens 

(Tang et al, 2016). (ii) a region containing proline (P), glutamic acid (E), serine (S) and 

threonine (T), a so-called PEST sequence, was C-terminally fused to the BC1- and αCA-CB. 
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This PEST sequence acts as a signal peptide for the proteasomal protein degradation, thereby 

resulting in a reduced half-life of the protein carrying this sequence (Rogers et al, 1986). 

And (iii) turnover-accelerated CBs were generated by utilizing the N-end rule, which is a 

key determinant of the half-life of a protein (Bachmair et al, 1986). To apply this method, 

the ubiquitin fusion technique was implemented, allowing the generation of CBs that only 

differ in their N-terminal amino acid (Varshavsky, 2005). 

5.3.1 Destabilizing nanobody framework mutation to break down 

unbound CB 

One recently described method to reduce the cellular amount of non-bound CB is the 

generation of conditionally stable nanobodies (Tang et al, 2016). To modify NBs that their 

amount strongly depends on antigen co-expression, the authors utilized a GFP-binding NB 

(GBP1) and generated a library encoding randomly mutagenized variants of GBP1-NB fused 

to TagBFP (GBP1-TagBFP). Next, the authors co-infected HEK293T cells with the 

generated library and the corresponding antigen (YFP) and analyzed the GPB1-TagBFP 

fluorescence. Interestingly, some GBP1-TagBFP mutants showed almost no fluorescence in 

antigen absence and a strong fluorescence in presence of the antigen YFP. Sequence analysis 

of these CBs led to the identification of three mutations, located in the framework region of 

the NB (S70R, C92Y and S113F, according to Kabat numbering (Kabat et al, 1992)), which 

strongly influenced the intracellular stability of the CB. As the NB framework regions are 

highly conserved, the authors hypothesized that these specific framework mutation could 

also be transferred to other NBs and applied these three mutations to other NBs resulting in 

similar observations. Based on these findings, this destabilizing framework were transferred 

to BC1-TagGFP2 (Figure 16). 

 

Figure 16 Illustration of destabilizing framework mutations in the BC1-TagGFP2. 

Amino acid sequence of the BC1 nanobody binding moiety with labeled framework (FR1-4) and 

complementarity determining regions (CDR1-3). Highlighted in red are the previously described FR mutations 

(S70R, C92Y and S113F, Kabat numbering (Kabat et al, 1992)). 
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Expression constructs of BC1-TagGFP2 carrying these framework mutations were 

generated (BC1S70R-TagGFP2, BC1C92Y-TagGFP2, BC1S113F-TagGFP2) and compared to 

the original BC1-TagGFP2 CB upon co-expression with either mCherry-CTNNB1 or 

mCherry as control (Figure 17A). Comparative analysis of CB fluorescence revealed a 

slightly reduced mean fluorescence of the BC1S70R-TagGFP2 and BC1S113F-TagGFP2 

mutants and a strong reduction for the BC1C92Y-TagGFP2 mutant close to background 

fluorescence level. Comparison of each CB signal in mCherry- and mCherry-CTNNB1-co-

transfected cells revealed that antigen-mediated stabilization determined for the mutant 

versions moderately increased from 1.75-fold for BC1-TagGFP2, to 2.06-fold for BC1S70R-

TagGFP2, and 2.2-fold for the BC1S113F-TagGFP2 mutant (Figure 17B). 

 

Figure 17 Microscopic analysis of destabilizing framework mutations of BC1-TagGFP2.  
(A) Representative fluorescence images of HeLa cells transiently co-transfected with the indicated BC1-CB 

variants and mCherry-CTNNB1 or mCherry as control. Nuclei were stained with DAPI, scale bar: 50 µm. (B) 

Quantification of mean CB fluorescence intensity in mCherry- and mCherry-CTNNB1 expressing cells. The 

intensity of each BC1-CB variant was normalized to the signal of the unmodified BC1-TagGFP2 in mCherry 

co-transfected cells (N=3, >200 cells each). The fold changes in CB fluorescence intensity after ectopic 

mCherry-CTNNB1 expression compared to the mCherry control are presented below the bar chart. Error bars: 

S.D., for statistical analysis student’s t-test was applied, *** p < 0.001. 
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However, when the antigen binding of the CBs was analyzed by intracellular co-

immunoprecipitation of CTNNB1, CTNNB1 could not be detected in the bound fraction of 

the low expressing BC1C92Y-TagGFP2 variant, indicating that this framework mutation 

might abolish binding to CTNNB1 (Figure 18).  

 

Figure 18 Intracellular co-immunoprecipitation of endogenous CTNNB1 with destabilized BC1-CBs. 

HEK293T were transiently transfected with the indicated BC1-CB variants. 8 h post transfection cells were 

stimulated with 10 µM CHIR99021 for 16 h. Subsequently, cells were lysed using a 0.5 % NP40 lysis buffer 

and the soluble protein fraction was subjected to immunoprecipitation of the CBs with the GFP-Trap. 1 % of 

input and 20 % of bound fraction was loaded onto SDS-PAGE gels and protein level of CTNNB1, BC1-CB and 

GAPDH were analyzed via western blot.  

With respect to the obtained findings, the strategy of using framework mutations to reduce 

the amount of unbound CBs in a cellular system could improve antigen-dependent 

responsiveness but also bears the risk in the generation of non-functional binding molecules. 

Hence, other strategies to reduce ground level of CBs were pursued, which should not 

interfere with antigen binding. 

5.3.2 Elucidating the degradation pathway of the αCA-CB 

In order to develop a different strategy resulting in reduced CB ground levels, it was first 

tested whether CBs are degraded via the ubiquitin proteasome system (UPS) or by lysosomal 

protein degradation. The described experiments in this chapter were conceived and 

conducted in collaboration with Dr. Björn Tränkle and Kathy-Ann Secker (Secker, 2016). 

To address this question, the HeLa_αCA-mCherry cell line was chosen for the analysis, since 

this cell line lacks an endogenous binding partner of the αCA-CB, because this model allows 

the analysis of the degradation pathway irrespective of antigen binding. Cells were either 

treated with the proteasome inhibitor MG132 or with NH4Cl, which inhibits lysosomal 

degradation (Seglen & Reith, 1976) followed by continuous imaging of the cells in an hourly 

interval for up to 10 h. The images revealed a clear increase of CB fluorescence after 

treatment with the proteasome inhibitor MG132, while treatment with NH4Cl did not alter 
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fluorescence intensity of the CB during the monitored period (Figure 19A, B). Considering 

the high similarity of CB sequence and structure, it can be assumed that most CBs are likely 

degraded via the UPS.  

 

 

Figure 19 Chromobodies are degraded via the proteasomal pathway. 

(A) HeLa cells stably expressing αCA-mCherry CB (HeLa_αCA-mCherry) were treated with either MG132 to 

inhibit the proteasomal degradation or with NH4Cl for inhibition of the lysosomal degradation pathway. 

Control cells were either left untreated (nt) or treated with DMSO. Cells were subjected to time-lapse imaging 

and fluorescence images were acquired every hour. (B) Quantification of αCA-mCherry mean fluorescence 

intensity. Graph illustrates mean CB fluorescence intensities normalized to their respective control (DMSO 

for MG132 and nt for NH4Cl) and plotted against time (n=3, >200 cells), error bars: S.D. These results were 

conceived and conducted in collaboration with Dr. Björn Tränkle and Kathy-Ann Secker (Secker, 2016). 

 

5.3.3 Addition of a destabilizing PEST sequence to reduce CB half-life 

To reduce ground level of the CBs without interfering with their binding capacity, CBs were 

C-terminally modified with a PEST sequence, derived from the ornithine decarboxylase 

(Rogers et al, 1986). PEST sequences directly affect the half-life of a protein by leading to 

rapid protein degradation of the modified protein (Rechsteiner & Rogers, 1996). Moreover, 

PEST sequence addition was already successfully applied to reduce the ground level of 

different gene reporters fused to different proteins like GFP or firefly luciferase (Li et al, 

1998; Leclerc et al, 2000). The generation of PEST-tagged CB expression constructs and the 
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following analysis after transient expression in HeLa cells were independently performed 

and analyzed by the former Master student Kathy-Ann Secker (Secker, 2016).  

At first, the ornithine decarboxylase-derived PEST sequence was C-terminally added to the 

BC1-TagGFP2 (BC1-TagGFP2-PEST) and the αCA-mCherry (αCA-mCherry-PEST). 

Next, BC1-TagGFP2-PEST was transiently co-expressed in HeLa cells, together with either 

mCherry-CTNNB1 or mCherry as control. The CB fluorescence was microscopically 

analyzed 17 h post transfection because after 24 h an onset of cell death was noticed. 

Analysis of transient BC1-TagGFP2 expressing cells revealed that after addition of the PEST 

sequence CB fluorescence was close to background and antigen co-expression led to an 

elevation of BC1-TagGFP2-PEST fluorescence (Figure 20A). Direct comparison with the 

original BC1-TagGFP2 CB illustrates a ~60 % reduced basal fluorescence in absence of the 

cognate antigen and the stabilization factor was slightly enhanced after addition of the PEST 

sequence (Figure 20B).  

 

Figure 20 Addition of C-terminal PEST sequence to BC1-TagGFP2 reduces CB ground level. 

(Secker, 2016), (A) Parental HeLa cells were transiently co-transfected with BC1-TagGFP2-PEST and either 

with the corresponding antigen mCherry-CTNNB1 or mCherry as control. Shown are representative images 

17 h post transfection, scale bar: 20 µm. (B) Bar chart of mean BC1-TagGFP2 and BC1-TagGFP2-PEST 

fluorescence in mCherry- or mCherry-CTNNB1-expressing cells analyzed 17 h post transient transfection. 

Mean CB fluorescences were normalized to cells expressing the non-modified BC1-TagGFP2 CB in mCherry 

transfected cells (n=3, >600 cells). Stabilization factors of fluorescence derived from antigen-negative and -

positive cells are presented below the graphs. Error bars: S.E.M., for statistical analysis student’s t-test was 

used.  

Secondly, CB fluorescence of αCA-mCherry-PEST 24 h post transient expression in HeLa 

cells was analyzed in presence and absence of the antigen GFP-CA. In the absence of the 

antigen αCA-mCherry-PEST fluorescence was reduced to ~60 % compared to the 

unmodified αCA-mCherry CB and the co-expression of the cognate antigen led to an 

enhanced stabilization factor for the PEST-modified CB (Figure 21A, B).  
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Figure 21 PEST sequence addition reduces ŬCA-CB ground level while enhancing the antigen-mediated 

stabilization factor. 

(A) Parental HeLa cells were transiently co-transfected with αCA-mCherry-PEST and either with the 

corresponding antigen GFP-CA or GFP as control. Illustrated are representative images 24 h post transient 

transfection. (B) Bar chart of mean αCA-mCherry and αCA-mCherry-PEST fluorescence in GFP- or GFP-

CA-expressing cells analyzed 24 h post transient transfection. Mean fluorescence of the CB variants was 

normalized to cells expressing the non-modified αCA-mCherry CB in GFP transfected cells (n=3, >600 cells). 

Stabilization factors of fluorescence derived from antigen-negative and -positive cells are presented below the 

graphs. Error bars: S.E.M., for statistical analysis student’s t-test was used. 

In conclusion, the addition of the PEST sequence to increase the CB turnover showed 

inconsistent results. Although this modification reduced the basal CB level and improved 

the associated stabilization factor for the αCA-CB, this approach was only partially 

applicable for the BC1-CB, since an accelerated cell death was observed after addition of 

the PEST sequence and in this example the stabilization factor did only slightly improve. 

Considering these findings, it was decided that this strategy is not generally suited to enhance 

the turnover of CBs. 

5.3.4 Turnover-accelerating N-terminal amino acids 

In another attempt to employ the proteasomal degradation pathway to reduce the CB ground 

level within a cellular expression system, the N-end rule, a key determinant of a protein’s 

half-life, was utilized (Bachmair et al, 1986; Varshavsky, 2011). This method was already 

successfully applied to generate sensitive gene expression reporter by reducing the ground 

level of a reporter construct (Worley et al, 1998; Dantuma et al, 2000). Based on the N-end 

rule, the N-terminal amino acid of a protein is recognized by E3 ubiquitin ligases, which 

initiate ubiquitinylation of accessible nearby lysine residues, thereby priming the protein for 

proteasomal degradation. To screen for N-terminal amino acids leading to accelerated CB 

degradation, the ubiquitin fusion technique was implemented. This approach is based on the 

ratio that when ubiquitin (Ub) is expressed at the N-terminus of any POI, it is co-
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translationally cleaved off from the fusion protein, resulting in exposure of a new N-terminal 

amino acid of the POI (Varshavsky, 2005; Bachmair et al, 1986). 

To implement this method, an expression construct as outlined in Figure 22A was designed 

to generate Ub-CB fusions displaying different N-terminally exposed amino acid residues. 

Firstly, transient expression of the construct containing a N-terminal Ub fused to the BC1-

TagGFP2 CB (Ub-M-BC1-TagGFP2) was tested in parental HeLa cells, which showed a 

dispersed distribution of the CB constructs in the nucleus and the cytosol of the cells without 

displaying aggregates (Figure 22B). Secondly, to test whether the Ub-CB fusion was 

processed according to the literature (Varshavsky, 2005), the original BC1-TagGFP2, Ub-

M-BC1-TagGFP2 and the non-cleavable mutant UbG76V-M-BC1-TagGFP2 (Dantuma et al, 

2000) were transiently expressed in HEK293T cells followed by comparative western blot 

analysis of the molecular weight of the matured CB variants (Figure 22C). No size 

difference was observed between the BC1-TagGFP2 CB and the Ub-CB fusion (Ub-M-BC1-

TagGFP2), whereas UbG76V-M-BC1-TagGFP2 showed a size shift towards a higher 

molecular weight. These results indicate that the Ub-CB fusion is processed as intended and 

can be successfully expressed in HeLa and HEK293T cells. 

