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Abstract

Surface plasmonic resonances provide well-defined absorption and scattering peaks in
the far-field spectra together with strongly enhanced electromagnetic near-fields, which
make plasmonic structures promising candidates for bio-sensors and plasmonically as-
sisted spectroscopy. Since the discovery of plasmonic resonances, a lot of efforts have
gone into the application of plasmonic sensors and plasmonically assisted spectroscopy
in the field of clinical diagnosis, food security, or environment monitoring. In this the-
sis, we investigated the performance of vertical metal-insulator-metal (MIM) structures
as a refractive index (RI) sensor and SERS substrate. However, the appealing strongly
enhanced near-field is localized inside the dielectric spacer and not accessible to the
surrounding medium and Raman molecules. In order to address this problem, this
thesis is aiming at achieving a better understanding of the fundamentals of vertical
MIM structures, exposing the ’hot spots’ of cavity plasmon modes, investigating the
RI sensing capabilities of MIM cavities and improving the surface-enhanced Raman
spectroscopy (SERS) performance of MIM cavities.

Disc-on-film structures with different geometrical parameters and different spacer con-
figurations were systematically studied by experiments and simulations. A circular
Fabry-Pérot (FP) cavity model was applied to describe the cavity plasmon modes in
MIM cavities. The cavity plasmon modes (TEMmn) were divided into edge cavity
modes (TEM1n) and surface cavity modes (TEMm1), which show different optical
variation with wet etching, RI sensing performance and SERS enhancement factors.
The dependency of cavity plasmon modes as a function of periodicity, cavity radius
and cavity height was studied. The reasons for different line shapes of far-field optical
spectra were revealed.

The influence of varying spacers on the locations of ‘hot spots’ and resonance wave-
lengths was systematically studied. The ‘hot spots’ of cavity plasmon modes were
exposed by wet etching.

The RI sensitivities of MIM structures were thoroughly studied including different
types of plasmonic modes, sensing based on spectral shifts or intensity changes, and
bulk/molecular RI sensing configurations. The sensitivities of cavity plasmon modes
and surface plasmon polariton (SPP) modes were tuned by creating Rabi-analog split-
ting.

Notable SERS enhancement factors (EFs) have been achieved by underetching. EF
peaks attributed to different orders of cavity plasmon modes were observed in both
experiments and simulations. Good qualitative agreement has been found between
the experimental and simulated results. A SERS performance comparison was made
between the disc-on-film substrate and vertical disc dimers: similar dependency of
effective SERS EF as a function of cavity radius was found for the two SERS substrates.

Keywords:

Plasmons, nanoparticles, Fabry-Pérot interferometers, optical properties, Raman effect,
surface enhanced, sensing
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Résumé

Les résonances plasmoniques de surface fournissent une absorption nette et un pic
de diffusion dans les spectres de champ lointain et, associées à un champ proche
électromagnétique fortement amplifié, font des structures plasmoniques des candidats
prometteurs pour les capteurs biologiques et la spectroscopie assistée par plasmonique.
Depuis la découverte des résonances plasmoniques, de nombreux efforts ont été con-
sacrés à l’application de capteurs plasmoniques et à la spectroscopie assistée par plas-
monique dans les domaines du diagnostic clinique, de la sécurité alimentaire ou de la
surveillance de l’environnement. Dans cette thèse, nous avons étudié les performances
des structures verticales métal-isolant-métal (MIM) en tant que capteurs d’indice de
réfraction (RI) et substrats Raman effet augumenté en surface (SERS). Cependant,
le champ proche fortement exalté est localisé à l’intérieur de l’espaceur diélectrique et
n’est pas accessible au milieu environnant ni aux molécules Raman. Afin de résoudre ce
problème, cette thèse vise à mieux comprendre les principes fondamentaux des struc-
tures MIM verticales, à exposer les ”points chauds” des modes de plasmon de cavité, à
étudier les capacités de détection RI des cavités MIM et à améliorer les performances
SERS de MIM cavités.

Les structures en disques sur films avec différents paramètres géométriques et différentes
configurations d’espaceurs ont été étudiées de manière systématique par des expériences
et des simulations. Les modèles circulaires de cavité FP ont été appliqués pour décrire
les modes de plasmon dans les cavités MIM. Les modes de plasmon de la cavité ont
été divisés en modes de cavité de bord et modes de cavité de surface, qui montrent
différentes variations optiques avec la gravure humide, les performances de détection
RI et les facteurs d’amélioration SERS. La dépendance des modes de plasmon de la
cavité en fonction de la périodicité, du rayon de la cavité et de sa hauteur a été étudiée.
L’origine des différentes raies présentes dans les spectres optiques en champ lointain a
été révélée.

L’influence de différents espaceurs sur la localisation des �points chauds� et des long-
ueurs d’onde de résonance a été étudiée. Les �points chauds� des modes de plasmon
dans la cavité ont été révélés par gravure humide.

Les sensibilités RI des structures MIM ont été minutieusement étudiées, notamment
différents types de modes plasmoniques, différents types de modulations de détection
et différents types de configuration de détection RI. La sensibilité des modes plasmon
de la cavité et des modes polaritons de plasmons de surface (SPP) a été ajustée en
créant l’analogue d’un dédoublement Rabi.

Des facteur d’amélioration (EF) SERS notables ont été atteints en sous-gravant. Des
pics EF attribuables à différents ordres de modes de plasmon dans la cavité ont été
observés à la fois dans les expériences et les simulations. Un bon accord qualitatif a été
trouvé entre les résultats expérimentaux et simulés. Une comparaison de performance
SERS a été faite entre le dimère de disque sur film et les dimères de disque verticaux:
une dépendance similaire du SERS EF effectif en fonction du rayon de la cavité a été
trouvée pour les deux substrats SERS.

Mots-clés : Plasmons, nanoparticules, Fabry-Pérot, Interféromètres de, propriétés
optiques, Raman, effet augmenté en surface, détecteurs
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Zusammenfassung

Die Resonanzen von Oberflächenplasmonen (LSPR von engl. localized surface plas-
mon resonance) in metallischen Nanostrukturen liefern genau definierte Absorptions-
und Streuungspeaks in deren optischen Fernfeldspektren. Zusammen mit dem damit
einhergehenden stark verstärkten elektromagnetischen Nahfeld macht dies plasmonis-
che Strukturen zu vielversprechenden Kandidaten für Biosensoren und plasmonisch
unterstützte Spektroskopie. Seit der Entdeckung plasmonischer Resonanzen sind viele
Anstrengungen unternommen worden, um solche Sensoren und die plasmonisch un-
terstützte Spektroskopie zur Anwendung im Bereich der klinischen Diagnose, der Lebens-
mittelsicherheit oder der Umgebungsüberwachung zu bringen. In dieser Arbeit haben
wir die Leistungsfähigkeit von vertikalen Metall-Isolator-Metall (MIM)- Strukturen
als Brechungsindex (RI von engl. refractive index) -Sensoren und als Substrate für
oberflächenverstärkte Raman-Streuung (SERS von engl. surface enhanced Raman
scattering) untersucht. Das verstärkte Nahfeld der MIM-Struktur ist jedoch innerhalb
der nur wenige Nanometer dicken Isolatorschicht lokalisiert und für das umgebende
Medium und die nachzuweisenden Raman-Moleküle nicht frei zugänglich. Um dieses
Problem zu lösen, zielt die vorliegende Arbeit zum einen darauf ab, die Grundlagen
der vertikalen MIM-Strukturen besser zu verstehen und zum anderen darauf, die Bere-
iche mit besonders starkem Nahfeld (engl. hotspots) der Resonatormoden freizulegen.
Weiterhin wird die Sensitivität der MIM-Strukturen auf RI-Änderungen bestimmt und
untersucht, wie die SERS-Leistung verbessert werden kann.

Bei den MIM-Strukturen handelt es sich um Goldscheibchen, welche sich, durch eine
Siliziumdioxidschicht getrennt, auf einem dünnen Goldfilm befinden. Diese Disc-on-
Film-Strukturen mit unterschiedlichen geometrischen Parametern und unterschiedlichen
Abstandhalter-Konfigurationen wurden systematisch durch Experimente und Simu-
lationen untersucht. Ein Modell für kreisförmige Fabry-Pérot(FP)-Kavitäten wurde
angewendet, um die Resonatormoden in MIM-Kavitäten zu beschreiben. Die Res-
onatormoden wurden in Rand-Moden und Oberflächen-Moden unterteilt, deren Res-
onanzen sich bei Veränderung der Isolatorschicht, bei der RI-Sensitivität und bei
den SERS-Verstärkungsfaktoren unterschiedlich verhalten. Die Abhängigkeit der Res-
onatormoden von der Periodizität, dem Resonator-Radius und der Höhe des Kavität
wurde untersucht. Der Grund für unterschiedliche Linienformen der optischen Fern-
feldspektren wurde aufgezeigt.

Der Einfluss verschiedener Geometrien der isolierenden Abstandhalter-Schicht auf die
Position der “Hot Spots” und die Resonanzwellenlängen wurde systematisch unter-
sucht. Im Experiment wurden die “Hot Spots” der Resonatormoden durch Nassätzen
des Spacermaterials freigelegt.

Die RI-Sensitivitäten der MIM-Strukturen wurden durch Simulation und Experiment
untersucht. Es wurden verschiedene Arten plasmonischer Moden, die in den Struk-
turen auftreten, verglichen. Im Experiment wurden dabei verschiedene Sensormodula-
tionen und –konfigurationen verwendet. Die Sensitivität der Resonatormoden und der
Oberflächenplasmon-Moden konnte durch Kopplung und daraus resultierendes Rabi-
Splitting eingestellt werden.

Es wurden bemerkenswerte SERS-Verstärkungsfaktoren in den Strukturen, in welchen
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durch Unterätzen der Spacer freigelegt wurde, erreicht. Maxima des Verstärkungs-
faktors, die auf unterschiedliche Ordnungen von Resonatormoden zurückgeführt wer-
den konnten, wurden sowohl im Experiment als auch in der Simulation beobachtet.
Es wurde eine gute qualitative Übereinstimmung zwischen den experimentellen und
simulierten Ergebnissen gefunden. Ein SERS-Leistungsvergleich wurde zwischen Disc-
on-Film-Substraten und vertikalen Disc-Dimeren durchgeführt: Eine ähnliche Abhängig-
keit des effektiven SERS EF als Funktion des Radius wurde für die beiden SERS-
Substrate gefunden.

Stichwörter : Plasmonen, Nanopartikel, Fabry-Pérot-Resonator, optische Eigenschaften,
oberflächeverstärkte Raman-Streuung, Brechungsindexsensor
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General introduction

Plasmonic resonances, which are associated with the collective oscillations of the elec-
tron gas in noble metal nanostructures, show well-defined absorption and scattering
peaks together with strongly enhanced electromagnetic near-fields. On one hand, the
resonance conditions of the plasmonic modes make both the resonance positions and
the intensities of far-field spectra very sensitive to the refractive index change of the
surrounding medium, allowing biomedical sensors to be created based on such nanos-
tructures. On the other hand, the strongly enhanced near-field provides an appealing
platform for plasmonically assisted spectroscopy, for instances surface enhanced Raman
spectroscopy (SERS), surface enhanced fluorescence (SEF), surface enhanced infrared
absorption spectroscopy and etc. Hence, since the discovery of plasmonic resonances,
a lot of efforts have gone into the application of plasmonic sensors and plasmonically
assisted spectroscopy in the field of clinical diagnosis, food security, or environment
monitoring. In this thesis, I investigated the performance of vertical metal-insulator-
metal (MIM) structures as a refractive index (RI) sensor and SERS substrate. This
thesis is organized as follows.

In Chapter 1, the state of the art is given for the plasmonic RI sensors and SERS
subsrates, as well as the recent study on vertical MIM structures. It has been pointed
out that the RI sensitivities and SERS enhancement factors have been significantly
restricted due to the fact that the ’hot spots’ of cavity plasmon modes reside inside the
insulator layer, and are therefore not accessible to the detecting medium and Raman
molecules. In order to address this problem, the objectives of this thesis are to achieve a
better understanding of the fundamentals of vertical MIM structures, to expose the ’hot
spots’ of cavity plasmon modes, to study the RI sensing capabilities of MIM cavities,
and to improve the SERS performance of MIM cavities, which are the main topics of
Chapter 4, Chapter 5, Chapter 6 and Chapter 7, respectively.

In Chapter 2, the basic theory about surface plasmon polaritons (SPPs), localized
surface plasmonic resonances (LSPRs) and the different kinds of coupling regimes be-
tween them are presented. In the last section, recent progress in applying Fabry-Pérot
(FP) models in the radio frequency regime to describe the standing-wave plasmonic
resonances in 1D, 2D and 3D plasmonic resonators is presented.

In Chapter 3, the fabrication and characterization methods that have been used
in this thesis are shown. Firstly, the fabrication processes of disc-on-film substrates
and vertical disc dimer substrates are presented. Then the methods for geometrical
characterization: scanning electron microscope (SEM) and focused ion beam (FIB)
cross-sectioning are presented. They are followed by the introduction of the optical
characterization set-ups including extinction, reflection, scattering and Raman mea-
surements. Finally the simulation cell in Comsol Multiphysics for the investigated
vertical MIM structures is shown.

In Chapter 4, the cavity plasmon modes (TEMmn) in MIM structures are described
by a model for a circular FP cavity with perfect electronic conductor (PEC) reflectors.
The resonance wavelengths are found to appear at the intersection of the eigenvalues
of a circular FP cavity with the dispersion of gap surface plasmons in corresponding
infinite MIM waveguides. Most importantly, two sets of cavity plasmon modes are
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identified: edge cavity plasmon modes (TEMm1) with modal lobes distributed along
the circumferences of circular cavities, and surface cavity plasmon modes (TEM1n)
with modal lobes along the diameters of cavity modes. The different field distribution
characteristics of edge modes and surface modes lead to very different performances in
optical variation when exposing the ’hot spots’, the RI sensitivities and SERS perfor-
mance, which are studied in Chapter 5, Chapter 6 and Chapter 7, respectively.
Then it is shown that the plasmonic modes in disc-on-substrate samples can be de-
scribed as well by the circular FP model. A comparison of the properties, including
bandwidth, resonance wavelength and field intensity, of cavity plasmon modes in MIM
cavities and Au discs is presented. The resonance characteristics of cavity plasmon
modes in MIM cavity arrays as a function of periodicity, cavity radius and cavity
height are investigated. Strong coupling with Rabi-analog splitting has been observed,
and the energy exchange and the physical properties of hybridized modes have been
studied. The Fano-shaped extinction spectra have been revealed to result from the
Fano hybridization between the narrow Lorentz shaped cavity plasmon modes and the
transmitted broad incidence continuum.

In Chapter 5, the importance and possibility to expose the ’hot spots’ of cavity
plasmon modes are studied. Firstly, the resonance characteristics of cavity plasmon
modes are investigated in three MIM cavities with different spacer configurations by
simulations. On one hand, it is concluded that for open FP cavities, field maxima
always appear at the edges of FP cavities however the spacer configuration varies. On
the other hand, the resonance position is significantly influenced when the variation
of the spacer configuration induces RI changes in the modal lobes of cavity plasmon
modes, while it exhibits no resonance spectral shift when the RI in the modal nodes
is modified. Then the experimental results for underetching are presented: the cavity
plasmon modes blue-shift as the SiO2 disc spacer gets reduced by wet etching. For
the surface modes, more modal energy resides in the central modal lobes rather than
in the edge lobes, therefore edge modes TEM11 and TEM31 show higher sensitivity
than surface modes TEM12 and TEM13. It is observed as well in experiments and
the simulations, that the higher order surface plasmon mode TEM13 shows a smaller
spectral shift compared to the lower order TEM12 mode, due to less near-field energy
residing at the edge lobes of the TEM13 mode compared to the TEM12 mode.

In Chapter 6, the RI sensing capabilities of MIM cavities are studied. The Lorentz
shaped reflection spectra are well suited for RI sensing based on spectral shifts, while
the Fano-shaped extinction spectra show excellent sensitivity as an intensity-modulated
sensor. It is concluded that the edge cavity modes show better sensitivities than sur-
face cavity modes, and the lower order surface plasmon modes show better sensitivities
than those of the higher order surface modes, due to the near-field distribution charac-
teristics. Then the RI sensing capabilities of MIM structures with a SiO2 disc spacer
(MIM(II)) are investigated in the bulk sensing configuration for MIM arrays with vary-
ing Au disc sizes and varying periodicity. The resolution of sensors, the sensitivities
of the LSPR modes as spectral shift modulated and intensity modulated sensors, the
sensitivities of the SPP mode and the sensitivities of cavity plasmon modes TEMmn
are discussed experimentally. Moreover, the possibility to tune the RI sensitivities of
cavity plasmon modes and SPP modes by mode hybridization was confirmed by simu-
lations and experiments. Finally, the sensitivities of MIM cavities have been studied by
simulation in molecular sensing configurations: the cavity plasmonic modes show more
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promising performance compared to SPP modes, due to the difference in near-field
intensity inside the sensing volume.

In Chapter 7, the SERS EF of MIM cavities with varying cavity radius and period-
icity, with and without underetch are studied by experiments and simulations, taking
the SERS signal from 5 nm island films as a reference. For the MIM structures with
an unetched SiO2 disc spacer, comparable SERS EFs to those of the 5 nm island films
were achieved with the Raman molecule 4-mercaptobenzoic acid (4-MBA). The EFs
are plotted as a function of cavity radius, and two EF peaks attributed to the first two
order cavity modes (TEM11 and TEM12) are identified. Good qualitative agreement
has been found between the experimental and simulated EFs variation as a function of
cavity radius. It is observed in both experiments and simulations, that notable SERS
EF improvement has been achieved after wet etching even without any efforts to op-
timize the etching process, and the cavity radius which gives rise to the highest EFs
attributed to TEM11 and TEM12 modes, shifts to a bigger cavity radius after wet etch-
ing. Good qualitative agreement has been found for the SERS performance variation
before and after etching as well. The SERS performance of vertical disc dimers with
varying geometrical parameters has been investigated and compared to that of disc-on-
film substrates by experiments and simulations, with the Raman molecule trans-1,2-bis
(4-pyridyl)-ethylene (BPE). Similar dependency of the effective SERS EF as a function
of cavity radius was found for the two SERS substrates.
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B.6 La dépendance sur la périodicité . . . . . . . . . . . . . . . . . . . . . . 182

B.7 Comportement anti-croisement . . . . . . . . . . . . . . . . . . . . . . 183
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Chapter 1

Introduction

1.1 State of the art

There are two kinds of surface plasmons: localized surface plasmon polaritons (LSPPs)

and surface plasmon polaritons (SPPs), depending on either light being coupled into

non-propagating surface plasmonic modes in nanostructures or propagating surface

plasmons at extended metal/dielectric interfaces. Details about these plasmonic modes

will be described in Chapter 2. The collective oscillation of the free electron gas in the

metal according to the local electric field with respect to the fixed ionic cores, which is

inherent to the excitations of LSPPs and SPPs, results in a well confined and enhanced

electromagnetic (EM) field. Due to the mechanism of this plasmon oscillation, both the

resonant position and the intensity of plasmonic modes are very sensitive to a change

of the surrounding medium, as well as the size and shape of the nanostructures [1–4].

These properties allow for biomedical sensors and plasmon-enhanced Raman sensors

to be created based on such nanostructures. Hence, since the discovery of LSPPs and

SPPs, a lot of efforts have gone into the application of plasmonic sensors in clinical

diagnosis, food security, or environment monitoring. The objective of this section is

to provide an overview over the state of the art with respect to the refractive index

plasmonic sensor and surface enhanced Raman scattering sensor, which are relevant to

this thesis.

1



2 Chapter 1. Introduction

1.1.1 Refractive index plasmonic sensors

1.1.1.1 Performance considerations of plasmonic sensors

Refractive index plasmonic sensors are one of the simplest and most straightforward

applications of plasmonic nanostructures. The refractive index sensitivity of plasmonic

sensors is a common standard to evaluate the sensing performance, and it is defined

by the resonance wavelength shift per refractive index unit (nm/RIU),

Sensitivity =
dλresonance

dnd
(1.1)

where λresonance is the resonance wavelength of the nanoparticle and nd represents the

refractive index of the surrounding medium.

Besides the refractive index sensitivity, resolution is another key performance char-

acteristic for the evaluation of the sensing capability. It is defined by the smallest

refractive index change that can be discerned by the plasmonic sensor, and is affected

by the signal/noise ratio and the line width of the plasmonic mode.

The figure of merit (FoM) which takes into consideration both sensitivity and resolution

of plasmonic sensors, is defined by the refractive sensitivity divided by the FWHM (full

width at half maximum) of plasmonic modes

FoM =
Sensitivity

FWHM
=
dλresonance/dnd

FWHM
(1.2)

where the FWHM characterises the linewidth of the plamonic modes.

The FoM has been suggested to be a more general standard to evaluate the global

sensing performance of a plasmonic sensor [5–8]. For instance, nanoparticles with

bigger sizes usually tend to show higher refractive index sensitivities due to stronger

near field and extinction efficiency [6]. However, that does not mean, that bigger

nanoparticles are always better sensing structures than smaller particles. Figure 1.1

shows the simulated extinction spectra for Au disc arrays with a periodicity of 350 nm,

while the diameters of the Au discs vary from 80 nm to 320 nm. The extinction of Au

disc arrays increases as a function of increasing disc diameter. Whereas, the line width

of the dipolar plasmonic modes also increases dramatically with increasing diameter

due to the radiation retardation and the multipolar plasmonic modes excitation. As

a result, the FoM and thereby the sensing resolution will decrease as a function of

increasing disc diameter, attributed to the expanding of the line width.

Sensors possessing high sensitivity and FoM have been developed based on many kinds
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Figure 1.1: Simulation of extinction spectra for disc arrays with different diameters

of plasmonic structures [9–11]. A variety of nanostructure substrates, which can sup-

port either LSPPs or SPPs, have been widely investigated as refractive index sensors.

In the following sections, a state of the art for SPP refractive index (RI) sensors and

LSPP RI sensors is presented.

1.1.1.2 SPP sensors

The first SPP biosensor was presented in 1983 by Liedberg [12]. SPP biosensors have

become a popular research subject since then. Till today, SPP sensing has become a

well established method in immuno-assay biosensing, DNA hybridization biosensing,

label free biosensing and others [5]. SPP sensor products with excellent performance

have been available commercially [13, 14].

SPP sensors can be characterized in three categories based on the different excitation

mechanisms of the plasmon polaritons : prism based SPP sensors, grating based SPP

sensors and waveguide coupled SPP sensors. The excitation of SPPs demands that

the wave vector mismatch between the illumination light and plasmonic wave on the

propagating direction be overcome. The basics of these methods are shown in the

following. A more detailed treatment can be found in the next chapter.

* Prism based SPP sensor

Using a prism to excite surface plasmon polaritons on the surface of a metal film
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is the most straight-forward and most popular method. The first SPP sensor

ever proposed [12] is based on this coupling method.

Figure 1.2: Schematic of a SPP sensor based on prism coupling [15]

Figure 1.2 shows a schematic for a biochemical SPP sensor based on the so-called

Kretschmann configuration. It consists of a glass prism with a metallic thin

film evaporated on its surface. The light is coupled into plasmon waves on one

side of the thin metal film, when the film is illuminated through the prism with

high refractive index from its backside. A microfludic channel is combined with

the compact SPP sensing unit to provide a precise control and manipulation

of fluids. The metal surface is functionalized with recognition molecules, such

as antibodies, single strand DNA etc. Another important advantage of a SPP

sensor based on a prism is that it can be easily combined with any type of

sensing modulation where the resonance wavelength shift, or resonance angle or

intensity is measured. A detection of RI changes of 5×10−6 RIU [16] and the

detection of short oligonucleotides (23-mers) at concentrations as low as 100 pM

[17] by intensity modulations have been shown. RI resolutions of 5×10−7, 2×10−7,

5.5×10−8 were reported for resonant angle modulated [18], resonant wavelength

shift modulated [19] and phase modulated SPP sensors [20], respectively.

* Grating based SPP sensor

In the grating coupled configuration, the wave vector of the illumination light is

increased by diffraction of a grating (m·2π/P), where P is the grating constant

and m is the diffraction order. The grating can be fabricated directly on the

metal film by lithographic methods. Grating coupled systems are not as widely

used as prism coupling, however, they are more compatible to mass production

and it is easier to miniaturize the size of the sensing unit. This makes grating-

couplers an attractive approach for the fabrication of low-cost and compact SPP

sensing structures [21].
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Figure 1.3: Schematics of a SPP sensor based on grating coupling [21]

Figure 1.3 shows a schematic diagram of a SPP biosensor based on grating exci-

tation. In this method, the metallic film has one smooth surface while the other

surface is tailored into a metallic grating. As mentioned above, the smooth side

of the thin metal film is treated with recognition molecules to achieve high selec-

tivity and combined with a microfludic channel. When light is incident on the

metallic grating, it will obtain a diffraction momentum, and the wave vector of

free light is increased to match that of the plasmonic waves. In this biomedical

sensor, both wavelength and angular sensitivity were studied, and the detection

sensitivities are estimated to be 700 nm/RIU and 509◦/RIU in wavelength and

angle sensing modulation [21].

* Waveguide coupled SPP sensor

In the waveguide coupling configuration, the coupling mechanism is similar to

prism coupling. In this case, the metallic film is in direct contact with a photonic

waveguide. The wave vector matching condition is fulfilled by total internal

reflection of guided modes at the waveguide/metallic film interfaces. Among all

the waveguide coupled SPP biosensors, sensing schemes combined with planar

waveguides and optical fibers are the most popular and widely used. With the

prism being replaced by a waveguide, SPP sensors can be fabricated to be more

compact, user-friendly and readily integrated with any commercialized optical

elements.

Figure 1.4 (a) shows the schematics for two of the most studied SPP sensors based

on optical fibers. The upper structure in Figure 1.4 (a) is fabricated by deposition

of a metal layer onto the waist of a biconical tapered multimode fiber. Although

this tapered optical fiber showed high sensing sensitivity, the tapered fiber waist is

very small, making this sensor configuration not robust and difficult to fabricate.

