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1 Summary

1.1 Summary in English

In this thesis, we study phenomena related to trapping of light in stationary spacetimes.
After a general introduction to Mathematical General Relativity, we first prove a

uniqueness result for “quasilocal photon spheres” and static horizons in asymptoti-
cally flat so-called pseudo-electrostatic systems. Our result implies that an asymptot-
ically Reissner–Nordström electrostatic system of arbitrary dimension which contains
a “subextremal” photon sphere is a Reissner–Nordström manifold.

We define pseudo-electrostatic systems as a generalization of electrostatic systems
by replacing one of the dimensionally reduced Einstein equations for electrovacuum
with an inequality for the scalar curvature. Furthermore, we define “quasilocal pho-
ton spheres” in (pseudo-)electrostatic systems by equalities relating their intrinsic and
extrinsic geometry; this notion generalizes (as we will show) photon spheres in electro-
static systems. We need to postulate a subextremality condition (an inequality relating
mean curvature and scalar curvature of quasilocal photon spheres) as an assumption
of our theorem, since the conclusion of the theorem does not hold, for example, for
superextremal (|q| > m) Reissner–Nordström manifolds; and these manifolds may con-
tain superextremal (in the sense of the quasilocal inequality) photon spheres.

The methods used in the proof of this theorem go back to the classical black hole
uniqueness proofs of Bunting and Masood-ul-Alam [6] and Ruback [55], which rely
on an application of the rigidity case of the positive mass theorem. These techniques
are combined with newer ideas developed by Cederbaum–Galloway [12] and Ceder-
baum [8], which allow (by gluing suitably constructed “necks” to the photon sphere
inner boundary of the (pseudo-)electrostatic system up to a static horizon) to reduce
the (quasilocal) photon sphere case to the static horizon case. Our theorem extends to
the much weaker case of pseudo-electrostatic systems due to the realization that the
equation for the Ricci tensor is not necessary for this type of proof but can be replaced
by an inequality for the scalar curvature. Generalizing from the higher-dimensional
vacuum case treated in [8] and the 3 + 1-dimensional electrovacuum case from [12]
(which are both covered by our result) to the higher-dimensional electrovacuum case
also requires a different strategy for the calculations that prove quasilocal properties of
photon spheres, a new choice of the “mass” and “charge” of the glued-in necks, the usage
of a different partial differential equation in the last step of the proof, and adjustment
of many calculations (for example to prove regularity statements) along the way.

In the second part of this thesis, we leave the static setting and investigate trapped
light in the Kerr spacetime. Studying the photon region in this paradigmatic example
of a stationary but not static spacetime is an important step towards a better under-
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standing of the structure of trapped light in stationary spacetimes. We give a new
and (compared to [20]) more direct proof that the photon region in the Kerr spacetime
can be naturally understood as a submanifold of the phase space and has topology
SO(3)×R2. We first prove rigorously that the photons of constant trapped coordinate
radius, which are explicitly given in [64], are the only trapped photons in the Kerr
spacetime in the sense that they stay away both from the horizon and from spatial
infinity. We then proceed to describe the photon region as a zero set of a smooth map
from the Kerr phase space to R3, using the characterization of photons of constant
radius via their constants of motion from [64], and use the implicit function theorem
to show that this set is a submanifold of the phase space. Finally, we show that this
submanifold is R2 times a closed 3-dimensional manifold. By explicitly calculating the
first fundamental group of this 3-manifold (using the Seifert–van Kampen theorem) as
Z2, and by then appealing to the elliptization conjecture, we conclude that the manifold
in question is SO(3), so that the Kerr photon region in the phase space is topologically
SO(3)× R2.
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1.2 Zusammenfassung auf Deutsch (Summary in German)

In dieser Arbeit betrachten wir Phänomene in Zusammenhang mit gefangenem Licht
in stationären Raumzeiten.

Nach einer allgemeinen Einführung in die Mathematische Allgemeine Relativitätsthe-
orie zeigen wir zunächst ein Eindeutigkeitsergebnis für „quasilokale Photonensphären“
und statische Horizonte in asymptotisch flachen, sogenannten pseudo-elektrostatischen
Systemen. Unser Ergebnis impliziert, dass ein elektrostatisches System, das asympto-
tisch Reissner–Nordströmsch ist und eine „subextremale“ Photonensphäre besitzt, eine
Reissner–Nordström-Mannigfaltigkeit ist.

Wir definieren pseudo-elektrostatische Systeme als eine Verallgemeinerung elektro-
statischer Systeme, indem wir eine der Einsteingleichungen für zeitsymmetrische Raum-
schnitte elektrostatischer Raumzeiten durch eine Ungleichung für ihre Skalarkrüm-
mung ersetzen. Des weiteren definieren wir „quasilokale Photonensphären“ in (pseudo-)
elektrostatischen Systemen durch Gleichungen, die Größen ihrer intrinsischen und ex-
trinsischen Geometrie zueinander in Beziehung setzen; wie wir zeigen werden, verallge-
meinert in elektrostatischen Systemen dieser Begriff der quasilokalen Photonensphäre
denjenigen der Photonensphäre.

In unserem Theorem kann nicht darauf verzichtet werden, Subextremalität (eine Un-
gleichung, die die mittlere Krümmung mit der Skalarkrümmung quasilokaler Photonen-
sphären in Beziehung setzt) vorauszusetzen, da die Konklusion des Theorems beispiels-
weise nicht für superextremale (|q| < m) Reissner–Nordström-Mannigfaltigkeiten gilt,
und diese können superextremale (im Sinne der quasilokalen Ungleichung) Photonen-
sphären enthalten.

Die Beweismethoden gehen zurück auf die klassischen Beweise für die Eindeutigkeit
schwarzer Löcher von Bunting und Masood-ul-Alam [6] und Ruback [55], die ihrerseits
den Rigiditätsfall des Positive-Masse-Theorems verwenden. Die darin verwendeten
Techniken kombinieren wir mit neueren Ideen, die von Cederbaum–Galloway [12] und
Cederbaum [8] entwickelt wurden und es erlauben, durch Einkleben geeigneter „Hälse“
an den inneren Rand (an die (quasilokale) Photonensphäre) des gegebenen elektro-
statischen Systems den Fall (quasilokaler) Photonensphären auf den Fall statischer
Horizonte zurückzuführen.

Unser Theorem gilt auch für pseudo-elektrostatische Systeme, also unter einer Vo-
raussetzung, die deutlich schwächer als die elektrostatischen Gleichungen ist; dies
beruht darauf, dass die Gleichung für den Ricci-Tensor für die verwendeten Beweistech-
niken nicht nötig ist, sondern eine Unleichung an die Skalarkrümmung genügt. Beim
Verallgemeinern von der Situation im höherdimensionalen Vakuum (in [8]) und dem
3 + 1-dimensionalen Elektrovakuum-Fall in [12] auf den von uns behandelten Fall des
höherdimensionalen Elektrovakuums wurden neue Strategien nötig für die Berechnun-
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gen, die die quasilokalen Eigenschaften von Photonensphären zeigen, ebenso wie neue
Wahlen für die “Masse“ und die „Ladung“ der eingeklebten Hälse. Desweiteren un-
terscheidet sich die im letzten Beweisschritt verwendete partielle Differentialgleichung
von denjenigen in [8, 12], und viele Rechungen (beispielsweise in den Beweisen von
Regularitätsaussagen) mussten unserem Fall angepasst werden.

Im zweiten Teil der vorliegenden Arbeit verlassen wir das statische Setting und unter-
suchen gefangenes Licht in der Kerr-Raumzeit. Die Photonenregion in diesem paradig-
matischen Beispiel einer stationären, nicht statischen Raumzeit zu untersuchen, ist
ein wichtiger Schritt in Richtung eines besseren Verständnisses der Struktur gefan-
genen Lichts in stationären Raumzeiten. Wir präsentieren einen neuen und (verglichen
mit [20]) direkteren Beweis dafür, dass die Photonenregion in der Kerr-Raumzeit auf
natürliche Weise als Untermannigfaltigkeit des Phasenraums aufgefasst werden kann
und Topologie SO(3)×R2 hat. Zunächst beweisen wir rigoros, dass die Photonen mit
konstanter radialer Koordinate (die in [64] explizit angegeben werden) die einzigen Pho-
tonen in der Kerr-Raumzeit sind, die „gefangen“ sind in dem Sinne, dass sie sich weder
dem Horizont noch der raumartigen Unendlichkeit nähern. Anschließend beschreiben
wir die Photonenregion als Nullstellengebilde einer glatten Abbildung vom Phasenraum
der Kerr-Raumzeit nach R3, wobei wir uns die Charakterisierung von Photonen mit
konstantem Koordinatenradius durch ihre Erhaltungsgrößen aus [64] zunutze machen.
Mithilfe des impliziten Funktionensatzes zeigen wir, dass diese Nullstellenmenge eine
Untermannigfaltigkeit des Phasenraums ist. Schließlich bestimmen wir die Topolo-
gie dieser Untermannigfaltigkeit als das Produkt von R2 mit einer geschlossenen 3-
Mannigfaltigkeit. Nachdem wir die erste Fundamentalgruppe dieser 3-Mannigfaltigkeit
mithilfe des Satzes von Seifert und van Kampen als Z2 berechnen, schließen wir mithilfe
der Elliptisierungsvermutung, dass die fragliche 3-Mannigfaltigkeit homömorph zu SO(3)

ist, so dass die Photonenregion im Phasenraum der Kerr-Raumzeit Topologie L(2; 1)×
R2 ≈ SO(3)× R2 besitzt.
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2 Overview and contributions

Chapter 3 contains an introduction to General Relativity, focussing on concepts that
are relevant for the research in this work. All of the material presented herein is
well-known and can be found in the standard literature, e.g. [66, 45, 16, 41].

In Chapter 4, one of our results (a static photon sphere uniqueness theorem for
higher-dimensional electrostatic spacetimes) is presented and proven. The content of
this section was submitted to Classical and Quantum Gravity on July 2nd, 2019 [33].
All parts of the work are my own, but I am indebted to Carla Cederbaum for proposing
this problem and for helpful discussions.

Chapter 5 covers our results for trapping of light in the subcritical Kerr spacetime.
The content of this section was accepted for publication by General Relativity and
Gravitation [13], co-authored with Carla Cederbaum. As it is usual in mathematics,
the authors of the manuscript [13] are listed alphabetically.

Carla Cederbaum and I jointly discussed all of the statements and proof methods
in the first part of the publication [13] (where we prove that the set of photons in
the Kerr spacetime can be viewed as a submanifold of the phase space). The idea to
make use of the specific topological methods in the second part (wherein the topology
of the photon region in the phase space is determined) as well as the details of the
proof are due to me. Literature research and the technical calculations were done by
me; the paper-writing is estimated to be 90% by me and 10% by Carla Cederbaum.
The categories “data generation” and “analysis and interpretation” do not apply. The
images in [13] (and in Chapter 5) were generated by Oliver Schön.
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3 An introduction to General Relativity

3.1 An introduction to spacetimes

General Relativity is a theory of gravitation, describing the structure of the universe
on a large scale. Mathematically, it is a geometric theory: its objects are n + 1-
dimensional smooth manifoldsMn+1 carrying a smooth Lorentzian metric g. We choose
the convention that the metric be of signature (−,+, . . . ,+), and its components are
indexed with latin letters running from 0 to n. Furthermore, in this introduction we
will denote the Levi-Civita connection of g by g∇. The case n = 3 is the most relevant
one, since the world typically presents itself to us as possessing 3 spatial dimensions
and 1 temporal dimension. However, there has also been a lot of interest in the higher-
dimensional case n > 3, mainly sparked by the rise of string theory (see e.g. [43]).
The special case (Mn+1 = Rn+1, g = η) with

η =

(
−1 0

0 En

)

(called the n + 1-dimensional Minkowski space) is the setting of Special Relativity,
where no gravitational forces curve the universe.

For any x ∈Mn+1, a vector v ∈ TxMn+1 is called timelike(lightlike, spacelike, causal)
if g (v, v) < 0 (g (v, v) = 0, g (v, v) > 0, g (v, v) ≥ 0); and this terminology extends in a
straightforward way to vector fields. A global timelike vector field X on Mn+1 can be
thought of as indicating the direction of time at any point in Mn+1 and is called a time
orientation of (Mn+1, g); and a Lorentzian manifold (Mn+1, g) with a time orientation
is called time-oriented. The choice of a time orientation W determines the notions of
past and future in (Mn+1, g): a causal vector v ∈ TxMn+1 is called future-directed if
g(v,Wx) < 0 (and past-directed otherwise).
The movement of light and of matter particles in a time-oriented Lorentzian manifold

are modelled in the following way: Matter particles move on timelike curves, that is,
on smooth paths γ : R ⊇ I → Mn+1 whose every tangential vector is timelike. The
particle is unaccelerated if the timelike curve is a geodesic.

Light, on the other hand, moves along lightlike curves, that is, along smooth paths
γ : R ⊇ I → Mn+1 whose every tangential vector is lightlike. Lightlike geodesics will
also be called photons. (Note that this terminology is used with no quantization in
mind.) Curves with timelike or lightlike tangential vectors are called causal. It is usual
to restrict attention to future-directed causal curves, that is, to those causal curves γ
for which γ̇(s) is future-directed for one (hence, every) s ∈ I.
A submanifold ofMn+1 is called timelike (resp. spacelike) if its bilinear form induced

by g has signature (−,+ . . . ,+) (resp. (+ . . . ,+). It is called lightlike if the induced

12



bilinear form is degenerate. The spacelike submanifolds of codimension 1 play an
important role: they model the space and time “at a given point in time” and are
called spatial slices of Mn+1. We will also use the term null interchangably with
“lightlike”.

General Relativity relates curvature quantities of a Lorentzian manifold to the matter
that may be present in it: the Einstein equations (without a cosmological constant)
give this relationship as

Ric− 1

2
Rg = 8πT. (1)

Here, Ric is the Ricci tensor of (Mn+1, g), where we use the sign convention that Ric

is the trace of the Riemannian curvature tensor in the contravariant and the third
covariant component, with the Riemannian curvature tensor Rm defined as the (3, 1)-
tensor

Rm(Z,X, Y ) = g∇2(X, Y )Z = g∇X
g∇YZ − g∇Y

g∇XZ − g∇[X,Y ]Z.

The trace R of the Ricci tensor is the scalar curvature of (Mn+1, g).
The right-hand side T of Equation (1) is the energy-momentum tensor ; it describes

the matter that is present in the model. In stating the above Einstein equations (1),
we chose geometric units by setting the speed of light and the gravitational constant
to 1.
The set of partial differential equations (1) are derived by applying the principle of

least action to the so-called Einstein–Hilbert action (see e.g. [66, 41]).
We can now define a spacetime as a smooth, time-oriented Lorentzian manifold

which fulfills the Einstein equations (1). Some examples of spacetimes will be given
below. While some spacetimes try to model the universe as a whole and are therefore
called cosmological spacetimes, others attempt to describe objects such as stars, binary
systems of stars, or black holes. In the present work, we will only study member of this
latter class of spacetimes (see Section 3.4). One may also classify spacetimes according
to the matter they contain, see the following Section 3.2.
It is possible to include a cosmological constant Λ ∈ R in the Einstein equations,

which represents the vacuum energy of the spacetime; with a cosmological constant,
the Einstein equations take the more general form

Ric− 1

2
Rg + Λg = 8πT. (2)

In this work, we will only be in the setting of vanishing cosmological constant Λ = 0,
with the exception of the remarks at the end of Chapter 5.
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3.2 Some matter models and important examples

The energy-momentum tensor T on the right-hand side of the Einstein equations (1) is
a priori not further detailed; different forms of T model different kinds of matter that
may be present in a spacetime. It is usual to require at least some “energy conditions”
on T, most prominently the dominant energy condition (DEC), which requires that for
every timelike or lightlike future-pointing vector field V , the vector field corresponding
to the 1-form −T(V, ·) must be future-pointing timelike or lightlike. The DEC implies
the null energy condition (NEC), which stipulates that for every future-pointing null
vector field V , always T(V, V ) ≥ 0.

The simplest matter model is vacuum, that is, T = 0. A part of the present work
studies properties of a certain vacuum spacetime family, the Kerr spacetimes : the
metric of the (3 + 1-dimensional) Kerr spacetime of mass m and angular momentum a
is given in Boyer–Lindquist coordinates (t, r, ϑ, ϕ) on a patch of R4 with suitably large
radial coordinate r as

−
(

1− 2mr

ρ2

)
dt2 +

ρ2

r2 − 2mr + a2
dr2 + ρ2dϑ2 − 4mra sin2 ϑ2

ρ2
dtdϕ+

(
r2 + a2

)2 −∆a2 sin2 ϑ

ρ2
S2dϕ2

with ρ2 := r2 + a2 cos2 ϑ.
If the modulus of the angular momentum parameter a is smaller than the mass pa-

rameter m, the Kerr spacetime is called subcritical ; if |a| = m, the Kerr spacetime is
called critical. The supercritical case |a| > m is thought to be physically less relevant
since it violates cosmic censorship: the ring-shaped singularity at ρ2 = 0 (where cur-
vature blows up) is not hidden behind any horizon in this case. (For a discussion of
horizons, see Section 3.7). By a coordinate change, one may always assume that the
rotational parameter a be nonnegative.

The special case of vanishing rotational parameter a = 0 is known as the family of
Schwarzschild spacetimes (and the coordinates in which the metric is given above are
then called Schwarzschild coordinates); if moreover the mass parameter m vanishes,
we recover the Minkowski spacetime. There are higher-dimensinal equivalents of Kerr
spacetimes, the so-called Myers–Perry solutions [44, 43], but we will only mention them
in passing in this work.

For more details about the Kerr family, see Chapter 5 or the standard reference [46].
Another important matter model is electrovacuum (see e.g. [66]), where the energy-

momentum tensor takes the form

Tab =
1

4π

(
FajF

j
b −

1

4
gabF

klFkl

)
. (3)

Here, F is the electromagnetic field tensor which must satisfy Maxwell’s equations. In
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the presence of an electric potential Ψ, it can be expressed as

Fab = g∇adΨb − g∇bdΨa.

An example of an electrovacuum space that will play a prominent role in the present
work are the Reissner–Nordström spacetimes: the n + 1-dimensional Reissner–Nord-
ström spacetime of mass m and charge q is the manifold R×Rn \ {0}, with the metric

− (1− 2m
rn−2 + q2

r2(n−2) )dt
2 + (1− 2m

rn−2 + q2

r2(n−2) )
−1dr2 + r2Ωn−1, (4)

where Ωn−1 denotes the standard metric on Sn−1. For vanishing charge parameter q,
the Reissner–Nordström family reduces to the Schwarzschild family. If the modulus of
the charge parameter q is smaller than the mass parameter m, the Reissner–Nordström
spacetime is called subextremal ; the superextremal case |q| > m is, again, physically
less relevant by violation of cosmic censorship.

For more details about the Reissner–Nordström family, see e.g. Chapter 4.