 

Figure 22 Implementation of the ubiquitin fusion technique for BC1-CB expression.  

(A) Schematic illustration of the chromobody expression construct generated to express CBs exposing different 

N-terminal residues. The indicated restriction sites allow an easy exchange of every CB component. (B) 

Representative image of parental HeLa cells transiently transfected with the generated Ub-M-BC1-TagGFP2 

plasmid acquired 24 h post transfection, scale bar: 50 µm. (C) HEK293T cells were transiently transfected 

with expression constructs encoding the original BC1-TagGFP, Ub-M-BC1-TagGFP2 and the cleavage-

deficient mutant UbG76V-M-BC1-TagGFP2. 24 h post transfection cells were lysed and soluble protein fraction 

was subjected to SDS-PAGE followed by immunoblot analysis. 
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5.3.4.1 Screening for BC1-TagGFP2 turnover-accelerating N-terminal 

amino acid residues 

After demonstrating that Ub-CB fusions are expressible in mammalian cells, where they are 

processed as intended, a set of 20 CB expression constructs, differing only in the N-terminal 

amino acid after Ub cleavage, were generated by site-directed mutagenesis. To screen for 

CB turnover-accelerating N-terminal amino acids, parental HeLa cells were transfected with 

the 20 generated constructs followed by quantitative image analysis of mean CB 

fluorescence. The analysis revealed that phenylalanine (F), alanine (A), lysine (K), 

tryptophan (T), arginine (R) and tyrosine (Y) (highlighted in grey) resulted in a reduced CB 

fluorescence of 40 - 60 % compared to the methionine (M) variant. In contrast to this, serine 

(S, hatched) showed the highest CB fluorescence when exposed at the N-terminus (Figure 

23). 

 

Figure 23 Screening for turnover-accelerating N-terminal residues of the Ub-X-BC1-TagGFP CB. 

Parental HeLa cells were transiently transfected with the indicated N-terminal Ub-X-BC1-TagGFP2 variants 

containing all possible amino acids at their N-terminus. To allow automated image segmentation, cells were 

co-transfected with mCherry and mean CB fluorescence was determined based on segmentation of the mCherry 

signal. Mean CB fluorescences were normalized to Ub-M-BC1-TagGFP2 (N=2, >200 cells each), error bars: 

S.D., for statistical analysis student’s t-test was used, *** p < 0.001. Below the bar chart representative images 

of CB fluorescence are shown, scale bar: 200 µm. 

 

5.3.4.2 Verification of the identified turnover-accelerating amino acids by 

blocking the novel CB translation with cycloheximide 

According to the experimental design, differences in CB fluorescence intensity detected in 

the initial screen should arise from the differences in CB degradation. To test this assumption 

in more detail, CB fluorescence of Ub-M-BC1-TagGFP2, Ub-F-BC1-TagGFP2, Ub-A-

BC1-TagGFP2, Ub-R-BC1-TagGFP2 (Phe, Ala, Arg as variants with lowest CB 

fluorescence), and Ub-S-BC1-TagGFP (highest CB fluorescence) was monitored after 
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transient expression in HeLa cells following inhibition of protein translation by addition of 

cycloheximide (CHX) (Figure 24A). Compared to Ub-M-BC1-TagGFP2 and Ub-S-BC1-

TagGFP2, which displayed 69 % and 80 % of the initial fluorescence after six hours, CB 

fluorescence with N-terminally exposed Phe, Ala or Arg decreased more rapidly to ~30 % 

of their respective initial fluorescence upon CHX treatment after six hours (Figure 24B). 

From this experiment it can be can be concluded that Phe, Ala and Arg were turnover-

accelerating amino acids, which conferred rapid CB degradation. 

 

Figure 24 N-terminal residues Arg, Ala and Phe enhance turnover of Ub-X-BC1-TagGFP2. 

(A) Parental HeLa cells were transiently transfected with the indicated N-terminal variants of the Ub-X-BC1-

TagGFP2 CB and mCherry as transfection control (not shown). 24 h post transfection cells were either left 

untreated or were treated with 0.1 mg/ml cycloheximide (CHX). At indicated time points cells were fixed and 

nuclei were stained with DAPI. Illustrated are representative fluorescence images of three biological 

replicates, scale bar: 200 µm. (B) Quantification of Ub-X-BC1-TagGFP2 mean fluorescence after blocking of 

protein translation using CHX. Mean fluorescence intensity of each CB variant was normalized to the 

respective non-treated control and normalized values were plotted against time (N=3, >200 cells each). Error 

bars: S.D. 
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5.3.4.3 CB turnover-accelerating amino acids in other mammalian cell 

lines 

As the expression of ubiquitin ligases might vary between different cell lines, fluorescence 

of the modified CBs (Ub-M-BC1-TagGFP2, Ub-F-BC1-TagGFP2, Ub-A-BC1-TagGFP2, 

Ub-R-BC1-TagGFP2and Ub-S-BC1-TagGFP2) was additionally analyzed in U2OS and 

A549 cell lines (Figure 25A, B). Therefore, the corresponding constructs were transiently 

expressed in these two cell lines followed by a quantitative analysis of CB fluorescence 

intensity segmented in mCherry-co-transfected cells. The analysis revealed highly similar 

CB signal intensities as detected in HeLa cells, except a weaker turnover-accelerating effect 

for the Ub-F-BC1-TagGFP2 variant. These results indicated that Ala and Arg, confer a high 

CB turnover in various cell lines. 

 

Figure 25 Differences in Ub-X-BC1-TagGFP2 turnover are transferable to A549 and U2OS cell lines. 

Parental A549 (A) and U2OS (B) cells were transiently co-transfected with the indicated Ub-X-BC1-TagGFP2 

variants and mCherry as transfection control. Mean CB fluorescence was analyzed by quantitative imaging, 

determining the CB fluorescence in mCherry-transfected cells. Bar charts illustrate mean fluorescence of CB 

variants normalized to the respective Ub-M-BC1-TagGFP2 variant (n=3, >200 cells). Error bars: S.D., for 

statistical analysis student’s t-test was used, *** p < 0.001; ** p < 0.01; n.s. p > 0.05. 

 

5.3.4.4 Transfer of turnover-accelerating amino acids to other CBs 

To test whether the effect of the identified turnover-accelerating amino acids is transferable 

to CBs targeting different antigens, the BC1-NB was replaced by the αCA- or VB6-NB 

within the generated CB expression constructs containing Met, Phe, Ala, Arg and Ser at their 

N-terminus using PstI and BspEI restriction sites (Figure 22A). For a comparative analysis 

all modified CBs were expressed in HeLa cells together with mCherry as transfection control 

followed by quantitative fluorescence imaging (Figure 26A, B). This experiment revealed a 
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significantly reduced fluorescence for all CBs displaying a N-terminal Phe and Arg residue 

as well as an enhanced fluorescence intensity for the Ser variants. Notably, the strong effect 

of Ala initially detected for the BC1-CB was neither observable for Ub-A-VB6-TagGFP2 

nor for Ub-A-αCA-TagGFP2. Consequently Ala containing CB expression plasmids were 

excluded from further analyses. 

 

Figure 26 Turnover-accelerating N-terminal residues are transferable to other CBs. 

Parental HeLa cells were transiently co-transfected with the indicated Ub-X-αCA-TagGFP2 (A) or Ub-X-VB6-

TagGFP2 (B) variants and mCherry as control. Shown are representative images, scale bar: 100 µm. Bar 

chart of mean CB fluorescence in mCherry expressing cells, normalized to the Met containing CB variant 

(n=3, >200 cells). Error bars: S.D., for statistical analysis student’s t-test was used, *** p < 0.001; ** p < 

0.01; n.s. p > 0.05. 

 

5.3.4.5 Influence of linker length 

For the initiation of proteasomal degradation, unstructured amino acid regions are required 

(Yu et al, 2016). Within the CB, the nanobody moiety and the fluorescent protein are 

connected via a Gly-Ser-(G4S)3 linker, which represents an unstructured region and probably 

might serve as initiation site for proteasomal degradation. Thus, the impact of the linker 

length in context of AMCBS was evaluated. Consequently, the original (G4S)3 linker was 

substituted within the Ub-M-BC1-TagGFP2 construct towards a shorter (G4S)2 or a longer 

(G4S)4 version. These three linker variants of the CB were co-expressed in HeLa cells with 
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either mCherry-CTNNB1 or mCherry as control. Analysis of CB fluorescence revealed 

neither significant differences for the CB fluorescence in antigen absence nor in presence of 

the antigen (Figure 27), which indicates a negligible role of the linker length for AMCBS. 

 

Figure 27 Influence of the length of the Gly-Ser linker connecting the chromobody binding moiety with 

the FP. 

Parental HeLa cells were transiently co-transfected with Ub-M-BC1-TagGFP2 constructs comprising different 

variants of the Gly-Ser linker ((G4S)3, (G4S)2 and (G4S)4) and mCherry or mCherry-CTNNB1. Bar chart 

represents the mean CB fluorescence normalized to fluorescence signal detected in cells expressing the Ub-M-

BC1-TagGFP2 comprising the (G4S)3 linker in combination with mCherry (n=3, >200 cells). Error bars: S.D. 

 

5.3.4.6 Influence of fluorescent protein on CB degradation velocity 

To evaluate a potential impact of the FP on CB turnover, TagGFP2 was either substituted 

by eGFP, mCherry or TagRFP in the N-terminally modified BC1-CB constructs displaying 

Met, Phe, Ala, Arg and Ser as N-terminally amino acid residues. After transient expression 

in HeLa cells, CB degradation velocities in the presence of CHX were monitored by 

fluorescence imaging for up to six hours followed by quantitative analysis (Figure 28A, B, 

C). The most rapid degradation to 26 % could be detected for Ub-R-BC1-eGFP, whereas 

corresponding CB constructs comprising either mCherry or TagRFP were less degraded to 

43 % or 57 %, respectively. Although some differences among the FPs were observed, the 

turnover-accelerating effect of Arg and Phe was evident for all three additionally 

investigated FPs. 
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Figure 28 Impact of the fluorescent moiety on turnover velocity of N-terminally modified BC1-CB variants. 

(A-C) New expression constructs of Ub-X-BC1-TagGFP2 containing Met, Phe, Arg and Ser were generated 

by replacing TagGFP2 by either eGFP (A), mCherry (B) or TagRFP (C). Left panel (A-C) shows fluorescent 

images of parental HeLa cells transiently expressing the indicated Ub-X-BC1-FPs. 24 h after transfection cells 

were either left non-treated (nt) or were treated with 0.1 mg/ml CHX. At the indicated time points cells were 

fixed and nuclei stained with DAPI. Shown are representative images of three biological replicates (N=3), 

scale bar: 200 µm. Right panel illustrates the mean fluorescence of the Ub-X-BC1-FP variants, each 

normalized to the respective non-treated control and plotted against time (N=3, >200 cells each). For 

segmentation a co-transfected control protein (mCherry in case of Ub-X-BC1-eGFP or GFP in case of Ub-X-

BC1-mCherry and Ub-X-BC1-TagRFP) was used (for simplification data of co-transfection are not shown). 

Error bars: S.D. 
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5.3.4.7 Antigen-mediated CB stabilization of turnover-accelerated BC1-CB 

variants 

After demonstrating that the N-end rule is suitable to reduce CB ground level within cells, 

the next question was whether these modified CBs can be stabilized via their antigen and 

exhibit improved stabilization factors. To analyze the stabilization effect of CTNNB1, the 

BC1-CB variants Ub-M-BC1-TagGFP2, Ub-F-BC1-TagGFP2, Ub-R-BC1-TagGFP2 and 

Ub-S-BC1-TagGFP2 were compared. Thus, the CB constructs were transiently co-expressed 

in parental HeLa cells with either mCherry-CTNNB1 or mCherry as control and the CB 

fluorescence intensity was determined within co-transfected cells. Based on the degree of 

CB stabilization N-terminal Met and Ser behaved similar, displaying stabilization factors of 

1.8 and 1.9, respectively. For the turnover-accelerating amino acids Phe and Arg 

stabilization factors of 2.2 and 2.3 were determined (Figure 29A, B). This observation 

illustrates that the ground level reduction of the BC1-CB variants exposing Phe and Arg at 

the N-terminus led to elevated stabilization factors. 

 

Figure 29 CTNNB1-dependent stabilization of N-terminally modified Ub-X-BC1-TagGFP2 variants 

Parental HeLa cells were transiently co-transfected with respective Ub-X-BC1-TagGFP2 variant in 

combination with either mCherry or mCherry-CTNNB1. 24 h after transfection cells were fixed and nuclei 
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were stained with DAPI. (A) Representative fluorescence images of parental HeLa cells transiently expressing 

BC1-CB and mCherry or mCherry-CTNNB1, scale bar: 50 µM. (B) Bar chart of mean CB fluorescence 

intensity detected in mCherry- or mCherry-CTNNB1-expressing cells. CB fluorescence intensity was 

normalized to the fluorescence detected in mCherry transfected cells. Mean fluorescence was calculated from 

three different samples (n=3), comprising >200 cells. Error bars: S.D., for statistical analysis student’s t-test 

was performed, *** p < 0.001. Corresponding stabilization factors are indicated below the graph. 