Alternatively, the lower configuration in Figure 1.4 (a) is proposed. One side of an

optical fiber is polished to expose the core, followed by the deposition of a uniform
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Figure 1.4: SPP biochemical sensors based on waveguide coupling. (a) SPP sensor
based on planar waveguide coupling [22]. (b) Side-polished polariton fiber sensor [15].

metal film on the fiber waist. The strong evanescent wave of the optical modes

will excite SPP waves on the gold surface, which can examine the surrounding

medium. A theoretical sensitivity of 2300 nm/RIU has been estimated [23].

Figure 1.4 (b) presents a planar waveguide coupled SPP biosensor with a long pe-

riod grating (LPG) imprinted in the waveguide layer [22]. The imprinted (LPG)

grating SPP sensor shows higher sensitivity than a short period grating (SPG)

SPP sensor. LPG is applied as a method to address the low sensitivity issue for

a Bragg grating SPP sensor, in which the detected signal is a hybrid SPP mode,

mainly the guided mode and slightly weighted by the excited surface plasmon

polaritons. With the presence of a long period grating, the guided wave will

excite a SPP wave propagating in the same direction. The transmitted guided

mode through the grating is then applied in the sensing interrogation process.

This waveguide coupled SPP sensor is modulated by the resonant wavelength

shift according to the RI change in the surrounding material and a sensitivity of

1100 nm/RIU is estimated.

1.1.1.3 LSPR sensors

The dependence of the LSP resonance (LSPR) wavelength as a function of the dielectric

constant of the surrounding medium, can be analytically studied using the frequency-

dependent dielectric permittivity from the Drude model of metals <(εm) = 1 − ω2
p

ω2+γ2

and the resonance condition for a nanosphere <(εm) = −2εd, where εm, εd are the di-

electric constants for metal and dielectric surrounding, ωp means the plasma frequency

and γ means the damping parameter of the bulk metal.

Converting from dielectric constant to refractive index, we get a condition for the
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resonance wavelength [11]

λresonance = λp

√
2n2

d + 1 (1.3)

where λp is the wavelength corresponding to the bulk plasma frequency. From equation

1.3, one can easily draw the conclusion that the localized plasmon resonance position

red shifts as the surrounding refractive index increases.

* Colloid based LSPR sensors Without any demands for sophisticated nano-

fabrication equipments and the expertise to operate them, colloid nanostructures

are the simplest and most accessible in the laboratory. They can be fabricated

with different shapes, sizes and materials, using a variety of well-developed chem-

ical synthesis methods, as shown in figure 1.5 [24, 25]. Many works have been

Figure 1.5: (a)-(i) Transmission electron microscopy (TEM) images of nanostructures
with different geometries. Scale bars: 200nm. [24]

dedicated to applying different colloids for plasmonic sensors and to study the

factors affecting their RI sensitivities.

In Ref. [6], the sensitivities of spherical particles with radii of 40 nm, 30 nm and

15 nm were investigated. The LSPR sensor is fabricated by depositing colloids on

a glass chip, which is then integrated with a microfluidic chamber. Sensitivities

of 49.1 nm/RIU, 57.8 nm/RIU and 90.0 nm/RIU were achieved for 15 nm, 30 nm
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and 40 nm nanoparticles, respectively. This shows that the bulk RI sensitivity of

LSPR sensors increases with the size of the used nanoparticles.

The influence of the aspect ratio, meaning the ratio of the length to the width of

a nanorod, on the RI sensitivity is also studied by many groups [25, 26]. It was

demonstrated that for nanorods with fixed radius, the RI sensitivity increases

from 157 to 497 nm/RIU, when the aspect ratio increases from 1.0 to 3.4. As

before, for nanorods with fixed aspect ratio while varying sizes, the nanorods

with bigger sizes show higher sensitivity.

It has also been shown that the shape of nanostructures plays a dramatic role for

the RI sensitivity [27]. For nanostructures with the same volume but different

shapes, single silver nanotriangles were proved to have a much higher sensitivity

than spheres [28]. In [11], Mayer et al. summarized the refractive index sen-

sitivities of different gold and silver nanostructures, such as spheres, core/shell

structures, rods, stars, pyramids, bipyramids, cubes etc. It is a general rule that

nanostructures with more sharp edges and sharp tips, such as nano triangles and

nano pyramids, show especially high RI sensitivities and the sensitivity increases

with increasing resonance wavelength. A sensitivity as high as 801 nm/RIU was

achieved with nanorice, a bipyramid structure with two sharp tips [11].

* LSPR sensor based on patterned structure In chemical synthesis, the

desired nanostructures are always accompanied with by-products of undesired

shapes and sizes. And even though the colloids are treated with stabilizing agents,

aggregation between nanoparticles cannot be completely prevented. As a result,

the ultra high sensitivity of LSPR sensors based on colloids is at the expense

of homogeneity and reproducibility. Apart from colloids, another class of LSPR

substrate is fabricated on glass or silicon substrates by patterning techniques

such as electron beam lithography [29, 30], focused ion beam milling [31] and

nanosphere lithography [32, 33], or nanoimprint lithography [34]. The advantages

are a high controllability of the shape and order of the structures and therefore

their plasmonic properties.

Figure 1.6: SEM images of different nanostructures fabricated by patterning techniques
[35]
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1.1.1.4 MIM sensors

In this section, plasmonic sensors based on metal-insulator-metal (MIM) structures

are presented. Significant improvement in patterned nano fabrication methods and

nanoparticle synthesis technology have made it possible to deliberately design the sizes

and shapes of simple nanostructures and readily manipulate the precise location and

distances to each other [15]. When metallic nanostructures are closely spaced, with

a gap of a few nanometers, the near-fields of surface plasmonic modes from different

nanostructures can strongly interact with each other. As a result, a huge electromag-

netic (EM) field is confined in the gap, which is also referred to as ’hot spot’. The idea

Figure 1.7: Schematic of the principle of RI sensing using a MIM structure [36]

of using a coupled nanostructure for refractive index sensing is shown in Figure 1.7.

When the refractive index in the plasmonic ’hot spots’ is modified, a notable red-shift

will be detected in the optical spectra.

The resonance wavelength and field intensity of the gap mode is strongly dependent

on the gap distance. Strong field intensity and confinement was observed for distances

smaller than 50 nm [37]. The confined EM field of the gap mode gets stronger as

a function of decreasing spacing distance. Whereas, a bigger gap distance is more

appealing for the accessibility of detecting molecules in the gap. The fabrication res-

olution also sets a limit to the smallest gap possible with precise control and high

reproducibility. Figure 1.8 shows ordered MIM nanostructures with controllable small

separations fabricated by different methods that have been used for LSPR sensing.

Figure 1.8 (a) shows a schematic of a plasmonic gas sensor [38]. The structure was

fabricated by a dual exposure method with high resolution electron beam lithogra-

phy. It is demonstrated that the plasmonic resonance of the gold triangle can not be

changed by hydrogen and a single palladium disc only shows noisy and unstructured

spectra under different hydrogen pressure. However, the MIM sensor, consisting of a



10 Chapter 1. Introduction

Figure 1.8: Ordered MIM structures with small separations fabricated by (a) dual ex-
posure [38]; (b) E-beam lithography and electroplating [39]; (c) interference lithography
followed by ion beam milling [40]

palladium disc and gold triangle, shows a 5 nm red shift for a 1% concentration change

of hydrogen, and a 9 nm red shift for a 2% concentration change.

The SEM images in Figure 1.8 (b) show ultra tall gold nanopillars which had a height

of 2 µm, and gaps of 60 nm and 30 nm, respectively. When the sample is illuminated

by normal incident light, different orders of longitudinal localized surface modes will

be excited along the nanopillar sidewall, featuring standing wave characteristics [39].

As the nanopillars are closely spaced, strong coupling will take place between the

longitudinal LSPR modes excited on adjacent nanopillars, resulting in strong ’hot spots’

localized in the gap. A sensitivity of 970 nm/RIU was achieved with a nanopillar array

with a height of 2.62 µm, gaps of 117 nm and a period of 400 nm.

Figure 1.8 (c) shows ordered MIM silver structures obtained by interference lithography

and ion beam milling [40]. Compared to other pattering methods, this fabrication

method has the advantage of fast and large scale fabrication, and the profiles can be

easily tuned by varying the exposure condition and milling condition. In 1.8 (c), the

average gap distance is approximately 10 nm. This structure has not been investigated

as a plasmonic sensor yet. However, with the strong ’hot spot’ in the ultrasmall gap and

the Fano-shaped absorption spectra [40], this structure possesses the key advantages

for LSPR sensors.

1.1.2 Surface enhanced Raman scattering sensor

Raman scattering is an inelastic scattering process, which delivers spectra with features

that are specific to the investigated molecule. The Raman interaction leads to two

possible outcomes: the material absorbs energy and the scattered photon has a lower

energy than the absorbed photon, this outcome is termed Stokes Raman scattering.
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The other outcome is that the material loses energy and the emitted photon has a higher

energy than that of the absorbed photon, this process is called anti-Stokes Raman

scattering. Raman spectroscopy has been widely rated as a very powerful analytical

method for chemical and biomedical applications thanks to many advantages [1, 4].

* ’Fingerprint signature’ of molecules : Very well defined Raman peaks show

unique chemical and structural information about the detected molecules, pro-

viding ultrahigh detecting selectivity. The sample preparation, in the case of

complicated detecting environments, is significantly simplified because the ana-

lytes can be accurately identified among a complex environment.

* No interference from water : Whereas water acts as a poor solvent for infrared

absorption study, water shows no pronounced Raman signal, making water an

ideal solvent for Raman sensing.

* High sensitivity : Single molecule sensitivity has been achieved with enhanced

Raman measurements.

* High spatial resolution : The spatial resolution is mainly determined by

the laser wavelength and the microscopic objective being used. The theoreti-

cal diffraction limited spatial resolution is defined by 0.61λ/NA, where λ is the

laser wavelength and NA is the numerical aperture of the objective. Tip en-

hanced Raman can provide even higher spatial resolution by a well defined metal

tip with a small radius [41].

Despite all the advantages stated above, the intensity of Raman scattering however is

very low compared to the intensity of elastic scattering [4]. Only a small fraction of

the scattered photons, approximately 1 in 10 million, contributes to the Raman signal

in the spectrum [42]. Therefore, many attempts for enhancing the signal have been

pursued. A very common way is to make use of the strong near fields in the vicinity

of plasmonic nanoparticles, know as surface enhanced Raman scattering (SERS).

1.1.2.1 Enhancement factor of SERS substrate

The enhancement factor (EF) is the most crucial aspect of a SERS substrate. It

is widely accepted that there are two enhancing mechanisms contributing to the en-

hancement factor: Electromagnetic enhancement and chemical enhancement. The EM

enhancement mechanism is believed to be the dominant enhancing effect, because it

contributes to the EF by amplifying local fields in plasmonic nanostructures, with typi-

cal enhancement factors lying between 104 and 108 [4]. Whereas, the chemical enhance-

ment yields a significantly smaller enhancement from 10 to 100, through introducing
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charge transfer between the plasmonic nanostructures and the adsorbed nanostructures

[9, 43].

Figure 1.9: Schematic of the EM enhancement mechanism [44]

EM enhancement includes the enhancement of the excitation field and the enhancement

of the Raman scattering cross-section [4, 8, 45], as shown in Figure 1.9. The strong

near field of a plasmonic resonance at the vicinity of a metal surface, initially enhances

the excitation electric field, with an enhancement of ẼLoc(ωL) = ELoc(ωL)/EInc(ωL).

This is subsequently followed by the enhancement of the Raman scattering, with an

enhancement of ẼLoc(ωR) = ELoc(ωR)/EInc(ωR). Thus, the SERS enhancement factor

can be calculated as

EF = |ELoc(ωL)

EInc(ωL)
|2 × |ELoc(ωR)

EInc(ωR)
|2

= |ẼLoc(ωL)|2 × |ẼLoc(ωR)|2
(1.4)

Where, ELoc(ωL) and ELoc(ωR) represent the enhanced local electric field strength at the

laser wavelength and the Raman scattering wavelength, respectively, while EInc(ωL)

and EInc(ωR) mean the incident E field strength at the laser and the Raman wave-

length. ẼLoc(ωL) and ẼLoc(ωR) are the enhancement of the excitation and emission

field, respectively. Owing to the fact that Stokes shifts are usually small compared to

the band width of plasmonic modes, one can make a simple estimation of the SERS

EF by assuming that the enhancement of the radiative Stokes field is the same as the

enhancement of the exciting field [42]. Thus EFs of |Ẽ|4 can be derived from formula

1.4.

EF ≈ |ẼLoc|4 (1.5)

Where ẼLoc is the local field enhancement of the field of incidence at the Raman active
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site.

1.1.2.2 SERS sensing

The emerging nanofabrication techniques and synthesis methods, together with a better

understanding of the signal enhancement mechanism [46, 47], have fuelled the research

on plasmonically enhanced spectroscopy, such as SERS [48–53], surface-enhanced in-

frared absorption spectroscopy (SEIRAS) [54–56], surface enhanced fluorescence (SEF)

[57, 58] and tip enhanced Raman scattering (TERS) [59, 60]. Various plasmonic struc-

tures have been studied for SERS enhancement capabilities.

* Single molecule Surface Enhanced Raman Spectroscopy (SMSERS) :

SERS substrates with EFs high enough to detect single molecules have been

developed [61–64]. Lim et al. functionalized DNA molecules on Au nanoparti-

cles to create well defined nano bridge nanogaps, as shown in Figure 1.10. The

engineered nanogap between the Au core and the Au shell can be occupied by

quantifiable Raman molecules. A linear dependence of the SERS signal intensity

on the molecule concentration has been found, with a limit of detection down to

10 fM concentration. Single particle Raman mapping analysis manifested that

most of the Au nanoparticle aggregations show EFs between 1 × 108 and 1.5

× 109, which is enough for single molecule studies [62]. Despite the ultra high

sensitivity these SMSERS substrates can provide, their fabrication requires so-

phisticated biochemistry functionalization of the gold nanostructures, as well the

Raman dyes. These substrates can be a powerful tool for molecular study, how-

ever, not a proper tool for sensing and monitoring as it demands the analyte to

be modified by DNA strands first.

* Metallic islands : Thin films of nobel metals, with a thickness of ∼ 5 nm,

have been proved to be an easily fabricated SERS substrate with excellent EFs

[65, 66]. A thermally evaporated ∼ 5 nm metallic film is not a continuous film,

but consists of island-like structures which are separated by nanogaps. There

are works focused on investigating the enhancement mechanism of these metallic

island films [65, 67, 68]. It is believed that ’hot spots’ can be excited in the

nanogaps between nano islands, and these ’hot spots’ feature stronger local near

fields when the neighbouring islands are nearly touching, allowing for maximum

near field coupling. Figure 1.11 (a) and (b) show the simulated field distribution,

local field enhancement and a |ẼLoc|4 approximation SERS EF for a semicontinu-

ous Ag island film. The enhancement of such a film varies significantly from spots

to spots, even though an EF of 3× 106 can be achieved locally. To address this
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Figure 1.10: Surface DNA-mediated synthesis and characterization of DNA-anchored
nanobridged nanogap particles, adapted from [62]

Figure 1.11: The electric field intensities on a silver semicontinuous film at the perco-
lation threshold, for the wavelength 0.5 µm; (a) I2(r) = |E(r)|2 and (b)I4(r) = |E(r)|4,
adapted from [67]
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issue, some groups have applied thermal annealing to these island film structures

[69, 70]. After annealing, the islands of the film become spherical and grow in

height, which allows for a comparatively sharper LSPR peak and more uniform

EF. However, the enhancement factors of metallic island films vary from film to

film depending on the quality of the glass substrate, glass pretreatment, film de-

position rate, deposition temperature, deposition geometry, and postdeposition

annealing [71]. Despite the impressive average EFs of metallic island films, the

high EF cannot be effectively reproduced on a nanometric scale.

* Lithographically fabricated SERS substrate : Lithographically fabricated

nanostructures are good candidates to be applied as SERS substrates, in terms

of reproducibility of the signal and tunability. Optical responses of lithographic

substrates can be readily tuned by the nanostructure size, shape and array period,

over the whole range of the vis-NIR spectral window to detect molecular analytes

[72]. Dependences of SERS EFs of EBL samples, on the structure sizes, edge

Figure 1.12: (a) SEM images of nanodisc array and nanohole array fabricated by
EBL; (b) SERS spectra for 4-mercaptopyridine (4-MP) adsorbed on the nanodisc and
nanohole arrays [73]

to edge distances, shapes and array periods have been studied [73–75]. Yu et

al. studied the SERS EF of nanodisc arrays and nanohole arrays with different

geometrical parameters. The nanohole array with a diameter of 370 nm, a grating

constant of 500 nm and a hole depth of 550 nm, shows the highest EF of 4.2×105,
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which is two orders of magnitude higher than the highest EF of 1.3×103 obtained

with nanodisc arrays. Figure 1.12 shows similar SERS signal obtained from

nanodisc and nanohole arrays. The gold nanoholes have a diameter of 270 nm

and an edge to edge distance of 80 nm, while the discs have a diameter of 40 nm

and an edge to edge distance of 60 nm [73].

* Film on nanoparticles (FON) : SERS substrates such as gold disc arrays and

nano holes on gold film, fabricated by EBL, have been investigated for their Ra-

man enhancement capability [73]. For substrates fabricated by the sophisticated

EBL technique, reproducibility and stability of the SERS EF is less of a problem.

While EBL is a sophisticated and time-consuming technique, the EF of an EBL

substrate is usually not comparable to that of a metallic islands film. As a com-

promise for reproducible SERS signal and high EF, films on nanoparticles (FON)

have been widely investigated as SERS substrates [76, 77]. Figure 1.13 shows

Figure 1.13: The (a) 2D and (b) 3D AFM images of an AgFON structure fabricated
by using polystyrene nanospheres with a diameter of 820 nm, adapted from [77]

the images of an AgFON fabricated by depositing a 120 nm thick silver film on

the top of drop-coated polystyrene nanospheres. Lin et al. studied the SERS EF

of AgFONs as a function of the nanosphere size, and an optimal enhancement

factor of 4.3× 106 was obtained.

1.1.3 Vertical MIM structure based applications

In the last sections, an overview over the state of the art for plasmonic based RI sen-

sors and SERS substrates has been presented. MIM structures show great potential in

these plasmonic applications due to stronger field confinement and enhancement com-

pared to monomer plasmonic structures. The strong near field interaction of plasmonic

modes in MIM structures, results in strong modification of the emission properties. In

coupled MIM structures, many advantageous phenomena such as Fano-shaped reso-

nances, plasmonic induced transparency, super absorbers and other material properties
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of metamaterials occur [78]. Vertical MIM structures have been widely investigated

because it is comparatively easy to fabricate them in the laboratory.

Vertical MIM structures have been exploited in applications such as color plasmonic

pixels [79–81], photovoltaics [82–84], narrow-band perfect absorbers [85], enhancing the

spontaneous emission rate of quantum dots (QD) [86], enhanced infrared absorption

[87] and others. Among all the other applications, plasmonic sensing [88–93] and

surface enhanced physics including SERS [94, 95], are two of the hottest topics.

Figure 1.14: (a) Schematic and (b) SEM image of disc array on film used as SERS
substrate [94]

In Ref. [91], the coupling of LSPR and SPP modes in ordered nanoparticle arrays

on gold film MIM structures was studied. They consist of an array of nanostructures

which is prepared on top of a gold film separated by a dielectric spacer. A localized

mode with hot spots on the top was applied for RI sensing. A sensitivity of 192

nm/RIU and a FoM of 3.76 was achieved for the discs on film MIM structure with

disc diameters of 170 nm. In Ref. [90], a vertical MIM structure, consisting of a Au

discs stack separated by an insulator disc with the same diameter, was studied. Three

plasmonic modes were identified through extinction spectra: a symmetric mode, an

antisymmetric mode and a surface lattice mode. The symmetric mode shows a field

distribution similar to the case of single discs with a strong EM field at the bottom

edges. The antisymmetric mode features ’hot spots’ located in the dielectric spacer and

just outside the spacer. The surface lattice mode was observed at the grating orders.

Sensing capabilities were investigated for different plasmonic modes in the cases of bulk

RI sensing and molecule sensing. RI sensitivities of 326 nm/RIU and 248 nm/RIU were

achieved for the antisymmetric LSPR mode and surface lattice resonance mode, with
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FoMs of 8.6 and 4, respectively, in a bulk sensing situation. On the contrary, in the case

of molecular sensing, the antisymmetric LSPR mode showed better performance than

the SLR, and a limit of detection of 6 nmol/L was obtained for testosterone-antibody

sensing.

In other works, Chu et al. used the same vertical MIM structure, see Figure 1.14,

as in our study [91]. In this study double resonances were used, which were created

by coupling of SPP modes with localized cavity modes, to enhance the excitation and

emission of Raman scattering at the same time. The SERS EF of the vertical MIM

structure was two orders of magnitude higher than that of a gold disc array on a glass

substrate. Furthermore, the MIM structures with optimal grating periods provide a

significantly larger SERS EF than MIM structures with non-optimal periods, even if

the structures are more dense.

Figure 1.15: Vertical MIM structures used for enhanced infrared absorption [87]

A MIM structure as in Figure 1.15 has been applied by Srajer et al. for enhanced

infrared absorption [87]. Instead of a continuous insulator film spacer, they sandwiched

an insulator disc in between patterned metallic nanostructures and film. The insulator

disc has the same size as the gold disc arrays. It has been demonstrated in experiments

that the MIM structure enhanced the absorption signal of the molecules by a factor of

∼ 2.2 × 106, while preserving the characteristic molecular absorption line shape well.

1.1.4 Exposing the ’hot spot’ in vertical MIM structures

It is easy to imagine that when the thickness of the insulator spacer layer is less than 10

nm, the electromagnetic field is well confined and enhanced, in the cylindrical dielectric

cavity sandwiched between the gold nanodisc and the gold film. In the works mentioned

above, either a thin continuous dielectric film [91, 94] or an insulator disc with the same
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size as the gold nanoparticles [87, 90] were evaporated as a spacer layer. This however

means, that only a very small fraction of the enhanced field of the cavity modes is

accessible to the surrounding environment, since most of the ’hot spot’ is occupied

by the dielectric spacer. By making this part of the near field accessible to detecting

molecules or a changing surrounding medium, the performance of this ordered MIM

substrate as plasmonic RI sensors, SERS substrates and other applications based on

enhanced EM fields, can be considerably improved.

Figure 1.16: (a) One example for a fabrication process of a vertical MIM structure
with exposed ’hot spots’; (b) SEM images of the fabricated structures in (a) [95]

Cao et al. developed a vertical MIM structure which consists of two gold nanoparticles

separated by a sacrificial Al2O3 layer, with exposed ’hot spots’ obtained by chemical

etching [95]. As shown in Figure 1.16, the MIM structures were fabricated by rapid

thermal annealing (RTA) of a thin Au film to obtain the first layer of gold nanopar-

ticles, then a layer of Al2O3 layer was deposited by ALD to define the gap distances

between Au nanoparticles. Then another thin layer of Au film was deposited by mag-

netron sputtering, followed by RTA to create the second layer of gold nanoparticles.

Finally, 5% KOH was used to etch the sacrificial Al2O3 layer. A SERS EF over 107 for

methylene blue was achieved in experiments. Furthermore, it was demonstrated that

Au NPs/nanogap/Au NPs structures showed higher EFs with smaller gap distances.

Finite-difference time-domain simulation (FDTD) results show that most of the en-

hanced EM field is localized inside the nanogap, and that the MIM structures provide

a stronger EM field enhancement with smaller gap distances.

In [93], Manoj et al. developed a MIM structure with exposed ’hot spots’, based on
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the same structure configuration as in Ref [91, 94]. The MIM structure consists of a

smooth gold film with a thickness of 30 nm, a sputtered SiO2 layer with a thickness

of 5 nm, and Au disc arrays with a thickness of 30 nm and diameters varying from 90

nm to 110 nm. To expose the hot spots of the plasmonic cavity modes, inductively

coupled plasma (ICP) etching with CF4 and O2 gases was used to selectively etch the

SiO2 insulator layer.

Figure 1.17: Vertical MIM structure with exposed ’hot spot’ used for RI sensing [93]

The etched structures were applied in LSPR sensing, as shown in Figure 1.17. The

plasmonic resonance blue shifted as the dielectric insulator layer got selectively etched.

A FoM of 2.2 was achieved in sensing experiments with oil, this FoM is well improved

compared to the FoM of 0.9 for vertical MIM structures without etching and of 0.6 for

nanodisks on a glass substrate [93]. In this work, an interpretation of the Fano-shaped

transmittance spectra was also presented. In agreement with [91], they believe the

Fano shape arises from coupling of the narrow spectral plasmonic resonance to the

continuum of the white light transmitted through the substrate.

1.2 Our Objectives

In the last sections, the research background of this thesis has been presented. From the

state of the art, it comes with no surprise that MIM structures in general provide better

performance in RI sensing and enhancing Raman signal than monomer nanostructures

under the same conditions. Then applications based on vertical MIM structures, which

are relatively easy to fabricate in the lab, were briefly reviewed. Driven by the intention
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of improving the sensing capability, the necessity of exposing the hot spot in vertical

MIM structures was concluded, followed by an introduction of recent works on this

subject.

Although high sensitivity and SERS EFs have been achieved by vertical MIM structures

with exposed ’hot spots’, there are still some improvements to be made. In Ref. [95],

the Au NPs were created by thermal annealing of a thin layer of Au film, giving little

control over the generation of MIM structures. This can be seen in the SEM images

in Figure 1.16. The high SERS EF is at the expense of reproducibility. In Ref. [93],

the selective etching of the insulator started from a continuous SiO2 film, which can

be replaced by insulator discs, so that the undercut in the MIM structures can be

introduced more effectively. As it is not easy to monitor how the geometry of the

insulator layer is changing with the etching time, it is necessary to study the role of

the insulator layer in the plasmonic properties of cavity MIM structures. Furthermore,

as the ’hot spots’ of cavity plasmon modes are exposed, it is a exciting topic to study

their capability in SERS.

Our objective is to develop a plasmonic substrate which contains arrays and is re-

producible, while providing strongly enhanced near fields and narrow linewidths of

the plasmonic modes for well-performing plasmonic sensing applications. Different

plasmonic modes, such as grating induced SPPs, LSPR modes at gold nanoparticles,

and cavity modes in the insulator cavity will be identified in experiments and simula-

tions. The influence of each building element of the MIM structure on the plasmonic

properties, especially the geometry of the insulator layer, will be studied. A better

understanding of the fundamental physics in cavity MIM structures will guide the way

to an optimized sample geometry. An undercut will be created by wet etching of the

spacer layer. The potential of this undercut MIM structure in RI sensing and SERS

will be investigated.