3.3 n+ 1 decomposition

It can be useful to leave the spacetime picture and to switch to a Riemannian frame-
work. That is, one considers a spacelike submanifold (or spatial slice) (Mn, g) of a
spacetime (Mn+1, g) and studies its geometry. A standard formula for submanifold ge-
ometry known as the Gauss–Codazzi–Mainardi–equation (see e.g. [36, 45]) states that
for a frame {EI} of Mn,

Rm[(EI , EJ , EK , EL) = Rm[(EI , EJ , EK , EL) + II(EI , EL)II(EJ , EL)

− II(EI , EK)II(EJ , EL),

where II is the mean curvature ofMn in Mn+1, Rm is the Riemannian curvature tensor
ofMn, and the superscript [ denotes a contravariant-to-covariant type change. Applied
to the Einstein equations (1) and writing R for the scalar curvature of Mn and H for
its mean curvature in Mn+1, this yields the constraint equations

R +H2 − |II|2g = 16µ and (5)

divMn (II−Hg) = −8πJ, (6)

where the enery density µ and the momentum density J are defined for a unit normal
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η to Mn as

µ := T(η, η),

J := −T(η, · |TMn).

It does indeed make sense to study General Relativity in terms of such spatial hy-
persurfaces, since—given a Riemannian manifold (Mn, g) that fulfills the constraint
equations—a theorem by Choquet-Bruhat ensures the existence (and, under suitable
additional requirements, uniqueness) of a spacetime of which Mn is a spacial slice
with geometric quantities as in the Equations (5)–(6) (for a more precise formulation,
see [24]).

If Mn is totally geodesic in Mn+1, it is called time symmetric. In that case, the
dominant energy condition can be reformulated as

R ≥ 0.

3.4 Isolated systems

While cosmological models are designed to model the universe as a whole, other space-
times are models for objects on a smaller scale. They describe phenomena such as
stars or black holes. To study such objects, it is convenient to consider them as iso-
lated systems; that is, one models them by spacetimes which resemble the empty,
flat Minkowski space (Rn+1, η) in a region “far out”, but might possess curvature and
nontrivial topology close to the “center”. Mathematically, this intuition is captured
by the definition of an asymptotically flat spacetime: an n + 1-dimensional spacetime
(Mn+1, g) is called asymptotically flat if it contains a spacelike hypersurface (Mn, g, II)

(g the induced metric and II the second fundamental form) which “closely resembles
Euclidean space” outside a compact set K. More precisely, it is usual to require that
there is an open ball Bn

S(0) and a diffeomorphism

Φ = (xi) : Mn \K → Rn \Bn
S(0)

such that

1. on Mn \ Bn
S(0) one has Φ∗gij = δij + aij, where where δij are the components of

the Euclidean metric and aij fulfill suitable fall-off conditions, and

2. the components of the second fundamental form of fulfill suitable fall-off condi-
tions on Mn \Bn

S(0),

see e.g. [16]. The region Mn \K is called an asymptotic end. Note also that sometimes
it is required that in addition the scalar curvature be integrable on Mn.

16



We do not go into detail here since we will, in fact, use the exact asymtotic behavior
only in the case that (Mn, g) is asymptotically Reissner–Nordström (see Definition 9);
and these conditions entail all usual notions of asymptotic flatness. For a precise
definition of asymptotic flatness, see e.g. [16].

It is also usual to call a Riemannian manifold (Mn, g) asymptotically flat if it fulfills
the conditions that we required from the spatial slice above, ignoring of course the
condition on the second fundamental form.

3.5 ADM mass and the positive mass theorem

There are several notions of the mass of a system in General Relativity, some of them
quasilocal, others global. We introduce a global concept of mass that will be used in
Chapter 4; it is known as the ADM mass (after Arnowitt, Deser, and Misner) [2]. It is
defined for asymptotically flat Riemannian manifolds (Mn, g) (with integrable scalar
curvature) as

1

16π
lim
r→∞

n∑
i,j=1

∫
Sr

(gij,j − gjj,i)νi dσr,

where the metric components are the ones induces by the chart Φ from the definition
of asymptotic flatnass, ν is the unit normal to the sphere Sr of coordinate radius r
pointing towards the asymptotic end, and dσr is the induced volume element on Sr.
In the context of General Relativity, one may think of the Riemannian manifold

(Mn, g) in the definition of the ADM mass as of a spatial slice in a spacetime; and
the concept of the ADM mass is meant to capture the mass that is contained in the
universe. To justify that the ADM mass is a physically meaningful quantity which
deserves the name mass, some sanity checks are required:

It can be verified by standard calculations that the ADM mass is finite. It was more-
over shown in [5] and in [14] that the ADM mass does not depend on the choice of the
diffeomeorphism Φ, as long as Φ is as required in the definition of asymptotic flatness.
For manifolds which are asymptotically Reissner–Nordström (see Definition 9) and in
particular for Reissner–Nordström manifolds themselves, the ADM mass coincides with
the mass parameterm from the asymptotics, as can be checked by direct computations.

One wishes moreover for nonnegativity of the ADM mass in physically relevant set-
tings. A physically relevant setting is that (Mn, g) is an embedded, totally geodesic
submanifold of a spacetime (that is, a time symmetric spatial slice), where the space-
time fulfills the dominant energy condition. As mentioned in Section 3.3, the dominant
energy condition translates to nonnegativity of the scalar curvature of the time sym-
metric slice.

Therefore, the following theorem known as the positive mass theorem is of utmost
importance:
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If (Mn, g) is an asymptotically flat, geodesically complete Riemannian manifold with
nonnegative scalar curvature, then its ADM mass is nonnegative, and it is zero if and
only if (Mn, g) is Euclidean space.
This was first shown by Schoen and Yau for the 3-dimensional case in [56] and

extended to dimensions up to 7 in [57]; Witten generalized it to arbitrary dimensions
under an additional spin assumption ([67], see also [48]). The theorem was established
in its full generality only recently in [58]. Recently, also low regularity versions of the
theorem were shown (e.g. [35, 40]), see also Section 4.5.3.

For an accessible sketch of the proof of the positive mass theorem in the 3-dimensional
case, see the presentation in [7], where one may also find an explanation of the heuristics
behind the definition of the ADM mass via analogy to the Newtonian setting.

3.6 Stationary and static spacetimes

Stationarity of a spacetimes expresses the idea that the spacetime does not change in
time. More precisely, an asymptotically flat spacetime (Mn+1, g) with a spatial sub-
manifold Mn as in the definition of asymptotically flat spacetimes is called stationary
if there exists a nowhere vanishing, complete Killing vector field on Mn+1 (often called
the stationary Killing vector field of Mn+1) which is timelike in the asymptotic end
(see [16]); it is usually (and often tacitly) even assumed that the norm of the Killing
vector field is bounded away from zero in the asymptotic end.

In the presence of matter (if the energy-stress tensor is not identically zero), one
requires additionally that the matter be compatible with the stationary symmetry; in
the case of electrovacuum, this means (more precisely) that the electromagnetic field
tensor F must be invariant under the flow of the stationary Killing vector field.
The Kerr family and the Reissner–Nordström family are examples of stationary

spacetimes, and the stationary Killing vector field is in both cases the coordinate vector
field ∂t, as can be seen using the following local characterization:

A stationary spacetime (Mn+1, g) may be decomposed as R×Mn; and one chooses
a coordinates t on R such that the stationary Killing vector fields is given as the
coordinate vector field ∂t. The spacetime (Mn+1, g) is thus foliated by a family of spatial
hypersurfaces {Mn

t }, which are isometric to one another by the family of isometries
generated by the stationary Killing vector field. Denoting by η a unit normal to the
hypersurfaces Mn

t , one may define the lapse or lapse function by g(η, ∂t), and the shift
by g(∂t, ·). Wherever the stationary Killing field is timelike, the metric takes with
respect to local coordinates (xi) (1 ≤ i ≤ n) on Mn the form

g = −N2
(
dt+ hidx

i
)2

+ g,
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where the smooth functions N and hi = g(∂t, ∂i) (1 ≤ i ≤ n) do not depend on t,
and g is a (spacelike) metric on Mn. (Conversely, a spacetime with a metric of such a
form is always stationary, provided neither N nor g depend on t.)
Such a decomposition is always possible in the exterior region (the development of

the asymptotic end Mn \K under the flow of the stationary Killing vector field).
If in a stationary spacetime (Mn+1, g) additionally the stationary Killing vector

field is hypersurface orthogonal (or, equivalently, integrable in the Frobenius sense),
(Mn+1, g) is called static, which expresses the idea that there is no rotation present in
the spacetime. Some examples of static spacetimes are the members of the Reissner–
Nordström family, including, of course, the Schwarzschild family, as well as in particular
the Minkowski spacetime. The members of the Kerr family, on the other hand, are not
static (provided that a 6= 0).
Locally (and where the stationary Killing vector field is timelike), one may express

staticity of the metric g by requiring that the shift vanishes, that is, the metric g is
locally of the form

g = −N2dt2 + g,

and in that case the lapse function coincides with the function N . (Conversely, a
spacetime with a metric of such a form is always static.)

For a static spacetime, one may express the Einstein equations with a electrovacuum
tensor energy-stress tensor (that is, with an energy-stress tensor of the form given in
Equation (3)) in terms of quantities on Mn: if there is an potential Ψ : Mn → R, the
Einstein equations take the form

∆N = 2
n− 2

n− 1

1

N
|dΨ|2,

0 = div

(
grad Ψ

N

)
,

N Ric = ∇2N − 2
dΨ⊗ dΨ

N
+

2

(n− 1)N
|dΨ|2g.

Here, Ric and R denote the Ricci tensor and the scalar curvature of (Mn, g). Such
a quadruple (Mn, g, N,Ψ) is called an electrostatic system. Conversely, if the above
equations are fulfilled on Mn \K, then

(
R× (Mn \K) ,−N2dt2 + g

)
fulfills the Einstein equations with an electromagnetic energy-stress tensor as the right-
hand side.
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3.7 Black holes

Roughly speaking, a black hole is a spacetime region out of which no object, be it
a matter particle or light, can escape. While the black hole definition for general
spacetimes is rather involved and can, for example, be phrased with the vocabulary of
the conformal compatification of a spacetime (see [66]), the definition of black holes
in stationary spacetimes is easier to formulate and to handle: Let (Mn+1, g) be a
stationary spacetime, and let Mext denote its exterior region (see Section 3.6). The
domain of outer communication (abbreviated as DOC) of Mn+1 is the spacetime region

〈〈Mext〉〉

that can be reached from the exterior region Mext by a future-directed timelike curve
as well as by a past-directed timelike curve; in other words, a point x ∈Mn+1 is in the
DOC if and only if there is a future-directed timelike curve

γ1 : [0, 1]→Mn+1

and a past-directed timelike curve

γ2 : [0, 1]→Mn+1

with γi(0) ∈Mext and γi(1) = x for i = 1, 2. The spacetime region

Mn+1 \ 〈〈Mext〉〉

is called the black hole or black hole region, and its boundary ∂〈〈Mext〉〉 the event
horizon.
In a Kerr spacetime of mass m and angular momentum a with |a| < m, the hyper-

surface {r2− 2mr+ a2 = 0} is an event horizon; it is semi-permeable in the sense that
there is no future-directed causal curve from the region {r2 − 2mr + a2 < 0} to the
region {r2 − 2mr + a2 > 0}.
In a Reissner–Nordström spacetime of mass m and charge q with |q| < m, the null

hypersurface {
r =

(
m+

√
m2 − q2

) 1
n−2
}

(given in the coordinates of (4)) is an event horizon, the outer horizon.
The notion of an event horizon is a global one; it is hard to check since its verification

requires knowledge of the whole spacetime. There are other concepts of horizons that
are easier to handle because they rely on quasilocal properties; one of them, which is
useful in the static setting, is the concept of a static horizon.
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For a static spacetime (R×Mn,−N2dt2 + g), an n − 1-dimensional submanifold
Σn−1 ⊆ Mn is called a static horizon if the lapse N vanishes on Σn−1, and it is called
nondegenerate if moreover the outer normal derivative of the lapse is positive.

In the above example of the subextremal and extremal Reissner–Nordström space-
times, the event horizon is a static horizon. One can verify by a straightforward calcu-
lation (after extending the lapse to the horizon) that it is degenerate if the Reissner–
Nordström spacetime is extremal, and nondegenerate otherwise.

Static horizons are interesting and useful by virtue of their quasilocal properties;
for instance, it is standard knowledge that they are minimal surfaces. This is true
without any assumptions on the energy-stress tensor and can, for instance, be checked
by computing the Kretschmann scalar of the spacetime (see e.g. [34]).

3.8 Trapped light

In the vicinity of heavy objects like black holes or neutron stars, the curvature of the
spacetime can be so large that some light rays orbit the central object forever at a fixed
distance, without escaping towards infinity nor falling towards the central object. Since
it is very imprecise to speak of a “fixed distance” (which is at the outset only defined in
a possibly not very meaningful coordinate sense), one needs a more precise definition
for such phenomena: in a static spacetime (Mn+1, g) with lapse function N , a photon
γ : R → Mn+1 is called trapped if N ◦ γ = const.. In the case of radially symmetric
static spacetimes like the Schwarzschild and Reissner–Nordström families, constancy
of the lapse along γ is, of course, equivalent to constancy of the radial coordinate along
γ.
The easiest case of trapped light occurs in the Schwarzschild spacetime (of mass m),

where every photon γ with γ(0) = 3m and γ̇(0) = 0 has constant radial coordinate
r = 3m throughout (in the coordinates of (4)). This means that the cylinder with
spherical base R× {r = 3m} has the property that every photon that is once tangent
to is remains tangent for as long as it exists. Remarkably, the set R×{r = 3m}, where
trapped photons may be found, is a smooth submanifold of the spacetime.
For the case of stationary, non-static spacetimes, constancy of the lapse function does

not seem to be the right way to define trapping: in the subcritical Kerr spacetimes with
nonvanishing rotational parameter a, there are no photons of constant lapse function
(as can be seen, for example, from Proposition 27), but instead there are photons of
constant Boyer–Lindquist coordinate r (see Chapter 5). In view of this, we will define
trapped light for stationary spacetimes in terms of the spacetime symmetry and a
topological condition (see Definition 26), and our definition entails that the lapse is
bounded along any trapped photon.

21



Other than being interesting in its own right, understanding trapping of light is
also relevant in a variety of contexts: this phenomenon plays a role in the analysis of
stability of black holes (see e.g. the lecture notes [18]), and since our Definition 26
entails that the lapse is bounded along any trapped photon, it is workable for the
stability context, where scattering of the photon’s energy is relevant.

Of current interest is also the role that trapped light plays in gravitational lensing
(see e.g. the review [52]) and in the understanding of black hole shadows (see e.g. [27]),
two concepts that are closely related to possible observations indicating black holes
in our universe; see, for example, the pictures recently taken by the Event Horizon
Telescope [23].
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4 Photon sphere uniqueness in higher-dimensional

electrovacuum spacetimes

Recall that the n + 1-dimensional Reissner–Nordström spacetimes are a 2-parameter
family (labelled with a mass m and a charge q) of static, spherically symmetric, electri-
cally charged, asymptotically flat solutions to the Einstein equations, and a Reissner–
Nordström spacetime is called subextremal (extremal, superextremal) if m2 > q2 (if
m2 = q2, m2 < q2).
A subextremal or extremal Reissner–Nordström spacetime contains a unique photon

sphere, on which light can get trapped (for a precise definition of photon spheres, see
Definition 13), while a superextremal Reissner–Nordström spacetime may contain two
photon spheres or none, depending on the mass-charge ratio.

Subextremality in the Reissner–Nordström family is equivalent to a quasilocal subex-
tremality condition on the photon sphere (see Definition 19).

We establish the following uniqueness result for subextremal Reissner–Nordström
spacetimes:

Theorem 1. Let (Mn, g, N,Ψ) be an asymptotically Reissner–Nordström electrostatic
system of mass m and charge q and with n ≥ 3, such that Mn has a (possibly discon-
nected) compact photon sphere as an inner boundary with only subextremal connected
components Σn−1

i , 1 ≤ i ≤ l, l ∈ N . Assume moreover that

1. N �∂Mn> 0, and

2. Rσi (the scalar curvature of Σn−1
i with respect to the induced metric) is constant.

Then (Mn, g) is isometric to the Reissner–Nordström manifold of mass m and charge q,
and m > |q|. In particular, ∂Mn is the photon sphere in the Reissner–Nordström ma-
nifold of mass m and charge q, it has only one connected component and is a topological
sphere.

The above theorem is implied by the more general Theorem 3 below. First, we will
comment on some of the assumptions of Theorem 1:

Remark 2. It is natural to require that N �∂Mn≥ 0, meaning that none of the photon
sphere component are inside a black hole. Moreover, we will see in Proposition 17
how the scalar curvature of Σn−1

i relates to the normal derivative of Ψ on Σn−1
i , and in

view of this relation, it is possible to replace the constant scalar curvature condition by
the requirement that |dΨ| be constant on each Σn−1

i . If ∂Mn has only one connected
component, the condition Rσi = const. does not need to be assumed but is fulfilled
automatically, as has been argued in [31], see also the exposition in [30]: in this case,
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one can show how Ψ can be written as a function of N . Since we show in Proposition 17
that |dN | is constant on every connected component of the photon sphere, this would
imply that |dΨ| and hence Rσi are also constant. However, this is only possible in
case the photon sphere has only one connected component. Lastly, it is not possible
to do away with the quasilocal subextremality condition on the photon sphere; since
a superextremal Reissner–Nordström manifold may contain a photon sphere, it may
fulfill the assumptions of Theorem 1 except for the subextremality condition, but the
proof of Theorem 1 must break down in this case due to the absence of a horizon.

The assumptions of Theorem 1 may be considerably weakened: First, it is possible to
allow for static horizon components as inner boundary components. Second, one may
wish to replace the electrostatic equation for the Ricci tensor (Equation (12)) with the
much weaker inequality N2R ≥ 2|dΨ|2. We will refer to objects fulfilling this inequality
and the other two electrostatic equations (10) and (11) as pseudo-electrostatic, see
Section 4.1.2.

Since photon spheres in electrostatic settings are characterized by quasilocal geom-
etry, it is useful to define in the pseudo-electrostatic setting the notion of a quasilocal
photon sphere as a hypersurface characterized by certain quasilocal properties. We
will see in Propositions 16, 18, and 17 that photon spheres in electrostatic systems are
always quasilocal photon spheres; hence, the following is a generalization of Theorem 1:

Theorem 3. Let (Mn, g, N,Ψ) be a pseudo-electrostatic system which is asymptotically
Reissner–Nordström of mass m and charge q, and n ≥ 3.
Assume Mn has an orientable, compact inner boundary whose connected components

are either nondegenerate static horizons or subextremal quasilocal photon spheres.
Then (Mn, g) is isometric to a piece of the Reissner–Nordström manifold of mass m

and charge q, and m > |q|.