 

5.3.4.8 CTNNB1-binding capacity of N-terminally modified BC1-CB 

variants 

To exclude an interference of the N-terminal modification on antigen binding, intracellular 

co-immunoprecipitation (IC-IP) was performed. Hence, HEK293T were transiently 

transfected with plasmids encoding for the original BC1-TagGFP2 construct, the newly 

generated Ub-M-BC1-eGFP, the turnover-accelerated Ub-R-BC1-eGFP or GFP as control. 

Subsequently, cells were treated with 10 µM CHIR to elevate the level of endogenous 

CTNNB1. After lysis CBs were precipitated with GFP-Trap followed by analysis of 

respective input and bound fractions by western blot (Figure 30). Antibody staining revealed 

that all three CBs successfully bound similar levels of endogenous CTNNB1. Obviously, the 

N-terminal BC1-CB modification did not affect CTNNB1 binding capacity. 

 

Figure 30 N-terminal modification of the BC1-CB does not affect intracellular binding to CTNNB1. 

HEK293T cells were transiently transfected with the indicated CB variants or GFP as control. 8 h post 

transfection, cells were stimulated with 10 µM CHIR for additional 16 h. Cells were lysed using a 0.5 % NP40 

lysis buffer and CBs were precipitated from the soluble fraction using the GFP-Trap. Input (1 %) and bound 

(20 %) fractions were subjected to SDS-PAGE followed by immunoblot analysis. 
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5.3.4.9 Influence of fluorescent moiety on CTNNB1-mediated 

stabilization of turnover-accelerated BC1-CBs 

Here, the set of turnover-accelerated CBs applied in chapter 5.3.4.6 containing either eGFP, 

mCherry and TagRFP as fluorescent moiety were used to evaluate whether the type of the 

FP has an effect on CB stabilization mediated by CTNNB1. Therefore, the CB constructs 

were co-expressed in parental HeLa cells with either the corresponding antigen or the 

respective FP as control. Fluorescence images were acquired followed by quantification of 

CB signals in co-expressing cells (Figure 31). The stabilizing effect of CTNNB1 was 

observable for each CB construct and comparable stabilization effects were determined as 

previously observed for the TagGFP2-containing CB variants. Notably, the stabilization 

factors of all Arg containing FP variants were the highest among each CB set. 

 

Figure 31 Effect of fluorescent moiety on antigen-mediated stabilization of N-terminally modified Ub-X-

BC1-CB variants. 

(A-C) To analyze the effect of the fluorescent moiety on antigen-mediated stabilization of N-terminally modified 

Ub-X-BC1-CBs, expression constructs of the Met, Phe, Arg and Ser CB containing either eGFP (A), mCherry 

(B) or TagRFP (C) were used. Left panel (A-C) shows fluorescent images of parental HeLa cells transiently 

expressing the indicated Ub-X-BC1-CBs and the respective antigen or control-FP (mCherry and mCherry-
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CTNNB1 in case of Ub-X-BC1-eGFP or GFP and GFP-CTNNB1 for Ub-X-BC1-mCherry and Ub-X-BC1-

TagRFP). 24 h after co-transfection cells were fixed and nuclei stained with DAPI. Shown are representative 

images of three biological replicates (N=3), scale bar: 50 µm. Right panel illustrates the mean fluorescence 

of the Ub-X-BC1-FP variants, each normalized to the respective co-transfected control protein (N=3, >200 

cells each). Error bars: S.D. For statistical analysis student’s t-test was used, *** p < 0.001. Corresponding 

stabilization factors are shown below bar charts. 

 

5.3.4.10 Antigen-mediated stabilization of Ub-R-αCA-TagRFP 

Next, the effect of antigen-mediated stabilization was tested for the Arg modification in 

context of the αCA-CB. Thus, the BC1-NB was replaced by the αCA-NB within the Met 

and Arg containing BC1-TagRFP expression constructs. Here, TagRFP as fluorescent 

moiety was chosen because the available expression construct for the antigen CA contained 

GFP as fluorescence moiety (GFP-CA). After cloning, the generated expression constructs 

(Ub-M-αCA-TagRFP and Ub-R-αCA-TagRFP) were transiently co-expressed in parental 

HeLa cells with either GFP-CA or GFP as control. In the absence of the antigen GFP-CA, 

the basal fluorescence of Ub-R-αCA-TagRFP was close to background level, whereas a 

moderate fluorescence was observed for the Met-containing variant (Figure 32A). Upon 

antigen exposure a stabilization factor of ~5 was calculated for Ub-M-αCA-TagRFP whereas 

the turnover-accelerated Arg variant showed a stabilization factor increased to ~14 (Figure 

32B). 

 

Figure 32 Antigen-mediated stabilization of N-terminally modified ŬCA-CB variants. 

(A) Representative fluorescence images of parental HeLa cells transiently expressing N-terminally modified 

Ub-X-αCA-TagRFP variants containing Met or Arg and GFP or GFP-CA. Nuclei were stained with DAPI, 

scale bar: 50 µM. (B) Bar chart of mean CB fluorescence intensity detected in GFP- or GFP-CA-expressing 

cells. CB fluorescence intensity was normalized to the fluorescence detected in GFP transfected cells. Mean 

fluorescence was calculated from three biological replicates (N=3), comprising >200 cells. Error bars: S.D., 

for statistical analysis student’s t-test was used. 
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5.3.4.11 Expression as ubiquitin fusion reduces aggregation of CBs after 

transient expression 

The majority of current CB expression systems are utilizing the CMV promoter, which 

results in a high level of ectopically expressed CBs. However, strong CB expression can be 

accompanied by the formation of aggregates within the cell. As a consequence, aggregation 

might interfere with the respective analysis method, lead to artifacts in analysis or might 

even have toxic effects to the cells (Vavouri et al, 2009; Halff et al, 2014). In this context it 

was described that the ubiquitin fusion technique can be used to increase solubility and 

functionality of ectopically expressed proteins (Varshavsky, 2005). 

The recently described Lamin-CB (LMN-TagGFP2) (Zolghadr et al, 2012) suffers from the 

formation of aggregates after transient expression in HeLa cells (Figure 33A). To test 

whether the ubiquitin fusion technique is effective to decrease aggregation of LMN-

TagGFP2, expression constructs containing a N-terminal ubiquitin with either Met and Arg 

were produced by replacing the BC1-NB by the LMN-NB within the Ub-CB expression 

construct.  

 

Figure 33 Comparative analysis of N-terminally modified Lamin-CB variants after transient expression in 

HeLa cells. 

Parental HeLa cells were transiently transfected with expression constructs encoding LMN-CB, Ub-M-LMN-

CB and Ub-R-LMN-CB. (A) Shown are representative images of three biological replicates of Lamin-CB-

expressing HeLa cells, scale bar 50 µM. (B) Quantification of aggregates proportion in HeLa cells transiently 

expressing the indicated Lamin-CB variants. Number of analyzed cells: LMN-CB: 157; Ub-M-LMN-CB: 142, 

and Ub-R-LMN-CB: 155. 

Next, parental HeLa cells were transiently transfected with expression constructs coding for 

LMN-TagGFP2, Ub-M-LMN-eGFP and the turnover-accelerated Ub-R-LMN-eGFP variant 

followed by fluorescence imaging of the CB-expressing cells (Figure 33A). Subsequently, 

the proportion of cells containing aggregates was determined for a statistically relevant 

number of cells (Figure 33B). For the original LMN-TagGFP2 CB the majority of 
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transfected cells (~70 %) displayed fluorescent aggregates. The transient expression as 

ubiquitin fusion containing N-terminal Met reduced aggregation to ~27 % and the 

expression as turnover-accelerated Ub-R-LMN-eGFP further reduced the aggregation to 

~8 %. 

In summary, these results illustrate that besides reducing CB ground level another major 

benefit in the application of the ubiquitin fusion technique is a reduction of CB aggregate 

formation after transient expression. Notably, after transient expression of the unmodified 

LMN-CB the nuclear lamina was hardly detectable in the majority of the cells, whereas both 

ubiquitin fusions led to more prominent fluorescent targeting of the lamina. 

 

5.3.4.12 Summary of CB turnover optimization  

To reduce the amount of antigen-independent CB within a cellular system, the application 

of the N-end rule turned out to be well suited for the generation of turnover-accelerated CBs 

by reducing CB ground level. The Arg-modified BC1 construct exhibited the most rapid 

turnover (Figure 24B), lowest fluorescence in absence of the antigen and the greatest 

stabilization after ectopic antigen expression (Figure 29). Importantly, these observations 

were evident irrespective of the fluorescent moiety (Figure 28, Figure 31) or the binding 

moiety (Figure 26) of the CB and the used cell line (Figure 25). Further, the Arg-

modification was successfully transferred to the αCA-CB resulting in a nearly tripled 

stabilization effect as compared with a version containing an N-terminal Met (Figure 32). 

Notably, the expression of a CB as Arg comprising ubiquitin fusion substantially increased 

the amount of functional CB upon transient expression by reducing the amount of aggregated 

CB (Figure 33).  

Based on these findings, the N-terminal Arg modification was utilized as feature for the 

generation of new stable CB expressing cell lines.
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5.4 Generation of stable cell lines expressing the turnover-accelerated 

Ub-R-BC1-eGFP CB 

A major benefit of the AMCBS approach compared to endpoint assays is its applicability to 

continuously monitor time-dependent changes in POI concentration in living cells. 

Previously, it could be demonstrated that an increase of endogenous CTNNB1 upon 

compound treatment can be visualized by real-time imaging of the CB signal in HeLa_BC1-

TagGFP2 cells (Traenkle et al, 2015). However, upon a more detailed characterization 

within this thesis it turned out that this cell line has only a limited use to monitor decreasing 

CTNNB1 levels. This was mainly caused by high CB ground levels and a discrepancy in 

half-life of CB and antigen. This issue was now addressed by the generation of a turnover-

accelerated CBs as described in the previous chapter. As a result of enhanced CB 

degradation, turnover-accelerated CBs were assumed to detect decreasing and small changes 

more precisely. 

Since transient CB expression results in substantial heterogeneity of intracellular CB level, 

two novel cell lines stably expressing the turnover-accelerated Ub-R-BC1-eGFP CB 

(HeLa_Ub-R-BC1-eGFP and U2OS_Ub-R-BC1-eGFP) were generated as illustrated in 

Figure 34. 

 

Figure 34 Schematic overview of stable Ub-R-BC1-CB cell line generation. 

Shown is the typical workflow of stable cell line generation following random genomic transgene integration. 

Parental cells were transfected with a plasmid coding for the turnover-accelerated CB, driven by a CMV 

promoter and a selection marker. Subsequent selection with the appropriated antibiotics resulted in random 

genomic integration of CB transgene. After expansion monoclonal cells were isolated. By an initial screen, 

cells were treated with CHIR to elevate the endogenous amount CTNNB1, which led to an increase in CB 

fluorescence. Single clones displaying rising CB levels in response to the CHIR-induced CTNNB1 increase 

were further expanded and characterized. 
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At first, parental HeLa and U2OS cells were transiently transfected with an expression 

plasmid containing the turnover-accelerated Ub-R-BC1-eGFP CB under a constitutive CMV 

promoter and the neoR resistance gene. One day after plasmid transfection, cells were 

continuously cultivated with 0.5 mg/ml G418 for a two week period (concentration 

determined by kill curve, data not shown) and after selection monoclonal cells were isolated. 

Initial characterization of the isolated Ub-R-BC1-eGFP expressing HeLa and U2OS clones 

was performed by monitoring the CB level after treatment with 10 µM CHIR for 16 h using 

fluorescence microscopy (Figure 35). The acquired images illustrate the CB steady-state 

level (nt) as well as elevated fluorescence signals upon CHIR treatment. Notably, the ground 

level differed substantially between the different clones, ranging from clones with basal CB 

intensities near background level (HeLa_Ub-R-BC1-eGFP clone D4 and U2OS_Ub-R-BC1-

eGFP clone F11) to clones displaying higher basal fluorescence signals. Although the 

calculated stabilization factors differed among the cell lines and the clones, the stabilizing 

effect of CTNNB1 was evident for all tested CB-expressing clones. 

 

Figure 35 Init ial characterization of three representative HeLa and U2OS cell clones stably expressing the 

turnover-accelerated Ub-R-BC1-eGFP. 

Parental HeLa and U2OS cells were transfected with expression construct coding for the turnover-accelerated 

Ub-R-BC1-eGFP CB. 24 h post transfection cells were subjected to selection with 0.5 mg/ml G418 for two 

weeks followed by single cell separation and cell expansion. Stable HeLa_Ub-R-BC1-eGFP cells (clone B7, 

D4 and C11 (A)) and stable U2OS_ Ub-R-BC1-eGFP (clones C9, D5 and F11 (B)) were treated with 10 µM 

CHIR for 16 h followed by quantitative imaging. Shown are representative images, scale bar 200 µm. 

Stabilization factor between non-treated and CHIR-treated cells are indicated on the right side of the respective 

image of each monoclonal cell line. 

 

As HeLa_Ub-R-BC1-eGFP (clone D4) and U2OS_Ub-R-BC1-eGFP (clone F11) exhibited 

the lowest CB ground level in combination with the strongest CTNNB1-mediated 

stabilization, these monoclonal cell lines were characterized in more detail. Thus, both cell 

lines were treated with a set of CTNNB1 level-elevating compounds (10 µM CHIR, 5 µM 

6-bromoindirubin-3-oxime (BIO), 20 mM LiCl or the respective controls) and subjected to 

fluorescence live-cell microscopy followed by automated image quantification of CB 
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fluorescence (Figure 36A, B). All three tested compounds increased the CB fluorescence 

continuously for up to 24 h, whereas CHIR treatment in both cell lines had the most potent 

effect leading to ~19-fold elevated CB fluorescence for HeLa_Ub-R-BC1-eGFP and a 33-

fold CB fluorescence increase for U2OS_Ub-R-BC1-eGFP normalized to the respective CB 

intensity at 0 h. After 24 h, treatment with LiCl resulted in ~7-fold and with BIO in ~4-fold 

enrichment of the turnover-accelerated CB in HeLa cells, whereas for the U2OS cell line the 

response to BIO led to ~10-fold and LiCl to ~6-fold enrichment, respectively. 