1.2.1 Reproducible and accessible ’hot spot’

Many efforts have been dedicated to fabricate and profit from the ’hot spots’ of lat-

eral MIM structures [37, 39, 40]. The coupling strength of plasmonic modes strongly

depends on the gap distance. The field confinement and enhancement increases dra-

matically as the gap distance decreases. For lateral MIM structures arrays, as shown

in Figure 1.18, gaps are most commonly created by e-beam lithography (EBL), which

means that gaps narrower than 10 nm are of poor reproducibility, limited by the res-

olution of the EBL technique. In contrast in the case of vertical MIM structures, the

precise control of a gap down to a few nanometers is better controllable, because the
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Figure 1.18: Schematic of lateral (left) dimer and vertical (right) dimer

gap in a vertical MIM structure is defined by thin layer deposition techniques, such

as thermal/E-beam evaporation, sputtering or atomic layer deposition, as shown for a

vertical dimer in Figure 1.18. A sub-nanometer gap can be achieved when an insula-

tor layer with a thickness of less than a nanometer is sandwiched between two metal

nanostructures by atomic layer deposition [96, 97]. Besides, reproducible realization of

gaps larger than 5 nm can be achieved with sufficient thickness control by established

techniques like evaporation and sputtering.

Apart from the advantage in gap control and reproducibility, vertical MIM structures

are also a better configuration for fabricating heterodimers. Heterodimers are a way

to gain more tunability of the plasmonic resonance by using different metals for two

nanostructures. In the case of lateral heterodimers, a dual exposure method is usually

used, which demands for high precision of alignment, sophisticated equipment and

operation expertise. Whereas, vertical MIM structures can be easily achieved by using

a different deposition source.

Finally, vertical MIM structures can exhibit larger mode volumes in the gap (a field

map will be shown in chapter 4) than lateral MIMs, such as bowties. In addition, the

spatial overlap of different plasmonic resonances can be high, which enables a Raman

molecule residing at that location, to be enhanced simultaneously at the excitation and

emission wavelengths of Raman scattering [94].

The ordered ’hot spots’ in vertical MIM structures will be exposed to the sensing

environment after well controlled wet etching in this thesis. The refractive index change

in the ’hot spot’ will dramatically change the resonant condition of the cavity plasmon

modes, leading to strong resonance position shifts. This is shown in chapter 5. In the

case of SERS applications, Raman molecules immobilized in the ’hot spot’ of vertical

MIM structures, will scatter a notably enhanced Raman signal according to formula

1.4. This will be shown in chapter 5 and chapter 7.
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1.2.2 Fundamental physics in vertical MIM structures

In a vertical MIM structure, for instance, gold disc arrays on gold film separated by a

thin insulator layer, a rich set of plasmonic modes of different natures can be excited.

These include localized surface plasmon resonances (LSPRs) from gold nanoparticles,

surface lattice modes arising from the far field interaction of the plasmonic radiation

among neighboring nanoparticles, and surface plasmon polaritons (SPPs) on the two

sides of the gold film excited by the gold disc arrays.

By varying the geometrical parameters or building materials of the MIM structures,

the plasmonic modes can be tuned and interfere with each other, resulting in shifted

resonance positions, Fano-shaped extinction profiles and further enhanced near field.

Optimal MIM plasmonic applications can be designed in accordance to different illu-

mination conditions and molecules to detect, based on a better understanding of how

these different modes couple and hybridize with each other.

Amongst all the excited modes in MIM structures, cavity plasmon modes are the most

interesting ones with highly confined and enhanced localized fields, sandwiched between

gold nanostructures. It is necessary to systematically study these modes and their

dependency on the dimensions of the MIM structures. This topic will be systematically

studied in chapter 4.

Due to the fact that we want to introduce an undercut in the insulator layer and expose

the ’hot spots’ of the MIM structures, it is crucial to know how the near field would

be modified when the insulator dimension is reduced.

1.2.3 Improvement of LSPR sensor performance

According to equation 1.2, the RI sensing capacity can be improved by reducing the

linewidth or by increasing the RI sensitivity of plasmonic modes. As has already been

stated previously and will be demonstrated in detail in this thesis, high RI sensitivity

can be expected when a strongly enhanced local field is subject to the refractive index

change of the surrounding media. Moreover, MIM structures provide a very uncompli-

cated way to be able obtain very narrow linewidths by confining plasmonic modes in

a Fabry-Pérot (FP) cavity in the spacer.

Figure 1.19 shows the simulated extinction and reflection spectra for Au nanodisc arrays

on a glass substrate and on a gold film separated by a SiO2 insulator disc, the Au disc

radius and insulator SiO2 spacer radius are 40 nm for both sample configurations.

The extinction spectra are evaluated taking the transmission through the Au film as
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Figure 1.19: Simulated extinction and reflection spectra for Au nanodisc arrays on
glass substrate and on gold film, separated by a SiO2 insulator disc with a thickness
of 10 nm, the disc radius is 40 nm in both cases. The extinction of the MIM structure
is evaluated taking the transmission through a gold film as reference. The Fano shape
and negative extinction will be explained in detail in section 4.6.

a reference. (That is why the negative extinction appears in extinction spectra, which

will be explained in section 4.6.). The extinction of Au nanodisc arrays, red curve in

Figure 1.19, shows an extinction peak with a line width of 37 nm and an extinction

intensity of around 0.28, while in the case of the MIM structure, the extinction spectrum

(black curve in Figure 1.19) provides a Fano line shape with a line width of 37 nm

(estimated from the positive extinction part) and an extinction maximum of 0.52. The

reflection spectrum (blue curve in Figure 1.19) shows a dip with a FWHM of 26 nm

and a reflection loss of 0.71. The RI sensing resolution will be improved both by the

narrower line width, and the higher signal/noise ratio obtained in the MIM structure

compared to nanostructures on glass as well. Besides, instead of a Lorentz line shaped

extinction as in the disc array on glass, the extinction spectrum for MIM structures

shows a Fano line shape, with a steep decrease between 684 nm and 716 nm, and the

extinction efficiency changes from 0.52 to -0.39. This feature of the Fano line shape

can be advantageous for designing a highly sensitive intensity-modulated RI sensor by

evaluating the intensity at a certain wavelength [98].

Another very important advantage of a MIM structure as RI sensing element is that

its plasmonic modes can still show very narrow line widths even for large discs. Figure

1.20 shows the simulated diffuse reflection spectra (reflection from all reflected angles is

collected instead of only one specific angle as in the case of specular reflection) for disc

arrays on glass (red curve) and on thin Au film (blue curve). The disc diameter is 320
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nm in both cases. For Au disc arrays on glass, the dipolar plasmonic mode is hardly

Figure 1.20: Simulated diffuse reflection spectra for Au nanodisc arrays on glass sub-
strate, and on gold film separated by a SiO2 insulator disc with a thickness of 10 nm,
disc radius is 160 nm in both cases.

discernible due to multi mode excitations and retardation effects, with a FWHM of

227 nm. In the MIM structure, the plasmonic modes manifest themselves in reflection

dips. In the reflection spectra for MIM structures, a series of well defined and distinct

cavity plasmon modes can be found at 640 nm, 838 nm and 940 nm, with a line width

of 18 nm, 39 nm and 24 nm, respectively, which show great improvement compared to

227 nm in Au disc arrays on glass.

The detailed study on the RI sensitivity of vertical MIM cavities will be presented in

chapter 6. To conclude, MIM structures can improve the RI sensing capability in four

ways :

• Higher sensitivity based on stronger near field [93].

• Narrower line width for better sensing resolution.

• More pronounced extinction bands and reflection dips provide higher signal/noise

ratio for better sensing resolution.

• The Fano profile shows great potential for intensity modulated RI sensors.

1.2.4 Increasing the EF of SERS substrates

According to equation 1.5, the EF of SERS is proportional to the fourth power of the

enhancement of the local near field strength. To engineer a nanostructure configuration
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with the ability to provide stronger local field enhancement, is the most straightforward

way to fabricate a SERS substrate with high EF. In Figure 1.21, the simulated modulus

Figure 1.21: Simulated near-field intensity for different structure configurations.

of the E field (|E| =
√
E2
x + E2

y + E2
z ) is shown for different structures, excited under

the same conditions. In Figure 1.21 (a), the dimensions for the Au discs and insulator

thicknesses are fixed. The height of the Au discs and Au films are 50 nm, the spacer

layer is 10 nm SiO2. The curves in different colors in Figure 1.21 (b) represent the

E-field strengths of the structure in a frame of the same color as in Figure 1.21 (a).

The modulus of the E field is evaluated at the lower edge of the gold discs in each

configuration, as indicated in Figure 1.21 (a) by the blue spots. In Figure 1.21 (b), it is

clear that the local fields of the MIM structures show a higher field enhancement than

the nanodisc arrays on glass. In the case of vertical disc stacks, the plasmonic reso-

nance wavelength is red shifted compared to nanodisc arrays, and only a slightly higher

local field enhancement at the resonance wavelength is found. The Au nanoparticles

on film MIM structures show stronger enhancement than nanoparticle on nanoparticle

structures. In the case of Au nanodiscs on Au film with SiO2 disc spacer, the enhanced

near field is 3 times the near field strength of nanodiscs on glass. The details of how the

different structure configurations modify the optical response of the plasmonic struc-

tures, will be discussed in Chapter 4. Yet, we can expect better SERS capability from

the MIM structures than from nanodiscs on glass substrates. Even better performance

can be anticipated from the vertical MIM structures when the hot spot in the dielectric

spacer gets exposed to the detecting environment by etching. Details will be presented

in Chapter 7.
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Basic theory

2.1 Fundamental plasmons

2.1.1 Dielectric function from Drude model

In the Drude model, when light is incident on metal nanostructures, the free con-

duction electrons will oscillate with the time-dependent electromagnetic (EM) field.

These oscillations are damped by collisions with the metal ion lattice. The interac-

tion between electromagnetic waves and metal nanostructures can be described in the

classic framework based on Maxwell’s equations [1, 2]. For the collective oscillation of

the conduction electrons, there is a characteristic frequency ωp, known as the plasma

frequency of the electron gas.

ω2
p =

ne2

ε0meff

(2.1)

Here n refers to the density of electrons, meff means the effective mass, e is the charge

of an electron and ε0 is the permittivity of free space. The plasma frequency is an

indicator of how fast the electron gas can respond to an incident EM wave.

By considering the motion of an electron gas in a bulk metal under the influence of a

harmonic time dependent EM field, one can derive the dielectric function of the free

electron gas [1, 2], as :

ε(ω) = 1−
ω2
p

ω2 + iγω
(2.2)

Here γ is the damping, which in the Drude model stands for the collision frequency.

It equals the reciprocal of the relaxation time of the free electron gas. The complex

dielectric function ε(ω) can be written as ε(ω) = ε1(ω) + iε2(ω), where ε1(ω) and

ε2(ω) are the real and imaginary part of the metal dielectric function, respectively.

27
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The dielectric constant is an indicator whether the electrons can oscillate at the given

frequency of light.

For incident light with a frequency ω > ωp, the metal will lose its metallic character,

the real part of ε will be positive and the metal will become transparent. In this case,

the conduction electrons will not oscillate and the light will simply be transmitted or

absorbed through other mechanisms like interband transitions.

For incident light with a frequency ω < ωp, but very close to ωp, ω/γ � 1, the collision

damping will be negligible and ε will be predominantly real.

For incident light with a frequency γ 6 ω 6 ωp, the free conduction electrons will

oscillate with the EM field of the incident light, but 180◦ out of phase due to the

charge of the electron. And the majority of light will be reflected.

For incident light with very low frequency, where ω � γ, it is ε2 � ε1. In this region,

metals are mainly absorbing.

In an ideal free-electron model, according to 2.2, when ω � ωp, we get ε→ 1. Whereas

in a real metal, there is a residual polarization due to the positive background of the ion

cores. This effect can be described by a dielectric constant ε∞. The revised dielectric

function for a real metal in the Drude model can be written as

ε(ω) = ε∞ −
ω2
p

ω2 + iγω
(2.3)

In this thesis, both in experiments and simulations, gold is the metal investigated for

its plasmonic properties. Thus, the Drude model of Au will be briefly introduced here.

The optical constants results obtained by Johnson and Christy are commonly used as

shown in Figure 2.1. Figure 2.1 shows the real and imaginary parts of the refractive

index for Au from [99]. The relative permittivities of Au from Johnson and Christy

experimental data in the visible-NIR domain of wavelengths can be fitted with the

dielectric function from equation 2.3 [1].

The fitting parameters for the Drude model of Au are

ε∞ = 9.5

~ωp = 8.95eV

~γ = 0.065eV

(2.4)

where ~ is the reduced Planck constant.

The fitting parameters to the Johnson and Christy results in 2.1 are used in chapter 4 for

the calculation of grating induced surface plasmon polaritons and for the calculation
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Figure 2.1: Complex index of refraction of Au (nAu = n + ik) calculated from experi-
mental results by Johnson and Christy [99]

of the resonance positions of cavity plasmon modes. In simulations shown in this

thesis, which are based on Comsol Multiphysics, the optical constants from Johnson

and Christy are used.

2.1.2 Surface plasmon polariton (SPP)

As mentioned in section 1.1.1.2, under proper illumination configurations, surface plas-

mon polaritons can be excited on the interfaces of a thin metal film. When light is

incident on a thin film, the oscillation of the electron gas can only exist on the surface,

resulting in propagating charge waves, known as surface plasmon polaritons. As shown

in [1, 2], by applying Helmholtz equations on the metal and dielectric side, making

use of the continuity condition for the normal component of the electric field and the

tangential component of the magnetic field at the metal/dielectric interface, one can

arrive at the dispersion relation of SPPs, excited at the interface.

kspp =
ω

c

√
εmεd
εm + εd

(2.5)

Here εm and εd mean the dielectric permittivity for metal and dielectric, respectively.

The equation sets kspp, the wave vector of the plasmon wave, in relation to the frequency

of the incident light ω. The blue curve in Figure 2.2 shows the dispersive curve for the

SPP excited on the metal/air interface. The wave vector of the SPP wave is always

larger than that of the incident light, given by k = ω
c
, shown in Figure 2.2 (blue curve

is at the right side of black curve). This wave vector mismatch has to be overcome in

order to excite SPPs on the metal/dielectric interface. The classic ways to add extra

momentum to the incident light is by prism coupling, grating coupling or waveguide

coupling. There are SPP sensors developed based on these different configurations, as



30 Chapter 2. Basic theory

Figure 2.2: The dispersive curve of SPP excited on gold surface [100]

presented in section 1.1.1.2. In Figure 2.2, the red and green curve demonstrate the

extra momentum provided by prism coupling and grating coupling, respectively.

The grating coupled SPP will be briefly introduced here due to the fact that grating

induced SPPs are inevitable in ordered nanoparticle arrays on a film MIM system.

When light is incident on a grating coupler, the momentum of the light can be changed

by diffraction, depending on the diffraction order. The momentum of the diffracted

light by a two-dimensional square grating can be described as [1, 5, 10]

kd =
2π

λ
nd sin θ +

2π

P

√
i2 + j2 (2.6)

Where λ, θ represent the wavelength and the incident angle of the free space light, P

stands for the grating constant and nd is the refractive index of the dielectric material

surrounding the grating, i and j are the diffraction orders on the two periodic axes,

i, j = 0, ± 1, ± 2 · · · . On the right side of equation 2.6, the first component is the

propagating constant of the incident light along the metal/dielectric interface, while

the second component is the grating induced momentum.

The resonance condition of grating induced SPPs kd = kspp can thus be given by

combining equation 2.5 and equation 2.6:

2π

λ
nd sin θ +

2π

P

√
i2 + j2 =

ω

c

√
εmεd
εm + εd

(2.7)

For normal incidence, where θ = 0, the resonance position λspp of SPPs can be deduced
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from equation 2.7, as:

λspp =
P√
i2 + j2

√
εmεd
εm + εd

(2.8)

2.1.3 Localized surface plasmon resonance (LSPR)

When light interacts with particles much smaller than the incident wavelength, lo-

calized surface plasmon resonances will be excited. LSPRs are non-propagating os-

cillations of conduction electrons coupled to the EM field of incident light. The po-

larizability α introduced by incident light in a small sphere qualified for electrostatic

approximation, can be written as

α = 4πa3 εm − εd
εm + 2εd

(2.9)

Where a is the radius of the sphere and a � λ, details can be found in [1]. The

resonance condition of the dipolar surface plasmon of the metal nanoparticle can be

deduced from equation 2.9:

<[εm(ω)] = −2εd (2.10)

In practice, this dipole plasmon resonance condition provides a reasonable good approx-

imation for spherical particles smaller than 100 nm illuminated within the visible-NIR

regime. For nanoparticles with larger size beyond the electrostatic scope, there will

be energy shifts due to retardation effects, occurance of higher order resonances and

radiation damping which results in a significantly broadened dipole plasmon resonance.

2.2 Coupling between surface plasmons

The resonance position of a single nanoparticle is determined by the details of nanopar-

ticle sizes and shapes, as well as the dielectric function of the particle material and of

the surrounding dielectric. For an ensemble of nanoparticles, the polarizability of each

individual nanoparticle will be influenced through far field or near field interaction

with its neighbouring particles, resulting in shifting of the resonance position, modified

line shape and bandwidth of the plasmon modes in the extinction/reflection spectra

[101–105].

In principle, there are two different kinds of plasmon coupling with respect to the mag-

nitude of particle distances. One coupling type is near field coupling and it happens

when the nanoparticles are closely separated, typically when the spacing distance is
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smaller than the dimensions of the nanoparticles. The plasmon near field, which ex-

tends beyond the physical dimensions of the particle, can then spatially overlap with

that of its neighbour. So here the plasmons are directly influenced by the plasmonic

near field of the neighbour particle. For larger particle separations beyond the regime of

near field coupling, far field coupling dominates. It is mediated by the scattered light

of the nanoparticles. In this case, the sizes of the nanostructures are much smaller

than the spacing distance and the wavelength, so that the scattered field is of dipolar

character and the particles are justified to be treated as point dipoles. The resonant

plasmons of the individual particles can couple with each other through the dipolar

field interactions which interfere to form collective radiation [101].

2.2.1 Far field plasmon coupling

The periodicity dependency of the plasmonic resonance wavelength, linewidth and

amplitude in spatially ordered structures has been extensively investigated [101, 102,

106]. In Ref. [101, 107], arrays of nanoparticles in the pattern of a two-dimensional

(2D) square grating were studied. It is manifested that particularly strong far field

plasmon coupling happens when the scattered light fields, corresponding to a certain

grating order, change from evanescent to radiative. This critical grating constant is

termed Pc. Only normal incidence is considered here, if not stated otherwise. When

the grating constant P > Pc, the light field is radiating. The transition from the

radiating regime to the evanescent regime happens when the array periodicity decreases

to the order of the wavelength of the LSPR of individual particles. Then the radiating

LSPR modes diffract in-plane, creating modes propagating through the structures,

evanescently bound to the grating plane [101, 102]. This phenomenon is also widely

referred to as surface lattice resonance, featuring collective resonances of the ensemble

of the particles due to the coupling between the diffractive orders of the arrays and the

LSPR of the individual elements.

In Ref. [101], substrates consist of a square 2D grating of Au-nanoparticles with heights

of 14 nm and diameters of 150 nm on an indium-tin-oxide (ITO) coated quartz sub-

strate. Varying periodicity was studied. Figure 2.3 (a) shows the extinction spectra of

the same particle arrays. The spectra were normalized to a constant particle density for

better comparison. It can be found from the extinction spectra that both the plasmon

decay time and resonance wavelength varies with changing grating periodicity. In Fig-

ure 2.3 (b), there is the decay time and resonance position evaluated and extracted from

extinction spectra in Figure 2.3 (a). The plasmon decay time for particle arrays with

grating periodicities ranging from P = 350 nm to P = 850 nm is shown. The decay

time is obtained by femto second (fs)-resolved measurements and it strongly depends
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Figure 2.3: (a) Extinction spectra for particle arrays with different periodicity; (b)
Plasmon decay time and resonance wavelength versus periodicity [101]

on the grating constant. This means the linewidth of collective plasmon resonances

can be readily modified through far-field plasmonic coupling. Pc can be identified by

plotting the lines Pc,sub = λ/n and Pc,air = λ. The critical periodicity is indicated by

the intersections of these lines with the experimental curve λres(P ), Pc,sub = 550 nm

and Pc,air = 765 nm for radiation in substrate and air, respectively.

As can be seen in Figure 2.3 (b), the intersection values show good agreement with

the red shifted maxima of the resonance wavelengths. The red shift of the resonance

position, which happens when P → Pc, can be explained by the fact that the scattered

optical fields in the plane of the grating become almost in-phase with the scattered

light from neighbouring particles. The energy required to excite the surface plasmon

decreases (fields add constructively, weakening the inner restoring force in each particle

[105]), causing the red shift of the resonance position.

Another conclusion from Figure 2.3 (b) is that the decay time of the LSPR mode is

longer in the evanescent regime P 6 Pc than in the radiating regime P > Pc. For

P > Pc, the field of the first grating order is radiating in the substrate. The dra-

matically enhanced plasmonic oscillation damping results from the strongly enhanced

radiation damping. In the regime P 6 Pc, more of the excitation couples into the

array elements, which reduces scattering and reflection, resulting in a longer life time.

This enhancement of the residence time of the incident optical energy within the array

may provide advantages for applications which depend on the utilization of absorbed

radiation rather than simply locally enhanced field intensities, such as light harvesting

and photocatalysis [101, 102].

In summary, far field plasmon coupling has a pronounced influence on the plasmon

line shape, both in terms of resonance wavelength as well as band width, due to the

modification of the polarizability of the individual particles by the scattered fields of

their neighbours. The red shift of the maxima occurs as a result of an in-phase addition
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of the maxima from the neighbours when the grating period is P = Pc. The varying

band width is due to a significant dependence of the plasmon decay time on the grating

constant via its influence on the amount of radiative damping [1].

2.2.2 Far- to near-field effects on plasmon coupling

In the last section, we discussed about the plasmon coupling when the particle sep-

aration is about the order of the wavelength of the incident light. As we know, the

penetration depth of SPPs in the dielectric is ∼ 100-200 nm, and the LSPR decay

length is ∼ 10-30 nm. When the particle separation is smaller than the penetration

depth, there will be a spatial overlap of the near-fields, thus near field coupling hap-

pens. It is also of great interest to study the behaviour of plasmonic coupling at an

intermediate regime, where the transition of far-field to near-field coupling occurs.

In Ref. [105], the optical properties of ordered 2D arrays of Au nanoparticles with a

diameter of 50 nm are investigated by experiments and simulations. The periodicity in

X-direction, termed x, is fixed to 80 nm, while the periodicity in Y-direction, termed

y, varies from 60 nm to 300 nm, ranging from the near-field coupling regime to the

far-field coupling regime.

Figure 2.4: Characteristics of the plasmon band of (a) 50 nm particle and (b) 5 nm
particle arrays as a function of the periodicity y at X- and Y-polarization [105].

Figure 2.4 (a) shows the evolution of the calculated plasmon band characteristics with

the periodicity in Y-direction. In order to highlight the contribution of the phase re-

tardation and the far-field radiation to the plasmon coupling, simulations were also

performed for Au particle arrays with a disc diameter of 5 nm, where the phase retar-

dation and scattering effect can be neglected [105]. Figure 2.4 (b) shows the plasmon
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band characteristics for the small particle arrays. As can be seen in Figure 2.4, for

both 50 nm and 5 nm Au particle arrays, the SPR peak wavelength shows a slightly

different variation as a function of periodicity y, at both polarizations. As all arrays

have the same periodicity x, the variations of band characteristics can be ascribed to

the variation of the coupling between the particle chains.

For 5 nm particle arrays, the absorption dominates [9], and plasmon coupling mainly

occurs in the near field. This explains why in Figure 2.4 (b), in the case of large

periods (from 20 nm to 30 nm), there is nearly no variation of the plasmon band

characteristics, at both polarizations. Numerical calculations based on the discrete

dipole approximation (DDA) show, that the phase of the induced near field between

two particle chains (periodicity x is fixed) is larger than 90◦ in X-polarization, which

leads to destructive interference. Thus a slight blue-shift of the resonance wavelength

with decreasing y is observed at X-polarization. On the other hand, an induced phase

of less than 90◦ in Y-polarization, results in constructive interference and a red-shift

of the resonance peak. The red-shift in Y-polarization is more notable than the blue-

shift in X-polarization, because the near field dominates at the direction parallel to the

induced dipole axis, so the plasmon coupling strength between particle chains is more

significant in Y-polarization than that of X-polarization. More details can be found

in Ref. [105]. For the particles with a diameter of 50 nm, the scattering cross section

Figure 2.5: Distribution of the field amplitude enhancement and the field phase in
X-polarization (a) and Y-polarization (b), adapted from Ref. [105]

induced by the collective oscillation is larger than the absorption cross section. In 50 nm
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particle arrays, both near field and far field coupling need to be considered. Figure 2.5

shows the field enhancement and phase distributions in three particle arrays (labelled

by periodicity x-y) in X-polarization (a) and Y-polarization (b). For X polarization and

large periodicity y, the coupling between two particle chains is mainly through the far

field coupling mechanism, as presented in section 2.2.1. From the phase distribution

in the second and fourth columns of Figure 2.5, induced phases of bigger than 90◦

and less than 90◦ were found in the Y-direction (coupling direction of particle chains),

at X-polarization and Y-polarization, respectively. This results in the blue-shift and

red-shift of the resonance position with decreasing y, at X- and Y-polarization, as in

Figure 2.4 (a).

For large periods, the far-field radiation dominates in the Y-direction, perpendicular

to the applied field for X-polarization, while the far-field radiation is very weak in Y-

direction for Y-polarization, which can be observed in the phase map. This explains,

why the magnitude of the blue-shift in X-polarization is larger than that of the red-shift

in Y-polarization, when y is decreased from 300 nm to 200 nm. The near field coupling

works more efficiently at smaller periods of y, at Y-polarization, resulting in a more

significant red-shift in Y-polarization than blue-shift in X-polarization (from y = 200

nm to 60 nm). This can be seen in 2.4 (a). The same phenomenon of the resonance

position showing an initial blue-shift, then the red-shift with decreasing periodicity has

also been reported in square arrays [108].