From Theorem 3, we also immediately get black hole uniqueness in higher-dimensional
static asymptotically Reissner–Nordström electrovacuum:

Corollary 4. Let (Mn, g, N,Ψ) be (pseudo-)electrostatic and asymptotically Reissner–
Nordström (with mass m and charge q). Assume that ∂Mn is a (possibly disconnected)
nondegenerate static horizon. Then (Mn, g) is isometric to the region of Reissner–
Nordström manifold of mass m and charge q which is outside the horizon, and m > |q|.

This corollary is also a result of [34], where it was proven under the additional
assumption that m > |q|.
The above black hole uniqueness result actually does not require the full electrostatic

equations; the pseudo-electrostatic conditions are sufficient (in contrast to [34] and
most other black hole uniqueness proofs, where the full (electro-)static equations are
explicitly required, with the exception of [8]).
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The proof of Theorem 3 uses seminal ideas from the classical black hole uniqueness
proofs by Bunting and Masood-ul Alam [6] and by Ruback [55], which were generalized
in [12] and [11] to prove photon sphere uniqueness results, as well as on the techniques
that were developed in [8] (see also [9]) to treat higher-dimensional cases. Its main
part breaks down into the following steps: in the first step, we glue to each boundary
component an explicitly constructed Riemannian manifold resembling a suitable piece
of a Reissner–Nordström manifold up to a static horizon. The horizon allows to reflect
the manifold in a second step along its boundary, obtaining an “upper” and a “lower”
half. Both the gluing and the doubling can be done with C1,1-regularity.

In a third step, we perform a conformal change of the doubled manifold such that
the conformally transformed upper half has vanishing ADM mass, and the conformally
transformed lower half can be one-point compactified (with C1,1-regularity). This will
allow to apply a low regularity version of the rigidity case of the positive mass theorem
to conclude that the conformally transformed manifold is the Euclidean space. In a
fourth and last step, uniqueness will be established through some topological arguments
and by recovering the conformal factor applying a maximum principle to an elliptic
PDE.

The chapter is organized as follows: In Section 4.1, we recall some definitions
and known facts about the n + 1-dimensional Reissner–Nordström spacetime and
about asymptotically flat, static electrovacuum spacetimes in general and introduce
our asymptotic assumptions. In Section 4.2, we give a definition of photon spheres
that is adjusted to our setting and prove some statements about their geometry, which
are interesting in their own right. Section 4.3 provides the prerequisites for the confor-
mal change we need to perform in the third step. In Section 4.4, we prove the assertions
in Theorem 3 about mass and charge. Section 4.5 presents the above sketched four
steps of the proof of Theorem 1.

4.1 Setup and definitions

4.1.1 The n+ 1-dimensional Reissner–Nordström spacetime

The n + 1-dimensional Reissner–Nordström spacetime of mass m and charge q is the
manifold (R× Rn \ {0}, gm,q), where the metric gm,q is given by

gm,q = −(1− 2m
rn−2 + q2

r2(n−2) )dt
2 + (1− 2m

rn−2 + q2

r2(n−2) )
−1dr2 + r2Ωn−1, (7)

and Ωn−1 denotes the standard metric on Sn−1. The n-dimensional (spatial) Reissner–
Nordström manifold is a canonical spatial slice of the Reissner–Nordström spacetime,
that is, the manifold Rn \ {0} with the metric
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gm,q = (1− 2m
rn−2 + q2

r2(n−2) )
−1dr2 + r2Ωn−1.

The lapse Nm,q and the potential Ψq of the n-dimensional Reissner–Nordström man-
ifold of mass m and charge q are the functions

Nm,q(r) := (1− 2m
rn−2 + q2

r2(n−2) )
1/2,

Ψq(r) :=
q

Ĉrn−2

with

Ĉ :=

√
2
n− 2

n− 1
.

Remark 5. In isotropic coordinates, gm,q can be written as

gm,q =

(
1 +

m+ q

2sn−2

) 2
n−2
(

1 +
m− q
2sn−2

) 2
n−2

δ =: ϕ
2

n−2
m,q δ, (8)

where the radial coordinates s and r transform by the rule

r = s

(
1 +

m+ q

2sn−2

) 1
n−2
(

1 +
m− q
2sn−2

) 1
n−2

.

We can rewrite the lapse and the potential as

Nm,q(s) =

(
1− m2−q2

4s2(n−2)

)
(
1 + m+q

2sn−2

) (
1 + m−q

2sn−2

) ,
Ψq(s) =

q

Ĉsn−2
(
1 + m+q

2sn−2

) (
1 + m−q

2sn−2

) .
A straightforward computation allows to express ϕm,q in terms of Nm,q and Ψq as

ϕm,q =

(
(Nm,q + 1)2 − Ĉ2Ψ2

q

4

)−1

. (9)

In the coordinates of (7), the outer horizon of the Reissner-Nordström black hole of

mass m > 0 and charge q with m2 > q2 is located at
(
m+

√
m2 − q2

) 1
n−2 . In isotropic

coordinates, the location of the outer horizon is at sm,q :=
(
m2−q2

4

) 1
2(n−2) .
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4.1.2 (Pseudo-)electrostatic spacetimes

The above introduced n+1-dimensional Reissner–Nordström spacetime is the paradig-
matic example of a static electrovacuum spacetime.

Since we will be working in n-dimensional spatial slices, it is more convenient to use
the dimensionally reduced Einstein–Maxwell equations. We recall from Chapter 3 the
following definition:

Definition 6. Let (Mn, g) be a Riemannian manifold and let N : Mn → R>0, Ψ :

Mn → R be smooth functions such that

∆N =
Ĉ2

N
|dΨ|2, (10)

0 = div

(
grad Ψ

N

)
, (11)

N Ric = ∇2N − 2
dΨ⊗ dΨ

N
+

2

(n− 1)N
|dΨ|2g. (12)

Then (Mn, g, N,Ψ) is called an electrostatic system.

Here and onwards, Ric and R denote the Ricci tensor and the scalar curvature of
(Mn, g).

Taking the trace of Equation (12) and plugging in Equation (10), one obtains

N2R = 2|dΨ|2. (13)

Definition 7. If (Mn, g, N,Ψ) fulfills Equations (10), (11), and (13), but not neces-
sarily (12), it is called an traced-electrostatic system. If Equations (10), (11) and the
inequality

N2R ≥ 2|dΨ|2

are fulfilled, we say that the system is pseudo-electrostatic.

4.1.3 Asymptotic considerations

Remark 8 (Weighted norms). We will use weighted norms defined as follows:

‖f‖C2
−k(U) := sup

x∈U
||x|k · |f(x)|+ |x|k+1 · |Df(x)|+ |x|k+2 · |D2f(x)||

for a twice differentiable function f on an open domain U ⊆ Rn.

We will use the following definition of asymptotically Reissner–Nordström manifolds:

Definition 9. A smooth Riemannian manifold (Mn, g) of dimension n ≥ 3 is called
asymptotically Reissner-Nordström of mass m and charge q if
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1. Mn is diffeomorphic to K tE, where K is a compact set, and E is an asymptotic
end which is diffeomorphic to Rn \Bn

S(0) for some S > sm,q,

2. for the diffeomorphism Φ = (xi) : En → Rn \ Bn
S(0) and the metric g there is a

constant C > 0 such that

‖(Φ∗g)ij − (gm,q)ij‖C2
−(n−1)

(Rn\BnS(0)) ≤ C, i, j = 1, . . . , n,

3. Φ∗g is uniformly positive definite and uniformly continuous on Rn \Bn
S(0).

Here, (gm,q)ij are the components of the Reissner-Nordström metric in isotropic coor-
dinates, see Equation (8).

Notation 10. We will often notationally omit Φ and Φ∗ whenever this does not lead
to ambiguity. Moreover, we use the coordinates (xi) defined by Φ to define a radial

coordinate s :=

√
n∑
i=1

|xi|2 on the asymptotic end.

Definition 11. Let (Mn, g) be an asymptotically Reissner–Nordström manifold of
mass m and charge q with an asymptotic end En, and Φ = (xi) : En → Rn \ Bn

S(0)

a diffeomeorphism as in Definition 9. A smooth function N : Mn → R is called an
asymptotic Reissner–Nordström lapse (of mass m) if there is a constant C such that

‖Φ∗N −Nm,q‖C2
−(n−1)

(Rn\BnS(0)) ≤ C

for some (hence, all) q ∈ R.
A smooth function Ψ : Mn → R is called an asymptotic Reissner–Nordström potential

(of charge q) if there is a constant C such that

‖Φ∗Ψ−Ψq‖C2
−(n−1)

(Rn\BnS(0)) ≤ C.

A quadruple (Mn, g, N,Ψ) is called an asymptotically Reissner–Nordström system
if (Mn, g) an asymptotically Reissner–Nordström manifold of mass m and charge q,
N : Mn → R is an asymptotic Reissner–Nordström lapse of the same mass m, and
Ψ : Mn → R is an asymptotic Reissner–Nordström potential of the same charge q.

4.2 Quasilocal geometry

We cite the following fundamental theorem:

Theorem 12 ([17, 53]). A timelike hypersurface P in a Lorentzian manifold is totally
umbilical if and only if every lightlike geodesic that is initially tangent to P stays tangent
to P for as long as it exists.
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We remind the reader that a submanifold is called totally umbilical if the trace-free
part of its second fundamental form vanishes.

The above theorem motivates the following definition, following [17, 68, 10]:

Definition 13. Let (Mn, g, N,Ψ) be a pseudo-electrostatic system (see Definition 7).
A timelike embedded orientable hypersurface P n in (R×Mn,−N2dt2 + g) is called

a photon sphere if it is totally umbilical and N and Ψ are constant on every connected
component of P n.

It is immediate that P n ∩Mn is totally umbilical in Mn. If P n is a photon sphere,
we will occasionally also refer to P n ∩Mn as a photon sphere.
In the n+1-dimensional Reissner–Nordström spacetime with mass parameterm > 0,

there is a photon sphere located at the radius

(
1

2
mn+

1

2

√
m2n2 − 4(n− 1)q2

) 1
n−2

(in the coordinates of (7)), provided that the mass-charge ratio is such that m2n2 −
4(n−1)q2 is nonnegative (which is always the case in subextremal Reissner–Nordström
spacetime), while a Reissner–Nordström spacetime of negative or vanishing mass does
not possess a photon sphere.

For the rest of this chapter, we fix the following notation:

Notation 14. For a photon sphere (P n, p) ↪→ (R × Mn,−N2dt2 + g) of a pseudo-
electrostatic system (Mn, g, N,Ψ), we write

(P n, p) =
l⋃

i=1

(R× Σn−1
i ,−N2

i dt
2 + σi),

where each R× Σn−1
i is a connected component of P n.

We define Ni := N �Σn−1
i
,

Ψi := Ψ �Σn−1
i

.

Moreover, H denotes the mean curvature of
l⋃

i=1

(
R× Σn−1

i

)
, while H denotes the

mean curvature of
l⋃

i=1

Σn−1
i in Mn, and we set

Hi := H �R×Σn−1
i
,

Hi := H �Σn−1
i

.
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A choice of unit normal to
l⋃

i=1

Σn−1
i in Mn (pointing towards the asymptotic end if

(Mn, g) is asymptotically flat) will be denoted by ν, and we set

ν(N)i := ν(N) �Σn−1
i

ν(Ψ)i := ν(Ψ) �Σn−1
i

.

Photon spheres in the electrostatic setting are characterized by quasilocal properties
which make them a quasilocal photon sphere defined as follows:

Definition 15. A totally umbilical hypersurface in a (pseudo-)electrostatic system
(Mn, g, N,Ψ) that fulfills ν(N)i > 0, Ni = const., Rσi = const. > 0, Hi = const. is
called a quasilocal photon sphere component if the equations

Rσi =
n

n− 1
H2
i +

2

N2
i

ν(Ψ)2
i . (14)

and
Hi

Ni

ν(N)i =
H2
i

n− 1
(15)

are fulfilled.

The following three propositions serve to show that a photon sphere component in an
electrostatic system is a quasilocal photon sphere component. While Propositions 16
and 18 are straightforward generalizations from the 3 + 1-dimensional setting (see [68]
and [10] for Proposition 16 and [12] and [11] for Proposition 18), we will prove Propo-
sition 17 for our setting. If Ψ = 0, the equations reduce to the ones given for the
curvature quantities of photon spheres in [8]. For a similar proof in dimension 3, see
also [68].

Proposition 16 ([68], [10]). Let (Mn, g, N,Ψ) be an electrostatic system and P n a
photon sphere in (R ×Mn, g := −N2dt2 + g) with induced metric p. Then for every
1 ≤ i ≤ l, Hi and Hi are constant.

Proposition 17. Let (Mn, g, N,Ψ) be an electrostatic system and let (P n, p) be a
photon sphere in (R×Mn,−N2dt2 + g).
Then Equation (14) holds. In particular, Rσi is nonnegative, and it is positive pro-

vided that Hi 6= 0.
Moreover, Equation (15) holds, and Hi and ν(N)i are constant in this case. More-

over, in this case Rσi is constant if and only if ν(Ψ)i is.

Proof. First we show Formula (14). We write Ric and R for the Ricci tensor and the
scalar curvature of (R ×Mn,−N2dt2 + g) and choose η := 1

N
∂t as a unit normal to
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l⋃
i=1

Σn−1
i in P n. One calculates (applying a general formula for the curvature of warped

products to (R×Mn,−N2dt2 + g), see e.g. [45], and using Equation (10)), that

Ric(η, η) =
∆N

N
=
Ĉ2

N2
|dΨ|2.

The traced Gauss equation and the fact that Mn is totally geodesic in R×Mn give

R = R− 2Ric(η, η),

so that we arrive at

R =
2

N2
|dΨ|2

(
1− Ĉ2

)
(16)

=
2ν(Ψ)2

N2

(
1− Ĉ2

)
, (17)

where we also used Equation (13) and the fact that Ψ is constant on P n by definition
of photon spheres.

The traced Gauss equation applied to P n ↪→ R×Mn simplifies by umbilicity to

R− 2Ric(ν, ν) = RP −
n− 1

n
H2, (18)

where RP denotes the scalar curvature of P n, and we abused notation by denoting

the unit normal to P n in R×Mn by ν (like the unit normal to
l⋃

i=1

Σn−1
i in Mn).

Again by a standard warped product formula,

Ric(ν, ν) = Ric(ν, ν)− 1

N
∇2N(ν, ν),

so that by Equation (12) and the fact that Ψ is constant on P n,

Ric(ν, ν) = −Ĉ2ν(Ψ)2

N2
. (19)

Combining Equations (17), (18), and (19) allows to express RP as

RP =
n− 1

n
H2 +

2ν(Ψ)2

N2

(
1− Ĉ2 + Ĉ2

)
=

n

n− 1
H2 +

2ν(Ψ)2

N2
,

and we have shown Equation(14) (where we also used that RP = Rσi and H = n−1
n
H

since Mn is totally geodesic in Mn+1).
We now prove Formula (15).
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By the traced Gauss equation and by umbilicity of Σn−1
i in Mn,

R−2 Ric(ν, ν) = Rσi −
n− 2

n− 1
H2
i . (20)

Plugging ν into both slots of Equation (12) and the fact that Ψ is constant on Σn−1
i

give

Ric(ν, ν) =
∇2N

N
(ν, ν)− 2

n− 2

n− 1

ν(Ψ)2

N2
. (21)

Recall that in general for a smooth isometric embedding of manifolds (Mn−1
1 , g1) ↪→

(Mn
2 , g2) with a spacelike unit normal ν and a smooth function f : Mn

2 → R, the
formula

g2∆f = g1∆f + g2∇2f(ν, ν) +HM1ν(f) (22)

holds, where HM1 denotes the mean curvature of M1 in M2.
Using this and Equation (10), we get

∇2N(ν, ν) = ∆N −∆σiN −Hiν(N)

= ∆N −Hiν(N)

= 2
n− 2

n− 1

ν(Ψ)2

N
−Hiν(N).

This gives

Ric(ν, ν) = −Hiν(N)

N
. (23)

Likewise, Equation (13) reads in our case

R = 2
ν(Ψ)2

N2
. (24)

Plugging these expressions for Ric(ν, ν) and R into Equation (20), we get

2
ν(Ψ)2

i

N2
i

+ 2
Hiν(N)i
Ni

= Rσi −
n− 2

n− 1
H2
i . (25)

Equation (15) now follows immediately from Equations (14) and (25).
We note that

nHi = (n− 1)Hi,

and since Hi is constant (by Proposition 16), so is Hi. The assertions about constancy
of ν(N)i, ν(Ψ)i, and Rσi follow directly from Equations (14) and (15).

Proposition 18 ([25, 12, 11]). Let P n be a quasilocalphoton sphere in (R×Mn, g :=
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−N2dt2 + g), and assume that (R × Mn, g) fulfills the null energy condition. Then
Hi > 0.

Moreover, we define a notion of subextremality for photon spheres and quasilocal
photon spheres, in agreement with the definition in [11]:

Definition 19. A (quasilocal) photon sphere component Σn−1
i in a (pseudo-)electrostatic

system is called subextremal if
H2
i

Rσi

>
n− 2

n− 1
.

If “<” (“=”) holds, it is called superextremal (extremal).

We recall some well-known facts about static horizons in the electrostatic setting
that carry over to the pseudo-electrostatic case:

Lemma 20. Let (Mn, g, N,Ψ) be a (pseudo-)electrostatic system and Σn−1 ⊆ Mn a
static horizon. Then

1. Ψ �Σn−1= const., and

2. dΨ �Σn−1= 0.

For a proof, we refer the reader to the derivation of their Equations (11) and (13)
in [34], where these statements were deduced in an electrostatic context, but without
appealing to the electrostatic equation for the Ricci tensor (12). Recall also that any
static horizon Σn−1 has vanishing mean curvature.

4.3 Zero mass and one-point insertion

In this section, we prove two propositions about the asymptotic behavior of Reissner–
Nordström manifolds after a specific conformal change which will be used in the proof
of the main results Theorem 1 and Theorem 3.

Proposition 21 (Zero mass of an asymptotic end after a conformal change).
Let (Mn, g, N,Ψ) an asymptotically Reissner–Nordström system of mass m and charge
q.

Assume that Ω+ :=
(

(1+N)2−Ĉ2Ψ2

4

)1/(n−2)

> 0 on all of Mn.
Then the metric Ω2

+g is asymptotically Reissner–Nordström with mass 0 and charge 0.

Proof. We write Φ : E → Rn for the diffeomorphism that makes Mn asymptotically
Reissner–NOrdström as in Definition 9 and recall that we required S > sm,q (see
Definition 9).
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Since Nm,q and Ψq are given explicitly, we may check that∥∥∥∥∥(ϕm,q)
− 2
n−2 −

(
(Nm,q+1)2−Ĉ2Ψ2

q

4

) 2
n−2

∥∥∥∥∥
C2

0 (Rn\BnS(0))

< C1 (26)

(see Equation (9)) on Rn \Bn
S(0) for some C1 = C1(n, S).