Taken together, HeLa_Ub-R-BC1-eGFP (clone D4) and U2OS_Ub-R-BC1-eGFP (clone 

F11) were characterized to show weak CB ground level and display a strong stabilizing 

effect mediated by different compounds, which are described to elevate endogenous level of 

CTNNB1. For simplification both cell lines are referred to without indication of the 

respective clone ID in the following chapters. 
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Figure 36 Characterization of HeLa and U2OS cell clones stably expressing the turnover-accelerated Ub-

R-BC1-eGFP CB. 

(A) HeLa_Ub-R-BC1-eGFP (clone D4) and (B) stable U2OS_ Ub-R-BC1-eGFP (clone F11) were either 

treated with 10 µM CHIR, 5 µM 6-bromoindirubin-3-oxime (BIO) or 20 mM LiCl, or with respective controls 

(H2O (nt) for CHIR, 0.01 % DMSO for BIO or 20 mM NaCl for LiCl treatment). Subsequently, cells were 

subjected to fluorescence live-cell imaging for 24 h followed by image quantification of CB fluorescence 

determined in nuclei, stained with Hoechst33258. Respective CB fluorescence was normalized to its value at 

0 h and normalized values were plotted against time (n=2, >500 cells). Error bars: S.D. Below each graph 

representative images displaying CB fluorescence of each treatment over time are shown. 
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5.4.1 Comparison of HeLa_BC1-TagGFP2 and HeLa_Ub-R-BC1-eGFP 

CB performance 

To analyze whether the newly generated HeLa-Ub-R-BC1-eGFP cell line can be utilized to 

monitor changes in endogenous CTNNB1 more precisely compared to the original 

HeLa_BC1-TagGFP2 cell line, a detailed characterization was performed. To this end, 

changes of endogenous CTNNB1 upon treatment with CHIR for 20 h were analyzed in a 

population-wide manner by immunofluorescence staining in combination with the detection 

of Ub-R-BC1-eGFP CB fluorescence. Quantitative fluorescence imaging of HeLa-Ub-R-

BC1-eGFP cells revealed that in absence of CHIR, CB fluorescence is nearly 

indistinguishable from autofluorescence of parental HeLa cells, whereas elevating 

endogenous CTNNB1 levels following CHIR treatment can be monitored by strongly 

increased CB fluorescence (Figure 37A, B). Notably, in situ detection of CTNNB1 showed 

that the mean CTNNB1 concentration was highly similar in parental HeLa and HeLa-Ub-R-

BC1-eGFP cells, indicating that expression of the turnover-accelerated BC1-CB did not 

interfere with the amount of endogenous CTNNB1. 

 

 

Figure 37 Further characterization of HeLa_Ub-R-BC1-eGFP. 

(A-C) Parental HeLa and HeLa_Ub-R-BC1-eGFP cells were treated with CHIR for 16 h and after fixation 

cells were stained with an antibody specific for CTNNB1. Cells were subjected to quantitative fluorescence 

imaging. (A) Population wide analysis of CTNNB1 immunofluorescence and Ub-R-BC1-eGFP signal intensity 

in HeLa_Ub-R-BC1-eGFP cells or autofluorescence in parental HeLa cells. Depicted are normalized 

fluorescence values within the 5th to 95th percentile of all analyzed cells. Number of analyzed cells: HeLa_Ub-

R-BC1-eGFP – nt:  n=1135, +CHIR: n=895; parental HeLa – nt: n=1053, +CHIR: n=1285. Squares illustrate 

mean fluorescence intensity of the analyzed population. Error bars: standard deviation (S.D.). (B) Bar chart 

of mean CB fluorescence of HeLa_Ub-R-BC1-eGFP cells analyzed in (A), error bars: S.D. (C) Bar chart of 

mean CTNNB1 antibody staining of non-treated and CHIR-treated parental HeLa and HeLa_Ub-R-BC1-eGFP 
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cells from (A). (B and C) Average fluorescence intensity was normalized to the non-treated control cells. Error 

bars: S.D., for statistical analysis student’s t-test was performed, *** p < 0.001. 

 

To further compare the functionality of both BC1-CB variants, intracellular co-

immunoprecipitation of Ub-R-BC1-eGFP was performed and compared with CB 

precipitation from HeLa_BC1-TagGFP2 cells. Therefore, cells were either left untreated or 

cultured in the presence of CHIR. After cell lysis, CBs were precipitated using the GFP-

Trap. Western blot analysis of the input and bound fractions revealed that endogenous 

CTNNB1 is bound to a similar extent by both variants of the BC1-CB. (Figure 38). 

 

Figure 38 Turnover-accelerated Ub-R-BC1-eGFP intracellularly binding to endogenous CTNNB1 in 

HeLa_Ub-R-BC1-eGFP cells.  

Stably expressing HeLa_BC1-TagGFP2 and HeLa_Ub-R-BC1-eGFP were stimulated with 10 µM CHIR for 

20 h. After cell lysis CBs were precipitated with the GFP-Trap and input and bound fractions were subjected 

to SDS-PAGE followed by western blot analysis using CTNNB1-, TagGFP2- and eGFP-specific antibodies. 

 

After successful demonstration that CHIR-induced CTNNB1 elevation was accompanied by 

rising CB level in HeLa_Ub-R-BC1-eGFP and verification of the binding capacity, the 

ability of utilizing the CB fluorescence to monitor reversible changes of endogenous 

CTNNB1 levels was directly compared between the original HeLa_BC1-TagGFP2 and the 

HeLa_Ub-R-BC1-eGFP cell line. Thus, both cell lines were cultivated in the presence of 

CHIR for 16 h. Subsequently, cells were washed and continuously cultivated. At the 

indicated time points after CHIR removal, cells were fixed and endogenous CTNNB1 levels 

were detected in situ by immunostaining. CTNNB1 antibody staining and BC1-CB 

fluorescence was detected by fluorescence imaging (Figure 39A). In both cell lines as well 

as in parental HeLa cells a ~12-fold increase of endogenous CTNNB1 upon CHIR treatment 

was calculated from the fluorescence images. Four hours after CHIR removal the levels of 

endogenous CTNNB1 returned to base level in both cell lines (Figure 39B). Accordingly, 

BC1-CB levels were also elevated upon treatment with CHIR after 16 h in both CB 

expressing cell lines. Notably, in cells expressing Ub-R-BC1-eGFP, the CB fluorescence 
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increased more strongly compared to the non-modified BC1-TagGFP2. Moreover, the CB 

fluorescence decreased more rapidly after CHIR removal, while in cells expressing BC1-

TagGFP2 the CB signal remained at higher levels after removal of CHIR (Figure 39C). 

 

Figure 39 Microscopic analysis of CB dynamics in HeLa_Ub-R-BC1-eGFP and HeLa_BC1-TagGFP2 

cells. 
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(A) Parental HeLa, HeLa_BC1-TagGFP2 and HeLa_Ub-R-BC1-eGFP cells were either left non-treated (nt) 

or were treated with 10 µM CHIR for 16 h. CHIR was removed and after three times of washing cells were 

cultivated for up to additional 24 h. At the indicated time points, cells were fixed and immunostained with a 

CTNNB1-specific antibody. Shown are representative fluorescence images of the CTNNB1-staining and the 

CB signal. Nuclei were stained with DAPI, scale bar: 50 µm. (B and C) Quantification of CTNNB1 antibody-

staining (B) and CB-fluorescence (C) in cell lines at the indicated time points as described in (A). Mean 

CTNNB1 signal intensity and mean CB fluorescence was normalized to the respective non-treated control in 

each cell line and the normalized values were plotted against time (n=3, >500 cells). Error bars: S.D. 

To assess the accuracy of CTNNB1 estimation by BC1-CB fluorescence, the ratio of 

normalized mean fluorescence (CTNNB1 / BC1-CB) was plotted against time in a graph 

(Figure 40). In an ideal model, CB fluorescence would be proportional to the amount of 

CTNNB1 at any given time. Consequently, the ratio of the normalized fluorescence values 

would always be 1. Comparing the overall divergence from the ideal model, the newly 

generated HeLa_Ub-R-BC1-eGFP clearly outperformed the original cell line. Numerical 

integration of overall divergence from the ideal model results in a value of 6.7 for HeLa_Ub-

R-BC1-eGFP, whereas an integrated overall divergence of 16.05 was estimated the original 

HeLa_BC1-TagGFP2 cell line.  

 

Figure 40 Comparison of CB performance in HeLa_BC1-TagGFP2 and HeLa_Ub-R-BC1-eGFP cells. 

The ratios of normalized CB fluorescence (CB / CTNNB1) derived from Figure 39 were compared to an ideal 

model, where the ratio of the fluorescence values between the CTNNB1 signal and the CB fluorescence would 

be 1. This ideal situation is represented by the reference line parallel to x-axis. The graph shows that the 

overall divergence from an ideal model is smaller in the newly generated HeLa_Ub-R-BC1-eGFP cell line 

than compared to the old HeLa_BC1-TagGFP2 cell line.  

 

For additional validation, the CB’s ability to monitor reversible changes of CTNNB1 was 

studied using a biochemical approach. Thus, cells were treated as described for Figure 39. 

At indicated time points, cells were harvested and soluble protein fractions were subjected 

to SDS-PAGE and immunoblotting. Subsequently, CTNNB1 and the CB levels were 

monitored by antibody staining (Figure 41). The results obtained from these biochemical 

studies are in line with the data obtained from fluorescence microscopy, which confirmed a 
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more rapid turnover of the Ub-R-BC1-eGFP upon removal of CHIR as compared with the 

original BC1-TagGFP2. 

In summary, direct comparison of the original BC1-TagGFP2 and the turnover-accelerated 

Ub-R-BC1-eGFP clearly showed, that the turnover-accelerating modification substantially 

improved the ability of the CB to monitor reversible changes in the amount of endogenous 

CTNNB1 by AMCBS. 

 

Figure 41 Comparison of CB performance by western blot analysis.  

Parental HeLa, HeLa_BC1-TagGFP2 and HeLa_Ub-R-BC1-eGFP cells were treated as described in Figure 

39. At the indicated time points soluble protein fractions were subjected to SDS-PAGE followed by immunoblot 

analysis. Shown are signals for endogenous CTNNB1, CBs (BC1-TagGFP2 and Ub-R-BC1-eGFP, detected 

with either TagCGY-specific or eGFP specific antibody) and GAPDH as loading control. 

 

5.4.2 Monitoring the dynamics of turnover-accelerated BC1-CB in 

U2OS_Ub-R-BC1-eGFP cell line 

To further validate the improved performance of the turnover-accelerated BC1-CB to 

monitor changes of endogenous CTNNB1, similar studies were performed in an additionally 

generated stable U2OS_Ub-R-BC1-eGFP cell line. Also in this cell line the basal CB 

expression was nearly indistinguishable from background fluorescence in non-treated cells 

(Figure 42A). Detection of endogenous CTNNB1 by antibody staining revealed that 
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treatment with CHIR resulted in ~5-fold elevated CTNNB1 level in parental U2OS and 

U2OS_Ub-R-BC1-eGFP cells, which recovered to basal level within 4 h after CHIR removal 

(Figure 42B). Moreover, the immunostaining shows that CTNNB1 dynamics was identical 

in the CB cell line and parental U2OS. This strengthens the assumption that the integration 

of the turnover-accelerated CB did neither impair endogenous CTNNB1 level nor CTNNB1 

dynamics. The analysis of the CB dynamics demonstrated a corresponding ~5 fold increase 

induced by CHIR treatment, which recovered upon CHIR removal (Figure 42B). Based on 

these experimental data, U2OS_Ub-R-BC1 was implemented as a second model to monitor 

dynamic and reversible changes of endogenous CTNNB1. 

 

Figure 42 Dynamics of turnover-accelerated CB in U2OS_Ub-R-BC1-eGFP. 

U2OS_Ub-R-BC1-eGFP cells were either left non-treated (nt) or were treated with 10 µM CHIR for 16 h. 

Subsequently, CHIR was removed and after three times of washing cells were cultivated for up to additional 

24 h. At indicated time points cells were fixed and immunostained with a CTNNB1-specific antibody.(A) 

Illustrated are representative fluorescence images of CTNNB1 staining and CB signal. Nuclei were stained 

with DAPI, scale bar: 50 µm. (B and C) Quantification of CTNNB1 antibody-staining (compared to parental 

U2OS cells, images not shown) (B) and CB-fluorescence (C). Mean CTNNB1 signal intensity and mean CB 
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fluorescence was normalized to the respective non-treated control and the normalized values were plotted 

against time (n=3, >500 cells). Error bars: S.D. 