2.2.3 Near-field plasmon coupling

The last section made clear that the coupling strength for near-field coupling is much

stronger than for far-field coupling, with a distance dependence of d−3 [1]. The theory

of the near-field coupling mechanism, the distance and polarization dependence of the

coupling strength has been investigated thoroughly e.g. in hollow metallic structures

[109–111], homo- and hetero- dimers [112–115], trimers [114], particle chains [116], and

thin metallic films [117, 118]. In this section, different kinds of near-field coupling will

be presented according to the different nature of the coupling plasmonic modes.

2.2.3.1 Coupling between LSPR and LSPR

A model which has analogies to coupling electronic orbitals in molecules, has been

adapted to describe the plasmons in composite metallic nanostructures. The plasmon

modes supported by individual parts of these composite structures, with a spectral and

spatial near-field overlap, can hybridize with each other. The plasmon hybridization
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Figure 2.6: Plasmon hybridization in a spherical particle dimer [111]

scheme for a particle dimer which falls into the non-retarded regime, is a characteristic

example as shown in Figure 2.6 [111].

The dipole plasmons supported by individual spherical particles are 3-fold degener-

ate. These three dipole modes in each particle are hybridized in the dimer, and the

composite structure will exhibit new resonances, as seen in Figure 2.6. The splitting be-

tween corresponding symmetric and anti-symmetric modes is governed by the coupling

strength which decreases upon increasing separation distance. Two of the hybridized

plasmon modes feature a charge distribution parallel to the dimer axis, with a symmet-

ric mode at low energy and an anti-symmetric mode at high energy. The symmetric

mode shows a net dipole moment and couples best to external light, governing the

far-field optical properties of the dimer. Two sets of degenerate modes have dipoles

oriented perpendicular to the dimer axis. All these new modes of this interacting sys-

tem are derived from the eigenfrequencies of two-particle DDA calculations [111]. The

mode frequencies can be determined by the formula quoted at the bottom, with values

of g shown in the insets of Figure 2.6.

Another interesting aspect about LSPR and LSPR coupling is that the ’hot spots’ of the

nanoostructures will also be modified. For a monomer metallic disc on a substrate, the

’hot spots’ are mainly localized below the disc, inside the substrate, while in the case

of a disc dimer (or disc chains) on the substrate, strong ’hot spots’ have been observed

in the nano-sized gaps [116, 119]. When strong near-field coupling happens between

LSPRs, the field localization in the gap is caused by the suppression of scattering into

the far-field via excitation of plasmon modes in the particles along the dimer (or chain)

axis. In Ref. [116], it is shown in experiments and simulations that the scattering

is significantly suppressed for closely spaced particles, and the fields are localized at
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interparticle sites instead. Composite structures which enable the near field coupling

between LSPRs can therefore support ’hot spots’ in the interparticle junction, thus

they serve as an excellent platform for surface enhanced applications.

For large neighbouring particles with small distances, calculations including retardation

are needed, while the plasmon hybridization scheme is still the same. The modes of the

single nanoparticles will split into two new plasmon resonances which are characterized

by the symmetry of charge oscillations [104, 120]. Apart from this classic plasmon

orbital hybridization scheme, a Hamiltonian model has been built to explain the anti-

crossing phenomena of the resonance position and band linewidth of hybridized modes

[120, 121].

2.2.3.2 Coupling between SPP and SPP

In a multilayer system with alternating metallic and dielectric thin films, SPPs can be

excited on each metal/dielectric interface. Coupling between SPPs occurs, when the

separation between interfaces is comparable to or smaller than the penetration depth

of SPP modes. There are two typical structure configurations for the study of cou-

pled SPPs: An insulator/metal/insulator (IMI) structure and a metal/insulator/metal

(MIM) structure. For the sake of simplicity, here the interesting special case, where

the sub- and the superstrates (insulator in the case of IMI or metal in the case of

MIM) show the same dielectric response, is considered. By applying the requirements

of continuity of the electric and the magnetic field at both interfaces, the dispersion

relation of the supported SPPs in the coupled system can be described as [1]

tanh(k1a) = −k2ε1
k1ε2

(2.11)

tanh(k1a) = −k1ε2
k2ε1

(2.12)

Where ε1, k1 are the dielectric constant and the wave number of the EM wave, which

is associated with the sandwiched material, while ε2, k2 are those of the sub- and su-

perstrates. Equation 2.11 describes modes of odd vector parity (Ex(z) is odd), and

equation 2.12 describes modes of even vector parity (Ex(z) is an even function). In

IMI structures, the confinement of odd SPP modes to the metal film decreases drasti-

cally as the mode evolves into a plane wave supported by the homogeneous dielectric

environment. So the odd SPP modes in IMI waveguides are also called long-ranging

SPPs. They have a longer attenuation length along the direction of propagation than

that of SPPs. The confinement of even SPP modes increases with decreasing metal

film thickness.



2.2. Coupling between surface plasmons 39

In MIM structures, the fundamental odd SPP modes are of great interest in energy

confinement because they show no cut-off for vanishing core dielectric layer. When the

dielectric film is thin enough, large wave vectors of the odd SPP modes and thus small

penetration depths into the metallic layers can be obtained. Therefore, the localization

effects for such MIM structures can also be realized for excitations even in the infrared

[1].

If the dielectric constants of sub- and superstrates are different, prohibiting phase-

matching between the coupling SPP modes, the SPP coupling between two different

metal/dielectric interfaces varies significantly .

2.2.3.3 Coupling between LSPR and SPP

The interactions between localized and propagating surface plasmons have been investi-

gated, as well as applications based on ’hot spots’ generated by this coupling [122–129].

Many different models have been built to describe the coupling phenomena between

LSPR and SPP. In Ref. [122], ordered Au disc arrays on Au film MIM systems were

studied. An anti-crossing behaviour of the LSPR and SPP resonance positions is ob-

served in reflection spectra, in both experiments and simulations. In Figure 2.7 (a), the

Figure 2.7: Ant-crossing behaviours of LSPR and SPP resonances (a) as a function of
grating period and (b) as a function of the diameter of gold discs, adapted from [122]

calculated and experimental SPP resonance positions and LSPR resonance positions

are shown as blue dots and red triangles, respectively, as a function of the period while

the size of the Au discs is kept constant (diameter 120 nm and thickness 40 nm). The

dotted line represents the LSPR resonance of an isolated Au disc on a Au film and

the dashed line indicates the SPP resonance position calculated from equation 2.8. An

anti-crossing behaviour can be seen when the LSPR resonance of the isolated disc on

film and SPP are approximately equal to each other, at the period of 790 nm. Similar
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anti-crossing behaviour was also observed when the periodicity is kept constant and the

LSPR resonance is tuned by the size of the discs, as shown in Figure 2.7 (b). Strong

coupling between LSPR and SPP resonances was indicated by the repulsive behaviour.

2.3 Coupling between plasmonic and optical cavity

In the last section, different coupling scenarios between different plasmonic modes

were presented. In this section, the mechanism of coupling between plasmonic modes

and a Fabry-Pérot (FP) cavity will be discussed. In plasmonic cavity structures, the

metal/dielectric interfaces can act as reflective mirrors to squeeze and confine electro-

magnetic energy in the nanocavities. The coupling between the plasmonic modes and

the discrete and sharp cavity modes, gives rise to plasmonic cavity modes which show

strong standing wave characteristics. Plasmonic cavity modes have advantageous prop-

erties like strong field enhancement and confinement originating from their plasmonic

resonance origin, and very narrow and distinct resonance line shapes from their cavity

modes origin. These advantageous properties make plamonic cavity structures a very

promising substrate for surface enhanced phenomena and refractive index sensing. The

plasmonic cavity modes have attracted extensive research interest in understanding the

resonance properties [130–134], and applications of plasmonic colors [79–81, 135], plas-

monic lasers [136, 137], plasmonic absorbers [138], slow plasmons [139–141], etc. Field

distributions inside plasmonic cavities have been found to be very similar to those of

FP antenna resonators in the radio and microwave regime. The well-established dielec-

tric FP cavity models have been adapted to explain the plasmonic modes in various

plasmonic resonators as presented below.

2.3.1 1D plasmonic cavity

One-dimensional plasmonic cavity structures are the simplest structures which allow

plasmonic modes to interact with FP cavity modes. The Fabry-Pérot (FP) model

has been applied to understand the plamonic resonances in nanowire antennas [142],

nanorod antennas [143], 1D MIM waveguides [139, 140], etc.

Dorfmüller et al. studied Au nanowires with a width of 40 nm and length varying from

40 to 1630 nm with scanning near-field optical microscopy (SNOM), as shown in Fig-

ure 2.8. The near field images of the samples, shown in Figure 2.8(d), were measured

with an excitation polarization parallel to the wire axis. The near field strength varies

notably from wire to wire. For the nanowire with a length of 40 nm, the near field map
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Figure 2.8: (a) Scheme of SNOM measuring setup. (b) Simulated z-component of
the electric field 24 nm above the nanowires shown in (c). (c) Topography of the Au
nanowires. (d) Simultaneously obtained, baseline-corrected near-field optical amplitude
image for an excitation wavelength of λ = 492 nm. (e)-(h) Simulated magnitude,
measured magnitude and phase for the 140, 520, 890 and 1270 nm long wires [142].

(see Figure 2.8(e)) featured two amplitude lobes, indicating the characterization of a

dipolar mode. This indication is furthermore confirmed by the optical phase image

which showed a phase difference of 180◦ between the two lobes. Higher order reso-

nances were observed for longer nanowires. Good agreement has been found between

the simulated and measured near field distribution (see Figure 2.8(e)-(h)). Similar

observations have appeared in many works [139, 140, 143–145], an intuitive and clear

interpretation of these plasmonic properties has been given by regarding the nanowires

as 1D plasmonic FP resonators. Guided surface polaritons supported by the nanowire,

travel along the wire with a wave vector of kspp and obtain a phase shift φ upon re-

flection at the terminations. When various nanowires with different wire lengths were

studied with a fixed laser wavelength, the mth order resonance wire length is given by

[142]

2ksppL(m) + 2φ = 2πm (2.13)

In the case, when the wire length of the nanowire is fixed, the resonance wavelengths

for various orders of plasmonic modes are given by [139, 140, 143] :

2π

λspp
L+ φ = πm (2.14)

The phase shift φ upon reflection has been widely noticed due to the failure in consider-

ing the nanowire as a simple optical antenna. For instances, Söndergaard et al. found

that half-wavelength metal nanostrip resonators possess a length of only one-third of

the wavelength of the supported surface polaritons [140]. Schider et al. found that
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the eigen frequencies for plasmonic modes follow a dispersive curve similar to that of

a metal/dielectric interface, but with smaller frequencies (when the resonance wave-

length λspp was determined by the length of the nanowire L as L = jλspp/2, where j

denotes the order of plasmonic resonance [145]). These phenomena result from the fact

that the reflection coefficients at the metal/dielectric terminations are complex and as

a result, a phase shift is introduced upon reflection.

To promote the rational design of plasmonic structures with desired resonance char-

acteristics, it is crucial to understand the relation between the design parameters and

resonance conditions. Thus, it is important to precisely take into account the phase

shifts upon reflections at the metal/interface terminations of plasmonic resonators.

Many have demonstrated theoretically or experimentally, that the phase shift φ is

dependent on cavity parameters and order of the modes [139, 140, 142].

2.3.2 3D plasmonic cavity

Plasmonic modes have been studied in 3D plasmonic resonators where the plasmonic

waveguide modes are confined and interact with the cavity modes of a 3D FP cavity.

The field distributions of plasmonic modes demonstrate strong standing wave charac-

teristics, and are very similar to those of the cavity modes in a 3D dielectric antenna.

So the resonance condition in a 3D dielectric cavity has been adapted to determine the

resonance condition of a 3D plasmonic resonator [80, 81, 146–148]. In a cylindrical 3D

dielectric cavity, the resonance wavelength for TMmnp (a tranverse magnetic mode,

m,n,p denote the radial, angular and longitudinal modal index) is given by [149, 150]

λTMmnp =
2π
√
εd√

(χ‘mn
R

)2 + (pπ
h

)2

(2.15)

Here, εd represents the effective refractive index in the dielectric region. χ‘mn represents

the nth root of the derivative of the mth Bessel function of the first kind. As in a

plasmonic cylindrical resonator, the EM field of plasmonic modes penetrates into the

metallic layers and beyond the radius of the metallic disc, thus the radius and height

of the cylindrical cavity resonator are R + ∆R and h + 2∆h, respectively. Under the

same model as for the dielectric cavity, the plasmonic cavity modes of different orders

of TMmnp can be given by

λTMmnp =
2π
√
εd√

( χ‘mn
R+∆R

)2 + ( pπ
h+2∆h

)2
(2.16)
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Equation 2.16 is adapted from Ref. [137]. Yu et al studied the fundamental TM and

TE cavity mode in a 3D cylindrical plamonic resonator, in order to investigate the

possibility of applying plasmonic resonators for nanolasers.

Figure 2.9: (a) Spectral properties and (b) laser emission spectra for different
nanopatch sizes of the nanopatch laser [137]

In Figure 2.9 (a), Yu et al. showed the measured resonance wavelength evolution of

plasmonic cavities with various radii. The measurements showed good agreement with

the numerical calculations based on equation 2.16 (solid line) and numerical simula-

tions based on the finite-different time-domain (FDTD) method (dashed line). The

penetration depth in equation 2.16 was adjusted to ∆hTM111=13 nm and ∆hTE011=8

nm, to obtain the best fit with the measurements. However, the penetration of the

field in the dielectric region ∆R was not considered. Single mode lasing with > 20

dB single mode suppression was observed for most cavities as in Figure 2.9 (b). It

is demonstrated that the cavity loss (including plasmonic absorption) can be easily

compensated by the strongly enhanced EM field at the laser gain region. Fan et al.

investigated dynamic color-tuning reflectors based on surface enhanced plasmons of 3D

nanoatennas. The studied 3D nanoantennas consist of two 2D cavities defined by two

different cavity arms. The excitation conditions of two different cavity modes can be

readily tuned by adjusting the incidence angle, allowing for dynamic and fine tuning

of plasmonic colors [80, 81].

2.3.3 2D plasmonic cavity

2.3.3.1 Rectangular plasmonic cavity

In Ref. [151] Miyazaki et al. showed the Fabry-Pérot resonance of plasmonic polaritons

in a rectangular nanocavity. They demonstrated controlled squeezing of free space light
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into nanometer-sized optical cavities, where the light is perpendicularly confined in a

few-nanometer-thick SiO2 film sandwiched between Au claddings. It is shown in the

field distribution that the near field of these modes exhibits Fabry-Pérot resonance

characteristics in the longitudinal direction. In Figure 2.10(a), a rectangular MIM

Figure 2.10: (a) SEM image of a rectangular plasmonic cavity. Scale bar, 20 nm; (b)
Experimentally obtained dispersion relations (color). Solid curves: Analytical disper-
sion of MIM waveguides. [151]

cavity with gap defined by thin film deposition is shown. The thickness for the Au

cladding layers is 150 nm. Rectangular cavities with varying thickness of SiO2 film

and varying cavity length were studied. According to the resonance condition of a

FP cavity, a resonance occurs whenever the phase accumulated on a single round trip

amounts to 2π. For the mth cavity resonance modes in a cavity with a length of L, the

corresponding wave vector of the plasmon polaritons can be expressed as

kspp = 2π/λp = mπ/L (2.17)

Here, kspp and λp mean the wavevector and resonance wavelength of the plasmon

polaritons in the cavity. L is the length of the cavity resonator.

Thus, the dispersion relation of plasmonic cavity modes can be determined through

measurements. The reflection dip positions as a function of wave vector in different

cavities are shown in Figure 2.10(b). It can be observed, that the resonances of various

orders of plasmonic resonators with various length L, form single dispersive curves

unique to each gap thickness T of the cavity. Moreover, a fairly good agreement was

found between the experimentally determined cavity modes dispersion curves and the

analytical dispersive curves for infinite MIM waveguides (solid curves in Figure 2.10(b)).

It is also noted, that macroscopic electromagnetics is applicable to a 2D cavity, as far

as far-field responses are discussed. Nanometric slits can be considered as media with

a large refractive index n which is unattainable by bulk materials. In Figure 2.10(b),

there is a small difference between the experimentally determined dispersion relation

and the dispersion curve for an infinite MIM waveguide. This is because the reflection
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coefficient at the metal/dielectric interface is a complex value (same as stated for 1D

plasmonic cavities). Thus, an additional phase term acts like an increase of the cavity

length. The additional phase is dependent on the order of the modes, the thickness of

the dielectric spacer and the length of the cavities.

When the polarization is perpendicular to the nanoslit resonator, the resonance condi-

tion can be given by [138, 152] :

d
2π

λ
nspp = mπ − φ (2.18)

Here, d means the width of the nanoslit resonator, nspp means the refractive index of

the supported waveguide SPP in the nanoslit, m represents the cavity mode order and

φ is the phase acquired upon reflection at the cavity terminations.

2.3.3.2 Circular plasmonic cavity

When the height of a 3D cylindrical plasmonic cavity in section 2.3.2 is far smaller

than λp, the wavelength of the plasmon, there is no oscillation behavior of plasmonic

modes along the axis of the cylindrical resonator. It becomes a 2D circular plasmonic

cavity. The resonance condition can be modified based on equation 2.16, when the

modal index p = 0.

λTMmn =
2π
√
εd√

( χ‘mn
R+∆R

)2
= 2π

√
εd
R + ∆R

χ′mn
(2.19)

Minkowski et al. studied the plamonic cavity modes in a silver/SiO2/silver multilayer

system by simulations [133]. The analytical model for a FP dielectric cavity in cylin-

drical coordinates was used to describe the electrical field in this plasmonic resonator.

The Neumann boundary condition (∂E/∂ρ = 0) can be then used to determine the

resonance condition for plasmonic cavity modes. The resonance condition was given

by :

kgsp(R + d) = χ′mn (2.20)

Here, kgsp is the wave number of the MIM waveguide supported surface polaritons, d

represents the thickness of the SiO2 layer. This resonance condition is in accordance

with equation 2.19 when d = ∆R.

The resonant condition equation 2.20 was verified by comparing it with the simu-

lated resonance frequency of the plasmonic cavity modes, as shown in Figure 2.11.

The black solid curve is the dispersive relation of surface polaritons supported by

the silver/SiO2/silver waveguide. The evolution of the resonance frequency of the
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Figure 2.11: Cavity resonant frequency of various orders of plasmonic cavity modes
versus χ′mn/(R + d) for different silver disc sizes [151]

plasmonic cavity modes agrees well with the dispersion of waveguide plasmons. This

indicates that the FP cavity model works well in plasmonic resonators as well.

Minkowski et al. considered the extension of the EM field beyond the geometrical di-

mensions of a MIM cavity by taking R+d as the resonant radius in equation 2.20. This

correction is the same as the additional φ in equation 2.13, 2.14 and 2.18. The phase

jump obtained upon reflection at the metallic/dielectric terminations can be regarded

like an increased resonance radius. Filter et al. built an analytical approach to describe

the resonance properties of optical antennas consisting of vertical disc stacks [130]. In

this 2D circular system, the resonances are also explained by the FP resonator model.

Predictions were compared to rigorous simulations and show excellent agreement.

2.4 Conclusion

In this chapter, the basic physics theories behind plasmonic structures were presented.

The Drude model which describes the dielectric function of metals was discussed with

respect to ideal and real metals. The excitation mechanisms of SPPs and LSPRs were

introduced. The second section discussed about plasmonic modes coupling with each

other in the far-field coupling regime, intermediate regime and near-field regime. In the

third section, plasmonic modes interacting with different FP cavities were presented.

FP cavity models have been successfully applied to describe the field distribution and

resonance condition of plasmonic cavity modes. In MIM structures many different plas-

monic modes can be excited and interact with each other through different principles.
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Theories presented in this chapter will help to understand the complicated plasmonic

behaviours in these composite plasmonic systems.



Chapter 3

Fabrication and characterization

As presented in Chapter 1, there are many different kinds of substrates with nano-

structures that can support plasmonic modes, which feature strong confinement and

high enhancement of electromagnetic fields. For the disordered substrates such as

colloids and metallic nano islands film, despite the fact that they can provide ultra

high EFs of the localized electromagnetic field, these substrates are subject to problems

of low reproducibility and poor tunability at the nanometric scale. With the help of

the EBL technique, we are provided with the ability to tailor nanostructures as we

want and pattern them as designed. With the geometric dimensions and locations

of nanostructures being controllable and reproducible, surface plasmonic modes can

be readily tuned by varying the parameters with high precision. All the vertical MIM

structures in this thesis are fabricated by EBL. The nature of different plasmonic modes

is investigated both experimentally with optical characterizations and theoretically

with numerical analysis and simulations.

3.1 Fabrication of vertical MIM cavities

Patterning techniques are demanded in order to fabricate ordered structures, for in-

stances, the EBL technique or FIB milling. Fabrication processes of the three different

vertical MIM structures which we investigated in this thesis are more or less similar,

with EBL to obtain the desired patterns in resist and then transfer of the patterns to

the actual structure through deposition.

In order to compare the modes in three different kinds of vertical MIM structures,

structures with the same diameters and spacing distances were fabricated, meaning

similar pattern files with only modified exposure doses were used. For all vertical

48
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systems, the gap distance can be easily controlled through governing the thickness of the

evaporated dielectric material. For the purpose of simplicity, in this fabrication section,

we show fabrication processes of three different kinds of MIM structures with gap

distances of 10 nm: disc MIM cavity arrays (with three different spacer configurations)

and vertical disc dimer arrays.

3.1.1 Disc-on-film cavity arrays

Figure 3.1: Schematic description of the fabrication of vertical MIM structures: with
a SiO2 film spacer layer (I), SiO2 disc spacer where RSiO2 = RAu (II), and disc spacer
with a diameter smaller than that of the Au discs, RSiO2<RAu (III).

The fabrication process of arrays of disc-on-film MIM cavities, consisting of gold discs

on gold film separated by a dielectric insulator, is quite straightforward. As shown in

Figure 3.1, the fabrication flow starts from cleaning substrates, the first deposition,

spin coating, E-beam lithography, then second deposition, followed by lift-off. In this

thesis, three kinds of disc-on-film structures, named as MIM(I)-(III) will be investi-

gated. The only difference among MIM(I)-(III) is the different insulator configuration:

a continuous SiO2 film insulator for MIM(I), SiO2 disc insulator with the same size as

the Au disc RAu=RSiO2 for MIM(II), and SiO2 disc insulator with a smaller size than

that of the Au disc RSiO2 < RAu for MIM(III). The details for fabricating a disc MIM

cavity array with SiO2 film spacer, shown in Figure 3.1 as MIM(I) are as follows:

* Cleaning substrates: Glass substrates were first cleaned in sodium hydroxide

aqueous solution in ultrasonic bath for 5 min and then the same volume of 35%
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hydrogen peroxide was added to further eliminate the organic contaminants on

the substrates, still in the ultrasonic bath for 5 min. Glass substrates were then

rinsed with distilled water and immersed in clean distilled water and placed in an

ultrasonic bath for 5 min. Cleaned glass substrates were dried by nitrogen gun.

* First deposition: Due to the poor adhesion of thermally evaporated gold to

glass substrates, an adhesion layer between the substrate and gold film is neces-

sary. Some use chemical agents to introduce active groups on the glass substrate

such that the adhesion between gold film and glass substrate can be promoted.

Another possibility is to evaporate a thin layer of Cr, Ti or TiOx before the evap-

oration of gold. For our samples, we evaporated 3 nm of Cr as an adhesion layer.

There are two kinds of evaporation: thermal evaporation and e-beam evapora-

tion, depending on whether the target material gets heated by ohmic heating from

a boat or electron bombardment of a crucible. In our experiments, the deposi-

tion was performed using the evaporator PLASSYS MEB400. In this evaporator,

there are two boats for thermal evaporation and six crucibles for E-beam evapo-

ration with auto control to select the active targeting material without opening

the evaporation chamber. Usually, the noble metals are evaporated by thermal

evaporation, dielectric materials and metals with high melting temperatures are

evaporated with e-beam evaporation.

The evaporation chamber was pumped till the pressure inside the vacuum cham-

ber was ∼ 4× 10−6 Torr. Then 3 nm Cr layer were evaporated by e-beam

evaporation with a rate of 0.3 nm/s, followed by evaporation of 50 nm Au film

by thermal evaporation at an evaporating rate of 0.3 nm/s, and then insulator

layers sandwiched in MIM cavities were obtained by evaporating 10 nm of SiO2

using e-beam evaporation at a rate of 0.03 nm/s.

* Spin coating: Polymethylmethacrylate (PMMA) is the most commonly used

EBL resist. The recipe introduced here is designed for obtaining a PMMA layer

with a thickness of 160 nm. 2.5 wt.% PMMA in MIBK (Methyl isobutyl ketone)

solution was used. In order to obtain high quality PMMA thin films on the

substrate, a two-step spin coating method was applied. A low spinning speed

of 2600 rpm was applied for 6 s to spread the resist all over the substrate and

roughly achieve the designed film thickness, then a high spinning speed of 5000

rpm for 60 s was used to spin off the corner beads and obtain a resist layer with

the desired thickness. After spin coating the PMMA layer, the substrates are

postbaked inside an oven at 150 ◦ C to evaporate the remaining solvent and to

enhance adhesion of PMMA to the substrate as well.

* E-beam Lithography: Patterns with circular discs are designed, with dif-
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ferent radii and different spacing distances. During an EBL process, a pattern

generator and a beam blanker will control the fields of exposure and expose only

the structured area with the desired exposure dose. It is crucial to align well the

electron beam before the exposure is started, in order to get the desired struc-

ture features on the nanoscale. When PMMA is subjected to electron exposure,

the PMMA chains break and lead to a higher solubility in MIBK. After electron

beam exposure, the substrate was then immersed in a developer, consisting of

MIBK (Methyl isobutyl ketone)/IPA (Isopropanol) 1:3, for 1 min 15 s, then was

rinsed by IPA and dried by nitrogen gun. PMMA molecules that were exposed

will dissolve in the developer and be washed away. Therefore, the development

step will yield the designed pattern, and a dark-field microscope can be used to

easily check if the e-beam lithography worked out due to the grating effect of

ordered holes in PMMA.