The asymptotic behaviors

‖Φ∗N −Nm,q‖C2
−(n−1)

(Rn\BnS(0)) ≤ C2

and
‖Φ∗Ψ−Ψq‖C2

−(n−1)
(Rn\BnS(0)) ≤ C2

give that

‖(Φ∗Ω2
+)− ϕ−

2
n−2

m,q ‖C2
−(n−1)

(Rn\BnS(0)) < C3 (27)

for some C3 = C3(C2, n, S).
From these facts combined we conclude that

∥∥Φ∗Ω
2
+

∥∥
C2

0 (Rn\BnS(0))
< C4

for some C4 = C4(C1, C3, n, S).
Using the assumption that ‖(Φ∗g)ij − (gm,q)ij‖C2

−(n−1)
(Rn\BnS(0)) ≤ C5 for some C5 and

all i, j = 1, . . . , n, we now get

‖(Φ∗Ω2
+)(Φ∗g)ij − (Φ∗Ω

2
+)(gm,q)ij‖C2

−(n−1)
(Rn\BnS(0)) < C6

for some C6 = C6(C4, C5, n, S) and all i, j = 1, . . . , n.
On the other hand, the inequalities (26) and (27) also imply that there is a C7 =

C7(C1, C3, n, S) such that

‖(Φ∗Ω2
+)(gm,q)ij − ϕ

− 2
n−2

m,q (gm,q)ij‖C2
−(n−1)

(Rn\BnS(0))

= ‖ϕ−
2

n−2
m,q

(
Φ∗Ω

2
+δij − (gm,q)ij

)
‖C2
−(n−1)

(Rn\BnS(0)) < C7

for all i, j = 1, . . . , n.
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We can now compute

‖(Φ∗Ω2
+g)ij − (gm=0,q=0)ij‖C2

−(n−1)
(Rn\BnS(0))

=‖(Φ∗Ω2
+g)ij − δij‖C2

−(n−1)
(Rn\BnS(0))

=‖(Φ∗Ω2
+)(Φ∗g)ij − ϕ

− 2
n−2

m,q (gm,q)ij‖C2
−(n−1)

(Rn\BnS(0))

≤‖(Φ∗Ω2
+)(Φ∗g)ij − (Φ∗Ω

2
+)(gm,q)ij‖C2

−(n−1)
(Rn\BnS(0))

+ ‖(Φ∗Ω2
+)(gm,q)ij − ϕ

− 2
n−2

m,q (gm,q)ij‖C2
−(n−1)

(Rn\BnS(0))

<C6 + C7,

which proves that (Mn,Ω2
+g) is asymptotically Reissner-Nordström with mass 0 and

charge 0.

Proposition 22 (One-point insertion). Let (Mn, g, N,Ψ) an asymptotically Reissner–
Nordström system of mass m and charge q.

Assume that Ω− :=
(

(1−N)2−Ĉ2Ψ2

4

)1/(n−2)

> 0 on all of Mn.
Then one can insert a point p∞ into (Mn,Ω2

−g) to obtain a compact Riemannian
manifold (Mn

∞ := Mn ∪ {p∞}, g∞) which is C1,1-regular at p∞ and with boundary
∂Mn

∞ = ∂Mn.

Proof. Again, we write Φ : E → Rn for the diffeomorphism that makes Mn asymptot-
ically flat as in Definition 9 and recall that we required S > sm,q.

We note that

(1−Nm,q)
2 − Ĉ2Ψ2

q =
m2 − q2

s2(n−2)
(
1 + m+q

2sn−2

) (
1 + m−q

2sn−2

)
and hence

(1−Nm,q)
2 − Ĉ2Ψ2

q

4
· ϕm,q =

m2 − q2

4s2(n−2)
=
(sm,q

s

)2(n−2)

.

With similar arguments as in the proof of Proposition 21 and following closely [8],
we can use this and the asymptotic behavior of Nm,q and Ψq to estimate∥∥∥Φ∗(Ω

2
−g)ij −

( sm,q
s

)4
δij

∥∥∥
C2
−(n+3)

(Rn\BnS(0))

=

∥∥∥∥∥Φ∗

((
(1−N)2−Ĉ2Ψ2

4

)2/(n−2)

gij

)
−
(

(1−Nm,q)2−Ĉ2Ψ2
q

4

) 2
n−2

(gm,q)ij

∥∥∥∥∥
C2
−(n+3)

(Rn\BnS(0))

≤C1
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for some C1 = C1(m, q, n, S) and all i, j = 1, . . . , n, where we used additionally that∥∥∥∥∥( (1−N)2−Ĉ2Ψ2

4

) 2
n−2

∥∥∥∥∥
C2
−4(Rn\BnS(0))

≤ C0

for some C0 = C0(m, q, n, S).
Analogously to the proof of Proposition 2.8 in [8], let now (yi) denote coordinates in

Rn \ Bn
S(0) so that s = |y|δ, and perform an inversion at the sphere of radius sm,q to

new coordinates ηi :=
( sm,q

s

)2
yi. Then

(Φ∗Ω
2
−g )(∂ηk , ∂ηl) = (Φ∗Ω

2
−g )(∂yi , ∂yj)

(
s

sm,q

)4(
δik − 2

yiyk
s2

)(
δjl − 2

yjyl
s2

)
,

δ(∂ηk , ∂ηl) = δ(∂yi , ∂yj)

(
s

sm,q

)4(
δik − 2

yiyk
s2

)(
δjl − 2

yjyl
s2

)
=

(
s

sm,q

)4

δkl,

where the indices are lowered and raised with the flat metric δ.
Together with the above estimate, it follows that

∥∥(Φ∗Ω
2
−g )(∂ηk , ∂ηl)− δkl

∥∥
C2
−(n−1)

(Rn\BnS(0))

=

∥∥∥∥[Φ∗(Ω2
−g)ij −

( sm,q
s

)4
δij

] (
s

sm,q

)4 (
δik − 2y

iyk
s2

)(
δjl − 2y

jyl
s2

)∥∥∥∥
C2
−(n−1)

(Rn\BnS(0))

≤C2

for some C2 = C2(C0, C1,m, q, n, S), where the subscript C2
−(n−1)(Rn \Bn

S(0)) is to be
interpreted in (yi)-coordinates.
In terms of the new coordinates (ηi) and writing S ′ :=

s2m,q
S

, this (along with the
assumption that n ≥ 3) allows to conclude that

∥∥(Φ∗Ω
2
−g )(∂ηk , ∂ηl)− δkl

∥∥
C2

2 (Bn
S′ (0))

< C3

for some C3 = C3(C0, C1, C2,m, q, n, S).
We can thus insert a point p∞ (with ηi(p∞) = 0 for all i = 1, . . . , n) into Mn and

extend g to a metric g∞ on Mn
∞ = Mn ∪ {p∞} by letting

g∞(x) :=

{
Ω2
−g(x) for x 6= p∞,

δ for x = p∞,

and g∞ has C1,1-regularity at p∞.
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4.4 Mass and charge

We now prove two lemmata which together show m > |q| under assumptions that are
weaker than those of Theorem 3.

Lemma 23. Let (Mn, g, N,Ψ) be asymptotically Reissner–Nordström and let Equa-
tion (10) be fulfilled. If N is constant on each component of ∂Mn and ν(N) > 0 on
the inner boundary ∂Mn, then m > 0.

Proof. Let us first assume that N > 0 on all of ∂Mn. By Stokes’ theorem and Equa-
tion (10),

0 <

∫
∂Mn

ν(N) = −
∫
Mn

∆N +

∫
Sn−1
∞

ν(N)

= −
∫
Mn

Ĉ2

N
|dΨ|2 +

∫
Sn−1
∞

ν(N)

≤
∫

Sn−1
∞

ν(N),

where Sn−1
∞ is a sphere at infinity. By the asymptotic behavior of N ,

∫
Sn−1
∞

ν(N) = (n− 2) vol
(
Sn−1

1

)
m

so m is positive.
If ∂Mn has components where N vanishes, we pass from these components to a

close-by level surface of N where N > 0 and ν(N) > 0.

For the remainder of the present Chapter 4, (Mn, g, N,Ψ) will be as in the as-
sumptionts of Theorem 3. We will continue to denote those boundary components of
(Mn, g, N,Ψ) which are quasilocal photon spheres by Σn−1

i (1 ≤ i ≤ l) (in agreement
with the notation fixed in Section 4.2), while the horizon components will be denoted
by Σ̂n−1

i (l + 1 ≤ i ≤ L).

Lemma 24. For (Mn, g, N,Ψ) consider the following conditions:

1. each quasilocal photon sphere component is subextremal and each static horizon
component is nondegenerate,

2. F± := N − 1± ĈΨ < 0 on Mn,

3. m2 > q2.
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Then (1)⇒ (2)⇒ (3).

Proof. “(1)⇒ (2)”: Due to the electrostatic equations (10) and (11), F± fulfills

∆F± ∓
ĈdΨ(gradF±)

N
= 0, (28)

which we will use to apply a maximum principle to F±. On the other hand, the
asymptotic behavior of N and Ψ gives F± → 0 as r →∞. If F± was positive at some
point inMn, then F± had a positive maximum onMn∪∂Mn, hence (by the maximum
principle) on ∂Mn, which means that at least on one boundary component Σn−1

i , the
normal derivative ν(F±) could not be positive. Hence, F± is negative on Mn provided
that ν(F±) is positive on ∂Mn; it thus remains to be shown that ν(F±) �∂Mn> 0:
We fix 1 ≤ i ≤ l. If Σn−1

i is a quasilocal photon sphere component, then ν(F±) is
positive on Σn−1

i if and only if

ν(N)2 − Ĉ2ν(Ψ)2 > 0

(14),(15)⇐===⇒ H2
i

(n− 1)2
− n− 2

n− 1

(
Rσi −

n

n− 1
H2
i

)
> 0

⇔H2
i

Rσi

>
n− 2

n− 1
,

and the last inequality is the subextremality condition.
For static horizon components, ν(F±) �Σn−1

i
> 0 was shown in [34] as a consequence

of Equation (10) and the nondegeneracy condition ν(N) > 0, by analyzing the near-
horizon asymptotics.

We have shown that F± is negative on Mn provided that every quasilocal photon
sphere component is subextremal and every static horizon component is nondegenerate.

“(2)⇒ (3)”:
For the Reissner–Nordström lapse and potential, we note the asymptotic behavior

Nm,q − 1± ĈΨq = (−m± q)r−n+2 +O(r−n+1)

for r →∞.
By the asymptotic conditions for N and Ψ, we deduce that also

F± = (−m± q)r−n+2 +O(r−n+1)

for r →∞.
By the assumption, F± is negative in the asymptotic region, and hence m > ±q.
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Note that the implication “(2) ⇒ (3)” was already shown in [11] for the case that
the boundary is a photon sphere and n = 3; our proof here is very similar.

4.5 Main part of the proof of the main results

In the remainder of the present Chapter 4, we will prove Theorem 3. Since we have
shown in Section 4.2 that a photon sphere in an electrostatic system is a quasilocal
photon sphere, this will imply Theorem 1.

The proof follows the steps of constructing suitable pseudo-electrostatic fill-ins and
attaching them to the boundary, doubling this new manifold along its new boundary,
conformally compactifying it and applying the positive mass theorem, and determining
the conformal factor to show that the original manifold was a piece of a Reissner–
Nordström manifold.

4.5.1 Gluing in pseudo-Reissner–Nordström necks

In this section, we glue suitable pieces of pseudo-electrostatic spacetimes to quasilocal
photon sphere components of the inner boundary of the (pseudo-)electrostatic system
(Mn, g, N,Ψ), thereby getting a horizon as a new inner boundary.
We fix a quasilocal photon sphere Σn−1

i and define its scalar curvature radius

ri :=

√
(n− 1)(n− 2)

Rσi

,

keeping in mind that the scalar curvature Rσi is strictly positive.
Now we define a “charge”

qi :=

√
2

(n− 1)(n− 2)

ν(Ψ)i
Ni

rn−1
i (29)

as well as a “mass”

mi :=
rn−2
i

n
+

(n− 1)q2
i

nrn−2
i

. (30)

We need to show for later use that m2
i > q2

i . To this end, we calculate (plugging in
Definition 30 for mi)

r
2(n−2)
i n2

(
m2
i − q2

i

)
= r

4(n−2)
i − (n2 − 2n+ 2)q2

i r
2(n−2)
i + (n− 1)2q4

i ,
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and this quantity is positive provided that

r
2(n−2)
i > (n− 1)2q2

i .

Plugging in Definition 29 for qi and then using Equation (14) to substitute for ν(Ψ)2

N2
i
,

this is seen to be equivalent to

H2
i

Rσi

>
n− 2

n− 1
,

which is exactly the subextremality condition. This shows that m2
i > q2

i .
We may now define

Ii := [ai, bi] :=

[(
mi +

√
m2
i − q2

i

) 1
n−2

, ri =

(
min

2
+

1

2

√
m2
in

2 − 4(n− 1)q2
i

) 1
n−2

]

and set
γi :=

1

Nmi,qi(r)
2
dr2 +

r2

r2
i

σi,

and recall Nmi,qi(r) =

√
1− 2mi

rn−2 +
q2i

r2(n−2) and Ψqi(r) = qi
Ĉrn−2

.
Because of its importance for the subsequent arguments, we state the following fact

as a lemma:

Lemma 25. Let αi, βi > 0 be constants. The system (Ii×Σn−1
i , γi, αiNmi,qi , αiΨqi +βi)

is a traced-electrostatic system. Furthermore, R × {bi} × Σn−1
i is a photon sphere in(

R× Ii × Σn−1
i ,−(αiNmi,qi)

2dt2 + γi
)
and {ai} × Σn−1

i is a nondegenerate static hori-
zon.

Proof. For the system system (Ii×Σn−1
i , γi, Nmi,qi ,Ψqi), Equations (10), (11), and (13)

can be verified by a straightforward computation involving the Christoffel symbols
of the metric γi and a comparison with those of the Reissner–Nordström manifold of
massmi and charge qi. Since Equations (10), (11) , and (13) are invariant under scaling
(N,Ψ) 7→ (αN, αΨ + β) of a lapse N and a potential Ψ by positive constants α, β, the
system (Ii × Σn−1

i , γi, αiNmi,qi , αiΨqi + βi) is also a traced-electrostatic system.
One verifies by direct computations that {bi} ×Σn−1

i is a photon sphere and {ai} ×
Σn−1
i a nondegenerate static horizon.

We now choose

αi :=
Ni

Nmi,qi(ri)
> 0,

βi := Ψi − αi
qi

Ĉrn−2
i

.
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Now we combine (Mn, g, N,Ψ) with (Ii × Σn−1
i , γi, αiNmi,qi , αiΨqi + βi) to a new

system (M̃n, g̃, Ñ , Ψ̃) by gluing along the boundary components Σn−1
i and setting

g̃ :=

g on Mn,

γi on Σn−1
i ,

Ñ :=

N on Mn,

αiNmi,qi on Σn−1
i ,

Ψ̃ :=

Ψ on Mn,

αiΨqi + βi on Σn−1
i .

We proceed to show that g̃, Ñ , and Ψ̃ are well-defined and C1,1 across all gluing
surfaces Σn−1

i .
We intend to use Ñ as a smooth collar function across the gluing surface Σn−1

i ; to
this end, we first collect some facts about Ñ and Ψ̃.
By the choice of the scaling constants αi and βi, both Ñ and Ψ̃ are well-defined and

continuous across Σn−1
i .

On the side of the glued-in necks Ii × Σn−1
i , the unit normal to Σn−1

i is given as
ν̃ = Nmi,qi(ri)∂r.
We use the explicit form of Ψ̃ on the necks and the definition of qi to calculate that

ν̃(Ψ̃) = αiNmi,qi(ri)∂r(Ψqi) = −αiNmi,qi(ri)
qi

Ĉ
(n− 2)r−n+1

i = ν(Ψ)i

on Ii×Σn−1
i ; therefore, the normal derivative of Ψ̃ is the same on both sides. Note that

Rσi agrees with the scalar curvature of the photon sphere in the Reissner–Nordström
manifold of mass mi and charge qi. This can be seen by solving the definition of mi

for rn−2
i = 1

2
min+ 1

2

√
m2
in

2 − 4(n− 1)q2
i , where one also needs to use subextremality

r
2(n−2)
i > (n − 1)2q2

i to rule out the possibility rn−2
i = 1

2
min − 1

2

√
m2
in

2 − 4(n− 1)q2
i .

Plugging this into the definition of ri and solving for Rσi then gives the term for Rσi

which is exactly the scalar curvature of the induced metric of the Reissner–Nordström
photon sphere of mass mi and qi.

Since Rσi agrees with the respective Reissner–Nordström term, one sees from by
definition of qi that ν(Ψ̃) (which we already showed to agree from both sides) also
agrees with the respective value for Reissner–Nordström.

Now, by Equation (14), the square of the mean curvature of Σn−1
i on the original

side is the same as the square of the mean curvature of the Reissner–Nordström photon
sphere with mass mi and qi. But since the sign of the mean curvature on the original
side is positive by Proposition 18), the mean curvature agrees with the mean curvature
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of the photon sphere in the Reissner–Nordström manifold of mass mi and charge qi
(both with respect to the outward pointing unit normal), which is positive.

On the newly glued-in side, it can be verified by a direct comparison with the
Reissner–Nordström manifold of mass mi and charge qi that the mean curvature of
Σn−1
i agrees with the one from Reissner–Nordström. Therefore, the mean curvature of

Σn−1
i agrees from both sides.
We proceed to show that the normal derivative of Ñ agrees from both sides.
On the original side Mn, it can be expressed via Equation (15) as

ν(N)i = (n− 1)HiNi.

On the side of the glued-in necks, we compare ν̃(Ñ)i with the normal derivative
of the lapse in the Reissner–Nordström manifold of mass mi and charge qi at the
photon sphere. Denoting the outward pointing unit normal to the photon sphere in
this Reissner–Nordström manifold by νmi,qi , we explicitly calculate for the neck that

ν̃(Ñ) = αiνmi,qi (Nmi,qi) .