 

Finally, to analyze a possible interference of the turnover-accelerated BC1-CB with 

CTNNB1 functionality, the expression levels of CTNNB1 and CTNNB1-responsive genes 

c-myc (MYC), axin-2 (AXIN2) and cyclin D1 (CCND1) were determined in parental and 

CB-expressing U2OS cells. MYC, AXIN2 and CCND1 are major WNT target genes that 

are upregulated upon WNT-pathway activation mediated by CTNNB1 activated 

transcription (He et al, 1998; Shtutman et al, 1999; Jho et al, 2002). For expression studies 

on RNA level, parental U2OS and U2OS_Ub-R-BC1-eGFP cells were either left untreated 

or treated with 10 µM CHIR for 8 and 16 h. Subsequently, mRNA was isolated from the cell 

lysates and reversely transcribed into cDNA followed by qRT-PCR analysis. No major 

differences in CTNNB1 or target gene expression were observed between parental and CB-

expressing U2OS cells indicating that the presence of the CB did not impair CTNNB1 

functionality as transcriptional co-activator (Figure 43). 

 

Figure 43 Analysis of CTNNB1 target gene expression in U2OS_Ub-R-BC1-eGFP cells.  

Parental U2OS and U2OS_Ub-R-BC1-eGFP cells were either left non-treated (nt) or were treated with 10 µM 

CHIR for 8 and 16 h, respectively. Bar charts illustrate mRNA expression levels of CTNNB1, c-myc (MYC), 

axin-2 (AXIN2) and cyclin D1 (CCND1) quantified by qRT-PCR in relation to GAPDH (N=2). Error bars: 

S.D. 
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5.4.3 Application of U2OS_Ub-R-BC1-eGFP to monitor compound 

effects 

In preclinical drug development the use of cellular in vitro models has strongly increased 

over the last years. These models serve as powerful tools to screen for novel drug candidates 

as well as to evaluate cellular compound efficacy. However, there are no methods available 

to continuously monitor dose-response and kinetics of drug action on the level of 

endogenous target proteins. Here, the turnover-accelerated BC1-CB expressing cell line 

U2OS_Ub-R-BC1-eGFP was applied to monitor the effect of two well established GSK3-β 

kinase inhibitors CHIR and BIO on endogenous CTNNB1 in a quantitative live-cell imaging 

setup by continuously imaging U2OS_Ub-R-BC1-eGFP cells upon incubation with different 

inhibitor concentration for up to 42 h. Images were taken every three hours (Figure 44A) 

and CB fluorescence was determined within cell nuclei (Figure 44B). For both inhibitors an 

overall dose dependency was detectable. Moreover, prolonged time-lapse image analysis 

revealed that higher inhibitor concentrations (>2.5 µM for CHIR and >5 µM for BIO) 

induced cell death after 30 – 36 h. Notably, differences in drug action kinetics were also 

detected. While concentration-independent for CHIR a maximum corresponding effect was 

observed after 22 h, which was then followed by a gradual decline of CB fluorescence, the 

effect of BIO reached a plateau at about 24 hours for non-toxic concentrations. Interestingly, 

the maximum tolerated concentration for both inhibitors (1 µM CHIR and 2.5 µM BIO) led 

to a similar increase in BC1-CB fluorescence of about 3.5-fold (Figure 44B). Although the 

molecular basis for the inhibitors’ cytotoxicity might have multiple reasons including off-

target effects, it could be possible that U2OS cells only tolerate a certain elevation of 

CTNNB1 for a defined period. Taken together, these data demonstrate that turnover-

accelerated CBs in combination with quantitative imaging allow a precise determination of 

dose- and time-dependent compound effects on the level of individual endogenous proteins 

in living cells.  
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Figure 44 Monitoring kinetics of drug action in U2OS_Ub-R-BC1-eGFP cells 

(A) Respective fluorescence images of U2OS_Ub-R-BC1-eGFP cells either treated with indicated 

concentrations of CHIR (left panel) or 6-bromoindirumbin-3-oxime (BIO) (right panel) or with the respective 

NT controls (H2O for CHIR and 0.01 % DMSO for BIO). For time-lapse imaging cells were stained with 

Hoechst33258 (depicted in red) and cells were continuously imaged every 3 h for up to 42 h. (B) Fluorescence 

intensity of nuclear CB-signal was quantified as described in Figure 5. Fluorescence values were normalized 

to the respective value at 0 h and plotted against time for a maximum of 42 h or until onset of cell death (N=2, 

>800 cells each). Error bars: S.E.M.
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5.5 Generation of cell lines expressing turnover-accelerated CBs stably 

integrated into the safe harbor AAVS1 locus 

5.5.1 Long term expression stability of stable CB cell lines 

To date, cell lines stably expressing a desired reporter system are widely used in biological 

and biotechnological research but generating a stable cell line, especially the isolation and 

characterization of a stable monoclonal cell line (as outlined in Figure 34) is still time 

consuming and labor intensive. Importantly, for larger screening campaigns using high-

content imaging, the expression level of the reporter gene has to be consistently high over 

longer cultivation periods. As stable CB expressing cell lines are emerging tools in the field 

of high-content screening approaches (Schorpp et al, 2016), the expression level of the CB 

also needs a reliable consistency in cell culture. However, it was obsereved that quantitative 

imaging analysis often suffers from inconsistent CB expression levels and a strong cell-to-

cell variance in CB fluorescence intensity (Figure 45). 

 

Figure 45 Schematic overview of stable CB cell line generation. 

Shown is the typical workflow of stable cell line generation following random genomic transgene integration 

(as described in Figure 34). The monoclonal cell line was characterized at an early passaged and displayed a 

homogenous phenotype regarding CB expression. However, at later passages (~20) the cell lines exhibit a 

heterogeneous CB expression, which limits their application in high-content image analysis.   

In general, the stability of the expression of a randomly integrated transgene (e.g. CB) over 

time can be affected by different effects. As the integration of the CB transgene occurs 

randomly, neither a prediction about the chromatin structure at the integration site can be 

made nor the number of transgene copies within the cellular can be foreseen. This genomic 

manipulation not only bears the risk to interfere with major cellular processes of the host cell 
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but can also lead to inconsistent CB signal intensities due to the integration of different copy 

numbers of the CB transgene and genomic position effects (Akhtar et al, 2013). Moreover, 

epigenetic silencing of the promoter upon continuous sub-culturing can occur (Xia et al, 

2006). In addition, the generated stable cell line has to be cultured under constant selection 

pressure, which can alter cellular gene expression and metabolism (Rodolosse et al, 1998; 

Valera et al, 1994) or might directly affect genetic stability of the host cell (McDaniel & 

Schultz, 1993). 

Notably, in the stable BC1-CB expressing HeLa cell line, which was generated by random 

integration of the CB expression cassette, an instability in CB expression over time was 

detected. Whereas low passages of the HeLa_BC1-TagGFP2 cells displayed a homogenous 

intercellular expression within this cell line, at high cellular passages the CB expression 

turned out to be quite heterogeneous within the monoclonal cell line (Figure 46).  

 

Figure 46 Stable HeLa_BC1-TagGFP2 cell line displays heterogeneity in CB expression at high cell 

passages. 

Illustration of HeLa cells stably expressing the BC1-TagGFP2 CB in an early passage (passage number 4, left 

side) and at a high passage (passage number 20, right side). Scale bar: 50 µm.  

 

To overcome these drawbacks in stable chromobody cell line generation, a new strategy was 

applied to generate stable cell lines with consistent CB expression over longer cultivation 

periods. Thus, it was aimed for a promoter less sensitive to epigenetic silencing in 

combination with targeted genomic integration of the CB transgene into the adeno-

associated virus integration site 1 (AAVS1) safe harbor locus of human cells using 

CRISPR/Cas9 gene editing technology. 
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5.5.2 Comparison of transient CB expression from CMV-, EF1-α and β-

actin promoter 

To apply stable CB cell lines in high-content screening campaigns, a consistent high level 

transgene expression over an extended cultivation time is essential. One critical factor 

causing expression instability over time is epigenetic silencing of the transgene’s promoter, 

which is mainly caused by DNA methylation (Krishnan et al, 2006; Yang et al, 2010) and 

histone modification (Paredes et al, 2013). The so far established stable CB expressing cell 

lines all contained a randomly integrated transgene driven by a constitutive CMV promoter, 

which is reported to be sensitive to silencing by DNA methylation (Hsu et al, 2010). To 

optimize the consistency of CB expression in long term culture, it was searched for a strong 

promoter, which is less prone to epigenetic silencing. In this context, the human elongation 

factor 1α (EF1-α) promoter and the human β-actin (h-βact) promoter were described to lead 

to medium-to-high expression levels within different cell lines (Damdindorj et al, 2014; Qin 

et al, 2010) and further both promoters maintain a stable expression level over several 

passages (Norrman et al, 2010; Damdindorj et al, 2012). 

For comparative analysis the CMV promoter was replaced by the EF1-α or the β-actin 

promoter within the Ub-R-BC1-eGFP construct (Figure 47A). To analyze the expression 

level and the effect on AMCBS, the newly generated CB constructs were co-expressed in 

parental HeLa cells with either mCherry-CTNNB1 or mCherry as control and compared with 

the original CMV promoter containing CB construct. Fluorescence imaging revealed that 

the transient CB expression levels differed substantially between the different constructs 

(Figure 47B, C). CMV-driven CB expression led to the highest expression level within 

HeLa cells with a mean fluorescence intensity (MFI) of ~700 in mCherry transfected cells, 

which increased to a MFI of ~5,000 in the presence of the antigen. An intermediate strength 

in CB expression was determined for the EF1-α containing variant with mean fluorescence 

intensities of ~130 in absence and ~1000 in presence of mCherry-CTNNB1. The h-βact 

promoter driven expression resulted in very weak signals, which were close to background 

level. Interestingly, the antigen-mediated CB stabilization was not affected by the exchange 

of the promoter, as for all constructs similar factors of stabilization (8.5 – 9.7) were 

calculated, indicating that AMCBS was not affected by the promoter exchange (Figure 

47D). Based on these results, the EF1-α appeared as promising candidate to generate stable 

CB cell lines combining expression strength with the maintenance of the stable expression 

level over prolonged cultivation time. 
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Figure 47 Quantitative image analysis of promoter-driven Ub-R-BC1-eGFP expression.  

(A) Schematic illustration of the chromobody expression construct containing AseI and NheI restriction sites 

to allow promoter exchange. (B) Representative images of HeLa cells transiently expressing the Ub-R-BC1-

eGFP CB driven by different promoters (CMV, EF1-α and h-βact) in combination with either mCherry or 

mCherry-CTNNB1. Nuclei were stained with DAPI, scale bar: 50 µm. (C) Bar charts represent mean CB 

fluorescence detected in mCherry or mCherry-CTNNB1 co-expressing cells by quantitative fluorescence 

imaging (n=3, >100 cells each). (D) For every promoter construct mean fluorescence intensity (MFI) of the 

CB was normalized to the respective CB signal intensity determined in cells co-expressing mCherry, leading 

to the indicated stabilization factors. Error bars: S.D. Statistical analysis was performed using student’s t-test, 

*** p < 0.001, ** p < 0.01. 

 

5.5.3 Design and construction of AAVS1 donor vector for site- directed 

stable integration of turnover-accelerated CBs 

Besides using a constitutive promoter insensitive to silencing by DNA methylation, the 

selected genomic locus for the integration of the transgene plays a major role in the stability 

of the expression. Typically, the generation of stable CB cell lines is based on the 



RESULTS 

94 

transfection of a cell line with a CB expression vector comprising a selection marker, which 

e.g. confers resistance to antibiotics. 

Although this workflow was applied to generate numerous of stable CB cell lines some 

pitfalls have to be considered. As the integration of the CB transgene occurs randomly, the 

chromatin structure at the integration site can and the number of CB transgene copies within 

the cellular host cannot be predicted. Notably, the site of integration has a major effect on 

the cellular amount of the transgene summarized as positioning effect (Wurm, 2004). 

Additionally, such stable cell lines have to be continuously cultured under constant selection 

pressure, which has been reported to affect host cell physiology, genetic stability and 

metabolism (McDaniel & Schultz, 1993; Valera et al, 1994; Rodolosse et al, 1998). To 

address these shortcomings in the process of stable CB cell line generation and maintenance, 

a new protocol that allows site-directed integration of turnover-accelerated CBs into the host 

cell DNA by applying the CRISPR/Cas9 gene editing technique was established. 

Recently, the adeno-associated virus site 1 (AAVS1, position 19q13.42), located in the first 

intron of the protein phosphatase 1 regulatory subunit 12C (PPP1R12C), was described as 

genomic safe-harbor (GSH) integration site (Kotin et al, 1992; Luo et al, 2014; Sekine et al, 

2014; Oceguera-Yanez et al, 2016; Zhang et al, 2016; Sadelain et al, 2012). As transgene 

expression from this GSH integration site was previously reported to result in robust and 

persistent protein levels (Smith et al, 2008) and functional gRNAs for a CRISPR/Cas9-

mediated integration have been described (Oceguera-Yanez et al, 2016), the AAVS1 locus 

was chosen as integration site for the turnover-accelerated CBs. For targeted engineering, a 

donor plasmid containing a turnover-accelerated CB expression cassette was designed, 

which is driven by an EF1-α promoter and flanked by AAVS1-specific homology arms (HA-

L/R) (HA-L/R) (Figure 48A). Additionally, a puromycin resistance gene containing a splice 

acceptor site (SA) linked to a self-cleaving peptide sequence (T2A) was added. Upon correct 

genomic integration, the expression of the puromycin resistance will be driven by the 

endogenous PPP1R12C promoter, which allows specific selection of clones that underwent 

the desired CRISPR event. All fragments within the construct were sequence-optimized and 

the restriction sites as indicated (Figure 48A) allow an easy exchange of the different 

components including promoter, nanobody binding moiety and fluorescent marker. 

Additionally, a PCR-based genotyping strategy to verify clones comprising a correct 

transgene integration was adapted (illustrated in Figure 48B) (Oceguera-Yanez et al, 2016). 
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Figure 48 Strategy for stable integration of turnover-accelerated CBs into the human AAVS1 locus. 