* Second deposition: A second evaporation is necessary in order to obtain the

second metal layer to form the MIM cavity. So in this step, 50 nm of gold were

deposited by thermal evaporation at the rate of 0.3 nm/s.

* Lift-off: After the second deposition, the substrate was immersed in acetone for

1 h. The acetone attacks the PMMA resist and dissolves the PMMA resist layer

over time. As a result, the superstrate including unexposed PMMA and deposited

gold by the second evaporation could be gently flushed away from the substrate

with a pipette. The lift-off process yields the plasmonic structure consisting of

ordered MIM cavities.

3.1.1.1 Dark-field image of disc MIM cavity arrays

Figure 3.2: Dark field image of arrays of MIM cavities with increasing cavity radius
from first row to fourth row and increasing grating constants from left column to right
column. The MIM cavity consists of Au disc arrays on gold film separated here by
Al2O3 film spacer.
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A look at the nanostructures under the dark-field microscope can give a preliminary

idea whether the fabrication is successful. Thanks to grating effects of the disc arrays,

the nanostructures are quite bright and readily to locate. Any defect on the micrometer

scale or contaminants on the nanostructure areas can be easily identified. Apart from

MIM cavities with SiO2 spacer layer, MIM cavities with Al2O3 insulator layer were

also fabricated. Figure 3.2 shows the dark field image of MIM cavities with evaporated

Al2O3 as an insulator layer. Different arrays of MIM cavities manifest themselves in

different colors due to different plasmonic modes excitation and grating effects, resulting

from different cavity radii and different grating constants. A wide range of colors from

blue to red can be generated by tuning the dimensions of MIM cavities. Many works

have been focused on the plasmonic color generation based on MIM structures.

3.1.1.2 SEM images of disc MIM cavity arrays

In Figure 3.1, besides the disc MIM(I) with film spacer, the fabrication steps for disc

MIM(II) and disc MIM(III) are also shown. Disc MIM (II) can be obtained by simply

moving the evaporation of 10 nm SiO2 from the first evaporation (labelled as step

(1)) to the second evaporation (labelled as step (4)). MIM (III) can be fabricated

by wet etching MIM(II) with diluted hydrofluoric (HF) acid, details will be presented

in chapter 5. These three structures were studied in chapter 5, for their different

plasmonic responses and performance as applications for plasmon-assisted spectroscopy

and sensing.

The geometry and dimension of the fabricated sample is crucial for numerical analysis

of plasmonic modes, and also provides guidance for building the simulation cell in

Comsol. However, the resolution of the optical microscope is limited by the optical

diffraction limit, and nanostructures at the scale of a few tens of nanometers are beyond

the imaging capability of a regular optical microscope. Scanning electron microscopy

(SEM) is much more sophisticated and it is the proper method to investigate the

geometrical shape and dimensions of nanostructures.

The as-fabricated MIM structures were characterized by SEM, in order to achieve a

good correspondence between the simulated structures and the real fabricated struc-

tures. The radii of the gold discs and the grating constants of the disc arrays can be

measured from the SEM image in top view, as shown in Figure 3.3. SEM images of a

MIM(II) with a disc radius of 130 nm and a grating constant varying from 335 nm to

720 nm are shown in the first row of Figure 3.3. The second row in Figure 3.3 shows

arrays of disc MIM cavities with fixed period of 530 nm and varying radii of 35 nm,

62 nm, 100 nm, 130 nm and 162 nm. The third row shows monomers of MIM cavities

with different radius.
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Figure 3.3: SEM images of disc MIM cavities with SiO2 disc spacer. The first row
presents arrays of MIM cavities with a radius around 130 nm and periods ranging from
335 nm, to 440 nm, 530 nm, 620 nm and 720 nm. The second row presents arrays of
MIM cavities with a period of 530 nm and the radius varies from 162 nm, 130 nm, 100
nm, 62 nm to 35 nm. Monomer MIM cavities with radii around 169 nm, 132 nm, 103
nm, 70 nm, 35 nm are shown in the third row. Images in the same row share the same
scale bar that is given in the last image of each row.

Figure 3.4: Scanning electron microscopy (SEM) images of MIM(II) structures tilted
by an angle of 70◦. Array of MIM cavities with a radius of 62 nm (a) and 100 nm (b),
grating constant of 440 nm.
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Figure 3.4 shows a side view under a tilting angle of 70◦, indicating slanted side walls

of the Au discs and rounded top edges, which are typical for structures fabricated by

EBL and deposition. The measurement of the dimensions was always conducted as the

last step of characterization, because carbonization while imaging with electron beam

is inevitable, and that might influence the optical signal.

3.1.2 Vertical dimers

Investigation of localized surface plasmon resonances (LSPR) interacting with a propa-

gating surface plasmon resonance (PSPR) supported by a gold film is possible through

studying the two structures presented above, while vertical dimers provide the pos-

sibility for the study of LSPRs interacting with LSPRs. Thanks to the popular ’hot

spots’ excited in the gap between two laterally displaced discs, lateral dimers have been

intensively studied during the last decades. Aside from the strong field enhancement

and potential application for the obvious overlap of different cavity modes, vertical

dimers show advantages over lateral dimers from a fabrication point of view. First of

all, gaps in lateral dimers are defined by e-beam lithography, that means the gap dis-

tances below 10 nm are limited in terms of reproducibility and precise control. While

gaps are created by evaporation in the vertical dimer case, this thin film technique can

easily create layers thinner than 10 nm with high reproducibility and specified thick-

ness. It is even possible to obtain sub-nano gaps with atomic layer deposition (ALD)

to investigate quantum plasmonics. Second, heterodimers are the easiest way to obtain

more tunability. Lateral heterodimers require high accuracy overlay e-beam lithogra-

phy which means expensive equipments and experienced expertise. On the contrary,

in the case of vertical dimers, only evaporation of different materials is needed.

Fabrication of vertical dimers is easier and less time consuming than nanostructures

on a gold film MIM system. There are two typical ways to fabricate vertical dimers:

the etch mask transfer method and the lift-off method.

3.1.2.1 Etch mask transfer method

To fabricate vertical dimers using the etch mask transfer method, firstly, 3 nm of Cr,

40 nm of gold, 10 nm of dielectric material and a second layer of 40 nm of gold were

subsequently deposited on cleaned glass substrates. Then PMMA was spin coated

on the substrates with the same parameters as showed earlier, followed by standard

E-beam lithography. After development, instead of building materials such as a gold

layer or insulator layer, a sacrificial layer of Al2O3 was evaporated to be the milling
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mask for the later milling process. Argon ions will etch away unprotected gold. The

sacrificial Al2O3 mask is subject to the attack of argon ions as well and being etched

thinner with a much smaller rate compared to the milling rate of gold. Al2O3 was

removed by chemical etching with ma-D 331 (developer) subsequently after milling.

3.1.2.2 Lift-off method

Bottom up fabrication of vertical dimers is very similar to the fabrication processes

stated above. First, glass substrates were cleaned and PMMA was spin coated onto the

glass surface. Different from the samples prepared above, there is no conducting layer

on the glass substrate, as a result the electrons will accumulate on the substrate and

display strong charging effects. There are different methods to circumvent this charging

problem and do e-beam lithography on non-conductive substrates. One method is

to deposit a layer of Indium Tin Oxide (ITO) on the glass substrate to introduce

conductivity. Another method is to deposit either a thin aluminium layer or conductive

polymer on the PMMA covered substrates. For the vertical dimers fabricated here

we mainly used conductive polymer (PEDOT:PSS) to get rid of charging problems

considering that spin coating a thin layer of conductive polymer is more time-effective

compared to evaporating aluminium using a evaporation machine where a good vacuum

is demanded. A layer of conductive polymer was spin coated on substrates with the

same parameters used for PMMA. The conductive polymer is aggressive to PMMA and

can attack the resist layer, so the time when condutive polymer was in contact with

PMMA is restricted in order to make well defined and reproducible nanostructures.

Electron beam lithography was then performed, followed by washing away the conduc-

tive polymer with deionized water and then development of PMMA. For the deposition,

3 nm of Cr, 40 nm of gold, 10 nm of dielectric material (either SiO2 or Al2O3) and

another 40 nm of gold were deposited in sequence. Lift-off then revealed the vertical

dimers. Figure 3.5 shows SEM images of vertical dimers.

3.2 Determination of geometrical parameters by FIB

The thickness of the insulator spacer sandwiched in MIM cavities was crucial for nu-

merical analysis of the plasmonic responses of cavity MIM structures, because the

confinement of the near-field inside the cavity scales with d−3, where d is the thickness

of the insulator layer [1]. Ellipsometry was also used to determine the thickness of

the SiO2 film spacer layer. However, MIM cavity structures are too complicated with

too many variables to be determined: the thicknesses of the gold film tAu and SiO2
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Figure 3.5: SEM images of MIM dimers at a tilting angle of 45◦.

layer tSiO2 , the optical constants of evaporated gold and SiO2. On the other hand, a

cross-section obtained by focused ion beam milling is a straight-forward way to check

the thickness of the thin dielectric layer, and the other geometrical information such

as the slanted angle of the slanted side walls and the curvatures for the round edges of

the gold disc can be obtained from the cross-section as well.

A helium ion microscope (HIM) was our first choice to obtain cross sections of MIM

cavities due to its high milling resolution, which allows us to cut any selected MIM

cavity. However without a sacrificial superstrate, the redeposition of milled gold leads

to strong deformation of the milled structure. So in this thesis, we finally used a focused

gallium ion microscope (GIM) to accomplish the cross section, even though the milling

resolution (∼ 50 nm) is much lower compared to HIM.

Figure 3.6 shows the SEM images of the same array of MIM cavities after each step.

To achieve a clear cut, the structures were covered with a platinum sacrificial layer first

and subsequently cut with a focused gallium ion beam. The deposition of a platinum

layer is crucial for two reasons: to get rid of the deformation of MIM structures from

redeposition and to compensate for the low cutting resolution, in order to get a clear

cross section image at the region of MIM cavities. Figure 3.6 (a),(c-f) were obtained

by electron beam imaging at a tilted angle of 52◦, and Figure 3.6 (b) was achieved with

FIB imaging from the top. (Methylcyclopentadienyl)trimethyl platinum vapour was

introduced as precursor gas to deposit the platinum layer. The FIB induced deposition

is much more efficient than electron beam induced deposition (EBID) due to the much

higher energy of the gallium ion beam. However, there is a risk that the ion beam

would destroy the gold MIM cavities while depositing platinum. So we applied EBID

to firstly achieve a platinum layer of ∼ 300 nm, as shown in Figure 3.6 (a), to protect

the MIM cavities from the ion beam. Then FIB induced deposition was performed to

obtain efficiently a thick platinum layer of ∼ 800 nm, as in Figure 3.6 (b). In Figure 3.6

(c), a preliminary cross section cut was performed parallel to the edges of MIM cavities
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Figure 3.6: SEM images (a), (c-f) at a tilting angle of 52◦ and FIB image (b) from top
view of MIM cavities after each step in order to achieve a cross section by GIM. (a)
∼ 300 nm of platinum were deposited by electron beam induced deposition (EBID) at
an area of 4 µm× 4µm. (b) ∼ 800 nm of platinum were deposited by FIB (ion-beam)
induced deposition at the same area as in (a). (c) A preliminary cross-section cut of
3 µm × 2µm was performed at the edge of certain MIM cavities. (d) Cross sections
with fine steps were performed in order to obtain a cross-section at the center of MIM
cavities. (e) A series of fine polishes of the cross section were performed in order to
have a clean cross section. (f) A zoomed in cross section image of a MIM cavity.
(Acknowledgement to Dr. Ronny Löffler for kind collaboration)
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at a certain row in the array. The MIM cavities outside of the platinum layer can serve

as a reference. This is followed by a series of cross section cuts with small steps to get

close to the center of the selected MIM cavities, as shown in Figure 3.6 (d). In Figure

3.6 (e), the structures were tilted for - 2◦ relative to the focused ion beam, a series of

very fine polishes of the cross section were performed in order to clean the cross section

and get rid of contaminants from redeposition. Figure 3.6 (f) shows a zoomed in image

of a MIM cavity. The cross section of the gold film, the discs and the spacer can be

clearly seen in Figure 3.6 (e-f). The cross section images obtained by FIB cutting will

give us a guidance to design the simulation cell, which is presented in section 3.4, in

order to have a better correspondence between experimental and simulated structure.

I would like to thank Dr. Ronny Löffler for his help and contribution in this FIB cross

sectioning experiment.

3.3 Optical characterization

The optical properties of plasmonic nanostructures can be characterized by many meth-

ods in the far-field and near-field. In the far-field regime, the reflection, extinction (or

transmission) and scattering of nanostructures can be investigated. These far-field

characterizing methods are easy to perform and can provide us with preliminary in-

formation about the plasmonic resonance wavelength, intensity and damping. The

near-field properties of plasmonic structures can be studied by scanning near-field op-

tical microscope (SNOM) or by near-field enhanced physics phenomena. These optical

characterizations not only help to understand the dependency of plasmonic structures

on the geometry parameters, but also open up the possibility for applications such as

plasmonic sensing in the far-field regime and SERS and others in the near-field regime.

3.3.1 Extinction measurements

Extinction spectroscopy is the most accessible method in the laboratory to obtain in-

formation about plasmonic resonances. Optical extinction spectra are usually achieved

by measuring the percentage of light transmitted through a plasmonic sample as a

function of the wavelength/frequency of the incident light. The explicit expression for

extinction is

Extinction = 1− Transmission = Absorption+ Scattering (3.1)

The schematic for the layout of an extinction (or transmission) setup is shown in Figure
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3.7. The white light source is collimated and then illuminated on the structures from

the normal angle. The transmitted light is then gathered by a collecting objective and

then focused through a lens, and passed into the spectrometer. In our experiments,

the numerical aperture for the collecting objective is 0.9. The light source is a laser

driven lamp (ENERGETIQ EQ-99 LDLS) which provides a stable spectral range from

200 nm to 1100 nm.

Figure 3.7: Schematic of the layout of an extinction measurement.

Extinction =
Tfilm − TMIM

Tfilm − Idark
(3.2)

In this thesis, both in experiments and simulations, the extinction was evaluated as

in equation 3.2. Tfilm represents the transmission through only the Au film, which

is also widely referred to as reference. TMIM represents the transmission through

the MIM cavities array, Idark means the intensity of the intrinsic dark signal of the

spectroscopy. In the extinction spectra presented in this thesis, the disc arrays on gold

film MIM cavities sometimes show negative extinction. This is due to the fact that

the transmitted incident radiation gets Fano modulated by the narrow cavity plasmon

modes, which will be demonstrated in detail in section 4.6.

3.3.2 Reflection measurements

A reflection set-up is another way to obtain information about the plasmonic reso-

nance. The plasmonic nanostructure can act as an optical antenna to convert incident
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light into evanescent fields bound at the metal/dielectric interface, meanwhile, the ex-

cited plasmons can as well re-radiate their energy into the far-field as scattering. The

schematic of the layout for reflection measurements is usually very similar to the one

for extinction, except the collecting part is at the same side as the illuminating part,

and the incident light is usually focused with an objective. Figure 3.8 shows two con-

Figure 3.8: Schematic of the layout of reflection measurements. (a) Reflection set-up
with normal incidence; (b) Reflection set-up with tilted incidence

figurations for reflection measurements with different illuminating angles: (a) normal

incidence and (b) tilted illumination. In our experiment, reflection is measured us-

ing configuration (b) with an illuminating angle of 18.5◦. The reflection measurement

setup is combined with the extinction setup stated above, sharing the same white light

source and the collecting part. The numerical aperture of the collecting objective is

0.42. And the same light source as in Figure 3.7 is used.

Reflection =
RMIM − Idark
Ilamp − Idark

(3.3)

The measured and simulated reflection spectra were evaluated as in equation 3.3, where

Ilamp is the lamp intensity, RMIM means the reflection on an array of MIM cavities

and on gold film, respectively. The Ilamp is recorded in experiments by using a Teflon

plate to reflect the lamp light.

3.3.3 Scattering measurements

In many cases, the positions of far-field extinction/reflection peaks and dips do not

correspond to the near-field resonance position, resulting from the radiation damping

and far-field interaction with the incident radiation [103, 153–155]. Scattering mea-

surements are more straightforward to obtain the plasmonic resonance characteristics
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compared to extinction and reflection, due to the fact that the transmitted/reflected

continuum is blocked and any optical signal recorded is purely contributed by the

decay of plasmons into photons. There are generally three types of dark-field micro-

Figure 3.9: Schematic of the layout of transmission scattering measurements

scope based on different configurations: transmission dark-field microscope, reflection

dark-field microscope and total internal reflection dark-field microscope.

In this thesis, the dark-field microscope in Figure 3.9 was used to investigate the cavity

modes in MIM cavities of different cavity radius and different periodicity. Configuration

details for the dark-field microscopy are as follows:

The numerical aperture (N.A.) of the condenser lens is 0.85-0.95, corresponding to

illumination angles of 58◦ - 72◦, and the N.A. of the collecting objective is 0.7. The

light source is a Halogen lamp.

The scattering spectra were evaluated as in equation 3.4:

Scattering =
SMIM − Idark
Ilamp − Idark

(3.4)

where SMIM means the scattering from a MIM structure. Due to the near-field dis-

tribution of different plasmonic modes, the excitation efficiency of different plasmonic

modes varies with different illuminating angles. For instances, the LSPR mode with

strongly localized near-field on the top of the gold disc will dominate the scattering

spectra when the incident angle is small, while the cavity plasmon modes will dominate

at almost grazing incidence. The details will be presented in chapter 4.
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3.3.4 Raman spectroscopy

A Raman spectrometer LabRAM HR800 from HORIBA Jobin Yvon (L2N, UTT) was

used to record the SERS signal in our experiments. This Raman microspectrometer

is based on a confocal optical microscope. A schematic of the layout of this confocal

Raman microspectrometer is as shown in Figure 3.10

Figure 3.10: Schematic of the layout of a confocal Raman microspectrometer.

A pinhole is placed in front of the spectrometer at the image plane of the input pinhole,

so that the signal from outside of the focal plain will not be collected and a better reso-

lution can be achieved. The laser used for excitation is a built-in He-Ne laser, with the

output wavelength of 632.8 nm and output power of 8.3 mW. There are a set of neutral

filters to decrease the laser power by 2, 4, 10, 100, 1000 and 10000 times. The scatter-

ing signal is collected in backscattering configuration. The elastic Rayleigh scattering

is blocked by two edge filters. The collected SERS signal is input through a diffraction

grating and then to a nitrogen cooled CCD. There are three diffraction gratings with

different grating constants to be chosen from, 300, 600 and 1800 lines/mm. Different

gratings applied in the Raman measurements lead to a different resolution and spectral

range of the SERS spectra. The confocal pinhole can be tuned between 0-1000 µm.

The sample stage is controlled by piezo motors, which enables the stage to move in

plane with fine steps. Together with the advantage of the confocal Raman spectroscope,

a three-dimensional material can be reconstructed based on a series of optical sections.
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Before measuring the Raman signal of our substrate, it is very important to turn on the

laser for at least 15 min until the laser power is stable. Then it is crucial to calibrate

the Raman spectrometer so that the Raman shift is reliable in the measurements. The

calibration of the Raman system is realized by measuring the very intense Raman

band of a silicon substrate at 520.7 cm−1 and the laser wavelength at 632.8 nm. The

acquisition time can be set accordingly. Each spectrum can be set to be averaged over

a certain amount of measurements.

If not stated otherwise, all the SERS signal throughout this thesis is recorded under

the measuring configuration : the confocal hole is set to 1000 µm, the entrance slit is

set to 200 µm, the 600 lines/mm diffraction grating and 10× objective are used. The

main SERS measurements will be presented in chapter 7.

3.4 Simulation methods

Coupled plasmonic structures give very complicated plasmonic responses. In order to

understand the physics that lies behind the sensing and near-field enhancing capability,

it is important to gain insight into the nature of the modes. On the other hand, if the

simulations are proven to be in good agreement with experiments, we can also use the

simulation as a more efficient way to optimize the geometry of MIM cavities according

to different situations. In this thesis, simulations were performed using Comsol Multi-

physics, which is based on the finite element method (FEM). FEM is one of the most

popular EM solvers, and it is suitable for analysis of antenna performance and geome-

try at the subwavelength scale. Simulations were performed for MIM structures with

different geometries, in order to investigate their influences on the field distribution

and the resonance wavelength of plasmonic modes.

Figure 3.11(a) shows the simulation cell for the arrays of MIM(II), for a disc base radius

(RAu) of 130 nm. The geometrical parameters were determined by characterization

techniques in section 3 in order to achieve a good resemblance between experiments

and simulations. The side wall of the Au disc was designed to show a 75◦ slope instead of

vertical side walls, as in Figure 3.11(b), while the SiO2 disc shows a slope of 45◦. As has

been presented in section 3, the slanted side walls and rounded corners are inevitable

for substrates fabricated by EBL and evaporation. According to our experiences, the

evaporation rate plays an important role in determining the slanted degree of the side

walls. The big evaporation rate difference between Au and SiO2 leads to the different

slanted angles. The top edge was rounded with a curvature of a circle with a radius

of 5 nm. The thickness of the Au film (tfilm) and height of the Au disc (tdisc) are tAu

= 50 nm, fixed for all the structures in this work. The refractive index of the glass
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Figure 3.11: Schematic of simulation unit for MIM(II) in Comsol Multiphysics. (a)
The simulation cell of dimension P×P is shown. The periodic boundary conditions
are applied at the four faces of the simulation cell to simulate square arrays of MIM
structures. The incident field is a plain wave under normal incidence, and it is linearly
polarized along the y direction. Based on the SEM and FIB images, the side wall of the
Au disc is designed to show a 75◦ slope as in Figure 3.11(b), while the SiO2 disc shows
a slope of 45◦ due to smaller evaporation rate. The thickness of the gold film tfilm
and the height of the Au disc tdisc are both tAu= 50 nm. The cavity height (tSiO2),
radius of the MIM cavity (RAu) and periodicity (P) can be varied in fine steps, in
order to investigate the evolution of plasmonic resonance as a function of geometrical
parameters.
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substrate and the SiO2 insulator layer is set to a constant value of 1.5 over the calculated

spectral range. The refractive index of Au is adapted from Johnson and Christy [99].

The incident source is a linearly polarized plane wave under normal incidence. Periodic

boundary conditions were applied at the four faces of the simulation cell to simulate

square arrays of MIM structures.

The cavity height (tSiO2), radius of the MIM cavity (RAu) and periodicity (P) can be

varied in fine steps, in order to investigate the evolution of the plasmonic resonances as

a function of geometrical parameters. Similar parameters are used for the simulations

of MIM(I)-(III), only with different insulators sandwiched between Au discs and Au

film, such that the influence of the insulator configurations on the location of ’hot spots’

and the resonance wavelength can be studied, which will be presented in Chapter 5

and 7. For the simulation of MIM(III), the radius of the SiO2 discs spacer (RSiO2) is

designed to be half the diameter of the Au discs (RAu), if not stated otherwise.

3.5 Conclusion

In this chapter, the methods and techniques which were used in this thesis were pre-

sented. First of all, the fabrication processes for different MIM systems including Au

disc on film and vertical disc dimers, were demonstrated. The EBL technique was ap-

plied to define the pattern, including the disc radius and periods, and then evaporation

was used to transfer the pattern from the resist to the MIM structures. Gap distances

of ∼ 10 nm can be easily achieved with well-established evaporation techniques with

high accuracy and reproducibility. Different optical methods have been introduced to

study the plasmonic properties of the as-fabricated MIM structures.

The far-field characteristics of plamonic modes can be studied by extinction, reflection

and scattering methods. These far-field characterization methods can show different

characteristics of plasmonic resonances due to different excitation and measuring con-

figurations, thus these methods in combination provide a more systematic study of the

plasmonic modes in MIM cavities. This will be the main topic of chapter 4. Raman

spectroscopy is a powerful analytical tool which is based on the near-field characteristics

of plasmonic resonances. Through Raman measurements, the near-field intensity as a

function of MIM cavity radius, and different insulator geometries can be demonstrated

without a SNOM.

In composite nanostructures such as gold discs on gold film separated by an insulator

layer, many plasmonic modes of different natures can be excited and identified from

optical measurements. In order to understand the far-field and near-field properties of
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different plamonic modes, simulations were performed to provide an insight into the

different resonance characteristics of different plasmonic modes. SEM and FIB were

conducted to obtain the geometrical parameters of the fabricated MIM cavities, and

provide a guidance for the designing of the simulation cell.



Chapter 4

Cavity plasmon modes in MIM

cavities

In a coupled system like a vertical MIM structure, many different kinds of plasmonic

modes can be excited with proper illumination configurations. The surface plasmonic

resonance wavelengths are strongly dependent on the geometrical parameters of the

nanostructures and the excitation conditions. For instance, the grating introduced SPP

modes can be excited both on the substrate/metal and the insulator/metal interfaces,

and the resonant wavelength λSPP can be tuned by changing the grating constant,

illumination angle and substrate refractive index.

In Ref. [91], the LSPR modes appearing at ∼ 520 nm to 550 nm for different gold

disc radius and periods have been studied. This LSPR mode with ’hot spots’ on the

top of the gold disc arises from the hybridization of a dipolar mode and quadrupolar

mode [156]. The surface plasmon polaritons at a metal/dielectric interface induced by

a square grating have been thoroughly studied as well. The resonance of the SPP can

be determined by [1, 157]

λres =
P√
i2 + j2

√
εmεd
εm + εd

(4.1)

where εd and εm(λ) are the dielectric constants of the dielectric and metal, P represents

the periodicity of the square grating, and i and j are the integers implying the orders

of SPP resonance.

The surface lattice modes, resulting from the far-field interaction of nanostructures in

an array, have been studied in square gratings as well. This SLR mode is also referred

as Rayleigh and Wood anomalies, usually associated with diffraction from a metallic

67
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grating [3, 158]. The resonance position of the SLR can be predicted by

λslr =
P√
i2 + j2

√
εd (4.2)

In this chapter, the cavity plasmon modes of MIM cavities will be the main object of

study. The cavity plasmon modes in MIM cavity arrays will be studied by different

optical measurements. Figure 4.1 shows the measured reflection spectra for MIM(I)

Figure 4.1: Measured reflectance of MIM(I) cavity arrays with RAu=38 nm (black
curve) and RAu=155 nm (red curve), the periodicity is P=440 nm, and the cavity
height is tSiO2=15 nm. The nature of different modes are labelled accordingly and the
rule of nomenclature will be presented in the following section.

cavities with a cavity radius of 38 nm (black curve) and 155 nm (red curve), respectively.