Since for the photon sphere of the Reissner–Nordström manifold Equation (14) holds
and we already know that Hi agrees with the the mean curvature Hmi,qi of the photon
sphere in the Reissner–Nordström manifold of mass mi and charge qi, we get on the
glued-in side that

ν̃(Ñ) = αiνmi,qi (Nmi,qi) = αi(n− 1)Hmi,qiNmi,qi = (n− 1)HiÑi

agrees with ν̃(Ñ) on the original side.
Now, as Ñ is well-defined, constant on Σn−1

i , and its normal derivatives do not vanish
and agree from both sides, we can use Ñ as a smooth collar function in a neighborhood
of Σn−1

i . This finally shows that M̃n is a smooth manifold.
Since we also showed along the way that Ψ̃ is well-defined and its normal derivatives

agree from both sides (and since it is smooth away from the gluing surfaces), Ψ̃ is
indeed C1,1 across Σn−1

i .
Only the regularity of the metric g̃ remains to be proven. To this effect, let {yA} be

local coordinates on Σn−1
i and flow them to a neighborhood of Σn−1

i in M̃n along the
level set flow of Ñ . We will show that the components g̃ÑÑ , g̃ÑA, and g̃AB are C1,1

across Σn−1
i with respect to the coordinates

(
Ñ , yA

)
for all A,B = 1, . . . , n− 1. This

is done exactly as in [11], so we will be brief:
Continuity and smoothness in tangential directions of g̃ in the chosen coordinates

are immediate by construction of g̃. The components g̃ÑA vanish in a neighborhood of
Σn−1
i (for each A = 1, . . . , n− 1).
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Hence, we only need to consider the normal derivatives of g̃ÑÑ and g̃AB for A,B =

1, . . . , n− 1.
Now

g̃AB,Ñ =
2

ν̃(Ñ)
h̃AB

holds on Σn−1
i , where h̃AB denotes the second fundamental form of Σn−1

i in (M̃n, g̃).
By umbilicity and the fact that the mean curvature agrees from both sides, ∂Ñ (g̃AB)

is the same from both sides.
Also,

g̃ÑÑ,Ñ = −2ν̃(Ñ)2∇2Ñ(ν̃, ν̃),

and by Equation (22), constancy of Ñ and Ψ̃ on Σn−1
i , and Equation (10), one gets

∇2Ñ(ν̃, ν̃) =
Ĉ2

Ñ
ν̃(Ψ̃)2 −Hiν̃(Ñ),

so that g̃ÑÑ,Ñ agrees from both sides.

Summing up, the system
(
M̃n, g̃, Ñ , Ψ̃

)
we constructed is C1,1 on a finite set of

hypersurfaces and smooth elsewhere and is at least pseudo-electrostatic. Furthermore,
its boundary consists of nondegenerate static horizons.

4.5.2 Doubling

Like the authors of [8, 11] and following the original models for this procedure in [6, 55],
in this section we double the Riemannian manifold M̃n that we constructed in the
previous section and glue the two copies along their shared boundary. The metric, the
lapse, and the potential will be extended to all of M̂n.

As the arguments mirror those of [8] and others, we will just briefly sketch them and
show that they carry over to our situation with only slight modifications.

First, we rename
(
M̃n, g̃, Ñ , Ψ̃

)
to
(
M̃n

+, g̃+, Ñ+, Ψ̃+

)
, reflect M̃n as well as g̃, Ñ and

Ψ̃ through the boundary ∂M̃n to obtain a new system that we call
(
M̃n
−, g̃−, Ñ−, Ψ̃−

)
.

Then we glue M̃n
+ and M̃n

− along their shared boundary and name the resulting manifold
M̂n. We also set
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ĝ :=

g̃+ on M̃n
+,

g̃− on M̃n
−,

N̂ :=

Ñ+ on M̃n
+,

−Ñ− on M̃n
−,

Ψ̂ :=

Ψ̃+ on M̃n
+,

Ψ̃− on M̃n
−.

We will denote the connected components of the gluing surface ∂M̃n ⊆ M̂n by Σ̂n−1
i ,

that is,

∂M̃n =
l⋃

i=1

Σ̂n−1
i .

Each boundary component Σ̂n−1
i (1 ≤ i ≤ L) is a nondegenerate static horizon, either

by the construction in the previous subsection (for 1 ≤ i ≤ l), or by the assumptions
of Theorem 3 (for l + 1 ≤ i ≤ L). We fix an 1 ≤ i ≤ L to show C1,1-regularity of(
M̂n, ĝ, N̂ , Ψ̂

)
across ∂M̃n.

By its construction as an odd function, N̂ is smooth across ∂M̃n. This allows us to
use N̂ as a smooth collar function across ∂M̃n, showing that M̂n is a smooth manifold.
The fact that dΨ �Σ̂n−1

i
= 0 from Lemma 20 gives at once that Ψ̂ is C1,1 across ∂M̃n.

We imitate closely the argumentation of [8] to show that the metric is of regularity
C1,1 across the gluing surfaces. To this end, we switch to adapted coordinates (N̂ , yA)

in a neighborhood of Σ̂n−1
i . It is immediate that

∂N̂
(
gAN̂

)
= 0

for all A,B = 2, . . . , n.
Denoting by ν̂+ the unit normal to ∂M̃n pointing into M̃n

+, the level set flow equations
give

∂N̂
(
gN̂N̂

)
= −2

(
ν̂+(N̂)

)2

∇̂2N̂(ν̂+, ν̂+)

on ∂M̃n.
By Formula (22), this reduces to

∂N̂
(
gN̂N̂

)
=) = −2

(
ν̂+(N̂)

)2

∆N̂ ,

where we also made use of the facts that N̂ �Σ̂n−1
i

= 0 and that Σ̂n−1
i has vanishing

mean curvature.
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Jointly with Equation (10) and Lemma 20, this gives

∂N̂
(
gN̂N̂

)
= 0

on Σ̂n−1
i . Since the same holds on the other side of Σn−1

i , this shows that gN̂N̂ is C1,1

across Σn−1
i .

To see that gAB is C1,1, one calculates that

∂N̂ (gAB) =
2

ν+(N̂)
hAB

for all A,B = 2, . . . , n, where h is the second fundamental form of Σ̂n−1
i , which vanishes

since Σ̂n−1
i is a static horizon from both sides; so that

∂N̂ (gAB) = 0

for all A,B = 2.
Summing up the results of the last two sections, we have constructed a system(
M̂n, ĝ, N̂ , Ψ̂

)
with an “upper half” M̃n

+ and a “lower half” M̃n
−, which is smooth except

possibly on a finite collection of hypersurfaces where it is C1,1, and such that (Mn, g)

embeds isometrically into the upper half of
(
M̂n, ĝ

)
, and N̂ �Mn= N, Ψ̂ �Mn= Ψ.

Furthermore, ĝ, ±N̂ , and Ψ̂ fulfill Equations (10)–(11) and the inequality (7) on M̃n
±

(except possibly on the gluing surfaces, where second derivatives might not exist), and(
M̃n
±, ĝ,±N̂ , Ψ̂

)
are asymptotically Reissner–Nordström of mass m and charge q.

4.5.3 Conformal transformation and applying the positive mass theorem

In this step, the Riemannian manifold
(
M̂n, ĝ

)
that was constructed in the previous

step will turn out to be conformally equivalent to (Rn, δ) by a conformal factor that is
constructed from the functions N̂ and Ψ̂.

We define

Ω :=

(
(1 + N̂)2 − Ĉ2Ψ̂2

4

)1/(n−2)

.

Note that Ω is smooth everywhere on M̂n, except possibly on a finite collection of
hypersurfaces, where it is C1,1.
We need to show that Ω is positive everywhere.
Defining

F± := N̂ − 1± ĈΨ̂

on M̂n, we know from Lemma 24 that F± < 0 on the original manifold Mn. Hence,
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0 < F+F− = (1−N)2 − Ĉ2Ψ2 < (1 +N)2 − Ĉ2Ψ2 = 4Ωn−2 on Mn.

On the mirrored image of Mn in the lower half M̃n
−, we can now conclude that

0 < (1 + N̂)2 − Ĉ2Ψ̂2 = 4Ωn−2,

using that in this region N̂ = −N and that we just showed that (1−N)2−Ĉ2Ψ2 > 0.
On the glued-in necks, we can apply a similar trick; since we already know that

F± < 0 on Σn−1
i , it suffices to check (using the explicit form of F± on the necks) that

F± < 0 on Σ̂n−1
i and again apply a maximum principle to F± (recalling the PDE for

F± given in Equation (28)). Summing up, Ω > 0 on all of M̂n.
We immediately see that the assumptions of Propositions 21 and 22 are met and

may thus conclude that by Proposition 21, the upper half M̃n with the metric Ω2ĝ is
asymptotically Reissner–Nordström with mass 0 and charge 0.
To the lower half M̃n

− ⊆ M̂n, we apply Proposition 22 to insert a point p∞ into
(M̂n,Ω2ĝ) such that the resulting manifold (M̂n

∞, g∞) has C1,1-regularity at p∞.
The scalar curvature of a traced-electrostatic system after the conformal transfor-

mation we performed was calculated in [34] (using Equations (10), (11), and (13))
as

1

8N̂2Ω2(n−3)

∣∣∣2N̂Ψ̂∇N̂ −
(
N̂2 − 1 + Ĉ2Ψ̂2

)
∇Ψ̂

∣∣∣2 ≥ 0. (31)

It is easy to check (using the standard formula for the conformally transformed scalar
curvature and the just mentioned calculation in [34]) that for the pseudo-electrostatic
system (M̂n,Ω2ĝ) the transformed scalar curvature is bounded from below by the left-
hand side expression in (31) and therefore also nonnegative.

To sum up, we have constructed a geodesically complete manifold (M̂n
∞, g∞) with

nonnegative scalar curvature and vanishing mass. The positive mass theorem for
smooth manifolds of arbitrary dimensions was proven in [58]. A Ricci flow argument
(which is independent of the dimension) in [39] shows that if the rigidity case of the
positive mass theorem holds in a certain class of smooth manifolds, then it also holds
for lower regularity “manifolds with corners” in that same class (and the isomorphism
to the Euclidean space is smooth wherever the metric is smooth). In particular, the
authors of [39] cover the case that the metric is only C1,1-regular on a finite collection
of hypersurfaces. Summing up, we have the rigidity statement of the positive mass
theorem in arbitrary dimensions for smooth manifolds with C1,1-regular hypersurfaces
at our disposition. We thereby get that (M̂n

∞, g∞) is isometric to the Euclidean space
(Rn, δ), and the isometry is smooth except possibly on the lower regularity subman-
ifolds (see also [8] for the application of the positive mass theorem to an analogous
situation).
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4.5.4 Recovering the Reissner–Nordström manifold

In a last step, we show that the original Riemannian manifold (Mn, g) must have been a
piece of the n-dimensional spatial Reissner–Nordström manifold. We will not explicitly
denote the isometry (M̂n

∞, g∞) ≈ (Rn, δ) in what follows.
Just like the author of [8], we first recall that each boundary component Σn−1

i is a
closed, totally umbilical hypersurface of (Mn, g); and hence (umbilicity being invariant
under the conformal transformation g 7→ Ω2g = δ ) a closed, totally umbilical hypersur-
face of the Euclidean space. As a consequence, each Σn−1

i is a round sphere in (Rn, δ),
and thus—the conformal factor being constant on each boundary component—each(

Σn−1
i , g �Σn−1

i

)
is an intrinsically round sphere.

Second (and again as in [8]), since M̂n
∞ is homeomorphic to Rn, the doubled manifold

M̂n (without the inserted point) must be homeomorphic to Rn \{0}. In particular, the
(n− 1)-th fundamental group of M̂n is

πn−1

(
M̂n
)

= πn−1 (Rn \ {0}) = Z.

Recalling that each boundary component Σn−1
i of Mn is a topological sphere, we may

now conclude that ∂Mn has only one component. This allows us to drop from now on
the index i.
In the last step, we will determine the conformal factor Ω2, applying a maximum

principle. Since we know that the conformally transformed manifold (M̂n
∞, g∞) is flat

and in particular has vanishing scalar curvature, Inequality (31) (for the conformally
transformed scalar curvature) reduces to the equality

2N̂Ψ̂∇N̂ =
(
N̂2 − 1 + Ĉ2Ψ̂2

)
∇Ψ̂. (32)

It was computed in [34] as a consequence of Equations (32), (10), and (11) that the
functions

v± := (1 + Ñ ± ĈΨ̃)−1 : M̃n
+ → R (33)

are harmonic with respect to the conformally changed metric Ω2g = δ on M̃n
+ ⊆ Rn.

The asymptotic conditions from Definition 11 imply that v±(y)→ 1
2
as |y| → ∞.

By the same arguments as above for Σn−1, the horizon Σ̂n−1 is a round sphere
ST (a) ⊆ Rn with radius T and center a ∈ Rn, and v± �Σ̂n−1= v± �ST (a) are constants.
We can exclude v± �ST (a)∈ {0,±∞} because v+v− = 1

4
Ω−(n−2) on all of M̃n and Ω−(n−2)

vanishes nowhere. Thus, by a maximum principle for elliptic PDEs, the functions v± are
uniquely determined as the guessed solutions that are known from Reissner–Nordström,

47



namely

v±(y) =

(
1 +

(
1−

T 2(n−2) + c2
±

T n−2|y − a|n−2
+

c2
±

|y − a|2(n−2)

) 1
2

± c±
|y − a|n−2

)−1

, (34)

where c± are constants that are determined by the constants v± �ST (a) via v± �ST (a)=(
1± c±

Tn−2

)−1.
Now, adding the two equations

1± c±
T n−2

=
1

v± �ST (a)

= 1± ĈΨ �ST (a),

leads to c+ = c− =: c.
To determine the constant c, we compare the asymptotic behavior of v± that we get

from Equations (33) and (34) and conclude that

m± q =
T n−2

2
+

c2

2T n−2
± c.

This is equivalent to

2m = T n−2 +
c2

T n−2
,

q = c,

so that
v± =

(
1−Nm,q ± ĈΨq

)−1

.

We have now determined v± and hence also N , Ψ, and the conformal factor Ω2 as the
respective functions known from the Reissner–Nordström manifold with mass m and
charge q, and hence we know that (Mn, g) is exactly the Reissner–Nordström manifold
of mass m and charge q. The inequality m > |q| was already proven in Lemma 24, so
that now the proof of Theorem 3 and thereby also of Theorem 1 is complete.

4.6 Discussion of the uniqueness result in a historical context

Our results in the present Chapter 4 stand in a tradition of uniqueness results for black
holes and/or photon spheres in static, asymptotically flat spacetimes. In 1967, Israel
gave a first proof that the Schwarzschild solution is unique among all 3+1 static vacuum
systems with suitable asymptotic behavior (and under certain topological and regular-
ity assumptions) [31]. His method relies on a geometric investigation of level surfaces
of the lapse in a time symmetric spatial slice and on integrating certain inequalities
(derived from the Einstein vacuum equations), taking into account the asymptotic and
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the near-horizon behavior of the quantities that are involved. A main drawback in
Israel’s proof is the assumption that the lapse regularly foliate the spacetime; that is,
that dN 6= 0 everywhere. As one might want to a priori admit multiple connected
horizon components, this condition seems rather restrictive, as it would already by
itself heuristically preclude the existence of multiple heavy objects in the spacetime.
Müller zum Hagen was able to remove it in [42]; other significant simplifications were
made by Robinson in [54]. Israel extended his method in [32] to the electrovacuum
case in dimension 3 + 1, proving uniqueness of the Reissner–Nordström manifolds.
These early methods do not seem naturally prone to generalizations to a higher-

dimensional setting since they make crucial use of the Gauss–Bonnet theorem. Also,
they assume a priori spherical topology of the level sets of the lapse (and hence also
of the static horizons), which would be a rather restrictive condition in the higher-
dimensional setting, considering the possibility of non-spherical horizon topologies for
n ≥ 4 [21], even though the only known nonspherical black holes so far are not static.
A new approach to static black hole uniqueness was introduced in [6] by Bunting

and Masood-ul-Alam. Their proof relies on conformal flatness of the spatial slice:
after doubling the static vacuum system along its boundary (the horizon) and thereby
getting a new system with two asymptotic ends, one finds a conformal factor (built out
of the static lapse) which changes the ADM mass in one end to 0, and allows to insert
a point into the other end to obtain a geodesically complete manifold, which is also
scalar flat. The rigidity case of the positive mass theorem yields that the conformally
transformed manifold is flat, and computations involving the vanishing Bach tensor are
used to establish spherical symmetry, so that the original manifold can be recovered as
being Schwarzschild.

The approach to black hole uniqueness via the positive mass theorem was later
used to prove black hole uniquenes in the electrostatic setting [55, 37]. In the higher-
dimensional setting, the computation of the Bach tensor has to be replaced by different
methods, since the Bach tensor is no longer a conformal invariant in higher dimensions.
But this last step can be replaced by applying a maximum principle to the conformal
factor, which fulfills a partial differential equations that is derived from the dimension-
ally reduced static (electro-)vacuum Einstein equations [26]; the higher-dimensional
electrovacuum case was treated in [34].

As a side note, we remark that a new strategy for proving the classical 3 + 1 vacuum
black hole uniqueness (under the assumption that the boundary is connected) was
developed in [1], where the authors use monotonicity of certain quantities along the
level set flow of the static potential.

For more details about black hole uniqueness theorems and their history, the reader
may consult e.g. [30], [16], or [38].
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It is much later that photon sphere uniqueness theorems enter the stage. In 2015,
Cederbaum proved photon sphere uniqueness in the vacuum 3 + 1 case [10], adapting
Israel’s black hole uniqueness proof. Yazadjiev and Lazov’s proof of photon sphere
uniqueness in 3 + 1 electrovacuum [68] also follows Israel’s ideas. Like in Israel’s
original proof, these two results assume a priori connectedness of the inner boundary
(the photon sphere), as well as a lapse which regularly foliates the manifold. By
changing the proof stategy to one adapting the Bunting–Masood-ul-Alam methods, it
is possible to do away with these assumptions. The first photon sphere uniqueness
proof in a Bunting–Masood-ul-Alam spirit is for the 3 + 1 vacuum case [12]; later, the
3 + 1 electrovacuum case [11] and the higher-dimensional vacuum case [8] followed, all
of them also covering the case that some boundary components are static horizons. In
one specific case, even perturbative uniqueness was established [69], see also [60, 61].

It was a new discovery of [8] that not the full vacuum equations are needed for a
uniqueness proof via positive mass rigidity. In our Theorem 3, we likewise do not use
the full electrostatic equations, but replace the equation

N Ric = ∇2N − 2
dΨ⊗ dΨ

N
+

2

(n− 1)N
|dΨ|2g

with the inequality
N2R ≥ 2|dΨ|2,

which turns out to be sufficient to ensure that the conformally transformed mani-
fold (M̂n

∞, g∞) is of non-negative scalar curvature. To apply the Result 3 to photon
spheres, however, one still needs to assume the full electrostatic equations near the pho-
ton sphere, since they are needed to prove that photon spheres are quasilocal photon
spheres.

Just like its predecessor results in [8, 11, 12] which it generalizes, our Theorem 1
does not a priori assume connectedness of the boundary, thereby rigorously proving
the physically reasonable intuition that two or more bodies that are dense enough to
form a photon sphere cannot be in static equilibrium in the absence of other forces
that could pull them apart. It is also important to notice that we do not assume that
the inner boundary has spherical topology, but rather it turns out to be spherical as a
result of the theorem. This implies that there are no electrovacuum, static objects with
the specified decay conditions which possess a non-spherical horizon or a non-spherical
photon sphere; so that our result can also be considered as a photon sphere or horizon
topology statement.

In contrast to the result in [34], we do not assume a priori that the mass m and
the charge q from the asymptotic assumptions on the lapse and the electric potential
fulfill m > |q|. Instead, the inequality m2 > q2 follows from the subextremality of
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the photon sphere components and the non-degeneracy of the horizon components
which together constitute the inner boundary (Lemma 24), and positivity of the mass
follows from constancy of the lapse on the boundary components (Lemma 23). (Note,
however, that it is known at least since [15], where the 3 + 1 case was treated, that the
mass-charge inequality can be dropped from the assumptions of static electrovacuum
uniqueness results.)