(A) Schematic illustration of CB containing donor plasmid for stable integration into the human AAVS1 locus. 

(B) Strategy for PCR-based genotyping of host cell DNA to verify site-directed integration. 

 

5.5.4 Site-directed integration of the turnover-accelerated Actin-CB into 

the AAVS1 locus 

In order to test this strategy, a HeLa cell line with stable expression of an actin specific CB 

(ACT-CB) was generated (illustrated in Figure 48). The ACT-CB has been previously 

shown to bind to F-actin without affecting the dynamic reorganization of the cytoskeleton 

(Panza et al, 2015), thus the detection of the cytoskeleton provides a suitable read out to 

validate the functionality of the CB transgene upon CRISPR/Cas9 mediated integration. In 

a first step, HeLa cells were co-transfected with plasmids encoding for (i) Cas9 nuclease and 

the respective gRNA for the AAVS1 locus (Oceguera-Yanez et al, 2016) and (ii) donor 

plasmid containing the turnover-accelerated ACT-CB (Ub-R-ACT-CB). 24 h after 

transfection cells were subjected to selective pressure by addition of puromycin for two days 

to enrich cells that underwent stable AAVS1 integration of the CB transgene. Two cell 

clones clearly showing actin structures (referred as B5 and B6) were isolated (Figure 49A). 

Both cell clones were similar in cell morphology and size, and displayed a homogenous 

expression of the ACT-CB. However, it was noticed that the fluorescence intensity of clone 

B5 was slightly higher compared to clone B6 (Figure 49B). PCR-based genotyping (as 

outlined in Figure 48B) revealed for clone B6 an amplicon at the expected size of ~1400 bps 

(Figure 49C). This indicates that a correct CB transgene integration at the AAVS1 locus 
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was only obtained for clone B6, which was further verified by sequence analysis of the PCR 

fragment. 

In addition, a qualitative comparison of the morphology of the novel CRISPR-engineered 

HeLa_AAVS1_Ub-R-ACT-CB cell line with a stable ACT-CB expressing HeLa cell line, 

previously generated by random integration of a CMV-driven non-turnover-accelerated 

ACT-CB, was performed (Figure 49D). In the CRISPR-modified HeLa_AAVS1-Ub-R-

ACT-CB cells a more homogenous cell morphology and CB expression level was observed 

and additionally less CB aggregates were detected. 

Taken together, these findings demonstrate that the outlined CRISPR strategy based on the 

stable integration of optimized CB transgenes in the AAVS1 locus of human cells is suitable 

and facilitates the generation of stable CB reporter cell lines. 

 

Figure 49 Generation of a HeLa cell line expressing Ub-R-ActinNB-eGFP stably integrated into the 

AAVS1 locus by using CRISPR/Cas9 technology. 

(A) Fluorescence images of two CRISPR-engineered HeLa cell clones expressing ACT-CB scale bar 50 µM. 

(B) Comparison of fluorescence intensity between HeLa_AAVS1_Ub-R-ACT-CB clone B5 and B6, scale bar 

100 µm. (C) Genotyping of HeLa_AAVS1_Ub-R-BC1-CB clones B5 and B6 in comparison to parental HeLa 

cells. Genomic DNA of the monoclonal cells was extracted and subjected to PCR using the genotyping strategy 

illustrated in Figure 48. Shown are resulting PCR products (indicated by arrow) on a 1 % agarose gel stained 

with ethidiumbromide. (D) Representative fluorescence images of HeLa cells stably expressing the respective 

ACT-CB. Left image illustrates HeLa_ACT-CB cells generated by random integration of the non-modified 

ACT-CB. The right image shows HeLa_AAVS1_Ub-R-ACT-CB cells generated by site-directed integration of 

the ubiquitin-modified ACT-CB. Scale bar: 50 µm. 
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5.5.5 Site-directed integration of the turnover-accelerated BC1-CB into 

the AAVS1 locus of human CRC cell lines 

Finally, it was aimed to generate cell lines, which are suitable to monitor changes in 

endogenous protein concentration upon compound treatment by quantitative image analysis 

of the CB signal. In previous studies it was demonstrated that the CTNNB1-specific CB 

(BC1-CB) traces changes in the levels of transcriptionally active, hypophosphorylated 

CTNNB1 upon induction of the WNT pathway (Traenkle et al, 2015). Motivated by the 

studies of this thesis, the intention within this last chapter was to generate more sophisticated 

CB cell models to monitor the effects of compounds on the reduction of endogenous 

CTNNB1 levels by following the BC1-CB signal.  

Colorectal cancer (CRC) is the third leading cause of cancer-related deaths in 2018 with over 

1,000,000 new cases worldwide (Bray et al, 2018) and in ~90 % of CRC tumors WNT 

signaling pathway is mutated (The Cancer Genome Atlas Network, 2012) resulting in an 

accumulation of transcriptionally active CTNNB1 (White et al, 2012). As the WNT pathway 

is considered as major driver of colorectal carcinogenesis, it is not surprising that a lot of 

effort is put into the development of WNT modulating therapeutics. To date, several WNT 

modulating agents have been successfully identified within screening campaigns using TOP-

flash reporter assays (Gonsalves et al, 2011; Emami et al, 2004; Huang et al, 2009). Although 

a broad range of inhibitors have been identified within this experimental setup, one major 

drawback is the endpoint assay nature by using a luciferase-based gene reporter. Analyzing 

drug response in living cells is preferable since information about drug kinetics can be 

obtained and no decision regarding the endpoint of the assay is required. As demonstrated 

with the U2OS_Ub-R-BC1-eGFP cell line, the turnover-accelerated BC1-CB is well suited 

to monitor drug action in response to WNT-inducing compounds (Figure 44). Consequently, 

the next question was whether the effect of inhibitory WNT-signaling compounds can be 

portrayed by the turnover-accelerated BC1-CB. Thus, two human colorectal carcinoma 

(CRC) cell lines DLD-1 and HCT116, which both are described to have elevated levels of 

active CTNNB1 (Ahmed et al, 2013), were used to generate stable cell lines expressing the 

turnover-accelerated BC1-CB.  

For generation of the donor plasmid the actin binding moiety (ACT-NB) was replaced by 

the CTNNB1 binding nanobody BC1 using PstI and BspEI restriction site as outlined in 

Figure 48 and the CRISPR strategy was followed as described above. Following puromycin 
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selection single clones of DLD-1 and HCT116 cells displaying green fluorescence were 

identified, which were isolated and further expanded (Figure 50A). To confirm correct CB 

integration at the AAVS1 locus PCR-based genotyping as illustrated in Figure 48B was 

performed (Figure 50B). In DLD-1_AAVS1_Ub-R-BC1-CB and HCT116_AAVS1_Ub-R-

BC1-CB cells lines PCR products at ~1400 bps were detected (Figure 50B), which were 

absent in the parental cells. Sequence analysis of the amplicons further verified that the CB 

transgene was successfully integrated in both cell lines into the AAVS1 locus. 

 

Figure 50 Generation of CRC cell lines with AAVS1 integration of turnover-accelerated BC1-CB. 

(A) Representative fluorescence images of isolated DLD-1 (upper panel) and HCT116 (lower panel) clones 

stably expressing Ub-R-BC1-CB. Nuclei were stained with DAPI, scale bar: 50 µm. (B) Genotyping of 

HCT116_AAVS1_Ub-R-BC1-CB and DLD-1_AAVS1_Ub-R-BC1-CB. Genomic DNA of host cells was 

extracted and subjected to PCR using genotyping strategy illustrated in Figure 48 (PCR product indicated by 

arrow). 

In addition, the phenotype of a monoclonal DLD-1 cell line generated by random integration 

of the non-modified BC1-CB with the newly generated DLD-1_AAVS1_Ub-R-BC1-CB 

cell line was compared by fluorescence imaging. For the DLD-1_AAVS1_Ub-R-BC1-CB 

cells a more homogenous phenotype regarding cell size, shape and CB fluorescence, while 

the conventional DLD-1_BC1-CB cells displayed a more heterogeneous morphology 

accompanied by miscellaneous CB signal intensities. 
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Figure 51 Comparative analysis of DLD-1_BC1-CB and DLD-1_AAVS1_Ub-R-BC1-CB cell line. 

(A) Representative fluorescence images of DLD-1 cell lines stably expressing the indicated BC1-CB. Left 

image shows DLD-1_BC1-CB cells generated by random integration of the non-modified BC1-CB. The right 

image shows DLD-1_AAVS1_Ub-R-BC1-CB cells generated by site-directed integration of the ubiquitin-fused 

BC1-CB. Scale bar: 50 µm. (B and C) Fluorescence images of DLD-1_BC1-CB cells and DLD-1_AAVS1_Ub-

R-BC1-CB as shown in (A) were subjected to quantitative image analysis. Using a customized image 

segmentation algorithm the mean fluorescence of the CB (B) and the cell area (C) were determined for each 

individual cell. Number of analyzed cells: DLD-1_BC1: n=2478; DLD-1_AAVS1_Ub-R-BC1-CB: n=2090.  

 

Finally, the novel generated DLD-1_AAVS1_Ub-R-BC1-CB cell line was applied to 

monitor the effect of two compounds FH535 and XAV939, which were previously reported 

to affect the level of endogenous CTNNB1 (Handeli & Simon, 2008; Yao et al, 2011). Time-

lapse imaging of DLD-1_AAVS1_Ub-R-BC1-CB was performed for 24 h followed by 

quantitative analysis of CB fluorescence in the nucleus upon incubation with different 

inhibitor concentrations (Figure 52A, B). By monitoring the BC1-CB fluorescence, a strong 

reduction of CTNNB1 to ~ 50% upon treatment with 10 and 50 µM of FH535 was observed 

after 6 h. For XAV939 milder effects indicated by a reduction to ~80 % at only the highest 

concentration of 10 µM after 12 h were detected. To verify whether the decreased CB 

fluorescence actually reflects a reduction of hypophosphorylated CTNNB1, immunoblot 

analysis of DLD-1_AAVS1-Ub-R-BC1-CB cells treated either with DMSO as control or 

10 µM FH535 for 24 h was performed (experiments were performed by the Master student 

Melissa Weldle). While only a minor effect of compound treatment for total CTNNB1 was 

observed, hypophosphorylated CTNNB1 was clearly reduced upon treatment with FH535 in 

the soluble protein fraction. 
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Figure 52 Quantification of nuclear CB fluorescence in DLD-1_AAVS1_Ub-R-BC1-CB cells upon 

compound treatment. 

(A) DLD-1_AAVS1_Ub-R-BC1-CB were either treated with the indicated concentrations of FH535 or XAV939 

or with 0.01 % DMSO as control were continuously imaged every 2 h for up to 24 h. Fluorescence intensity of 

nuclear CB-signal was quantified and the fluorescence values were normalized to DMSO and plotted against 

time (n=2, >200 cells each). Error bars: S.D. (B) Fluorescence images of DLD-1_AAVS1_Ub-R-BC1-CB cells 

upon treatment with indicated compounds. Representative fluorescence images are shown 12 h after treatment, 

scale bar: 50 µM. (C) DLD-1_AAVS1_Ub-R-BC1-CB were either treated 10 µM FH535 or with 0.01 % DMSO 

as control for 24 h. Cells were lysed using 0.5 % NP40 lysis buffer and equal protein amounts of the soluble 

fraction were subjected to SDS-PAGE followed by immunoblot analysis using antibodies specific for total 

CTNNB1, active CTNNB1 and tubulin as loading control. 

 

Taken together, these data demonstrate that the CRISPR-based strategy to introduce 

turnover-accelerated CBs at a defined genomic locus results in CB cell models that enables 

a precise determination of dose- and time-dependent compound effects on the level of 

individual endogenous proteins in living cells using quantitative imaging. 
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6 DISCUSSION 

The analysis of endogenous protein dynamics in living cells substantially contributes to a 

better understanding of physiological processes. During the last years, chromobodies have 

emerged as valuable scientific research tools to analyze spatiotemporal dynamics of 

corresponding endogenous antigens within living cells. Recently, it was noticed for the 

CTNNB1-specific BC1-CB that the CB technology not only allows to target and trace 

endogenous proteins but also the fluorescence intensity of the CB can be utilized for relative 

quantification of changes in endogenous protein concentration by an effect termed “Antigen-

Mediated CB Stabilization” (AMCBS) (Traenkle et al, 2015). 