The periodicity and cavity height are kept the same as: P=440 nm and tSiO2=15 nm.

For smaller MIM cavity, the spectra is simple with only one pronounced plasmonic

mode, which is similar to the dipolar mode for Au disc nanostructures. For MIM

cavity array with RAu=155 nm, there are a sequence of well-defined plasmonic modes

with surprisingly narrow bandwidth for such a large nanostructure. More reflection

measurements and detailed interpretation will be given in section 4.4. In order to

understand the fundamental physics in this coupled system, FEM simulation with

Comsol Multiphysics is performed. The simulation can as well provide a guidance

for the design of optimal samples according to different application situations in the

future work. For simplicity, the cavity plasmon modes were studied in disc MIM(I)

systems where the cavity plasmon modes are distributed in a homogeneous insulator

(continuous SiO2 film), if not stated otherwise.
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4.1 Cavity plasmon modes in circular MIM cavity

4.1.1 Field description of cavity plasmon modes

In section 2.3, the theory about cavity plasmon modes in 1D, 2D and 3D plasmonic

nanocavities has been presented. The cavity plasmon modes arise from the interference

of counter-propagating SPPs, which are reflected at the edges of plasmonic cavities.

In vertical MIM structures, the cavity plasmon modes arise from the interferences

of outgoing and incoming gap surface plasmons which get reflected at the edges of

MIM cavities. In the scope of this thesis, the cavity height (tSiO2) is a few tens of

nanometers maximum, tSiO2 � λgsp. There will be no longitudinal mode excited along

the cylindrical cavity axis. Thus, the MIM cavity studied in this thesis can be seen as

a 2D circular cavity.

Figure 4.2: (a) Simulated near-field resonance spectrum for a MIM(I) structure with a
cavity radius of RAu=160 nm, a cavity height of tSiO2=10 nm, a periodicity of P=350
nm. The near-field intensity is integrated on the bottom surface of the Au disc. The
cavity plasmon modes are labelled in the spectra and corresponding field maps at the
resonance wavelengths are shown in the right panel (b). Two sets of cavity plasmon
modes are distinguished: edge modes and surface modes.

Figure 4.2 shows the near-field resonance spectrum which was obtained by Comsol

simulations for a disc MIM(I) structure with a cavity radius of RAu= 160 nm, a cavity

height of tSiO2=10 nm, a periodicity of P=350 nm. The near-field was integrated at the

bottom of the gold disc. The cavity plasmon modes are labelled by TEMmn, where

m and n are the angular and radial mode index denoting the numbers of full-wave

patterns along the circumferences and the diameters of the MIM cavity, respectively.

The near-field maps at each resonance wavelength are shown in the right panel of

Figure 4.2. The field maps show very clear standing wave characteristics and resemble

those in a dielectric FP cavity.
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The theory of the cylindrical dielectric FP cavity is well established [150]. In Ref.

[90], it is presented that the cavity modes have asymmetric charge distributions on

the two Au/insulator interfaces. So the electric field inside the cavity is primarily

perpendicular to the metal film, and the electric component Ez(ρ, φ, z) dominates.

Therefore the cavity plasmon modes are TM modes. The field distribution in a circular

cavity confined by parallel plates made of a perfect electric conductor (PEC) and a

perfect magnetic conductor (PMC) has been described by the first-order Cohn model

[133, 137, 149, 159]. Relating to the field distribution in a dielectric FP cavity, the Ez

field components of TM modes in a MIM cavity can be written as a product of three

functions in cylindrical coordinates as: [133, 159]

Ez(ρ, φ, z) = P (ρ)F (φ)Z(z) = Jm(kgspρ)(cosmφ+ ϕ)[Aekzz +Be−kzz] (4.3)

where kgsp means the wave vector of the propagating gap modes in the MIM cavity, and

m is an integer to indicate the mth Bessel function Jm. ikz is the wave vector of the gap

surface plasmon which is a evanescent wave. P (ρ), F (φ) and Z(z) are the field function

along the radial, azimuthal and vertical direction. ϕ = 0 or π/2 represents degenerate

cavity modes rotated by π/2m. The other field components can be obtained by simple

differentiation based on Maxwell’s equations, detailed expressions can be found in [159].

For PEC cavity reflectors, Ez = 0 and n̂× Es = 0 is required on the PEC cylindrical

surface [159, 160]. Thus the Neumann boundary condition: ∂E/∂ρ= 0, needs to be

satisfied on the PEC surface. It can be expressed as [133, 137, 149, 159]:

∂E/∂ρ |ρ=RAu+∆R= J ′m(kgspρ) |ρ=RAu+∆R= 0 (4.4)

where Jm’ is the derivative function of the mth Bessel function. RAu is the radius of

the gold disc and ∆R is induced by the phase shift upon reflection at the disc edge,

so RAu + ∆R is the resonance radius of the circular FP cavity. By combining the field

distribution in equation 4.3 and the boundary condition equation 4.4, the resonance

condition of a cavity plasmon TEMmn mode can be expressed as [133, 137, 149, 159]

kgsp(RAu + ∆R) = χ′mn (4.5)

where χ′mn is the nth root of the derivative function of the mth Bessel function. The

TEMmn modes represent cavity plasmon modes with m full-wave patterns along the

circumference, and n full-wave patterns along the diameter, respectively. The values of

χ′mn for the TEMmn modes are listed in Table 4.1. The TEM0n modes are not discussed

in this thesis because they are not excited in our system with linear polarization and

normal incidence.
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Table 4.1: Values of χ′mn for TEMmn modes of a circular cavity

m χ′m1 χ′m2 χ′m3

0 3.8317 7.0156 10.1735
1 1.8412 5.3314 8.5363
2 3.0542 6.7061 9.9695
3 4.2012 8.0152 11.3459

4.1.2 Edge modes and surface modes

In Figure 4.2(a), two sets of modes are excited. On one hand, there are TEMm1 modes

with modal lobes along the circumference of a circular cavity (analog to whispering

gallery modes in acoustic cavities), such as TEM11 and TEM31 mode as in Figure

4.2(b), which are referred to as edge cavity modes. The TEMm1 mode when m is an

even integer are dark modes with an net dipole moment of 0, so they do not show in

optical spectra. This is why TEM21 is missing in Figure 4.2(a). On the other hand,

there are the TEM1n modes referred to as surface cavity modes, including TEM11,

TEM12 and TEM13 mode. These surface cavity modes possess modal lobes along the

diameter of the cavity, with most of the near-field energy residing in the central modal

lobes rather than the edge lobes, which can be observed in Figure 4.2(b). The different

field distribution characteristics of edge modes and surface modes determine their very

different response upon decreasing the insulator radius RSiO2 , RI sensing capabilities

and SERS EF, which will be discussed in detail in chapter 5, chapter 6 and chapter 7,

respectively.

The lowest order cavity mode TEM11 appears at an infrared (IR) wavelength of 2330

nm. In the case of edge cavity modes, the higher order modes shift to a shorter

wavelength with increasing χ′mn. TEM11 and TEM31 modes appear at 2330 nm and

970 nm, while χ′11, χ′31 equal to 1.8412, 4.2012, respectively. In the case of surface

cavity plasmon modes, the resonance wavelength shifts from 2330 nm, 850 nm to 650

nm for TEM11, TEM12 and TEM13 modes, respectively, while the values of χ′11, χ′12,

χ′13 are 1.8412, 5.3314, 8.5363. This observation agrees well with the prediction of

equation 4.5.

In Table 4.2, the χ′mn are presented for each TEMmn mode, then the corresponding

kgsp are calculated based on the resonance condition equation 4.5, while assuming

∆R = tSiO2= 10 nm which can be estimated from the field map in Figure 4.4(b). In

Figure 4.4(b), it can be observed that most of the near-field of the cavity plasmon

modes is inside the MIM cavity defined by the two Au/SiO2 interfaces and the edge

of the Au disc. Nevertheless, part of the near-fields is distributed beyond the physical

radius of the Au disc and lies a bit outside of the physical cavity (∆R), which is
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Table 4.2: The kgsp and resonance wavelength λ0, and resonance frequency ν0 of cavity
plasmon modes TEMmn in Figure 4.2.

TEMmn TEM11 TEM12 TEM13 TEM31
χ′mn 1.8412 5.3314 8.5363 4.2012

kgsp = χ′mn
160+10

(nm−1) 0.0108 0.0314 0.0502 0.0247

λ0 (nm) 2330 850 650 970
ν0 (THz) 129 309 353 462

referred to as a fringe field later. We note that ∆R can be considered as induced by

the phase shift upon reflection at the MIM cavity edge, and it is a complicated variable

depending on many parameters. Here for simplicity, we assume ∆R = tSiO2 based on

the estimation from the fringe field in Figure 4.4(b). More details about ∆R will be

presented in section 4.4.2. The resonance wavelengths λ0 are read from the simulation

results in Figure 4.2 for each TEMmn mode and then the resonance frequencies ν0 are

calculated according to ν0 = c/λ0, where c presents the speed of light in vacuum.

4.1.3 Dispersion of infinite MIM waveguide and cavity modes

The dispersion of an infinite MIM waveguide with a core (dielectric layer) thickness of

td and cladding (Au layer) thickness of tm can be described by: [133, 161]

kmεd
kdεm

=
−1 +

√
e−2tdkd + e−2tmkm + e−2tdkd−2tmkm

1 +
√
e−2tdkd + e−2tmkm + e−2tdkd−2tmkm

,

km(d) =
√
k2
gsp − εm(d)ω2/c2

(4.6)

where td = tSiO2 and tm = tAu.

Figure 4.3 shows the dispersion curves for infinite MIM waveguides with different core

thicknesses tSiO2 , which is indicated by the colorbar. The author will come back to

this figure in section 4.2.2 and section 4.5.

The eigen frequencies of a FP cavity with a resonance radius of R+∆R can be expressed

as:

kgsp =
χ′mn

RAu + ∆R
(4.7)

In Figure 4.4(a), the discrete eigenvalues of a circular FP cavity with a resonance radius

of RAu + tSiO2 are shown by black dotted lines which are calculated based on equation

4.7. The dispersion curve of a MIM waveguide with a core thickness of tSiO2 and a

cladding thickness of tAu are shown by the solid black curve which is calculated based on
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Figure 4.3: Dispersion curves calculated based on equation 4.6 for infinite MIM waveg-
uides with different core thicknesses tSiO2 ranging from 10 nm to 100 nm, which is
indicated by the colorbar. The dispersion curve of SPP mode on an infinite single
Au/SiO2 interface is calculated according to equation 2.5.

Figure 4.4: (a) The black curve is the dispersive curve of an infinite MIM waveguide
with the same tSiO2 and tAu as those of the MIM cavities, the dispersion is calculated
based on equation 4.6; the dotted black lines present the discrete eigenvalues of the
circular FP cavity with a resonance radius of RAu + tSiO2 , which are calculated based
on equation 4.7. The markers of magenta, green, blue and red mark the resonance
position of TEM11, TEM31, TEM12 and TEM13 in the dispersion map, respectively.
It can be observed that the cavity plasmon modes always appear at the intersection
of the dispersion of the MIM waveguide and the eigenvalues of the FP cavity. (b)
Cross-section field map of the TEM11 mode.
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equation 4.6. The markers of magenta, green, blue and red mark the resonance position

of TEM11, TEM31, TEM12 and TEM13 in the dispersion map, respectively, based on

the corresponding values in Table 4.2. It can be observed that the cavity plasmon

modes always appear at the intersections of the dispersion of the MIM waveguide and

the eigenvalues of the FP cavity. Thus, it is evident that the cavity plasmon modes

in a MIM cavity arise from the continuous gap surface plasmon modes of the MIM

waveguides that get selected by the discrete FP cavity modes.

4.2 Comparison of TEMmn modes in MIM cavity

and disc arrays

In section 1.2, we showed that the cavity plasmon modes are better candidates for

plasmon-assisted sensing and spectroscopy compared to LSPR modes in gold nanodiscs,

due to their higher field enhancement and narrower bandwidth. These advantageous

properties of cavity plasmon modes are a product of their plasmonic and FP cavity

origin. However, the standing-wave characteristics are not unique to MIM cavities,

the LSPR modes in metal nanodisc arrays show similar standing-wave characteristics

[162]. This means the LSPR modes in a metal nanodisc can be described using the

model of a FP resonator as well. In this section, we compare the cavity plasmon modes

in a MIM cavity array and in a gold disc array from the aspects of field distribution,

resonance bandwidth, resonance wavelength, and field intensity.

4.2.1 Cavity plasmon modes in disc arrays

Figure 4.5 shows the extinction spectra for a gold disc array with a radius of 160 nm

and a periodicity of 350 nm on top of a glass (black curve) and ITO substrate (red

curve). The thickness of ITO is 50 nm. Three plasmonic modes can be identified from

the extinction maxima: TEM11, TEM31 and TEM12. The near-field maps for each

plasmonic resonance are presented under each extinction peak, showing standing wave

characteristics and similar modal patterns to those in Figure 4.2. For a gold disc with

a radius of 160 nm, the size of the disc is comparable to the wavelength of SPP modes

propagating on a Au/SiO2 interface, so that a sequence of different orders of standing

wave modes appear in the visible/near-IR spectra, as in Figure 4.2. The gold disc array

on normal glass substrate (black curve) shows the same profile as the one on ITO, but

with less pronounced higher order modes and shorter resonance wavelengths due to the

smaller refractive index. Our field maps of TEMmn modes in gold disc arrays are in
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Figure 4.5: Simulated extinction spectra for gold disc array with a radius of 160 nm
on top of the Indium Tin Oxide (ITO) glass substrate (red curve) and standard glass
substrate (black curve). The ITO glass is covered by 50 nm of ITO film. P =350 nm.
The near field maps are shown next to each plasmonic resonance.

accordance with the field maps obtained by investigating large silver nanodiscs with

electron energy loss spectroscopy (EELS) [162].

We conclude that similar to a disc MIM cavity, gold discs function as a 2D circular

FP resonator as well. There are two main reasons why the cavity plasmon modes in

gold disc structures and MIM cavities exhibit different properties. The most important

one is due to different plasmonic damping mechanisms. The strong radiation damping

of plasmonic modes on gold disc structures leads to a wide bandwidth of the modes.

For small gold discs, only the fundamental TEM11 mode appears in the investigated

range. For large gold discs, more higher order plasmonic modes are excited. However,

because of the wide bandwidth of each plasmonic mode, their far-field spectra overlap

which makes them hard to distinguish. As a result, no distinct plasmonic mode can be

identified in a far-field optical spectrum, as can be seen in Figure 4.5. On the contrary,

gap surface plasmons (GSP) in MIM cavities are slow plasmons with bigger effective

refractive index (details will be explained in the following section 4.2.2) and have a

much longer lifetime (most of the energy is confined in the cavity rather than decaying

into photons). Therefore, in MIM cavities, the plasmonic damping mostly arising from

non-radiative damping, leads to narrow resonance bandwidths. As a result, the cavity

plasmon modes manifest themselves as disctinct bands with narrower bandwidth in the

far-field spectra. The difference in the origin of damping leads to different bandwidths

of each plasmonic mode in the far-field. This is the reason why the TEMmn modes
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still show well-defined reflection dips and extinction peaks in the case of a MIM cavity

with big RAu, while no pronounced peaks can be identified for large gold discs on a

glass substrate.

4.2.2 Resonance bandwidth

In Figure 4.6, the simulated reflection spectra for the TEM11 mode for a gold disc on

top of a glass substrate (red curve) and 50 nm gold film (MIM(I), black curve) are

presented. The cavity height is 10 nm in MIM(I) and the disc radius RAu is 40 nm in

both cases. It can be noticed that the TEM11 mode is a reflection dip in the case of

the MIM cavity array, while it is a reflection peak in the case of the gold disc array.

Figure 4.6: Simulated reflection spectra for the TEM11 mode for a gold disc on top of
a glass substrate (red curve) and a 50 nm gold film (black curve), respectively. The
radius of the gold disc is 40 nm in both cases.

In Figure 4.3, the dispersion relations of SPP modes propagating on an infinite Au/SiO2

interface (red curve) and GSPs in a Au/SiO2/Au waveguide with different gap distance

tSiO2 ranging from 10 nm to 100 nm are plotted, based on the dispersion equation 4.6.

As the standing-wave arises from the interference of incoming and outgoing surface

plasmonic waves, the dispersion relation of the TEMmn modes in gold discs follow

the dispersion of SPP waves on a single gold/SiO2 interface. The TEMmn modes in

the MIM cavity follow the dispersion of gap surface plasmons (GSP) of corresponding

MIM waveguides. The resonance wavelengths of the TEM11 mode are 600 nm (500

THz) and 750 nm (400 THz) in gold disc array and MIM cavity array, respectively,

which correspond to a wave vector of 0.018 nm−1 (λspp = 349 nm) and 0.03721 nm−1
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(λgsp = 169 nm) by relating to the single interface and tSiO2=10 nm curves in Figure

4.3. The effective refractive index of a plasmon wave can be calculated by neff =

λ0/λsp. The effective refractive indices of the TEM11 modes are ∼1.72 and ∼4.44 in

gold discs and MIM(I), respectively. According to the Fresnel Equation for reflection

(Re = |neff−nd,eff
neff+nd,eff

|, where neff is the effective refractive index of surface plasmons

and nd,eff is the effective refractive index of the dielectric environment outside of the

MIM cavity), the gap surface plasmon wave in the MIM(I) cavity gets reflected at the

cavity edge with a much higher reflection efficiency, compared to that in a gold disc.

Therefore, the scattering of the TEMmn mode in the MIM cavity is reduced due to

most of the gap surface plasmons being confined inside the cavity by the high reflection

efficiency. However, in the case of a gold disc, the scattering process prevails over the

absorption process due to part of the surface plasmon polaritons decaying into photons

at the edge of the gold disc. As a result, a reflection dip appears at the resonance

wavelength of the TEMmn modes attributed to the strong confinement in the MIM

cavity, while a reflection peak appears in the case of the gold disc due to radiation in

the backscattering configuration.

In Figure 4.6, the resonance bandwidths of the TEM11 mode are 27 nm and 37 nm

in the MIM cavity and gold disc array, respectively. In the last section, we explained

the difference in bandwidth from the origin of damping. The difference in bandwidth

can be understood by the lifetime of the surface plasmons as well. The GSP waves in

MIM structures, also referred to as slow plasmons, have higher propagating effective

refractive indices (neff = λ0/λsp = c∂kgsp
∂ω

in Figure 4.3). The higher effective indices

result in higher reflectance upon reflection. That means the MIM cavities have better

field confinement, and possess a higher cavity quality than a gold disc, leading to longer

lifetimes of TEMmn modes in a MIM cavity compared to those in a gold disc.

4.2.3 Resonance wavelength

Besides the difference in plasmonic resonance bandwidth, the difference in resonance

wavelengths of TEMmn modes in gold discs and MIM cavities is another reason why

the sequences of standing-wave modes usually are not seen in far-field spectra of gold

disc arrays.

The resonance wavelengths of the higher order cavity modes in gold discs on glass

substrate are in the blue/UV range, which is around the wavelength of the interband

transition in gold. ITO possesses a higher refractive index, thus red shifts the resonance

of the TEM12 mode from 540 nm to 570 nm in Figure 4.5. When gold discs are on top

of the gold film, the presence of the gold film red shifts more higher order modes into
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the measuring range of a standard visible/near-IR spectrometer, as in Figure 4.2. This

red-shift of the resonance wavelength in the disc MIM(I) cavity can be understood by

the mirror effect of the gold film [124, 163, 164]. The disc hybridizes with its image in

the gold film mirror, resulting in a bonding mode resonating at a longer wavelength.

This mirror effect is reflected in Figure 4.6, the TEM11 mode is shifted from 600 nm

to 750 nm by the presence of the gold film.

The red shift of the cavity modes in a MIM structure compared to a gold disc can be

explained by the dispersion curves in Figure 4.3 as well. When two gold/SiO2 interfaces

are placed at small separations, SPP modes excited on each interface will interact with

each other, resulting in a bonding mode and anti-bonding mode. In this thesis only

the bonding gap mode is considered because the anti-bonding mode is a dark mode

under our illumination configuration. The gold disc on glass can be considered as MIM

structures with gap distance tSiO2 →∞. As the gap distance decreases from infinity to

10 nm, the coupling strength increases drastically and the GSP polaritons are strongly

red shifted.

4.2.4 Near-field intensity and confinement

Figure 4.7(a) presents the field intensity integrated over the bottom of a gold disc in

disc MIM(I) and gold disc arrays with the same disc sizes and periodicity. The field

intensity for the TEM12 and TEM11 mode in the MIM(I) cavity is 4.5 and 3 times

stronger than that in the disc array when RAu= 160 nm and RAu= 40 nm, respectively.

In Figure 4.7(b), the field maps at cross-sections for the cavity modes TEM11 are

shown for a gold disc and MIM cavity. In the case of the gold disc, the decay length of

the LSPR mode perpendicular to the Au/dielectric interface in the dielectric medium is

around tens of nanometers. The improvement of confinement of the MIM cavity in the

perpendicular direction is clear because the gap distance is much smaller than the decay

length of the surface plasmons in the perpendicular direction. In the radial direction,

we know the resonance cavity radius is RAu+∆R, as demonstrated in equation 4.5,

where ∆R is introduced by the phase shift upon reflection at the edge of the Au disc.

The penetration depth ∆R is analogue to the penetration depth at the Bragg grating

reflectors in a fiber acoustic resonator, where the penetration depth ∆R is proportional

to Re−1 (Re represents the reflection coefficient) [165]. The higher effective refractive

index of the TEMmn mode in a MIM cavity, resulting in higher reflective coefficients

in the MIM structure, leads to a smaller ∆R. Therefore, a MIM cavity provides better

confinement in the radial direction as well, compared to a gold disc as can be observed

in Figure 4.7(b).
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Figure 4.7: (a) Simulated near-field intensity integrated over the bottom of a gold
disc for a disc MIM(I) cavity (solid curves) and gold disc arrays (dotted curves). The
periodicity is P=350 nm and cavity height tSiO2=10 nm. The radius of the gold discs
is RAu=40 nm (black curves) and RAu=160 nm (red curves). (b) Field distribution of
cavity mode TEM11 at cross-sections in a gold disc (top) and MIM cavity (bottom),
RAu=40 nm

So in MIM cavities, the spatial extent of the plasmon energy is perpendicularly de-

creased by gold claddings and radially confined by the highly reflective circular cavity

edges. The plasmonic energy is squeezed inside a cavity with very low volume, down to

(λ/10)3 in a disc MIM cavity, resulting in higher field intensity of the TEMmn modes.

These advantages of high cavity Q factor and small mode volume V make MIM cavities

very promising candidates for the investigating of the Purcell effect, where the Purcell

enhancement Fp ∼ Q
V

.

4.2.5 Conclusion

When the disc size is comparable to the wavelength of plasmon polaritons (SPP in the

gold disc and GSP in the MIM structure), the classical optics are still applicable in

these FP cavities. The TEMmn modes can be excited on metal disc structures as well,

the bottom surface of the metal disc functioning as a circular FP cavity. For small

gold discs which justify the quasi-static approximation, only the TEM11 mode appears

in the visible/near-IR regime. For big gold discs, higher order modes can be excited.

However, the short lifetime of surface plasmons at the single metal/dielectric interface

leads to a wide bandwidth of the resonances in far-field spectra. As a result, a sequence

of different orders of cavity modes has not been spotted in optical experiments. The

cavity plasmon modes in big metal discs are, however, distinct in spectra obtained by

EELS where the bandwidth mostly depends on the non-radiative damping of surface
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plasmons [162].

The presence of a gold film red shifts the cavity modes in gold disc samples to a

longer wavelength. More importantly, the radiation damping at the edge of the cavity

is drastically reduced by enhancing the reflection efficiency. The quality factor of a

circular FP cavity is improved, thus the lifetime of TEMmn modes in a MIM cavity is

longer than that in a gold disc. The longer lifetime of GSPs leads to small radiation

damping and a narrower bandwidth of the TEMmn mode in the far-field spectra. As

a result, on the contrary to gold discs, cavity plasmon modes in MIM cavities can be

easily distinguished in far-field spectra. Due to the facts that the cavity plasmonic

modes show narrow bandwidths and small mode volumes, MIM cavities are suitable

candidates for the investigation of plasmon-exciton coupling in both the weak (Purcell

effect) and strong (Rabi-analog splitting) regime.

4.3 Periodicity dependency

4.3.1 Independency on periodicity

In Figure 4.8(a), simulated near-field spectra integrated at the bottom of discs in

MIM(I) with different periodicities P= 350 nm (black curve), P= 450 nm (blue curve),

P= 550 nm (green curve), and P= 650 nm (red curve) are presented, respectively.

Apart from the periodicity, all the other parameters are fixed: RAu = 160 nm, tSiO2 =

10 nm.

The resonance position of the plasmonic modes as a function of varying periodicity

is presented in Figure 4.8(b). For a cavity array with P= 650 nm, strong coupling

behaviour is observed between TEM13 mode and air/gold interface SPP, and TEM31

mode and glass/gold interface SPP as well. The strong coupling will be presented in

section 4.3.2, and is not shown in Figure 4.8(b). The TEM11 mode strongly depends

on the grating constants, and shifts from 2330 nm, to 2130 nm, to 2090 nm, then to

2080 nm for P = 350 nm, 450 nm, 550 nm and 650 nm, respectively. On the other

hand, the resonance wavelengths of cavity mode TEM31, TEM12 and TEM13 are

hardly modified by the varying periodicity, appearing at 970 nm, 850 nm and 650 nm,

respectively. Table 4.3 can be obtained by relating to the dispersion curve in Figure

4.3.

In Table 4.3, λ0 and ν0 represent the resonance wavelength and frequency in free space

of the cavity plasmon modes, kgsp, λgsp and ngsp represent the wave number (obtained

from Figure 4.3), wavelength (λgsp = 2π
kgsp

) and effective refractive index (ngsp = λ0
λgsp

)
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Figure 4.8: (a) Simulated near-field resonance spectra of disc MIM(I) with RAu=160
nm and cavity height tSiO2=10 nm, and varying grating constants of P= 350 nm (black
curve), P= 450 nm (blue curve), P= 550 nm (green curve), P= 650 nm (red curve);
(b) The resonance wavelengths of different cavity orders TEMmn as a function of
periodicity. The black curve is an exponential function wl=(63215e−P/64 nm + 2078)
nm.

of the gap surface plasmons. For the TEM11 mode the GSP wavelength is λgsp =

621 nm, while the edge-to-edge distance between discs is 30 nm when P = 350 nm.