Interest in higher dimensional gravity was first sparked by string theory, which lead
to the discovery of the Myers–Perry solution ([44], see also [43]). More recently, TeV-
scale black holes, which can be approximated by asymptotically flat, higher dimensional
black holes [26], have renewed interest in higher dimensional gravity, specifically for the
electrically charged case: since the electric force is several orders of magnitude larger
than the gravitational force, one does not expect black holes with a significant electric
charge as the result of stellar collapse [4]. As to the case of black holes created by high
energy collisions, since the minimum energy required to create a black hole is currently
estimated to be far beyond the range of even the Large Hadron Collider, we cannot
(thinking in a classical framework) expect to observe such black holes [4]. However,
in higher dimensions the effect of gravity decreases not as rapidly in distance as in a
3 + 1-dimensional setting, so that some models (for example large extra dimensions)
may allow for the creation of electrically charged black holes via collision [19, 3].

Gravity is much richer in higher dimensions than in the classical case of 3 spatial
dimensions and 1 temporal dimension. This is famously highlighted by the discovery
of a black hole with ringlike (S2 × S1) horizon topology [21]. This black ring is, how-
ever, rotating; and so far no static example with a similar behavior is known. Since
one reason for unexpected properties of exact solutions in higher dimensions is the
possibility of multible independent planes of rotation (see [22]), it might be that static
solutions are still relatively well-behaved in higher dimensions. Our Result 1 points in
this direction, since it precludes the existence of objects with nonspherical horizon or
photon sphere topology in a certain electrovacuum, asymptotically flat setting.
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5 Geometry and topology of the Kerr photon region

in the phase space

As mentioned in the Introduction (Chapter 3), in the exterior of the subcritical Kerr
spacetime there are photons which stay at fixed coordinate radius; and they form a
2-parameter family [64]. We give a thorough, explicit proof that these are the only
trapped photons in this spacetime family (Proposition 27). This fact is often tacitly
assumed to be well-known and indeed follows from Dyatlov’s rigorous analysis [20];
whereas our proof explicitly demonstrates that the conventional computations (see
e.g. [64]) and heuristic arguments indeed do not overlook any trapped photons.

Unlike in the Schwarzschild situation, the spacetime region in a subcritical Kerr
spacetime where trapped photons are found (the region accessible to trapping or the
photon region) is not a submanifold (with or without boundary) of the spacetime.
Therefore, the spacetime itself seems not the right setting to investigate geometric
properties of photon regions; instead, the (co-)tangent bundle, where the Kerr photon
region will be seen to be a submanifold, is a much better setting for further inves-
tigation of its geometry. Of these two bundles, the cotangent bundle seems a more
appropriate structure to understand photon regions, since the natural symplectic form
it carries allows to understand constants of motion as symmetries of the phase space
(see e.g. [62]); and the analysis of the constants of motion plays an important role in
understanding trapped light.

For the Schwarzschild spacetime of positive mass, a direct computation shows that
the set of trapped photons in the cotangent bundle is a submanifold of topology SO(3)×
R2. The fact that the photon region in the Kerr phase space is a manifold of topology
SO(3)×R2 as well was shown earlier as a consequence of more general results by Dyatlov
in [20], where the implicit function theorem was used on a family of slowly rotating
Kerr spacetimes considering them as perturbations of the Schwarzschild spacetime. Our
proof uses a different, more direct approach, which does not rely on knowledge about
the Schwarzschild case and might help gain better insights into why the set of trapped
photons in the Kerr phase space exhibits the properties in question. Knowing this
alternative way to determine the topology might also be useful in possibly proving a
uniqueness theorem for asymptotically flat, stationary, rotating, vacuum spacetimes
with a photon region, in the spirit of e.g. Chapter 4 of the present thesis or its
predecessor results in e.g. [10, 12].

The present chapter is organized as follows: In Section 5.1, we recall some well-
known facts about the Kerr family and introduce some notation. In Section 5.2, we
give a precise definition of trapping of light for stationary spacetimes and show that
only photons of constant Boyer–Lindquist radius can be trapped in a subcritical Kerr
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spacetime. As a consequence of this, there are no null geodesically complete time-
like umbilical hypersurfaces in the domain of outer communication in subcritical Kerr
(Corollary 28).

The subsequent Section 5.3 explains how the set of trapped light can be understood
as a subset of the (co-)tangent bundle; we prove that the photon region in the Kerr
(co-)tangent bundle is a submanifold (Theorem 34). To this end, we make use of the
characterization of trapped photons in terms of constants of motion and apply the
implicit function theorem twice. Theorem 35 shows that the photon region in the
phase space of a subcritical Kerr spacetime has topology SO(3)×R2. This is done by
calculating its fundamental group via the Seifert–van Kampen theorem and using the
classification of 3-manifolds.

5.1 Basic facts and notation

We describe the Kerr spacetime of mass m and angular momentum a in Boyer–
Lindquist coordinates (t, r, ϑ, ϕ) with t ∈ R, radius r > 0 suitably large, latitude
0 ≤ ϑ ≤ π, and longitude 0 ≤ ϕ ≤ 2π. We use the following abbreviations:

S := sinϑ

C := cosϑ

ρ2 := r2 + a2 cos2 ϑ

∆ := r2 − 2mr + a2

A :=
(
r2 + a2

)2 −∆a2 sin2 ϑ.

The metric of the Kerr spacetime in Boyer–Lindquist coordinates is given by

−
(

1− 2mr

ρ2

)
dt2 +

ρ2

∆
dr2 + ρ2dϑ2 − 4mraS2

ρ2
dtdϕ+

A

ρ2
S2dϕ2.

The domain of outer communication (DOC) is the spacetime patch where r > m +√
m2 − a2. The Boyer–Lindquist coordinates cover the entire DOC, except the axis
{S = 0}. The breakdown of the metric in this form is a mere coordinate artefact; it
can be extended smoothly over the axis, and so can the Killing vector fields ∂t and ∂ϕ
(see [46]). We treat the subcritical case |a| < m and assume that a ≥ 0. Recall that
in the subcritical case, the horizon {∆ = 0} has two connected components, and its
outer component {r = m+

√
m2 − a2} is the boundary of the DOC.

The Kerr spacetime will be denoted by (K, g). It is well-known that the motion of
regular (that is, not entirely contained in the axis) photons in the DOC of Kerr is
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governed by the following equations of motion (see e.g. [46]):

∆ρ2ṫ = A E − 2mraL, (35)

ρ4ṙ2 = E2r4 + (a2E2 − L2 −Q)r2 + 2m((aE − L)2 + Q)r − a2Q =: R(r), (36)

ρ4ϑ̇2 = Q−
(
L2

S2
− E2a2

)
C2 =: Θ(ϑ), (37)

∆ρ2ϕ̇ = 2mraE −
(
ρ2 − 2mr

) L
S2
. (38)

The dot denotes the derivative with respect to the affine parameter.
The quantity E = −〈γ̇, ∂t〉 is the energy of a geodesic γ, L = 〈γ̇, ∂ϕ〉 its angu-

lar momentum, and Q its Carter constant, given as T (γ̇, γ̇), where T is the Killing
tensor given by T µν = 1

r2
gµν + 2ρ2l(µnν) (where lµ = 1

∆
(r2 + a2, 1, 0, a) and nν =

1
2ρ2

(r2 + a2,−∆, 0, a) are the principal null directions).
For dealing with general geodesics, it is useful to further introduce the quantity

q := g(γ̇, γ̇), which equals zero for null geodesics (photons).
These so-called constants of motion q, E, L,Q are constant along each geodesic, since

they are derived from Killing vectors and Killing tensors, respectively. Note that they
extend over the axis, since the generating tensors do so (see [46]).

Wherever ∂t is timelike, all photons have positive energy E > 0. In case E 6= 0, we
can rewrite the so-called R-equation (36) and Θ-equation (37) as the scaled R-equation
and the scaled Θ-equation, respectively:(

ρ2

E

)2

ṙ2 = r4 + (a2 − Φ2 −Q)r2 + 2m((a− Φ)2 +Q)r − a2Q
(
= R

E2

)
, (39)(

ρ2

E

)2

Ċ2 = Q− (Q+ Φ2 − a2)C2 − a2C4
(
= Θ

E2

)
, (40)

with the conserved quotients Φ := L
E
, and Q := Q

E2 (see [64]).
It was shown in [64] that in the DOC of a subcritical Kerr spacetime with a 6= 0

all photons with constant r-coordinate (spherical photon orbits) belong to the one-
parameter class of solutions of R(r) = ∂R(r)

∂r
= 0 given by

Φtrap(r) := −r
3 − 3mr2 + a2r + a2m

a(r −m)
, (41)

Qtrap(r) := −r
3(r3 − 6mr2 + 9m2r − 4a2m)

a2(r −m)2
(42)

(see (36) and (39)), where r ranges from

r̂1 := 2m(1 + cos(2/3 arccos(−a/m)))
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to
r̂2 := 2m(1 + cos(2/3 arccos(a/m))).

The corotating (counterrotating) orbits (i.e., those with positive (negative) angular
momentum L) are located inside (outside) the hypersurface {r = rmid}, where

rmid := m+ 2

√
m2 − 1

3
a2 cos

(
1

3
arccos

m(m2 − a2)

(m2 − 1
3
a2)

3
2

)
, (43)

while those at the intermediate radius rmid have vanishing angular momentum L.
The function Φtrap : [r̂1, r̂2] → R is strictly monotonically decreasing and has only

one zero, located at rmid, while Qtrap : [r̂1, r̂2] → R≥0 has its zeros at r̂1 and r̂2, is
strictly increasing on [r̂1, 3m], and strictly decreasing on [3m, r̂2]. The quantity Φtrap

determines the maximal latitude for trapped photons. In particular, trapped photons
with radius r can only reach the the axis {S2 = 0} if Φtrap(r) = 0.

For these facts and more information about spherical photon orbits (i.e., those of
constant radius) in the Kerr spacetime, see [64].

5.2 Trapped photons in the Kerr spacetime

It is natural to ask whether there are more photons than those of constant radial
coordinate which are “trapped” around the Kerr center, without ever falling through
the horizon or escaping to spatial infinity. Before answering this question, we first need
a more precise notion of what it means to be trapped.

We suggest the following definition for the rather general case of stationary space-
times:

Definition 26. A photon in the DOC of a stationary spacetime is called trapped if its
orbit in the quotient of the DOC under the action of the stationary Killing vector field
∂t is contained in a compact set.

Thus, in the Kerr spacetime, a photon is trapped if and only if the range of its radial
coordinate is a relatively compact set contained in

(
m+

√
m2 − a2,∞

)
. In an arbitrary

stationary spacetime, it is immediate (from the constancy of the metric components
along the flow lines of the stationary symmetry) that the lapse along trapped photons
is bounded.

Proposition 27. The spherical photons are the only trapped photons in the DOC of a
subcritical (0 < a < m) Kerr spacetime.

Proof. Let γ = (t, r, ϑ, ϕ) be a trapped photon of non-constant radial coordinate in the
DOC of a subcritical Kerr spacetime. We will first treat the case that γ does not
intersect the axis {S2 = 0}.
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We focus on the subcase that the photon has nonvanishing energy E 6= 0

and investigate the right-hand side R(r) of Equation (36). Since its left-hand side is
manifestly non-negative, γ has to lie in a region of the Kerr space-time where R(r) is
non-negative.

Since the range of the trapped photon’s radial coordinate is a relatively compact
set contained in

(
m+

√
m2 − a2,∞

)
, there must be two values m+

√
m2 − a2 < r1 <

r2 < ∞ such that the photon either turns around when reaching ri (that is, the sign
of ṙ changes at some si with r(si) = ri) or asymptotically approaches ri (that is,
lim

s→+∞
r(s) = ri or lim

s→−∞
r(s) = ri).

As a consequence, for trapping with non-constant radial component, we need two
zeros ri (i = 1, 2) of R(r) that lie in the interval

(
m+

√
m2 − a2,∞

)
, with R(r) ≥ 0

between these zeros.
Thus, on the search for trapped photons of non-constant coordinate radius, analyzing

the polynomial R(r) of degree 4 with leading coefficient E2 > 0, one would have to
find constants of motion such that all roots of R are real, and (writing r0 ≤ r1 ≤
r2 ≤ r4 for these roots) such that r1, r2, r3 are outside the outer horizon component
{r = m+

√
m2 − a2}, and r1 and r2 do not coincide, see Figure 1.

r1 r2 r3

M +
√

M2 − a2

r0

r

R(r)

Figure 1: A qualitative plot of R against r for a hypothetical trapped photon of non-
constant coordinate radius.

Since we assumed that E 6= 0, we may work with the scaled R-equation (39). We see
immediately that the coefficient of r2 has to be negative to allow for the constellation
of roots we need (since otherwise d

dr

(
R
E2

)
would be monotonous and R

E2 convex), that
is,

a2 − Φ2 −Q < 0. (44)

On the other hand, since the left-hand side of the scaled Θ-equation is manifestly
non-negative, choosing a non-positive Q ≤ 0 forces a2−Φ2−Q ≥ 0, contradicting (44).
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We have thus ruled out the case Q ≤ 0 for trapped light and may focus on the case
Q > 0.
Since Q > 0 implies R(0)

E2 < 0, a necessary condition for the second root r1 of R(r)
E2 to

be outside the outer horizon component is R(m)
E2 < 0. But on the other hand, we can

estimate (using Q > 0 and a < m):

R(m)

E2
= m2((Φ− 2a)2 +m2 − a2) +m2Q− a2Q ≥ m2(Φ− 2a)2 ≥ 0,

thus ruling out the existence of trapped light with r 6= const. outside the axis with
nonvanishing energy E.
In the subcase of vanishing energy E = 0, the R-equation reduces to

ρ4ṙ2 = −(L2 + Q)r2 + 2m(L2 + Q)r − a2Q.

The roots of the right-hand side of this equation are given by

r1,2 = m±
√
m2 − a2Q

L2 + Q
,

and at least one of them (if real) is smaller than the radius of the outer horizon
component, m+

√
m2 − a2.

Summing up, so far we have shown that there are no trapped photons contained in
K \ {S2 = 0} with nonconstant radial component.
We need to treat the case of photons that are contained in the axis {S2 = 0}

separately. The axis is a 2-dimensional, totally geodesic submanifold with line element

−(1− 2mr/ρ2)dt2 + (ρ2/∆)dr2,

so every photon contained in the axis has to fulfill

−(1− 2mr/ρ2)ṫ2 + (ρ2/∆)ṙ2 = 0.

For trapped photons, ṙ has to vanish at some parameter value (at least asymptotically),
while ṫ 6= 0 cannot approach 0. This gives (1 − 2mr/ρ2) = 0, that is, ∆ = 0, which
means that the photon is not in the DOC.

The case of photons that cross the axis but are not entirely contained in
it can be treated like the off-axis case: the R-equation is also valid on the axis, and the
conditions on the conserved quotients that were derived from the scaled Θ-equation still
would have to be fulfilled, since the conserved quotients can be calculated off-axis.
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The statement of Proposition 27 was also discussed in [47], using different techniques,
and follows from [20].

We can use Proposition 27 to show nonexistence of certain umbilical hypersurfaces
in the DOC. We remind the reader that a semi-Riemannian manifold is called null
geodesically complete if every inextendible null geodesic is defined on all of R.

Corollary 28. There are no null geodesically complete, timelike umbilical hypersurfaces
in the DOC of the subcritical Kerr spacetime (with a 6= 0) whose quotient under the
stationary Killing vector field ∂t is contained in a compact set. In particular, none of
the cylinders {r = const.} are umbilical.

Proof. Assume towards a contradiction that there is such a hypersurface S . Recall that
by Theorem 12 (proven in [53, 17]), a timelike hypersurface in a Lorentzian manifold
is umbilical if and only if every null geodesic that is initially tangent to it remains
tangent throughout. Since by the assumption the quotient of S after factoring out ∂t
is relatively compact in the quotient of the DOC, every photon that stays on S has the
property that the range of its radial coordinate is a relatively compact set contained
in
(
m+

√
m2 − a2,∞

)
. These two facts combine to the conclusion that every photon

that is initially tangent to S is trapped.
By Proposition 27, the only trapped photons are those of constant radial coordinate,

hence for any given radius where trapped photons exist, there is only one choice for their
conserved quotients Φ and Q (namely, the values for Φtrap and Qtrap from Equations
(41) and (42)). We are free to choose a positive value of E for a trapped photon; that
is, there is one degree of freedom for choosing the constants of motion for a trapped
photon at a given point. These constants of motion determine the off-axis trapped
photons completely, possible up to a sign choice for ϑ̇. That is, at every point in the
Kerr DOC, there is (at most) one degree of freedom for choosing an initial direction
for a trapped photon.

On the other hand, at every point of S , the cone of lightrays tangent to S is 2-
dimensional, which means that there are two degrees of freedom for choosing trapped
photons at a given point of S . This gives a contradiction, proving that there is no
such S . 1

5.3 The Kerr photon region as a submanifold of the

(co-)tangent bundle

We call the region in the Kerr spacetime where one can find trapped photons the
region accessible to trapping. In contrast to the Schwarzschild case, in the subcritical

1In Schwarzschild, the statement is no longer true, as is demonstrated by the striking counterexample
of the photon sphere {r = 3m}. The proof of Corollary 28 cannot be immitated in the a = 0 case
since there we do not have Equations (41) and (42) at our disposition.
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Kerr spacetime the region accessible to trapping is not a submanifold (with or without
boundary) of the spacetime; it can be imagined as the region covered by a crescent
moon that rotates about an axis through its pointy ends, see Figure 2.

∂ϕ

Figure 2: A t = const. slice of the photon region in the Kerr spacetime.

We will identify the set of trapped photons in any spacetime with a subset of the
(co-)tangent bundle. In the subcritical Kerr spacetime, it turns out that this subset of
the (co-)tangent bundle is a much nicer geometrical object than the region accessible
to trapping.

One can identify geodesics in any pseudo-Riemannian manifold
(
M,Mg

)
with points

in the tangent bundle TM in the following way: The natural map

{geodesics in M} → TM

given by
γ 7→ (γ(0), γ̇(0))

is a bijection by uniqueness of geodesics (where we distinguish between null geodesics
with different affine parametrizations). The canonical isomorphism TM → T ∗M now
gives a similar identification of geodesics with points in T ∗M.

We only consider future-directed trapped photons; by reversing the direction of time
(using the symmetry t 7→ −t) one can extend all statements to past directed photons.

The task in the present section is to show that the photon region in the tangent bundle
of the subcritical Kerr spacetime P ′ ⊆ TK and the photon region in the cotangent
bundle P ⊆ T ∗K (that is, the image of P ′ under the canonical isomorphism TK→ T ∗K)
are smooth submanifolds of TK and T ∗K, respectively. Of course, statements about
the submanifold structure and the topology of P ′ and P imply each other immediately,
but it will turn out to be useful to work in both settings.