In this dissertation, further evidence of AMCBS was found for four different CBs targeting 

(i) the transcriptional co-activator CTNNB1, (ii) DNA-replication-associated PCNA, (iii) 

the intermediate filament vimentin and (iv) the HIV capsid protein (CA). The antigen levels 

in stably CB expressing cell lines have been either elevated by ectopic expression (CTNNB1, 

CA), or antigen expression was induced by chemical compounds (CHIR, BIO and LiCl for 

CTNNB1) or cytokines (TGF-β for vimentin). Additionally, siRNA-mediated antigen 

depletion was monitored by a corresponding decrease in CB fluorescence (vimentin and 

PCNA). Given the fact that similar observations of an antigen dependency of NBs and CBs 

have been described by other groups (Blanco-Toribio et al, 2010; Tang et al, 2016), here a 

depletion of the antigen was illustrated by following the CB fluorescence intensity for the 

first time. However, monitoring rapid changes in endogenous CTNNB1 concentration by the 

BC1-CB displayed an inaccuracy that could be explained by differences in turnover rates of 

CB and antigen. Furthermore, small changes in antigen concentration might not be detected 

as these minor changes might be lost in the noise of non-antigen bound CB. To precisely 

detect rapid as well as small changes in antigen concentration, a strong CB expression and a 

high CB turnover is required, which consequently lead to a low basal amount of antigen-

independent CBs within a cellular expression system. To address these issues, turnover-

accelerated CBs were generated by utilizing the N-end rule and the ubiquitin fusion 

technique, thereby identifying Arg as N-terminal residue contributing to an accelerated CB 

turnover. After generating a cell line stably expressing a turnover-accelerated version of the 

CTNNB1-specific CB (HeLa_Ub-R-BC1-TagGFP2), the CB was compared with the 

originally described BC1-CB (Traenkle et al, 2015). By analyzing the rapid decrease in 

CTNNB1 concentration upon induction and subsequent removal of CHIR, the turnover-

accelerated Ub-R-BC1-eGFP CB clearly outperformed the original BC1-CB in regard to 
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accuracy. With a second generated stable cell line (U2OS_Ub-R-BC1-eGFP) dose response 

and kinetics of drug action were monitored for two CTNNB1-elevating compounds (CHIR 

and BIO), illustrating the potential application in preclinical drug development. Since in the 

development of stable reporter cell lines the maintenance of reporter expression over an 

extended cultivation time is essential, a protocol to stably integrate turnover-accelerated CBs 

into the AAVS1 safe harbor locus by applying CRISPR/Cas9 gene editing, was established. 

This approach was used to generate a HeLa cell line with site-directed safe harbor integration 

of a turnover-accelerated actin-specific CB (HeLa_AAVS1_Ub-R-ACT-CB). Additionally, 

by applying this strategy two colorectal cancer cell lines, comprising mutations within the 

WNT pathway, were genetically engineered to express the turnover-accelerated BC1-CB 

(DLD-1_AAVS1-Ub-R-BC1-eGFP and HCT116_AAVS1-Ub-R-BC1-eGFP) and applied 

in quantitative imaging using CTNNB1 targeting compounds.  

In the following chapters the obtained results and observations are critically discussed with 

respect to the current state of the art in the analysis and quantification of endogenous 

proteins, established chromobody and intrabody systems and reporter cell line generation. 

Finally, an outlook addressing possible expansions and application opportunities of 

turnover-accelerated CBs will be provided. 

6.1 Studying protein dynamics by chromobodies 

Proteins are among the most important macromolecules of cells and living organisms and as 

they have to fulfill key regulatory functions for maintaining cellular functionality, these 

molecules need to be strictly regulated. Besides regulatory mechanisms as for instance 

PTMs, also the protein abundance itself can exhibit a regulatory function, which is 

orchestrated by the cellular amount of the specific protein. Thus, quantifying highly dynamic 

regulatory proteins like CTNNB1 not only contributes to the understanding of basic 

regulatory mechanisms but also helps to decipher the mechanisms of disease development 

and progression. However, the majority of the methods used to study endogenous proteins 

are endpoint assays, which require cell fixation and/or lysis. Considering the dynamic nature 

of proteins like CTNNB1, the analysis in living cells within the physiological environment 

is desirable. In addition, proteins such as CTNNB1 or VIM are strictly regulated in their 

intracellular levels and cannot be analyzed using an ectopic expression without altering the 

physiological state of the cells (Mendez et al, 2010; Spencer et al, 2006). Addressing this 

aspect, different CBs have been established to target and trace endogenous proteins in living 
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cells (Zolghadr et al, 2012; Traenkle et al, 2015; Panza et al, 2015; Maier et al, 2015; Burgess 

et al, 2012; Buchfellner et al, 2016; Irannejad et al, 2013). Moreover, some of these CBs 

have already been applied to monitor protein or DNA dynamics in whole organisms without 

functional interference (Panza et al, 2015; Jullien et al, 2016). Nevertheless, the ectopic 

expression of a CB and its possible interference within a cellular system has to be critically 

evaluated for each developed molecular probe. Given the fact that CBs can bind to concave-

shaped epitopes (e.g. active sites of enzyme), this characteristic of affinity binders can lead 

to a functional interference (Genst et al, 2006). Notably, in their initial study in 2015, 

Traenkle et al. have described three CTNNB1-specific CBs (BC1, BC6, and BC9), whereas 

only the BC1-CB was shown to not interfere with the transcription of WNT-target genes 

upon treatment with CHIR and LiCl. This interference could be explained by the epitopes of 

BC6 and BC9 within the armadillo domain of CTNNB1, which is known to interact with a 

high number of other proteins (Hulsken, 1994; Behrens, 1998; Yang et al, 2002; Akiyama 

et al, 2004; Essers et al, 2005; Valenta et al, 2012). In contrast to BC6 and BC9, the BC1 

epitope is located at the N-terminus of CTNNB1, thus it could be speculated that binding of 

the BC1 to this epitope does not sterically hinder important endogenous interacting proteins. 

Besides the identification of the epitope, the affinity of intrabodies in general seems to be 

important for generating functional molecular probes for live-cell imaging, wherein transient 

binding affinity molecules are highly desirable (Cassimeris et al, 2013). Whereas the affinity 

of a binding molecule can be determined easily in situ by various methods like surface 

plasmon resonance (Liedberg et al, 1983), the intracellular affinity might differ substantially. 

Firstly, the cellular milieu contains various factors, which are absent in the in situ assessment 

of the affinity. Secondly, the epitope of the POI recognized by the affinity binder might be 

masked by interacting proteins and vice versa. Addressing these factors, fluorescence 

recovery after photobleaching (FRAP) provides a method to analyze the intracellular binding 

kinetics and has been applied to study the interaction of an intrabody with the cognate 

antigen (Maier et al, 2015; Jullien et al, 2016). In this dissertation, the influence of the BC1-

CB and the turnover-accelerated Ub-R-BC1-CB was analyzed by comparative analysis of 

CTNNB1 in parental cells and respective stable CB expressing cell lines. The CHIR-induced 

elevation of CTNNB1, as well as CTNNB1 recovery after CHIR removal, was highly similar 

in parental and stable CB expressing cell lines (Figure 39, Figure 41, Figure 42). 

Furthermore, the expression of the WNT target genes MYC, AXIN2 and CCND1 after CHIR 

treatment showed also no significant differences between parental U2OS and U2OS_Ub-R-

BC1-CB cells (Figure 43). In summary, it is essential to exclude a possible effect of the CB 
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on its cognate antigen to obtain a nanoprobe suitable for live-cell imaging. FRAP analysis 

provides a suitable approach to analyze the intracellular affinity. Furthermore, comparative 

specific functional studies must be tailored onto the characteristics of the corresponding 

antigen, such as gene expression analysis of WNT target genes for CTNNB1 or analysis of 

the cell invasion after EMT induction between parental A549 and A549_VB6 cells (Maier 

et al, 2015). 

6.2 Quantification of endogenous proteins by AMCBS 

This study demonstrates that relative changes in the amount of a specific protein can be 

determined by simply following the CB fluorescence, an observation termed antigen-

mediated CB stabilization (AMCBS). After illustrating this phenomenon for four different 

CBs (BC1-CB, αCA-CB, CCC-CB, VB6-CB) it can be hypothesized that this observation 

could be transferred to a wider range of CBs. Recently, two other studies presented similar 

conclusions of CBs being stabilized in the presence of their cognate antigens in mammalian 

cells, thereby strengthening the hypothesis of AMCBS as a more general characteristic of 

CBs (Blanco-Toribio et al, 2010; Tang et al, 2016).  

Moreover, in the field of recombinant protein production using E. coli, a stabilizing effect 

of GST on a GST-specific VHH fused to a SNAP-tag was described (Bossi et al, 2010). In 

addition, this study further illustrates that the antigen-induced stabilizing effect might be 

irrespective of the reporter moiety fused to the VHH domain. Regarding the application in 

mammalian cells, reporter systems like luciferase fused to the NB moiety could provide an 

interesting expansion of the system, since bioluminescence might exhibit a lower detection 

limit, thus especially low abundant proteins could benefit from NB-luciferase fusions (Troy 

et al, 2004). However, by using a luciferase-based reporter the capability for real-time 

assessment of the antigen would be restricted and it has to be considered that luciferase 

comprises a MW of ~60 kDa, resulting in a NB-luciferase fusion of ~75 kDa. Consequently, 

this increase in MW could exhibit a steric hindrance in epitope accessibility, blockage of 

interacting factors or reduced nuclear import of the molecular probe (Marfori et al, 2011). 

The question whether the antigen-mediated stabilization is an exclusive feature for VHHs 

and VHs or can be transferred to other protein-based intrabodies (e.g. scFvs, affibodies, 

DARPins) was not addressed in this work. But an analogous antigen-stabilizing observation 

was described for a scFv-based molecular probe (Sibler et al, 2005), indicating that this 

phenomenon is applicable for other kinds of affinity binder. 
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Interestingly, the aforementioned study as well as in the study of (Tang et al, 2016), a 

stabilization of the CB or scFV-based reporter was only observed after reducing the 

molecular probe ground level through introduction of destabilizing framework mutations or 

addition of a PEST sequence. In contrast, the CBs tested in this study already displayed an 

antigen-mediated stabilization in an unmodified condition. This might be explained by the 

fact that the initial observations of this effect have been obtained in context of a stable 

monoclonal BC1-CB expressing cell line (Traenkle et al, 2015), where a clone with a low-

to-moderate basal CB expression was selected. Moreover, the additional experiments using 

unmodified CBs (αCA-CB, CCC-CB and VB6-CB) to illustrate the AMCBS phenomenon 

have also been performed using stable monoclonal cell lines. However, in transiently co-

transfected HeLa cells the stabilizing effect of ectopically expressed CTNNB1 on the BC1-

CB was evident, although the 1.7-fold increase in CB fluorescence was moderate. 

In conclusion, different studies (Tang et al, 2016; Sibler et al, 2005; Bossi et al, 2010; 

Blanco-Toribio et al, 2010) reported an antigen stabilizing effect on an intrabody, thereby 

strengthening the presented results within this dissertation. A detailed explanation of this 

effect was neither provided in the aforementioned studies nor was the mechanism deciphered 

in this work, but the generated results allow room for speculations about the underlying 

mechanism.  

Applied as an intracellular molecular probe, the CB expression itself is driven by a 

constitutive promoter and in antigen absence the CBs are constantly degraded leading to a 

steady-state level of CB molecules per cell. Antigen exposure increased the CB fluorescence, 

which represents the number of CB molecules within the cell. Since the CB expression is 

not altered, the remaining variable lies within the CB degradation rate. The results obtained 

in this study strongly suggest that CBs are degraded via the UPS, which is in agreement with 

the results reported by (Tang et al, 2016). In general, for proteasomal degradation specific 

E3 ubiquitin ligases recognize a target protein. Subsequently, this leads to an 

ubiquitinylation of nearby lysine residues, thereby priming the molecule for a degradation 

and finally the proteasome requires unstructured initiation regions in order to degrade to 

ubiquitinylated protein (Varshavsky, 2011). Based on this mechanism, it can be assumed 

that antigen binding might interfere with two critical steps of proteasome targeting: the 

accessibility of E3 ubiquitin ligases and the unstructured initiation sites. The principle of 

short-living proteins being stabilized via an interaction with another protein is well accepted 

(Campanero & Flemington, 1997; Johnson et al, 1998), thus this observation could also 
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provide an explanation for the AMCBS phenomenon. Additionally, the formation of an CB-

antigen complex leads to an increase in MW of the CB and it is demonstrated that smaller 

target proteins are degraded more efficient than larger proteins or protein complexes (Hortin 

& Murthy, 2002). However, the molecular mechanisms leading to this effect can be 

manifold. It can be hypothesized that binding of a CB to the cognate antigen could compete 

with binding of E3 ubiquitin ligases or the CB-antigen interaction might mask the 

ubiquitinylation site of the CB. Moreover, the paratope forming CDRs of the nanobody 

moiety could function as initiation sites for proteasome degradation, since these areas can 

be defined as unstructured regions. As a consequence of antigen binding, these sites are 

masked and no longer accessible as initiation site. Despite this direct influence on the UPS-

based degradation, the enhancement in molecular weight upon antigen-CB complex 

formation might further contribute to the stabilization by reducing the mobility of the 

complex. Since complex formation leads to a reduced diffusion (Verkman, 2003; Sibler et 

al, 2005), resulting in a decreased stochastic probability of a CB getting in close proximity 

to a proteasome. 

Consequently, these presented mechanisms in context with the obtained results lead to the 

assumption that the intracellular affinity of the CB might be a key determinant of the 

AMCBS phenomenon. This hypothesis is further supported by the observation that the 

stabilization factor after antigen increase was irrespective of the absolute number of CBs 

within the cell. By exchanging the promoter for ectopic Ub-R-BC1-CB expression in HeLa 

cells, the absolute number of CB molecules differed within the cells, which is illustrated by 

the different fluorescence intensities in antigen absence. Interestingly, after ectopic 

CTNNB1 expression the obtained stabilization factors were nearly similar (~9-fold, Figure 

47) for all constructs. However, the intracellular affinity is hard to provide, since the 

intracellular environment provides a complex dynamic black box containing a wide range of 

variables. 

One restriction of this quantification method is provided by the fact that no general statement 

regarding the sensitivity of an AMCBS-based quantification approach can be provided. A 

clear statement about the minimal change in antigen concentration that can be portrayed by 

changes in CB fluorescence intensity cannot be made. The sensitivity might be mainly 

determined by the intracellular affinity of the CB, thus each CB would require a separate 

analysis of the sensitivity. Moreover, the sensitivity to monitor an increase in antigen 

concentration might differ in the accuracy in monitoring an antigen decrease. The accuracy 



DISCUSSION 

107 

regarding an increase is mainly defined by CB expression and maturation, whereas the 

turnover of the CB might be the key determinant to monitor an antigen decrease. 