Besides, the comparatively smaller ngsp of 3.75 indicates lower reflection efficiency and

less confinement in radial direction, such that the near-fields of TEM11 modes in

neighbouring MIM cavities would overlap, resulting in near-field coupling. As a result,

the TEM11 mode is notably influenced at the small periodicity range P= 350 nm.

However, as it can be seen in the black curve in Figure 4.8(b), the TEM11 mode

gets less sensitive to the periodicity variation as the periodicity increases, due to the

decoupling of the overlapping fringe fields of neighbouring TEM11 modes. It has been

proved that the red-shift in resonance wavelength due to near-field coupling between

two nanoparticles scales with an exponential decay of the particle separation [133, 166].

In Figure 4.8(b), the red shift of the resonance wavelength for the TEM11 mode as a

function of periodicity can be fitted very well by wl =(63215e−P/64 nm + 2078) nm.

Table 4.3: The optical parameters of cavity plasmon modes TEMmn in Figure 4.8.

TEMmn λ0 (nm) ν0 (THz) kgsp (nm−1) λgsp (nm) ngsp
TEM11(P=350 nm) 2330 129 0.01012 621 3.75
TEM11(P=450 nm) 2130 140.7 0.01103 569.4 3.74
TEM11(P=550 nm) 2090 143.4 0.01123 559.2 3.74
TEM11(P=650 nm) 2080 144.1 0.01129 556.2 3.74
TEM31 970 309 0.02584 243 3.99
TEM12 850 353 0.03083 204 4.17
TEM13 650 461 0.04897 128 5.08
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In the case of cavity modes TEM31, TEM12 and TEM13, the wavelength of the GSP

λgsp is shorter than that of the TEM11 mode. Besides, the effective refractive indices

ngsp are bigger than for TEM11, leading to better confinement for the higher order

TEMmn modes. As a result, the near-fields of TEM31, TEM12 and TEM13 of two

neighbouring cavities are decoupled when P>350 nm. This explains why the higher

order cavity modes exhibit no variation as a function of periodicity in Figure 4.8(b). We

can conclude that, in general, cavity modes in MIM cavities are much more insensitive

to the periodicity compared to those in gold disc arrays. Figure 2.3(b) demonstrates

that the resonance wavelengths of plasmonic modes in gold discs shift drastically with

varying periodicity between 350 nm and 850 nm [101]. We attribute the difference

in periodicity dependence to the bounding nature of TEMmn modes in MIM cavities

and the radiative nature of those in gold discs, respectively. The MIM cavity confined

the plasmonic energy tightly inside the cavity: near-field coupling is decreased by

the small energy fringe beyond RAu (smaller ∆R), while far-field coupling is reduced

because cavity modes in MIM cavities are less radiative.

For the investigated MIM cavities with RAu <160 nm, the corresponding cavity modes

will be excited at shorter wavelengths than those in Table 4.3, which means bigger

wave number (kgsp) and shorter GSP wavelength (λgsp). According to the dispersive

curve (tSiO2=10 nm) in Figure 4.3, a shorter resonance wavelength leads to a bigger

effective refractive index (ngsp) of the GSP wave, thus resulting in a better quality

factor. Therefore, in a MIM cavity with a cavity height of tSiO2 ∼ 10 nm, the cavity

plasmon modes in the visible/near-IR region are independent of periodicity variation

when P> 350 nm.

Figure 4.9: Measured extinction spectra for MIM cavity array (a) RAu=38±2 nm and
(b) 115±3 nm. The periodicity varies from 335 nm to 720 nm. The cavity height
tSiO2 = 12 nm. In Figure(a), the splitting energy is estimated for the double-peak
structure at P=620 nm. The FWHM and linewidth are estimated as well, details will
be presented in section 4.3.2



4.3. Periodicity dependency 83

In Figure 4.9, the measured extinction spectra of fabricated MIM(I) cavity arrays

are shown for (a) RAu=38±2 nm, (b) 115±3 nm. For cavities with a radius around

38 nm (Figure 4.9(a)), the TEM11 mode dominates in the visible/near-IR regime,

while the extinction spectra show no dependency on the periodicity, except when the

narrow cavity mode overlaps with an SPP mode (RAu '40 nm, P = 620 nm). In

Figure 4.9(b), the TEM11 mode is shifted out of range for RAu ' 115 nm, while the

TEM12 mode appears at around 650 nm and dominates in the visible/near-IR range.

The independence of the TEM12 mode to the periodicity can be observed as well

except when P = 620 nm, where the coupling between SPP modes and cavity modes

occurs. Details about strong coupling between SPP modes and TEMmn modes will be

presented in the following section.

4.3.2 Strong coupling between cavity modes and SPPs

In the previous section, we presented that the periodicity does not affect the cavity

modes by near-field coupling between neighbouring MIM cavities. The influence of

far-field coupling between neighbouring MIM cavities is limited as well because the

TEMmn modes are less radiative than LSPR modes. However, the periodicity influ-

ences significantly the resonance characteristics of cavity plasmon modes by strong

coupling between SPP modes and cavity plasmon modes, which can be seen in the red

curve in Figure 4.8, and Figure 4.9(a) and (b) with P=620 nm, where the Rabi-analogue

splitting can be observed.

The concept of Rabi splitting originates from atomic physics and refers to strong cou-

pling where the coupling strength exceeds the dissipation rates of the system and there-

fore the energy exchanges coherently between an atom and a cavity photon. Thus, Rabi

splitting is an important signature of strong coupling. Recently, interest in the quan-

tization of plasmons has extended the investigation of Rabi splitting into the emerg-

ing areas of plasmon-exciton, plasmon-cavity and plasmon-plasmon coupling systems

[167–171]. The couping regime of two modes interacting with each other can be dis-

tinguished on the basis of the relationship between coupling strength g and γA and γB

which are the inverse of the lifetimes of the excited states of emitters, photon in a cav-

ity, or plasmon polaritons in nanostructures. The coupling occurs in the weak regime

if g< γA, γB is met, while the condition g> γA, γB implies strong coupling. In order

to resolve the characteristic of double-peak structure observed in Rabi-splitting, it is

demanded that the splitting energy be larger than the transmission linewidth of each

peak of the coupled system, which leads to a stricter condition for observing strong

coupling 2g > (γA + γB)/2 [172]. Different strong-coupling conditions have been given

as well depending on different coupling systems. For instances, in Ref. [173], 2g> κpl is
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given, where κpl is the FWHM of the plasmon branch; and in Ref. [174], the condition

that the energy splitting needs to be larger than the sum of the line widths is given.

The rule of thumb to justify the observation of strong coupling is widely accepted as

2g > (γA + γB)/2 [167, 172, 175, 176]. In this section, this condition will be applied to

verify the strong coupling between the SPP mode and the cavity mode.

The resonance wavelengths of grating induced SPP modes on the air/gold interface

and glass/gold interface in a disc-on-film system are plotted in Figure 4.10 based on

equation 4.1. The mode SPPair/Au(i, j) means the SPP mode excited on the air/Au

interface with grating orders of i and j along the x and y direction, respectively, while

y is the polarization direction as well, likewise for the SPP modes SPPglass/Au(i, j)

excited on the interface of the glass/Au interface.

Figure 4.10: The resonance wavelength of SPP modes excited on the air/gold interface
and glass/gold interface based on equation 4.1. λair/Au(i,j) and λglass/Au(i,j) represent
different orders of SPP modes on the air/gold and glass/gold interface, respectively.

The calculated SPP resonance wavelengths λair/Au(0,1) and λglass/Au(0,1) are 674 nm

and 1002 nm for P = 650 nm, respectively, as can be obtained in Figure 4.10. Mean-

while, the cavity plasmon mode resonates at λTEM13=650 nm in a MIM cavity with

RAu = 160 nm (as can be seen in Table 4.3). Due to the overlap in near-field distribu-

tion and resonance wavelength, coupling occurs between the SPPair/Au(0,1) mode and

TEM13 mode, and results in Rabi-analogue splitting in the red curve in Figure 4.8.

After coupling, there are two hybridized modes at 640 nm and 680 nm, respectively.

In the case of the TEM31 mode in the red curve in Figure 4.8, the strong near-field

of the SPPglass/Au(0,1) mode is 50 nm (tAufilm) away from the ’hot spots’ of mode

TEM31. Besides, the resonance wavelengths are 1002 nm and 970 nm, showing a sep-
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aration of 30 nm. Therefore the coupling strength between the SPPglass/Au(0,1) and

TEM31 mode is not as strong. One can hardly determine if coupling happens between

SPPglass/Au(0,1) and the cavity mode TEM31 in Figure 4.8.

Relating to Figure 4.10, when P= 620 nm, the resonance wavelengths of SPPair/Au(0,1)

and SPPglass/Au(1,1) are λair/Au(0,1)= 647 nm and λglass/Au(1,1)= 707 nm. In Figure

4.9(a) and (b), the TEM11 mode and TEM12 mode overlap with SPPair/Au modes,

resulting in Rabi-analogue coupling.

Figure 4.11: Measured extinction for MIM(I) structures with a radius of RAu ∼ 100
nm, and periodicities of P=530 nm (green curve), P=624 nm (cyan curve) and P=720
nm (red curve). The TEM12 modes and SPPair/Au(0,1) modes are labelled. The band
width of SPPair/Au(0,1) at P=624 nm is estimated to be ∆λ = 26 nm (~γSPP=82
meV).

In Figure 4.11, the measured extinction spectra are shown for MIM(I) cavities with

similar radii and varying periodicities. The SPPair/Au(0,1) modes show a red-shift as

a function of increasing periodicity. The asymmetric line shape makes it problematic

to obtain the precise bandwidth of SPP modes. The FWHM is then estimated to be

26 nm as shown in Figure 4.11. The line width is then calculated to be ~γSPP=82

meV (~γSPP = h( c
λl
− c

λr
), where λl and λr are 615 nm and 641 nm, respectively).

In Figure 4.9, the asymmetric line shapes of TEM11 mode make it problematic to

evaluate the bandwidth as well. As illustrated for P=530 (green curve) in Figure 4.9,

a horizontal line is drawn at half the maximum peak height ((Imax − Imin)/2) and

then the full length residing within the peak bound (λr − λl) is measured to be the

FWHM of the TEM11 mode. According to this evaluating method, bandwidths of

TEM11 mode (41 nm spectral shift) for MIM array with P=530 nm is estimated to be

~γTEM11 = h( c
λl
− c

λr
)=174 meV, where λl and λr are 593 nm and 647 nm, respectively.
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Similarly, ~γTEM11 = h( c
λl
− c

λr
)=167 meV is estimated for P=720 nm, where λl and

λr are 596 nm and 648 nm, respectively. In the case of P=624 nm, the bandwidth

of TEM11 mode should be 167 meV < ~γTEM11 < 174meV without coupling. As

shown in Figure 4.9, the energy splitting for the Rabi-analog splitting is estimated to

be 2~g=132 meV between two hybridized modes appearing at 614 nm and 657 nm,

respectively. So the criterion that 2g> (γSPP + γTEM)/2, for strong coupling between

the SPPair/Au(0,1) and TEM11 mode is met. Besides Rabi splitting, anti-crossing

dispersion is a characteristics for strong coupling as well, which will be studied in the

following subsection.

4.3.3 Anti-crossing behaviour

The Rabi-splitting and anti-crossing behaviour have been widely investigated in metal-

lic nanosystems hybridized with QDs, dyes and fluorophores , with a focus on modi-

fying the emission by strong coupling of emitters with plasmonic modes [171]. Similar

phenomena have been observed in plasmonic microcavities and nanocavities as well

[169, 177]. When the strong coupling regime is reached, Rabi-splitting happens, result-

ing in the fact that instead of crossing each other, the energy curves diverge from each

other. This phenomenon is called anti-crossing which means that the two branches of

hybridized states repel each other. This anti-crossing can be as well observed in MIM

cavities consisting of gold disc arrays on a gold film system.

Figure 4.12: Contour plot of the simulated reflectance as a function of periodicity
and wavelength for MIM cavities consisting of disc arrays on gold film. The circu-
lar and triangular markers denote the resonance position of the TEM11 mode and
SPPglass/Au(0,1), respectively. The cavity radius is RAu=40 nm and cavity height
tSiO2=10 nm.
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Figure 4.12 shows the simulated variation of reflectance as a function of wavelength and

periodicity in MIM(I) with RAu= 40 nm and tSiO2= 10 nm. The resonance positions

of the SPPglass/Au(0,1) and TEM11 mode manifest themselves in reflection spectra by

the intensity minima, and are denoted by triangles and circles, respectively. On one

hand, the SPP mode depends strongly on the periodicity: the resonance wavelength

λglass/Au(0,1) moves from 711 nm to 836 nm when varying the periodicity from 440 nm

to 530 nm (good agreement with calculations in Figure 4.10). On the other hand, the

cavity mode is hardly influenced by the periodicity in most cases. However, at the peri-

odicity P=480 nm, the SPPglass/Au(0,1) mode (λglass/Au(0,1) = 762 nm in Figure 4.10)

and TEM11 mode (∼760 nm) coincide with each other. An anti-crossing behaviour

can be observed, implying strong coupling between cavity plasmon modes and SPP

modes. Two hybridized modes are formed through the coupling: one with a shorter

resonance wavelength and one with a longer resonance wavelength than 760 nm. The

small disturbance at periodicity P=620 nm and P=585 nm are due to hybridization

of higher order SPPair/Au(0,1) and SPPglass/Au(1,1) modes with the TEM11 mode, as

indicated by the arrows in the Figure 4.12.

4.3.4 Energy exchange through strong coupling

In the previous section, we presented that Rabi-analogue splitting occurs when SPP

modes and cavity modes coincide with each other. This Rabi-splitting phenomenon is

frequently observed in experiments as well. In this section, the efficient energy exchange

between an SPP mode and cavity mode during the strong modal hybridization will be

investigated.

In Figure 4.13(a) and (b), measured and simulated extinction spectra with varying

periodicity are shown for MIM(I) with RAu = 38±2 nm and tSiO2= 12 nm. Good

agreement in the spectral profile can be found between experiments and simulations.

It is worth noting that the cavity modes are exhibited as Fano resonances in extinction

measurements, due to their coupling to the incident radiance (details will be shown in

section 4.6). The field map for SPPair/Au(0,1) is shown at the resonance wavelength

λSPP = 670 nm in Figure 4.13(c). The field map of the TEM11 mode is shown at the

resonance wavelength λTEM11= 700 nm. The last two pictures in Figure 4.13(c) show

the field maps of the two hybridized modes at their resonance wavelengths, respectively.

It can be seen that the two hybridized modes obtain parts of their energy from the

SPP modes (stripes pattern) and parts of their energy from the TEM11 mode (circular

standing-wave pattern). Because the two hybridized modes both have energy from

the SPP mode and cavity mode, one can image that the hybridized modes possess

some physical properties from both the SPP mode and cavity mode. In Figure 4.12,
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in the strong coupling regime from P = 450 nm to 490 nm, the originally insensitive

cavity plasmon mode becomes highly dispersive as a function of periodicity, while the

originally dispersive SPP mode becomes less sensitive to the periodicity in the strong

coupling regime. This indicates that new plasmonic polariton quasi-particles, similar

to the quantum exciton polariton in a semiconductor cavity, are formed through the

Rabi-analogue splitting [171]. Our results agree well with the strong coupling between

SPP mode and 1D cavity plasmon mode investigated in a nanoparticle array-planar

FP cavity hybrid system [171].

Figure 4.13: (a) Measured extinction spectra of MIM(I) cavity arrays with RAu = 38±2
nm, tSiO2=12 nm and varying periodicity. (b) Simulated extinction spectra of MIM(I)
with RAu = 40 nm, tSiO2=10 nm and varying periodicity, wavelength sweeping step is
10 nm. (c) From left to right, the field maps for SPPair/Au(0,1) while P = 650 nm (with
RAu= 70 nm so the strong coupling is excluded), cavity plamonic TEM11 mode while
RAu= 40 nm (and P = 350 nm to exclude the strong coupling), and two hybridized
modes after strong coupling are presented in a MIM cavity with P = 650 nm and RAu

= 40 nm.

4.3.5 Conclusion

The cavity plasmon modes in the visible/near-IR range are independent of periodicity

in most cases. Due to the high confinement in both perpendicular and radial direction,
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the energy fringe extended beyond the MIM cavity is weak, which undermines the base

of near-field coupling between neighbouring cavities. Besides, the bounding nature

(non-radiative) of GSPs leads to weak far-field coupling between neighbouring cavities.

However, the resonance characteristics of cavity plasmon modes are subject to a sig-

nificant influence of varying periodicity when strong coupling happens between SPP

modes on the Au/dielectric interfaces and cavity plasmon modes. The SPP modes

are highly sensitive to the periodicity, and when the resonance position coincides with

cavity modes, Rabi-analogue splitting occurs and results in two hybridized modes. The

two hybridized modes both gain parts of their energy from SPP modes and parts from

cavity plasmon modes, and possess physical properties of both origins.

4.4 Cavity radius dependency

4.4.1 Reflection and scattering of MIM cavities

Figure 4.14: Simulated near-field strength integrated at the bottom of Au discs in
MIM(II), black and red solid curves for MIM(II) with Au discs radius of 130 nm and
40 nm, respectively. P = 350 nm, tSiO2 = 10 nm. The reflection spectra are shown in
black and red dotted lines for the sake of comparison.

Figure 4.14 shows the simulated near-field resonance and the reflection spectra of cav-

ity plasmon modes for MIM(II) cavity arrays with RAu=130 nm and RAu=40 nm. The

near-field resonance shows a Lorentz profile, and the field strength maximum at the

resonance wavelength, while the reflection spectra show Lorentz resonances with re-

flectance minima. In the MIM cavity with a radius of 130 nm, TEM31, TEM12 and
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TEM13 modes appear at 810 nm, 729 nm and 607 nm as field intensity peaks and

reflection dips in near-field and reflection spectra, respectively. In the case of the MIM

cavity with RAu=40 nm, the TEM11 mode emerges at 698 nm in both near-field and

reflection spectra. It is not shown here, but the near-field and far-field reflection spec-

tra of MIM(I) and MIM(III) show the same characteristics of no spectral shift as in

MIM(II). It can be concluded that the reflection dips are straightforward indicators of

the near-field resonance wavelengths of cavity plasmon modes in MIM cavities.

This property of no spectral shift between near-field resonances and reflection dip

positions leads to an advantage of MIM cavities for applications for plasmon assisted

spectroscopy. It has been reported that for many plasmonic substrates, the far-field

resonance shows a spectral blue-shift from the near-field resonance due to the radiation

and far-field effect of plasmonic modes [154, 155]. Figure 4.15 shows the simulated

Figure 4.15: The simulated extinction (black curve) and reflection (blue curve) and
field strength spectra (red curve) at the bottom corner of a gold disc are shown. RAu

= 160 nm.

extinction (black curve) and reflection (blue curve) and field strength spectrum (red

curve) at the bottom corner of a gold disc. The disc size is RAu = 160 nm. As already

presented in section 4.2, the modes TEM11 and TEM31 in a large gold disc are not

discernible due to the wide bandwidth and the superposition in the far-field. The

TEM12 mode which is not overshadowed by other TEMmn modes can be distinguished,

and appears as extinction peaks and reflection peaks. However, the peak positions in

the far-field are blue shifted compared to that in the near-field spectrum. This spectral

shift makes it difficult in practice to locate the near-field resonance position from the

optical extinction or reflection measurements, while in the case of MIM cavities, no
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shift occurs between near-field and far-field resonance maybe due to the non-radiative

properties of the TEMmn modes, which makes it a more promising SERS candidate.

4.4.2 Cavity radius dependency

According to the resonance condition of TEMmn modes in equation 4.5, it is clear that

the resonance wavelength red shifts with increasing RAu. In Figure 4.16(a)-(b), the

measured and simulated reflection spectra are presented for disc MIM(I) cavity arrays

with a grating constant of 335 nm and radius of 38 nm (black curve), 73 nm (blue

curve), 113 nm (green curve) and 150 nm (red curve). The reflection measurements in

Figure 4.16(a) were carried out on a reflection setup as shown in Figure 3.8(b). The

illumination angle is 18.5◦, and the numerical apertures of the illuminating and col-

lecting objective are 0.42 and 0.9, respectively. The corresponding simulated reflection

spectra in Figure 4.16(b) were obtained with normal incidence of collimated light and

a collecting N.A. of 1.

The resonance wavelengths of SPP modes are sensitive to the incidence angle. In

the reflection measurement, the incidence beam comes from a wide range of angles,

leading to a wide range of SPP resonance wavelengths. As a result, there is no distinct

SPP resonance in the optical measurements in Figure 4.16(a). This explains why the

SPPglass/Au(0,1) mode appears at 586 nm in Figure 4.16(b) as indicated by the dashed

line, however, not in the measured spectra in Figure 4.16(a). While the difference

in the incidence angles between simulations and experiments strongly affects the SPP

modes, it has no influence on the position of cavity plasmon modes [80, 81], because the

cavity modes are the eigen modes of the circular MIM cavity and are independent of

the incident angles. The resonance wavelengths of cavity plasmon modes are indicated

by reflection minima in reflection spectra. Good agreement of the resonance position

of the cavity plasmon modes can be found between experiments and measurements for

different RAu. In Figure 4.16(a), TEM11 modes, labelled as mode (1), appear at 677

nm and 964 nm for nanocavities with radius of 38 nm and 73 nm, respectively. The field

maps are shown in Figure 4.16(c). For bigger cavities, the TEM11 mode is shifted out

of the range of interest. A higher order mode, TEM12 which is labelled as mode (2),

appears for bigger cavities and shifts from 630 nm to 729 nm when the radius increases

from 113 nm to 150 nm. Moreover, for the cavity with a radius of 150 nm, two more

higher order modes, TEM31 and TEM13 modes, appear at 812 nm and 582 nm, labeled

as mode (4) and (3), respectively. In conclusion, the resonance position of a certain

order of cavity plasmon modes red shifts as a function of increasing radius, meanwhile,

higher order cavity plasmon modes appear in the investigated spectral range.
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Figure 4.16: Measured and simulated resonance characteristics of plasmonic modes in
disc MIM cavity arrays. (a) Measured reflection spectra for disc cavity arrays with the
same array periodicity P = 335 nm, cavity height tSiO2 = 12 nm and varying cavity
radius: 38 nm (black curve), 73 nm (blue curve), 113 nm (green curve) and 150 nm (red
curve); (b) Simulated reflection spectra in correspondence to those disc cavity arrays
in (a); (c) Field maps for different orders of cavity plasmon modes.
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4.4.3 Dispersion relation

In Figure 4.16(c), it can be seen that there are always fringe fields (∆R) outside of the

physical MIM cavity for each TEMmn mode. We are aware that ∆R is dependent on

several parameters: the order of cavity plasmon modes, the cavity thickness, the disc

radius and etc, which would influence the confinement (or the effective refractive index)

of the TEMmn modes. Based on the cross-section field maps in Figure 4.16(c), the

∆R is estimated to be approximately equal to tSiO2 . For simplicity, we qualitatively

assume that ∆R ≈ tSiO2 for the TEMmn modes. The determination of ∆R can be

quantitatively estimated later in Figure 5.5.

According to equation 4.5, the wave number of a TEMmn mode can be obtained by

kgsp =
χ′mn

R + ∆R
(4.8)

Therefore, the dispersion relation of cavity plasmon modes can be also determined from

the experimental and simulated spectra. In Figure 4.17, experimental resonance wave-

Figure 4.17: Experimental dispersion of cavity plasmon modes TEMmn in nanocavities
with different sizes (circles and triangles), determined from Figure 4.16(b). The black
curve shows the dispersive relation of a corresponding infinite MIM waveguide.

lengths of cavity modes λTEMmn from nanocavities with different radii were plotted

by markers: TEM12 (blue markers), TEM13 (red marker), TEM31 (green marker),

TEM31 (magenta marker). The black curve in Figure 4.17 is the dispersive curve for

gap plasmons supported by a corresponding infinite gold (50 nm)/SiO2(12 nm)/gold

(50 nm) waveguide. The dispersion relation of TEMmn modes in MIM cavities is found

to follow a dispersion very similar to that of the corresponding MIM waveguide. This

dispersion relation has also been reported in other plasmonic resonators, such as rect-

angular FP cavities [151] and silver/Al2O3/Ag circular cavities [133]. This agreement
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in experiments proves that the cavity plasmon modes are a product of continuous GSP

waves supported by a MIM waveguide getting selected by the eigen modes of a cir-

cular FP cavity. As a result, cavity plasmon modes possess advantageous properties

like strong near fields from their plasmonic origin and narrow resonance line shapes

from their cavity modes origin. These properties make MIM cavities a very promising

candidate for plasmon assisted sensing and microscopy.

4.5 Cavity height dependency

In Figure 4.3, the dispersion relation of GSP waves changes significantly with varying

core thickness (tSiO2) of Au/SiO2/Au MIM waveguide, due to coupling between two

SiO2/Au interfaces. As cavity plasmon modes arise from the interference of counter-

propagating GSP modes, similar behaviour can be expected of TEMmn modes.

Figure 4.18: Contour plot of the reflectance as a function of cavity height and wave-
length for MIM cavities consisting of disc arrays on a gold film. The periodicity is P=
335 nm and cavity radius RAu= 140 nm. The circular and triangular markers are ob-
tained by reading out the reflectance dip positions, denoting the resonance positions of
the TEM11 mode and SPPair/Au(0,1), respectively. The black curve is an exponential
decay function wl = (474exp(−tSiO2/28 nm)+628.1) nm.