Remark 29. If
(
M,Mg

)
is any spacetime, the above identification allows us to view

the set of photons in M as

{(b, p) ∈ TM : Mgb(p, p) = 0, ṫ > 0}.
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As the preimage of 0 under (b, p) 7→ Mgb(p, p) (intersected with the open set {ṫ > 0}),
this set is a submanifold of TM (and as regular as the spacetime itself), since the
differential of this map contains the components of 2 · Mgb(·, p) as its last n matrix
components, and this never vanishes by non-degeneracy of Mg.

We can naturally extend all functions that were defined on the DOC of Kerr to the
tangent bundle (of the DOC) of the Kerr spacetime, so that now in particular the
constants of motion and the conserved quotients, but also Φtrap and Qtrap are functions
on TK. Slightly abusing notation, we will use the same letters to denote these new
functions. This remark applies—mutatis mutandis—also to T ∗K.
The region accessible to trapping intersects the axis in only two points; justified by

the equatorial symmetry ϑ 7→ −ϑ, we will call one of them the North Pole and the
other one the South Pole, and we will refer to the two connected components of the
region accessible to trapping without the equatorial plane {S2 = 1} as the Northern
and the Southern Hemisphere.

Remark 30. As it turns out, in order to obtain later the topology of P ′ and P we will
need to construct smooth bundle charts for a spatial slice of the image of P under the
canonical isomorphism TK→ T ∗K. Nonetheless, this only proves that P is a manifold,
not that it is a submanifold of T ∗K. Even if one is only interested in the manifold
structure of P ′ and P , not their submanifold structure, the proof of the submanifold
property has advantages over the explicit construction of charts, since the latter will
turn out to be quite technical.

On TK = K×R4, we use coordinates (t, r, ϑ, ϕ, p0, p1, p2, p3), where (p0, p1, p2, p3) are
the components of the contravariant tangent vector in the same coordinate basis.

Remark 31. In the Schwarzschild case a = 0, it is easy to see that the photon
sphere lifts to a submanifold of the tangent bundle of Schwarzschild: this photon
region consists precisely of all null geodesics of the form (t, 3m,ϑ, ϕ, p0, 0, p2, p3) and is
thus in particular a submanifold of the space of all photons.

We shall now consider the situation in the subcritical Kerr spacetime with a 6= 0.

Proposition 32. The Kerr photon region in the (co-)tangent bundle TK (T ∗K) of a
subcritical Kerr spacetime is a smooth submanifold when the axis {S2 = 0} is deleted;
that is, P ′ \ {S2 = 0} is a smooth submanifold of TK (and P \ {S2 = 0} is a smooth
submanifold of T ∗K).
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Proof. We will prove the statement for P ′ ⊆ TK.
By the equations of motion and the conditions for trapped photons (see [46] and

[64]), a Kerr geodesic γ = (t, r, ϑ, ϕ, p0, p1, p2, p3) is a trapped photon if and only if

p0 =
E

∆ρ2
(A − 2mraΦtrap) , (45)

p1 = 0, (46)

(p2)2 =
E2

ρ4

(
Qtrap −

(
Φ2

trap

S2
− a2

)
C2

)
, (47)

p3 =
E

∆ρ2

(
2mra+ (ρ2 − 2mr)

Φtrap

S2

)
, (48)

for some energy E = −g00p
0 − g03p

3 > 0, where Qtrap and Φtrap are the functions of r
which give the trapping conditions from [64] stated in Equations (41) and (42).

Note that these equation are invariant under the scaling

(
E, p0, p1, p2, p3

)
7→ λ

(
E, p0, p1, p2, p3

)
with λ > 0, which allows us to get rid of one of the above equations:

Solving Equation (45) for

e := E(r, ϑ, p0) =
p0∆ρ2

A − 2mraΦtrap

and plugging it into Equations (46)–(48) yields

p1 = 0 (49)

(p2)2 =
e2

ρ4

(
Qtrap −

(
Φ2

trap

S2
− a2

)
C2

)
, (50)

p3 =
e

∆ρ2

(
2mra+ (ρ2 − 2mr)

Φtrap

S2

)
. (51)

Hence, the off-axis photon region in the tangent bundle is the preimage of 0 under
the following smooth function f = (f1, f2, f3) : TK \ {S2 = 0} → R3,

f1 := p1, (52)

f2 := (p2)2 − e2

ρ4

(
Qtrap −

(
Φ2

trap

S2
− a2

)
C2

)
, (53)

f3 := p3 − e

∆ρ2

(
2mra+ (ρ2 − 2mr)

Φtrap

S2

)
. (54)
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We will show that the differential of f has full rank, so that we can use the submersion
theorem.

Some partial derivatives of f are:

∂f1

∂p1
= 1

∂f1

∂p3
= 0

∂f2

∂p1
= 0

∂f2

∂p2
= 2p2 ∂f2

∂p3
= 0

∂f2

∂r
=

∂

∂r

(
e2

ρ4

)(
Qtrap −

(
Φ2

trap

S2
− a2

)
C2

)
+
e2

ρ4

(
∂Qtrap

∂r
−
∂Φ2

trap

∂r

C2

S2

)
∂f2

∂ϑ
=

∂

∂ϑ

(
e2

ρ4

)(
Qtrap −

(
Φ2

trap

S2
− a2

)
C2

)
− e2

ρ4
2C

(
Φ2

trap

S3
+

(
Φ2

trap

S2
− a2

)
S

)
∂f3

∂p3
= 1

By the above formulas for the partial derivatives of f1 and f3 we see that the dif-
ferential of f has at least rank 2. In order to show that f is indeed submersive, we
assume (towards a contradiction) that the differential of f has rank 2 at some point of
the off-axis photon region P ′ \ {S2 = 0} in TK. Then ∂f2

∂p2
, ∂f2
∂r

, and ∂f2
∂ϑ

vanish at this
point; and in particular

∂f2

∂p2
= 2p2 = 0

implies (
Qtrap −

(
Φ2

trap

S2
− a2

)
C2

)
= 0 (55)

because of Equation (53) and the fact that e is non-zero at the photon region in TK.
Hence, ∂f2

∂r
= 0 and ∂f2

∂ϑ
= 0 reduce to

∂Qtrap

∂r
−
∂Φ2

trap

∂r

C2

S2
= 0, (56)

and

2C

(
Φ2

trap

S3
+

(
Φ2

trap

S2
− a2

)
S

)
= 0. (57)

In the case C 6= 0, combining Equations (55) and (57) yields

Φ2
trap +Qtrap

S4

C2
= 0.
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But since Qtrap ≥ 0 in the region accessible to trapping, this implies that Φ2
trap and

Qtrap vanish for the same value of r, which cannot happen (see Section 5.1).
In the case C = 0, Equations (55) and (56) give Qtrap = 0 and ∂Qtrap

∂r
= 0, which

also cannot happen for the same radius r, see Section 5.1.
We have thus derived a contradiction from the assumption that the differential of f

does not have full rank somewhere on the off-axis photon region.
Thus, 0 is a regular value of f , and we may conclude by the submersion theorem

that the photon region of the Kerr spacetime with deleted axis is a submanifold of the
tangent bundle TK.

Due to the coordinate failure, we have to deal with the axis separately. To do this,
we will once again use the submersion theorem, this time applying it to a different
function TK→ R3.

Proposition 33. For a subcritical Kerr spacetime K, there is a neighborhood of the
North (resp. South) Pole of the photon region P ′ which is a smooth submanifold of TK
(or equivalently, a neighborhood of the North (resp. South) Pole of the photon region
P which is a smooth submanifold of T ∗K).

Proof. We consider the function h : TK→ R3 given by

h = (h1, h2, h3) := (q,Q− E2 ·Qtrap, L− E · Φtrap),

where Qtrap, Φtrap are again the functions given in Equations (41) and (42).
Clearly, the upper hemisphere of the photon region can be described as

{(b, p) ∈ TK : p0((b, p)) > 0, h((b, p)) = 0}.

The task is to show that h is a submersion in a neighborhood of P ′ ∩ {S2 = 0} in
TK. For the calculations near the axis, we change coordinates

(t, r, ϑ, ϕ) 7→ (t, r, x := r cosϕ sinϑ, y := r sinϕ sinϑ).

We can work with the new coordinates on each hemisphere; for simplicity let us only
consider the Northern Hemisphere, which suffices by the equatorial symmetry. Since
also p2, p3 fail on the axis, we change the pi accordingly (p0, p1, p2, p3) 7→ (p̃0, p̃1, p̃2, p̃3),
where p̃0, p̃1, p̃2, p̃3 are the natural coordinates adapted to our new coordinate system
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on the Northern Hemisphere of K, i.e.,

p0 = p̃0, p1 = p̃1,

p2 = −(x2 + y2)
1
2

zr
p̃1 +

1

z(x2 + y2)
1
2

(
xp̃2 + yp̃3

)
,

p3 =
1

x2 + y2

(
−yp̃2 + xp̃3

)
,

using the abbreviation z :=
√
r2 − x2 − y2.

We note that

p2 = O(1)
∂p2

∂p̃2
= O(1)

∂p2

∂p̃3
= O(1)

p3 = O(S−1)
∂p3

∂p̃2
= O(S−1)

∂p3

∂p̃3
= O(S−1)

as S → 0.
Furthermore, the metric components with respect to the new coordinates are given

on the axis as

g̃αβ = diag

(
− ∆

r2 + a2
,
r2 + a2

∆
,
r2 + a2

r2
,
r2 + a2

r2

)
.

We calculate that on the axis

∂q

∂p̃0
= −2

∆

r2 + a2
p̃0,

∂q

∂p̃2
= 2

r2 + a2

r2
p̃2,

∂q

∂p̃3
= 2

r2 + a2

r2
p̃3.

For a function G : TK → R, we will use the notation G = O1,p̃(S) to subsume
G = O(S) and ∂G

∂p̃α
= O(S) for all 0 ≤ α ≤ 3.

To calculate some partial derivatives of the Carter constant

Q = r2q +
1

∆

(
(r2 + a2)2(p0)2 −∆2(p1)2 + a2(p3)2 + 2(r2 + a2)ap0p3

)
on the axis, we first note that p0 =

(
−1 + 2mr

ρ2

)
p̃0 + O1,p̃(S), p1 = ρ2

∆
p̃1, and p3 =

O1,p̃(S) as S → 0.
This gives

Q = r2q +
1

∆

((
r2 + a2

)2
(
−1 +

2mr

ρ2

)2 (
p̃0
)2 − ρ4

(
p̃1
)2

)
+O1,p̃(S)
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as S → 0, and hence

∂Q

∂p̃0

∣∣∣∣S2=0 = r2 ∂q

∂p̃0
|S2=0 + 2∆p̃0,

∂Q

∂p̃α

∣∣∣∣S2=0 = r2 ∂q

∂p̃α
|S2=0 for α = 2, 3.

Similarly, we calculate

L = 〈∂ϕ, γ̇〉 = −2
mraS2

ρ2
p0 +

(
r2 + a2 +

2mra2S2

ρ2

)
S2p3

= −2
mraS2

ρ2
p̃0 +

1

r2

(
r2 + a2 +

2mra2S2

ρ2

)(
−yp̃2 + xp̃3

)
,

and get, using ∂S2

∂x
= O(S) and ∂S2

∂y
= O(S):

∂L

∂p̃α
|S2=0 = 0 ∀ 0 ≤ α ≤ 3,

∂L

∂x

∣∣∣∣S2=0 =
r2 + a2

r2
p̃3 ,

∂L

∂y

∣∣∣∣S2=0 = −r
2 + a2

r2
p̃2 .

Finally,

E = 〈∂t, γ̇〉 =

(
−1 +

2mr

ρ2

)
p̃0 +

2ma

rρ2

(
−yp̃2 + xp̃3

)
,

so that

∂E

∂p̃0

∣∣∣∣S2=0 = − ∆

r2 + a2
,

∂E

∂p̃α
|S2=0 = 0 ∀ 1 ≤ α ≤ 3.

Making use of the previous calculations, we see that the differential of

h = (q,Q− E2 ·Qtrap, L− E · Φtrap)

in terms of coordinates (r, x, y, p̃α) at an axis point {S2 = 0} of the photon region
contains the submatrix

(
∂hj
∂p̃0

∂hj
∂p̃2

∂hj
∂p̃3

∂hj
∂x

∂hj
∂y

)
|S2=0
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=


−2 ∆

r2+a2
p̃0 2 r

2+a2

r2
p̃2 2 r

2+a2

r2
p̃3 ∗ ∗

−2 ∆
r2+a2

r2p̃0 +♥ 2 (r2 + a2) p̃2 2 (r2 + a2) p̃3 ∗ ∗

0 0 0 r2+a2

r2
p̃3 − r2+a2

r2
p̃2


with ♥ := 2∆p̃0

(
1−Qtrap(r) ∆

(r2+a2)2

)
.

Here we have already made use of the fact that Φtrap vanishes at axis points of the
photon region (see Section 5.1).

First, note that at least one of the partial derivatives ∂h1
∂p̃2
|S2=0 = 2 r

2+a2

r2
p̃2 or ∂h1

∂p̃3
|S2=0 =

2 r
2+a2

r2
p̃3 is non-zero, since we can exclude p̃2 = p̃3 = 0. (Photons on the axis with

p̃2 = p̃3 = 0 are radial in- or outgoers, hence not trapped.) Similarly, the last row of the
matrix cannot vanish. To see that h is submersive where the photon region intersects
the axis (in the tangent bundle), it is enough to show that ♥ 6= 0 for trapped photons
on the axis, since this implies linear independence of all three rows. Since obviously
2p̃0∆ 6= 0, for photons in the DOC, one only needs to show that

(
1−Qtrap(r) ∆

r2+a2

)
6= 0.

Since Φ = 0 for trapped photons on the axis, we plug Φ = 0 into R(r)
E2 = 0 and solve

for Q. This gives Q = 1
∆

(r4 + a2r2 + 2ma2r) for every trapped photon on the axis.
Hence, by Q = Qtrap, we get

1−Qtrap(r)
∆

(r2 + a2)2 =
∆a2

(r2 + a2)2 > 0,

which makes ♥ non-zero for trapped photons on the axis.
We have thus seen that the differential of h is surjective at every axis point of the

photon region P ′ in the tangent bundle. By the submersion theorem we may conclude
that a neighborhood of the North (similarly: South) Pole of P ′ is a submanifold of TK.

From Propositions (33) and (32), we immediately get the following:

Theorem 34. For a subcritical Kerr spacetime K, the photon region P ′ in TK and the
photon region P in T ∗K are smooth submanifolds of dimension 5.

5.4 The topology of the Kerr photon region in the (co-)tangent

bundle

We now turn our attention to the topology of P ′ and P . From now on, it will be more
useful to work with P ⊆ T ∗K. We will prove the following theorem towards the end of
this section and first show important lemmata and propositions to be used in the proof.
The claim of Theorem 35 follows from Dyatlov’s implicit function theorem argument
in Section 3 of [20].
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Theorem 35. The Kerr photon region and in particular the Schwarzschild photon
sphere in the (co-)tangent bundle have topology SO(3)× R2.

Proof. Since the photon region in any member of the Kerr family is invariant under
time translation ∂t and under rescaling of energy (E, p0, p1, p2, p3) 7→ λ (E, p0, p1, p2, p3),
λ > 0, we may therefore restrict our attention to a 6-dimensional slice

{t = 0, p0(= −E) = −1}

in the cotangent bundle and show that the photon region in this slice,

P0 := P ∩ {t = 0, p0(= −E) = −1},

has topology SO(3).

In the Schwarzschild case, we see immediately that P0 is the bundle of tangent 1-
spheres to the 2-sphere {r = 3m}. Such a sphere bundle is, of course, topologically
just T 1S2, and it is well-known that T 1S2 is homeomorphic to SO(3).
The remainder of this section is dedicated to the proof of the rotating Kerr case. In

order to construct explicit bundle charts of P0, we first prove the following

Lemma 36. Consider a Kerr spacetime with 0 < a < m.

1. There are smooth functions rmin, rmax : (0, π) → R that give, for every ϑ ∈
(0, π), the minimal and maximal Boyer–Lindquist radii where trapped photons
with latitude ϑ may be located.

2. There is a smooth function r : (0, π)× [−1, 1]→ R with

r(ϑ,−1) = rmin

r(ϑ, 0) = rmid, and

r(ϑ, 1) = rmax

for all ϑ ∈ (0, π), and with r
(
π
2

+ ϑ, ·
)

= r
(
π
2
− ϑ, ·

)
for all ϑ ∈

(
0, π

2

)
,

(where rmid is given by Formula (43)), and with the additional property that r(ϑ, ·) has
a smooth inverse for every ϑ ∈ (0, π).

The function r(ϑ, ·) parametrizes the radial width of the crescent moon in Figure 2.

Proof. 1. The boundary of the region accessible to trapping in the spacetime is
exactly where trapped photons have vanishing ϑ-motion (ϑ̇ = 0); hence, the
wanted functions rmin, rmax are given implicitly by the requirements that the
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right-hand side of the Θ-equation (37) with Q = Qtrap(r) and Φ = Φtrap(r)

plugged in vanishes:

0 = Qtrap(rmin(ϑ))−
(
Φtrap(rmin(ϑ))− a2

)
cos2(ϑ),

0 = Qtrap(rmax(ϑ))−
(
Φtrap(rmax(ϑ))− a2

)
cos2(ϑ)

for all ϑ ∈ (0, π), and the additional conditions that rmin < rmid < rmax and that
rmin(ϑ), rmax(ϑ) are the the zeros of Θ(·, ϑ) = 0 that are closest to rmid(ϑ) for
each ϑ.

Thus, rmin and rmax are well-defined by elementary properties of the region ac-
cessible to trapping, and smoothness follows from the smooth dependence of Θ

on r and ϑ.

2. This follows directly from the first part of the lemma, for example by explicitly
defining

r(ϑ, s) :=

(rmid(ϑ)− rmin(ϑ)) s+ rmid(ϑ) for s < 0,

rmid(ϑ)
(
rmax(ϑ)+rmin(ϑ)−rmid(ϑ)

rmid(ϑ)

)s2
+ (rmid(ϑ)− rmin(ϑ)) s for s ≥ 0.

For the following lemma, we fix some notation and interpret the product S1 × S1

as follows: let the first factor S1 be parametrized by ϕ ∈ [−π, π), and the second
factor S1 be viewed as [−1, 1] × {−1, 1}/ ∼S1 , where ∼S1 is the equivalence relation
on [−1, 1] × {−1, 1} generated by identifying (±1, 1) with (±1,−1). We thus denote
elements of S1 × S1 in the form (ϕ, s, ς).

Recall that we write P0 = P ∩ {t = 0, p0 = −1}.

Lemma 37. There are functions p2, p3 : (0, π)× S1 × S1 → R such that the map

H : (0, π)× S1 × S1 → P0 \ {S2 = 0},

given in Boyer–Lindquist coordinates in the form

(ϑ, ϕ, s, ς) 7→ H(ϑ, ϕ, s, ς) = (r(ϑ, s), ϑ, ϕ, 0, p2(ϑ, ϕ, s, ς), p3(ϑ, ϕ, s, ς))

is a diffeomorphism, where r is defined as in Lemma 36 (and hence only depends on
|ϑ− π

2
| and s).