In summary, this approach provides an easy readout since a fluorescence microscope is the 

only equipment required and the subsequent analysis can be easily performed with open-

source software such as ImageJ. In general, it would be also possible to consider a readout 

system relying on a conventional plate reader, thereby simplifying the analysis and reducing 

the amount of data. But it has to be considered that some data regarding e.g. cell viability or 

CB distribution cannot be analyzed by using a plate reader. 

The evidence from this work in context of the discussed studies implies that by following 

the CB fluorescence signal a conclusive prediction about the antigen abundance can be 

provided. However, the detailed elucidation of the underlying mechanism resulting in an 

antigen-mediated CB stabilization remains to be answered in the future.  

6.3 Optimization of the chromobody technology 

6.3.1 Generation of turnover-accelerated CBs to determine changes in 

antigen concentration more precisely 

The initial observations of a CB signal intensity correlating with the protein amount of the 

cognate antigen were obtained after a substantial change in antigen concentration was 

induced in a longer time frame (e.g. 24 h after ectopic antigen expression or 72 h post 

siRNA-mediated antigen knockdown). To accurately monitor rapid and/or small changes in 

antigen concentration a low basal amount of unbound CB is beneficial. Notably, this is a 

general issue for intracellular reporter systems applied in live-cell imaging approaches. It is 

expected that the molecular probe exclusively stains its cognate antigen but freely diffusible 

affinity binder might prevent the specific detection of the co-localization. As the number of 

molecular probes for live-cell imaging is constantly growing, several approaches addressing 

this problem have been described until now. 

One straightforward approach to ensure a low intrabody ground level is the usage of a weaker 

promoter for the expression, since a classical viral-driven expression (e.g. CMV) leads to a 

high level of the ectopically expressed protein. Recently, the SV40 early and human β-actin 

promoter have been applied to express different scFV-based intrabodies for live-cell imaging 

(Freund et al, 2014; Rinaldi et al, 2013). Another system to reduce the amount of unbound 

intrabody was provided by fusing a zinc finger DNA-binding domain with a KRAB 
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transcriptional repressor to an intrabody. Additionally, a zinc finger DNA binding domain 

was inserted upstream the CMV promoter of the molecular probe, thereby generating a 

negative feedback mechanism blocking the transcription of the intrabody by unbound 

molecules (Gross et al, 2013). Although both approaches improved the visualization quality 

of the respective antigens by the molecular probe, these approaches would not improve the 

quantification of rapid and strong increases in antigen concentration since the expression 

level of the intrabodies might be too low and their expression delayed. Thus, a reduction on 

CB protein level rather than on the expression level is preferable.  

In this dissertation three approaches to reduce the amount of unbound CB on protein level 

have been tested: (i) the introduction of destabilizing framework mutations (ii) the addition 

of a C-terminal PEST sequence and (iii) generation of CB comprising a turnover accelerating 

N-terminus.  

To reduce the amount of unbound intracellular NBs, recently distinct point mutations within 

CB framework regions were described, resulting in subsequent destabilization of the NBs 

(Tang et al, 2016). Upon antigen exposure, the destabilized NBs get conditionally stabilized 

and thus can be applied to detect or manipulate antigens in living cells. By transferring the 

point mutations S70R and S113F to the BC1-CB slightly reduced CB ground level and 

improved stabilization factors could be detected after antigen exposure. However, analysis 

the BC1C70Y-TagGFP2 mutant showed that the introduction of the mutation abolished 

binding to CTNNB1. To circumvent the generation of non-functional binding molecules due 

to introduced framework mutations, the next approach was a C-terminal addition of a PEST 

domain in order to rapidly degrade the modified protein (Rechsteiner & Rogers, 1996), 

which is a widely applied approach to reduce intrabody and reporter level in general (Li et 

al, 1998; Leclerc et al, 2000; Sibler et al, 2005). The addition of the PEST sequence to the 

αCA-CB and BC1-CB resulted in a substantial decrease in CB fluorescence but for the BC1-

CB this reduction was accompanied by accelerated cell death after transient transfection of 

the plasmid encoding for BC1-TagGFP2-PEST. The reasons for the onset of accelerated cell 

death was not further addressed but it can be speculated that the accelerated CB degradation 

might affected endogenous CTNNB1 due to the strength of the PEST sequence. Recently, 

nanobody-PEST fusions have been applied to acitvely reduce the endogenous protein 

amount of α-synuclein, an important protein in Parkinson disease (Joshi et al, 2012; 

Chatterjee et al, 2018). This example illustrates that addition of the PEST sequence to a NB 

or CB can result in an enhanced degradation of the cognate antigen.  
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Finally, in this dissertation the concept of the N-end rule, a key determinant of a protein’s 

half-life, was applied to reduce the amount of unbound CBs. To identify N-terminal residues 

conferring a faster CB turnover, the ubiquitin fusion technique was implemented. After 

generation and testing of BC1-CB constructs containing every amino acid, the N-terminal 

amino acids Phe, Ala and Arg were identified, which is in line with other studies that 

analyzed the impact of the N-terminus on protein half-lives. Notably, Ala exclusively 

enhanced the turnover of BC1-CB constructs, irrespective of the fused fluorescent moiety, 

whereas no enhancement in turnover was observed for the Ala containing variants of α-CA-

CB or VB6-CB. A further advantage of applying the ubiquitin fusion technique to transiently 

expressed CBs, was a less CB aggregation compared to the unmodified version. In addition, 

differences in turnover velocities were also detected for the different fluorescent moieties 

analyzed in this study (TagGFP2, eGFP, TagRFP and mCherry). In both cases, this effect 

can be explained by differences in number and positioning of lysine residues accessible for 

ubiquitinylation by E3 ligases. In this dissertation the development of a widely applicable 

strategy to reduce CB ground level was focused, whereby Arg was identified as most 

turnover accelerating amino acid. An enhanced degradation rate for Arg was observed for 

different CBs (BC1, VB6 and αCA), different FPs (TagGFP2, eGFP, TagRFP and mCherry) 

and in different cell systems (HeLa, U2OS and A549), leading to the assumption that it might 

be generally applicable for the generation of turnover-accelerated CBs.  

6.3.2 Further possible optimizations of CB-based molecular probes to 

quantify endogenous proteins 

As this study focused on the optimization of the CB degradation to precisely quantify 

dynamic changes of endogenous antigens, also the CB expression could be addressed. For 

the quantification of a rapid and strong antigen increase, an excess in CB expression is 

advantageous to ensure a precise response of the CB. Consequently, CB expression limiting 

factors can be found within the expression rate and maturation time of the CB.  

The CB expression in the generated cell lines was driven by a strong CMV or EF1α 

promoter. To further enhance the CB expression, mRNA stabilizing components could be 

integrated into CB vector design. The insertion of a woodchuck hepatitis virus post-

translational regulatory element (WPRE, ~600 bps) serves as an enhancer of gene expression 

in mammalian cells and could therefore easily be added (Brun et al, 2003; Klein et al, 2006). 

The molecular mechanisms of WPRE functionality are not fully understood, but may involve 
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RNA processing and mRNA export (Loeb et al, 1999). To further increase the CB 

expression, C-terminally added polyadenylation could confer an enhanced CB mRNA 

stability (Hager et al, 2008).  

In this dissertation, four different FPs have been tested regarding their degradation rate when 

expressed as CB construct. But not only the degradation velocity might be different, also the 

maturation time of FPs vary ranging from only a few minutes (e.g. mGFPmut2) to several 

hours (mScarlet or mRuby3) (reviewed in (Balleza et al, 2018)). In addition, when aiming 

for an application as molecular probe in live-cell imaging, attention regarding the 

photostability of the FP should be paid (Crivat & Taraska, 2012). Exemplarily mGFPmut3 

is reported to be the fastest maturing FP in the green category but its low photostability 

makes it a poor choice for time-lapse microscopy (Balleza et al, 2018).  

By applying FPs in scientific research, various proteins have been analyzed in cell biology. 

As GFP was fused to a broad range of POIs, it was noted that some compounds such as 

salicylic acid can interfere with the fluorescent signals of FPs in vivo (Jonge et al, 2017). To 

exclude a possible interference, it is therefore essential to have reliable controls when aiming 

for a chromobody-based readout in applications like drug discovery. For example a cell line 

stably expressing a corresponding FP, to exclude undesired side effects of the compound on 

the FP, could be used. 

Taken together, besides optimizing the CB degradation the FP maturation as well CB 

expression could be addressed to ensure an accurate antigen representation by the CB, 

whereas these modification might mainly influence the ability of illustrating rapid and strong 

antigen increases. 

6.4 Site-directed integration of turnover-accelerated CBs by engineering 

the AAVS1 locus 

To further optimize the stably CB expressing cell lines regarding the maintenance in long 

term cell culture, a new protocol utilizing CRISPR/Cas9-mediated gene editing was 

established. The standard method to generate stably CB expressing cell lines was 

transfection of a CMV-driven CB expression plasmid containing a specific selection marker 

followed by selection with appropriate antibiotics. However, this method neither allows a 

prediction of the CB integration site nor the number of integrated copies can be foreseen. 

Additionally, it has been demonstrated for different transgenes and cell lines that a CMV 
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promoter is prone to silencing via DNA methylation (Balleza et al, 2018). A similar effect 

was observed in this dissertation, wherein the CB expression changed towards a more 

heterogeneous and weaker phenotype over several passages. Comparative analysis revealed 

that usage of the EF1-α promoter results in a strong CB expression and is furthermore 

reported being suitable for long term culture (Norrman et al, 2010; Qin et al, 2010; 

Damdindorj et al, 2012). Moreover, CTNNB1-mediated BC1-CB stabilization was also 

evident for EF1-α-driven expression. 

Overcoming the drawback of CB random integration, the application of CRISPR/Cas9 gene 

editing technology attained a robust and targeted transgenesis of the CB into AAVS1 safe 

harbor locus of DLD-1, HCT116 and HeLa cells. As in this study the CB integration within 

the monoclonal cell lines was exclusively analyzed by PCR genotyping, no information 

regarding a heterozygous or homozygous AAVS1 integration, or possible off-target 

integrations can be provided. Analysis of homo- or heterozygosity could be performed by 

junction PCR using primers binding outside the homology arms or by Southern blot (Koch 

et al, 2018). Notably, PCR-based genotyping of HeLa_AAVS1_ACT-CB cell clones 

revealed for one clone no AAVS1 site-specific integration. For further validation, the 

analysis of possible nuclease-based off-target effects should be performed, which are 

frequent side effects of the CRISPR/Cas9 approach (Fu et al, 2013). In silico analyses allow 

the prediction of preferred gRNA targeting sites, which could be pre-selected and analyzed 

via genomic PCR-based genotyping. However, for an unbiased and comprehensive analysis 

whole genome sequencing might be accomplished to detect off-target mutations (Zischewski 

et al, 2017). The implementation of Cas9 nuclease mutant variants (nickases) such as Cas9-

D10A or Cas9n could further reduce off-target activity by 50- to 1,500-fold (Mali et al, 2013; 

Ran et al, 2013), but this would require a re-design of AAVS1-specific gRNAs. Furthermore, 

it is also worth mentioning that the established protocol is restricted to the human AAVS1 

locus, as in mice the ROSA26 locus might be used as safe harbor for genomic engineering 

(Sadelain et al, 2012).  

In summary, the implemented protocol provides a straight-forward strategy to generate 

stably CB-expressing human cell lines with targeted insertion of the CB transgene. However, 

prior application of the cell lines, further validations regarding homo- or heterozygous 

AAVS1 integration or off-target effects should be performed. In addition it must be noted 

that some cell lines might require optimization of the transfection protocol, selection 
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procedure or isolation and expansion conditions. Lastly, the stability in long-term cell culture 

needs to be assessed for each generated cell line in terms of homogenous CB expression. 

6.5 Conclusions and future perspective 

In this dissertation the utilization of CBs to quantify dynamic changes in endogenous protein 

concentration by a mechanism termed antigen-mediated CB stabilization (AMCBS) was 

demonstrated. Moreover, the enhancement of CB turnover achieved by implementing the N-

end rule led to increased accuracy of AMCBS-based antigen quantification and 

simultaneously reducing CB aggregation post transient expression. Lastly, the method for 

generating cell lines stably expressing turnover-accelerated cell lines was optimized by 

establishing CRISPR/Cas9 gene editing protocol, which enables targeted transgenesis of the 

CB into a host cell genome.  

As the number of available chromobodies is constantly growing, the employment of CBs for 

antigen quantification will provide a substantial benefit for live-cell imaging in the future. 

Consequently, the main limitation of this approach lies within the availability of functional 

CB molecular probes specifically targeting a protein of interest. However, continuous 

improvement in nanobody and chromobody screening techniques will further push the 

identification of new functional intracellular binder.  

AMCBS-based antigen quantification becomes extremely exciting thinking of CBs targeting 

the post-translational modification, specific conformation changes or splice variants of a 

specific protein, as proteins in these specific circumstances cannot be addressed by other 

methods (e.g. GFP fusion) in living cells. Thus, the availability of turnover-accelerated 

affinity binder would provide an unprecedented opportunity to study signaling in living cells, 

thereby facilitating the gain of in-depth knowledge in cellular physiology.  

Besides an application in basic research, AMCBS-based protein quantification might also 

be utilized in the field of applied sciences. As demonstrated in chapter 5.4.3, turnover-

accelerated CBs can be employed to monitor drug action and kinetics. Based on these first 

results, the idea of turnover-accelerated CB embedded in phenotypic screens of 

pharmacological compounds is not very far away.  
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