Proof. We define functions p2, p3 : (0, π)×S1×S1 → R as the solutions of Equations (50)
and (51) with r(ϑ, s) plugged in for r and E = 1 plugged in for e, and with the additional
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requirement that sgn p2(ϑ, ϕ, s, ς) = ς. In other words,

p2(ϑ, ϕ, s, ς) = ς

(
1

ρ2(r, ϑ)
·
(
Qtrap(r)−

(
Φ2

trap(r)

S2
− a2

)
C2

)) 1
2

,

p3(ϑ, ϕ, s, ς) =
1

∆(r)ρ2(r, ϑ)
·
(

2mra+
(
ρ2(r, ϑ)− 2mr

) Φtrap(r)

S2

)
,

where we use the shorthand r = r (ϑ, s).
Both p2 and p3 are smooth on (0, π)×S1×S1, and they are of course, as the notation

suggests, meant to be used as 7-th and 8-th coordinate in TK.
Then, a function p0 is defined as the unique positive solution to

g
(
(p0, 0, p2, p3), (p0, 0, p2, p3)

)
= 0;

it is smooth by smoothness of the metric g.
The functions p2, p3 from the present lemma are obtained by type-changing the vector

(p0, 0, p2, p3) ∈ TK into a 1-form.
Bijectivity of H is clear by the construction, and smoothness of the inverse map H−1

follows directly from the fact that for every ϑ ∈ (0, π), the radial width function r(ϑ, ·)
has a smooth inverse.

Lemma 38. Let 0 < ϑ0 < π and Iϑ0 := (Φtrap(rmin(ϑ0)),Φtrap(rmax(ϑ0))). There is
a unique smooth function p2 : Iϑ0 → R≥0, p3 7→ p2(p3) such that there is an element
of P0 with latitude ϑ0, angular momentum p3, and third covariant Boyer–Lindquist
coordinate p2 = p2(p3).
If sin2 ϑ0 is small enough, p2 is concave.

Proof. Recall that the covariant Boyer–Lindquist coordinate p3 coincides with the
scaled angular momentum Φ = Φtrap for every photon in P0. Since Φtrap is strictly
decreasing in r on the photon region, we may regard r as a function of p3 and write
r(p3) for the solution of p3 = Φtrap(r).

Similarly to the treatment of the functions p2, p3 in the proof of Lemma 37, we use
Equation (40) to see that p2 > 0 is given by

(p2)2 = Qtrap(r(p3))−
(
(p3)2 − a2

) C2

S2
− a2C

4

S2
.

Therefore,

d2

d(p3)2
(p2(r))2 =

d2

d(p3)2
Qtrap(r(p3))− 2

C2

S2
.
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Since d2

d(p3)2
Qtrap(p3) is bounded in a neighborhood of the photon region and C2

S2

approaches infinity at the poles, d2

d(p3)2
(p2(r))2 is negative in a punctured neighborhood

of any pole. Hence, (p2)2 and also p2 are concave if sin2 ϑ0 is chosen sufficiently small.

Lemma 39. There is a 0 < ε < 1 such that the neighborhood P0 ∩ {sin2 ϑ < ε} of the
North and South Pole of the photon region in the phase space slice {t = 0, p0 = −1} of
a subcritical Kerr spacetime is diffeomorphic to

(
S2 ∩ {sin2 ϑ < ε}

)
× S1 via

Ψ : P0 ∩ {sin2 ϑ < ε} →
(
S2 ∩ {sin2 ϑ < ε}

)
× S1,

where Ψ is given in the coordinates of the proof of Proposition 32 by

Ψ(0, r, ϑ, ϕ,−1, 0, p̃2, p̃3) := (ϑ, ϕ, [atan2(p̃2, p̃3)]) .

(A definition of atan2 is given in the proof below.)

Proof. We now view the sphere S1 as the quotient of the real line that is obtained by
factoring out the equivalence relation generated by u ∼ u+ 2π and denote its elements
by [u] := {u+ 2πk : k ∈ Z}.
Note that using (ϑ, ϕ) also on the poles causes no problem, even though they are

not coordinate functions at the poles.
As usual, atan2 : R2 \{(0, 0)} → (−π, π] gives the angle between the positive p̃2-axis

and (p̃2, p̃3) (keeping track of its sign) and is defined by

atan2(v, u) =


arctan

(
v
u

)
for u > 0,

arctan
(
v
u

)
+ sgn v · π for u < 0,

sgn v · π
2

for u = 0.

Let ε > 0 be such that the function p2(ϑ, ·) from Lemma 38 is concave for every ϑ
with sin2 ϑ < ε.

The map Ψ as given in the claim is well-defined and smooth. We write ΨNorth and
ΨSouth for the restrictions of Ψ to the Northern and Southern pole caps P0 ∩ {sin2 ϑ <

ε, ϑ < (>)π
2
}. Since the union of the pole caps is disjoint, it suffices to show that ΨNorth

and ΨSouth are diffeomorphisms.
Focusing on ΨNorth, we prove that ΨNorth is a bijection by arguing that for fixed

(ϑ0, ϕ0), the map

ΨNorth(0, r, ϑ0, ϕ0,−1, 0, ·, ·) : P0 ∩ {ϑ = ϑ0, ϕ = ϕ0, } → {ϑ0, ϕ0} × S1

is bijective:
First we fix a (ϑ0, ϕ0) ∈ S2 with ϑ0 < π, sin2 ϑ0 < ε.
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We need to show that [atan2] maps the set

{(p̃2, p̃3) ∈ R2 : ∃ r such that (0, r, ϑ0, ϕ0,−1, 0, p̃2, p̃3) is a trapped photon}

bijectively to S1. To this end, we change from the covariant coordinates p̃2, p̃3 to the
ones that belong to Boyer–Lindquist coordinates, p2 and p3. The set

{(p2, p3) ∈ R2 : ∃ r such that (0, r, ϑ0, ϕ0,−1, 0, p2, p3) is a trapped photon}

bounds a convex region around the origin in R2, since it can be piecewise parametrized
by p3 7→ (±p2(p3), p3), where p2 is the concave function from Lemma 38. Its image
under the linear bijection

R2 3 (p2, p3) 7→ (tanϑ0 · (cosϕ0p2 − sinϕ0p3),− sinϕ0p2 + cosϕ0p3) ∈ R2

is also a convex set around the origin, which means that [atan2] maps it bijectively to
S1.

On the other hand, one can easily check that

atan2(p̃2, p̃3) = atan2 (tanϑ0 · (cosϕ0p2 − sinϕ0p3),− sinϕ0p2 + cosϕ0p3) ,

since p̃2
p̃3

can be rewritten in terms of p2 and p3 as

p̃2

p̃3

= tanϑ0 ·
cosϕ0p2 − sinϕ0p3

− sinϕ0p2 + cosϕ0p3

if p̃3 6= 0, and sgn p̃2 = sgn (cosϕ0p2 − sinϕ0p3).
This proves that ΨNorth(0, r, ϑ0, ϕ0,−1, 0, ·, ·) : P0∩{ϑ = ϑ0, ϕ = ϕ0} → {ϑ0, ϕ0}×S1

is bijective for every (ϑ0, ϕ0) ∈ S2 with ϑ0 < π, sin2 ϑ0 < ε.
Now we show that ΨNorth|{S2=0} is a bijection onto {S2 = 0} × S1:
At the North Pole {S2 = 0} of the region accessible to trapping, every lightlike point

in the phase space with p̃1 = 0 is a trapped photon, and it is obvious by the rotational
symmetry of the Kerr spacetime that the set {(p̃2, p̃3) : (−1, 0, p̃2, p̃3) is a photon} is a
circle around the origin in the p̃2-p̃3-plane. As before, it is mapped bijectively under
[atan2] onto S1.
We have now seen that ΨNorth is bijective. A straightforward calculation yields that

the differential of ΨNorth has full rank everywhere, so that by the implicit function
theorem ΨNorth is a diffeomorphism, which proves the claim.

In order to determine the topology of P0 (and thereby the topology of P ), we will
calculate its first fundamental group.
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Proposition 40. The Kerr photon region slice P0 has first fundamental group Z2.

Proof. The diffeomorphisms H from Lemma 37 and Ψ from Lemma 39 will be used in
what follows. Recall (from the proof of Lemma 33) the covariant coordinates p̃i that
are naturally associated with the coordinates (t, r, x = r cosϕ sinϑ, y = r sinϕ sinϑ).

While UNorth ≈ B1(0) × S1 and USouth ≈ B1(0) × S1 both have Z as their first
fundamental group, UEq ≈ (−π, π) × S1 × S1 has first fundamental group Z × Z.
Moreover, π1 (UEq ∩ UNorth) = π1 (UEq ∩ USouth) = Z× Z.

Let π
2
< ϑ0 < π be such that every point of P0 with latitude ϑ0 is in the domain of

ΨNorth. We define homotopies of closed paths γ1, γ2 : S1 × I → P0 by

γ1,λ(ϕ) := H (ϑ0 − λ(2ϑ0 − π), ϕ, 0,−1) ,

γ2,λ(s, ς) := H (ϑ0 − λ(2ϑ0 − π), 0, s, ς) .

By construction, the paths γ1,0 and γ2,0 are representatives of a set of generators for
π1 (UEq ∩ UNorth), and the analogous statement holds for γ1,1 and γ2,1 in π1 (UEq ∩ USouth),
as well as for γ1,λ and γ2,λ in π1 (UEq) (for every λ).
We will now determine what elements in π1(UNorth) the paths γi,0 represent and what

elements in π1(USouth) the paths γi,1 represent (for i = 1, 2).
Note that by construction of H, the image of each γ1,λ consist of points with r = rmid

and hence with p3 = 0.
This makes it easy to calculate—using the standard transformations for the coor-

dinates of the phase part of TK∗—that for points in the image of a path γ1,λ with
λ 6= 1

2
:

p̃2 ◦ γ1,λ(ϕ) =
p2

r cosϑ
cosϕ (58)

p̃3 ◦ γ1,λ(ϕ) = − p2

r sinϑ
sinϕ, (59)

where we use ϑ as shorthand for ϑ(λ) = ϑ0 − λ(2ϑ0 − π) and p2 as shorthand for
p2 ◦ γ1,λ(ϕ).

Clearly, |p2| ◦ γ1,λ(ϕ) can be calculated from p3 ◦ γ1,λ = 0, r ◦ γ1,λ = rmid, and the
modulus of the latitude, |ϑ− π

2
|. Since we have chosen negative sign of p2 for all points

in the range of γ1,λ, even p2 ◦ γ1,λ(ϕ) only depends on |ϑ− π
2
|.
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This allows us to simplify (58)–(59) to

p̃2 ◦ γ1,0(ϕ) = A cosϕ,

p̃2 ◦ γ1,1(ϕ) = −A cosϕ,

p̃3 ◦ γ1,λ(ϕ) = B sinϕ for λ = 0, 1

for positive constants A,B.
We see from these formulas that the map P3 ◦ Ψ ◦ γ1,0 : S1 → S1 (where P3 is the

projection onto the third component), given by [atan2(p̃2 ◦ γ1,0, p̃3 ◦ γ1,0)], has index 1

and is hence homotope to the identity map on S1.
Similarly, P3 ◦ Ψ ◦ γ1,1 : S1 → S1 is of index −1 and can be thought of as the map

-id : S1 → S1.
We may thus note for later use Fact 1: the path Ψ◦γ1,0 is equivalent to ϕ 7→ (ϑ0, 0, ϕ)

in π1(Ψ(UNorth ∩ UEq)), and the path Ψ ◦ γ1,1 is equivalent to ϕ 7→ (π − ϑ0, 0,−ϕ) in
π1(Ψ(USouth ∩ UEq)).
Similarly as we just did for γ1,λ, we now calculate the components p̃2 and p̃2 on the

orbits of γ2,λ for λ 6= 1
2
:

p̃2 ◦ γ2,λ(s, ς) =
1

r cosϑ
p2

p̃3 ◦ γ2,λ(s, ς) =
1

r sinϑ
p3.

Here, p2 and p3 depend on ϑ(λ) = ϑ0 − λ(2ϑ0 − π) and (s, ς). Actually, p2 and p3 are
independent of the sign of ϑ− π

2
, since the function r used in the construction of H is.

This allows us to write

p̃2 ◦ γ2,0(s, ς) = −Ãp2, (60)

p̃2 ◦ γ2,1(s, ς) = Ãp2, (61)

p̃3 ◦ γ2,λ(s, ς) = B̃p3 for λ = 0, 1 (62)

for positive constants Ã, B̃.
We already know that γ2,0 represents one of the generators of π1 (UEq ∩ UNorth), and

that γ2,1 represents one of the generators of π1 (UEq ∩ USouth). Choosing an orientation
for S1 ≡ [−1, 1]× {−1, 1}/ ∼S1 , we can decide that P3 ◦Ψ ◦ γ2,i : S1 → S1 has index 1.
Then P3◦Ψ◦γ2,i : S1 → S1 has index −1. We can now state Fact 2: the path Ψ◦γ2,0 is
equivalent to ϕ 7→ (ϑ0, 0, ϕ) in π1(Ψ(UNorth ∩UEq)), and the path Ψ ◦ γ1,1 is equivalent
to ϕ 7→ (π − ϑ0, 0,−ϕ) in π1(Ψ(USouth ∩ UEq)).

In the last step of the proof, we finally calculate π1(P0) using the Seifert–van Kampen
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theorem. Combining Fact 1 and Fact 2, we note that in π1 (UNorth ∩ UEq),

[γ1,0]π1(UNorth∩UEq) = [γ2,0]π1(UNorth∩UEq) ,

and in π1 (USouth ∩ UEq), that

[γ1,1]π1(USouth∩UEq) = [γ2,1]π1(USouth∩UEq) .

We apply the Seifert–van Kampen theorem two times; first to UNorth and UEq, then
to UNorth ∪ UEq and USouth).
For the sake of readability, the homomorphisms of the different fundamental groups

induced by the various inclusion maps are notationally omitted.
Using the group presentations

π1 (UNorth) = 〈[γ1,0]π1(UNorth) , [γ2,0]π1(UNorth)〉

and
π1 (UEq) = 〈[γ1,0]π1(UEq) , [γ2,0]π1(UEq)〉,

one obtains π1 (UEq ∪ UNorth) by factoring the identifications

[γ1,0]π1(UNorth) = [γ2,0]π1(UEq) ,

[γ1,0]π1(UNorth) = [γ1,0]π1(UEq)

out of the group

〈[γ1,0]π1(UNorth) , [γ2,0]π1(UNorth) , [γ1,0]π1(UEq) , [γ2,0]π1(UEq)〉.

Now, π1(P0) = π1 ((UEq ∪ UNorth) ∪ USouth) can be calculated by factoring the iden-
tifications

[γ1,1]π1(USouth) = [γ2,0]π1(UEq) ,

[γ1,1]π1(USouth) = [γ1,0]π1(UEq) ,

(which come from Facts 1 and 2) out of the free product of π1 (UEq ∪ UNorth) with
π1 (USouth).
Hence, π1(P0) is the quotient of 〈[γ1,0]π1(UEq) , [γ2,0]π1(UEq) , [γ1,0]π1(UNorth) , [γ1,1]π1(USouth)〉
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after factoring out the identifications

[γ1,0]π1(UNorth) = [γ2,0]−1

π1(UEq)
,

[γ1,0]π1(UNorth) = [γ1,0]π1(UEq) ,

[γ1,1]π1(USouth) = [γ2,0]π1(UEq) ,

[γ1,1]π1(USouth) = [γ1,0]π1(UEq) .

The quotient we are left with is the group Z2.

We are now going to conclude in a very short argument that the photon region in
the phase space of a subcritical Kerr spacetime has topology SO(3)× R2:

Proof of Theorem 35. Since P0 is a closed 3-dimensional manifold with π1(P0) = Z2, it
is doubly covered by an S3 (by the Poincaré conjecture). By the elliptization conjecture,
this S3 can be taken to be the standard 3-sphere and the group Z2 as a subgroup of
S = (3) acting on it. (For the statements of the Poicaré and the elliptization conjecture,
see e.g. [65, 59]; for the proof covering these conjectures see [49, 51, 50].) Hence, P0 is
the quotient S3/Z2 ≈ RP 3 ≈ SO(0).

Recalling how P0 was obtained as a slice P ∩ {t = 0, p0 = −1} of the photon region
in the phase space, this proves Theorem 35.

5.5 Outlook

We have described how the phenomenon of trapping of light in subcritical Kerr space-
times can be better understood in the framework of the cotangent bundle and have
characterized the set of (future) trapped photons as a submanifold of T ∗K with topol-
ogy SO(3)× R2. It is natural to ask if analogous results can be obtained with similar
methods for other stationary spacetimes, possibly involving a cosmological constant.
Note that in [20], the implicit function argument for the computation of the topology
of the photon sphere in the phase space is also applied to the Kerr–de Sitter spacetime.

Null geodesics of constant coordinate radius in (various subfamilies of) the Plebański–
Demiański class of metrics have been studied in [28, 29]. To our knowledge, it has not
yet been rigorously investigated whether these photon orbits are the only trapped pho-
tons in the respective spacetimes, which would be a crucial first step for a geometric
understanding of the photon region. Results for spherical photons in the Plebański–
Demiański spacetime family show a very similar spacetime picture of trapping as in
the Kerr family ([28, 29]); one might also hope to prove in this setting that the photon
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region in the phase space is a submanifold with topology SO(3) × R2, but of course,
the calculations would become much more involved in this generalized setting.

We can also ask similar questions about the photon region in stationary spacetimes
of higher dimensions. By the symmetry of a Schwarzschild–Tangherlini black hole [63]
of dimension n + 1 and mass m, it is known that trapping of light occurs at a fixed
radius r = nm for every photon that is initially tangent to the hypersurface {r = nm}.
Hence (by arguments just like in the 4-dimensional Schwarzschild case), the photon
region in the phase space can be expected to be a submanifold with the topology of a
tangent unit sphere bundle T 1Sn−1, times R2.

It seems reasonable to conjecture that for Myers–Perry spacetimes of dimension n+1,
the photon region in the phase space has the same topology and bundle structure as
the one of the Schwarzschild–Tangherlini solution of dimension n + 1 (whether the
various rotation parameters coincide or not), since letting the rotational parameters
tend to zero should not cause jumps in the topology, just as in the 3 + 1-dimensional
Kerr case. This can, however, not be proved by similar methods as the ones we used
for the 4-dimensional case, since our proof relies on the classification of 3-manifolds
via their fundamental groups, and there is no similar classification available for higher
dimensions.

The presented way to determine the topology of the Kerr photon region in phase
space might turn out to be useful in proving a uniqueness theorem for asymptotically
flat, stationary, vacuum spacetimes outside a photon region, in the spirit of the static
results in this direction mentioned in Section 4.6.
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