Figure 4.18 shows the evolution of reflectance as a function of cavity height and wave-

length for MIM(I) with RAu = 140 nm and P = 335 nm. The mode appearing at 586

nm is the SPPair/Au(0,1) mode (triangles), which is insensitive to the cavity height. The

modes marked by circles are the cavity modes TEM11. It can be observed that the

resonance wavelength of the TEM11 mode blue shifts with increasing tSiO2 , because

the GSP wave is a product of mode hybridization between two SiO2/Au interfaces
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with a separation of tSiO2 , and the coupling strength is an exponential decay function

of separation. The blue-shift of mode TEM11 can be fitted with an exponential decay

of tSiO2 , as the black curve in Figure 4.18. This evolution of the TEM11 mode can be

understood by the mirror effect of the gold film. The gold nanodisc hybridizes with

its image through the metal film, resulting in a red-shift, while the coupling strength

decreases drastically as the separation increases, resulting in a blue-shift as a function

of increasing tSiO2 . When tSiO2 > 120 nm, the near-fields on two metal/dielectric in-

terfaces are decoupled, thus showing no change in λTEM with a further increasing of

tSiO2 .

4.6 Fano effect in MIM cavity arrays

Comparing the measured extinction spectra in Figure 4.13 and the measured reflection

spectra in Figure 4.16, we find that TEMmn modes express themselves in very different

profiles in extinction and reflection. In Figure 4.14, it is demonstrated that a reflection

measurement is a straightforward method to determine the resonance wavelength and

lineshape of cavity plasmon modes. In this section, extinction measurements of MIM

cavity arrays will be studied.

Figure 4.19: Fano profile of cavity plasmon modes in transmission. Simulated transmis-
sion spectra through three different MIM(I)-(III) and Au film tAu=50 nm. The radius
of the Au disc is 40 nm, the grating constant is 350 nm and the cavity height is 10
nm. The transmission spectra for MIM systems show the same tendency compared to
the transmission through the gold film, except for a Fano modulation at the resonance
position of the cavity modes.

Fano resonances have been extensively studied in plasmonic structures, as they con-

tribute advantageous properties, such as a narrow resonance bandwidth, electromag-
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netic induced transparency (EIT), etc. Fano resonances appear upon the interference of

a resonance with a narrow bandwidth and a broadband background. In order to under-

stand the Fano profile in extinction spectra, we investigated the transmission spectra

through MIM(I)-(III), shown in Figure 4.19. The transmission spectra through MIM

structures follow the tendency of the transmission through a Au film, except for the

Fano resonances appearing around the resonance position of cavity modes. We as-

sume that the Fano resonances in the transmission arise from the coupling between

the forward scattering of cavity modes and the transmission through the gold film. A

modified Fano formula, taking into consideration the intrinsic loss of metal, is adapted

from Martin et al [103, 178]. The spectral response is the product of the bright mode’s

response with the asymmetric modulation:

Response =
|A|2

(ω
2−ω2

s

Γs
)2 + 1

((ω
2−ω2

a

Γa
) + q)2 + b

(ω
2−ω2

a

Γa
)2 + 1

(4.9)

where |A| is the maximum amplitude of the forced resonance if there is no coupling, ωs

and ωa are the resonance frequency of the bright mode with larger linewidth and dark

mode with smaller linewidth, respectively; Γs and Γa are the corresponding linewidth of

the bright mode and dark mode respectively; b is the modulation damping (or screening

parameter) and q represents the asymmetric parameter.

Figure 4.20: The Fano resonance for MIM(II) in Figure 4.19. The red curve is the
transmission spectrum through only 50 nm of Au film. The blue curve is the reflection
dip of MIM(II) with RAu=40 nm, the amplitude has been scaled in order to be shown
together with the transmission curve. The dotted line shows a Fano fit based on the
Lorentz resonance plasmonic cavity mode and the transmission continuum. The solid
black curve is the simulated transmission through MIM(II). Good agreement can be
found between the the simulated transmission and the Fano hybridization between
transmission through the gold film and the transmission of the cavity mode TEM11.



4.6. Fano effect in MIM cavity arrays 97

In Figure 4.20, the Fano fit for MIM(II) is shown. The red and blue curve is the

transmission through the Au film and the Lorentz reflection dip of cavity modes, which

are taken as the two coupling elements for the Fano fit. The dashed black curve shows

the Fano fit based on equation 4.9 with: A = 0.12, ~ωs= 1.59 eV (779 nm), ~Γs

= 227 meV, ~ωa= 1.78 eV (697 nm), ~Γa = 252 meV, b = 0.4 and q = -0.6. The

Fano fit in the dashed black curve agrees well with the transmission of the MIM(II)

structure, supporting the assumption of a Fano resonance between cavity modes and

the transmitted continuum, which is also referred to as incident radiance [178].

Figure 4.21: Simulated extinction (red dotted) and reflection spectra (blue dotted)
for MIM(I) with RAu=40 nm, tSiO2=10 nm and P=350 nm. Solid curves show the
measured extinction (red), reflection (blue) and scattering (black) for MIM(I) with
RAu=38 nm, tSiO2=12 nm and P=335 nm. The symmetric scattering spectrum shows
the same resonance characteristics as in reflection spectra: same resonance wavelength
and inverse lineshape.

The measured (solid curves) and simulated (dotted curves) reflection (blue curves),

extinction (red curves) and scattering (black curve) for a MIM cavity array are shown

in Figure 4.21. The scattering measurement is obtained by the scattering set-up shown

in Figure 3.9(a). The measured sample has parameters of RAu=38 nm, tSiO2=12 nm

and P=335 nm, and the simulated sample has parameters of RAu=40 nm, tSiO2=10

nm and P=350 nm. The spectral profiles of the measured extinction and reflection

agree well with the simulation, while the measured resonance wavelength is shorter

compared to simulations. The smaller RAu and bigger tSiO2 in the fabricated MIM

cavities lead to this discrepancy in resonance wavelength. The measured and simulated

extinction spectra show negative extinction, this is because the extinction is evaluated

taking transmission through a gold film and SiO2 film as reference. The scattering

measurement shown in the black curve in Figure 4.21 is another valid evidence of the

Fano coupling assumption above. The scattering measurements were performed with
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a transmission dark-field microscope, so the transmitted continuum through the gold

film was not collected and only the forward scattering of the plasmonic cavity mode

was collected. Moreover, the scattering spectrum shows the same Lorentz shape as in

reflection (solid blue curve), and the resonance positions are both at 679 nm. On the

contrary, the extinction spectra of cavity modes show significantly asymmetric profiles.

To conclude, the plasmonic cavity modes are Lorentz shaped resonances, they appear

in reflection and scattering spectra in symmetric resonance line shapes while appearing

in asymmetric Fano profiles in transmission and extinction due to the coupling with

the incident radiation.

4.7 Conclusion

In a coupled system consisting of arrays of gold discs on top of a gold film separated

by an insulator layer, plasmonic modes with different natures can be excited. In this

chapter, the cavity plasmonic modes in MIM cavities were studied. Firstly, the cavity

modes in MIM structures were compared with those in simple gold discs: the presence

of the Au film red-shifts the higher order cavity modes into the visible regime and

decreases the resonance bandwidth by enhancing field confinement. Then, we demon-

strated that the cavity plamonic modes in the visible/near-IR region are insensitive

to varying periods in most cases. However, the periodicity affects the cavity modes

notably when strong coupling happens between SPP modes and cavity modes. The

hybridized modes obtain part of their energy from both SPP modes and cavity modes,

and thus possess physical properties of both SPP and cavity modes. The TEMmn

modes red-shift with increasing cavity radius, and follow the same dispersion relation

as a corresponding MIM waveguide. An increasing cavity height leads to a blue-shift

of the cavity modes, while the resonance wavelength of the TEMmn modes follows

an exponential decay function relative to the cavity height. As to the far-field prop-

erties of cavity modes, the reflection and scattering spectra are a direct indicator of

the resonance wavelengths and lineshapes of cavity modes. In extinction spectra, the

cavity plasmon modes appear as Fano resonances due to the coupling with incident ra-

diance. A sound understanding of plasmonic modes will serve as guidance in designing

applications for cavity plasmon modes assisted sensing and spectroscopy.



Chapter 5

Exposing ’hot spots’ of cavity

plasmon modes

In the last chapter, properties of cavity plasmon modes in MIM cavity structures have

been studied through experiments and simulations. In other works, similar structures

have been investigated. The coupling and decoupling of LSPR and SPP modes in or-

dered nanoparticle arrays on gold film MIM structures have been studied in R. Nicolas’

work [91]. In Ref [94], it has been shown, that it is possible to use plasmonic modes with

two resonances which were created by coupling of SPP modes with a localized cavity

mode. They were used for SERS measurements to achieve simultaneous enhancement

at the excitation and Stokes wavelength. Cavity plasmon modes have also been used

in surface enhanced infrared absorption spectroscopy [87], in which the cavity mode is

tuned to match the frequency of the molecular vibration and an enhancement factor of

absorption up to 2.2*106 is achieved. Despite those nice results being achieved, there

is still improvement to be made on these ordered MIM substrates in order to provide

better performance in plasmon-assisted sensing and spectroscopy.

One can imagine when the thickness of the insulator spacer layer is less than 10 nm, the

electromagnetic field is well confined and enhanced in the cylindrical dielectric spacer

layer of the MIM cavities. In the previous works above, a thin continuous dielectric

film was evaporated as a spacer layer. This however means, that only a very small

fraction of the enhanced field of the cavity modes is accessible to the surrounding

medium, since most of it is occupied by the dielectric spacer. This means that by

making this part of the near-field accessible for molecule probes, the performance of

this ordered nanoparticle-on-gold film MIM substrate as SERS substrates or other

applications based on enhanced EM fields, can be considerably improved.

In this section, in order to address the issue that the strong EM field is not accessible

99
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to the surrounding environment, the author studied by experiments and simulations

the MIM cavity structure with an undercut, in order to expose the ’hot spot’ of cav-

ity plasmon modes. The field distribution and optical properties were compared for

MIM(I)-(III).

5.1 Importance of the spacer undercut

Here we want to make the ’hot spots’ of cavity plasmon modes accessible, by reducing

the size of the dielectric spacer layer with wet etching. In order to validate that

assumption and obtain a better understanding of the properties of the cavity modes,

simulations for structures MIM(I)-(III) are performed.

5.1.1 Accessible enhanced EM field

Figure 5.1: field map simulations for MIM(I)-(III). (a)-(c) schematics of MIM(I)-(III)
with fixed gold disc radius RAu=40 nm and grating constant P=350 nm. (a) MIM(I):
dielectric film spacer; (b) MIM(II): dielectric disc spacer with radius RSiO2=RAu=40
nm; (c) dielectric spacer with diameter of RSiO2=25 nm < RAu. (d)-(f) Field maps of
the cavity plasmon modes TEM11 in simulations for MIM(I)-(III), respectively. The
field strengths are normalized to the field maximum in each map.

In Figure 5.1, MIM cavities with a gold disc radius of 40 nm and grating constant of

350 nm were studied. The spacer layer varies from a continuous silica film (a) to silica

disc spacers with the same diameter RSiO2 = RAu = 40 nm (b) and smaller than that

of the gold disc, RSiO2 = 25 nm (c). Figure 5.1(a)-(c)shows the schematics of the three

different MIM cavity configurations that were studied. The corresponding field maps
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for the fundamental cavity mode TEM11 for each configuration are shown in Figure

5.1 (d)-(f).

The field distributions of this cavity mode are only slightly modified when the spacer

geometry is changed, while the field maxima remain at their positions under the edges

of the gold disc. The interpretation will be given in the following section. Here it is

important to notice that in cavity configuration (c), the hot spots of the plasmonic

cavity modes are exposed to the environment. This is of great importance for EM field

enhanced physics where the accessibility to strongly enhanced EM fields is crucial.

5.1.2 Improving RI sensing performance

Figure 5.2: Sensing simulations for different arrays of MIM cavity structures as in
Figure 5.1(a)-(c). The extinction spectra are evaluated based on equation 3.3. Radius
of Au discs is RAu = 160 nm and grating constant is P = 650 nm. The curves show
extinction spectra with respect to different sensing refractive indices.

Figure 5.2 shows the simulated sensing results for different cavity configurations as

showed in Figure 5.1(a)-(c). The simulated plasmonic cavities consist of Au disc array

with a radius of 160 nm and grating constant of 650 nm. In simulations these cavities
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are immersed in different refractive index solutions. Four different refractive indices

are studied: n1=1, n2=1.33, n3=1.38, n4=1.43. The extinction responses of different

MIM cavities to different refractive indices were evaluated and presented in Figure

5.2 (a)-(c). The evolution of cavity modes with respect to different refractive indices

is highlighted by the dashed ellipse. It is clear that the sensitivity of cavity mode

TEM12 in MIM(III) is better compared to MIM(I), with a more significant red shift of

the extinction maximum as a function of increasing refractive index. The wavelengths

where extinction maxima appear are recorded in Table 5.1, bandwidths are estimated,

sensitivities and FoMs are evaluated in structures MIM(I)-(III).

Table 5.1: The wavelengths of simulated extinction maxima contributed by the TEM12
modes in MIM(I)-(III) are read from Figure 5.2 while the RIs of the surrounding media
vary from 1 to 1.43. Senstivities (s) are evaluated by the spectral shift from n = 1 to
1.43. The band widths (FWHM) are estimated from the spectra with n = 1. FoM for
TEM12 modes in MIM(I)-(III) are evaluated accordingly.

n1=1 n4=1.43 S(nm/RIU) FWHM (nm) FoM
MIM(I) 827 852 58 76 0.76
MIM(II) 810 850 93 71 1.31
MIM(III) 749 837 205 48 4.27

In Table 5.1, it is shown that the RI sensitivities of modes TEM12 increase from 58

nm/RIU to 93 nm/RIU and 205 nm/RIU in MIM(I)-(III), respectively. The FoMs for

the three different configurations were calculated based on equation 1.2: MIM(I) FoM

= 0.76, MIM(II) FoM = 1.31, MIM(III) FoM = 4.27. The sensing performance of the

cavity mode is notably improved after the hot spots of the cavity modes are exposed

to the environment.

In conclusion, strongly enhanced EM fields can be excited in the small gaps between two

metallic nanostructures. The two simulations above showed that little of the strong

EM fields of cavity plasmonic modes can contribute to plasmon-assisted sensing or

spectroscopy, if most of the enhanced EM field is localized inside the dielectric spacer

layer. Whereas, by introducing an undercut in the MIM structure, the performance of

plasmonic applications can be significantly improved.

5.2 Influence of spacer geometries

In this thesis, we propose to create the spacer undercut and expose the hot spots

by wet etching, which will be presented in section 5.3. As presented in section 5.1,

advantageous properties promising for plasmon assisted sensing and spectroscopy can
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be obtained after an undercut is created in the MIM structure. In order to understand

the physics behind these advantageous properties, it is crucial to understand the role

played by the spacer layer on the resonance characteristics of cavity plasmons, so that

we are aware of the change in plasmonic response of the MIM structure, before and after

the etching process. In this section, the resonance characteristics of MIM structures

with varying spacer geometries were studied.

5.2.1 Position of hot spots

Figure 5.3: Field intensity along the diameter of a Au disc for different SiO2 spacer
discs, RSiO2 varies from 5 nm to 80 nm in 5 nm steps. The RSiO2 of each line is indicated
by the colormap. RAu = 40 nm, tSiO2= 10 nm, P= 350 nm.

In Figure 5.3, the E-field amplitude (|E| =
√

(Ex)2 + (Ey)2 + (Ez)2) at the resonance

wavelength along the diameter of a gold disc, at the position indicated by the black

line, is shown for different MIM cavities. The radius of the SiO2 disc varies from 80 nm

to 5 nm in steps of 5 nm, and for each step the field strength is plotted, corresponding

to when RSiO2 is reduced by etching. The field maxima appear at the edges of the gold

disc no matter how the size of the spacer varies. This can be explained from the nature

of plasmonic cavity modes. In chapter 4, we demonstrated that the cavity plasmon

modes are formed by the interference of incoming and outgoing gap plamonic modes

supported by the corresponding MIM waveguide. In other words, these plasmonic

modes are the result of continuous MIM waveguide modes getting selected by the

discrete and sharp FP cavity resonance. The cylindrical FP cavity is defined by the

two Au/dielectric interfaces and the edge of the gold disc, where the plasmonic waves

are reflected. In these open FP cavities, the interference of incoming and outgoing
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plasmonic waves always forms a standing wave with field maxima at the edge of the

cavity, which is indicated by the edge of the gold disc [179]. As a result, there are

always field maxima, also referred to as ’hot spots’, of cavity plasmon modes residing

at the edges of the gold disc, as can be observed in Figure 5.1 (a)-(c). We note that

there is a discontinuity of the E field intensity at the edge of the gold disc, due to the

sudden change of material permittivity from gold to air.

In conclusion, in an open MIM cavity the field distributions of cavity plasmon modes

are insensitive to the change of spacer layer. The ’hot spots’ of plamonic cavity modes

can be exposed to the detecting environment by creating an undercut in the MIM

cavity.

5.2.2 Resonance wavelength

Figure 5.4: Simulated reflection (a) and extinction (b) spectra for MIM cavities with
different insulator spacer geometries. Blue curve: SiO2 film spacer (MIM(I)), black
curve: SiO2 disc spacer (MIM(II)), green curve: etched SiO2 disc spacer RSiO2=RAu/2
(MIM(III)). The spacer thickness, radius of gold disc and grating constant are 10 nm,
130 nm and 350 nm, respectively, in all the cases.

While the field distribution only undergoes a minor disturbance from the size variation

of the insulator spacer, the cavity resonant wavelength position is notably blue shifted

from MIM(I) (blue curves) to MIM(III) (green curves), as shown in Figure 5.4.

Figure 5.4 shows the simulated reflection and extinction spectra for arrays of MIM

cavities with a radius of 130 nm, cavity height of 10 nm and grating constants of

350 nm, with different spacer geometry as shown in the insert. In Figure 5.4(a), the

resonance position of the cavity plasmon mode (TEM12 mode) blue shifted from 744 nm

to 728 nm then to 684 nm for MIM(I), MIM(II) and MIM(III), respectively. The Fano

shaped resonance in extinction spectra in Figure 5.4(b) also showed similar blue-shift

behaviour from MIM(I) (blue curve) to MIM(III) (green curve). This can be explained
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from the characteristics of the FP cavity. As can be seen in Figure 5.1, RAu + ∆R

is nearly unchanged for MIM(I)-(III), thus the optical lengths of the resonance radius

are (RAu + ∆R) ∗ nSiO2 , (RAu ∗ nSiO2 + ∆R) and (RSiO2 ∗ nSiO2 +RAu −RSiO2 + ∆R)

for MIM(I)-(III), respectively. The decreasing optical length of the resonance radius

leads to the blue-shift of cavity plasmonic modes TEMmn from MIM(I) to MIM(III),

as observed in Figure 5.4. This means that the variation of the spacer geometry in

MIM cavity structures affects the optical lengths of the resonance radius, and thus

influences strongly the resonance position of cavity plasmon modes.

5.2.3 Simulations of progressive wet-etching

The progress of wet etching is simulated by investigating MIM(III) structures with

decreasing RSiO2 . In Figure 5.5, the wavelengths where the extinction maxima appear

Figure 5.5: Simulating the progress of wet-etching. The simulated extinction maximum
position is shown as a function of the SiO2 disc spacer size RSiO2 for MIM cavities with
RAu= 40 nm (a) and 130 nm (b). The spacer thickness and grating constant are 10 nm
and 350 nm, respectively, in both cases. The side views of field maps for the TEM11
(a) and TEM12 (b) modes in MIM(I) are positioned accordingly to the coordinates of
the x-axis.

are shown for the TEM11 (a) and TEM12 (b) modes as a function of the spacer radius

RSiO2 in MIM(III). Figure 5.5(a) depicts the evolution of the TEM11 mode position in

MIM cavities with a radius of 40 nm with varying radius of the spacer from 5 nm to 80

nm. When the radius of the SiO2 spacer is beyond 50 nm (regime III in Figure 5.5(a)),

most of the E field energy is inside the dielectric spacer, so the resonant wavelength

does not red shift as the dielectric spacer radius further increases. When the spacer

radius is between 30 nm and 50 nm (regime II in Figure 5.5(a)), the field maxima are

partly in the spacer and partly in the air, and the effective resonant radius decreases

as the spacer radius gets smaller, resulting in a blue shift of the resonant wavelength

from 733 nm to 609 nm. When the spacer disc radius is smaller than 30 nm (regime
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I in Figure 5.5(a)), the field maxima are completely in air and not influenced by the

size of the SiO2 spacer anymore.

The dependency of the resonance position as a function of spacer radius was also studied

for a MIM cavity with a radius of 130 nm. From chapter 4, we know that the TEM12

mode is the most predominant mode in the visible region when RAu = 130 nm, and

the TEM12 mode features two more modal lobes in the central region of the circular

cavity, compared to the TEM11 mode. When the radius of the spacer is beyond 140 nm

(regime V in Figure 5.5(b)), which is also the resonance cavity radius RAu + ∆R, the

resonance position is independent of the spacer radius. In regime I and III, when the

refractive index was modified at the nodes of the standing wave, the resonance position

is hardly influenced by the change of spacer radius. In regime II and IV, when the local

refractive index within the field maxima is modified by reducing the SiO2 spacer, the

resonance position of the TEM12 mode blue shifts significantly with decreasing RSiO2 .

The resonance position is the most sensitive to the change of refractive index where

there is the strongest E field, as marked by blue dots in both Figure 5.5(a) and (b).

We conclude that the resonance position only shifts when the refractive index at the

hot spots is modified. This rule applies to other cavity modes as well, regardless of the

dimensions of MIM cavities. Based on this conclusion, this simulation of progressive

wet-etching can be a straight-forward method to determine the fringe field region ∆R

for equation kgsp(RAu + ∆R) = χ′mn. As can be seen from Figure 5.5(a) and (b),

∆R ≈ tSiO2 = 10 nm for both the TEM11 mode and the TEM12 mode.

5.3 Fabrication of undercut

Plamonic structures have been intensively studied over the last decades because the

strong near-field inherent to plasmonic modes has been found to be very appealing

for plasmonically enhanced sensing and spectroscopy. However, the ‘hot spots’ usually

reside in the substrate or in the insulator layer and are not accessible to the analytes.

In order to expose the ‘hot spots’ of cavity plasmon modes, wet etching and selective

reactive-ion etching (RIE) were applied to reduce the size of the insulator layer [93, 95,

180]. In Ref. [180], a buffered oxide etch was used to achieve a pillar-like support for

gold discs, in order to passivate the glass substrate from interacting with the sensor

functionalization, more importantly, to make it possible that all the hot spot of the

LSPR mode is open to molecules. In Ref. [95], a Au NPs/Al2O3/Au NPs composite

was etched with 5% KOH solution for 120 s in order to expose the hot spots in the

dielectric layer. Except for the wet etching method, a dry etching method was also

used to introduce undercut in MIM structures [93].
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The wet etching of evaporated SiO2 with hydrofluoric (HF) acid has been well es-

tablished in semiconductor industry, and buffered oxide etchant is also commercially

available. So in this thesis, we introduced undercut in the gold/SiO2/gold MIM cavities

by wet etching because it is the most straight-forward and readily accessible method

in the laboratory.

Figure 5.6: Schematic description of the fabrication of MIM structures with undercut.

Figure 5.6 depicts the fabrication process of a MIM cavity with an undercut. Arrays

of MIM cavities with RSiO2 = RAu were fabricated by standard EBL process following

the steps (1) to (5). Then diluted HF with a concentration of 0.03 % (wt) in water

was used to reduce the diameter of the SiO2 spacer. The very low concentration of the

etchant allows for homogeneous etching of the spacer on a well controllable time scale.

5.4 Wet etching experiments

The influence of decreasing RSiO2 by wet etching on the location of ’hot spots’ and

the resonance wavelength has been investigated through simulations in the previous

sections. Here, the optical properties of MIM(II) (before wet etching) and MIM(III)

structures (after etching) are presented. The extinction spectra of arrays of MIM

cavities were recorded taking transmission through a 50 nm gold film as reference,

before and after the arrays of MIM structures were etched for 40 s. A collimated

illumination was used and the numerical aperture of the collecting objective is 0.4.

Figure 5.7 shows the evolution of extinction spectra for MIM cavities with a radius

around 130 nm and varying grating constants, before and after the etching process.

The dimensions of the cavities are shown in the legend with RAu and P indicating the

cavity radius and periodicity, respectively. The resonance positions of LSPR modes

with ’hot spots’ residing at the top edge of the gold discs are not influenced by the
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etching process when grating constants are 335 nm (blue curve) and 440 nm (black

curve). In the case of P = 530 nm (red curve), there is one mode showing an extinction

maximum at 559 nm which is a hybridized mode of a LSPR mode and SPPair/Au(0,1).

Moreover, this hybridized mode is insensitive to the etching process as well. This can

be easily understood by the resonance conditions of the LSPR mode and SPP mode.

The LSPR mode is highly sensitive to the refractive index change inside its ’hot spots’,

which are ∼ 50 nm away from the varying RI in the insulator. The RI sensitivity

of the LSPR mode will be shown in details in chapter 6. On the other hand, the

grating induced SPP modes are dependent of the grating constants, incident angle,

and refractive index change inside their near-field. Therefore, both LSPR modes and

SPP modes are insensitive to the change of the refractive index in the insulator layer.

As a result, these modes stay at the same positions before and after etching as can be

observed in Figure 5.7.

Figure 5.7: Extinction spectra for arrays of MIM cavities, before (solid curves) and af-
ter (dashed curves) the wet etching step, respectively. The blue, black and red curves
present the extinction spectra obtained from MIM(II) (solid curve) and MIM(III)
(dashed curve) with RAu = 153 nm, 132 nm and 130 nm, respectively.

On the other hand, the TEM12 modes as labelled in Figure 5.7, blue shift notably after

the etching process, agreeing well with the simulations in section 5.2. The extinction

maxima resulting from the TEM12 mode blue shifted from 647 nm to 626 nm, from

619 nm to 598 nm and 616 nm to 600 nm for MIM cavities with RAu = 153 nm, 132 nm

and 130 nm, respectively. For the array of MIM cavities with a radius of 130 nm and

grating constant of 530 nm, the resonance position blue shifted by 16 nm. Relating

to the simulated results in Figure 5.5 (b), the radius of the SiO2 disc is thus reduced

by ∼ 14 nm. Because the etching process is isotropic, we assume that the radius of

the SiO2 spacer was reduced by 14 nm in all the arrays of MIM cavities for simplicity.
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This assumption will be used in chapter 7 when calculating the relative enhancement

factor of undercut MIM cavities.

5.4.1 Response of different TEMmn modes

In chapter 4, we presented that the edge cavity modes and the surface cavity modes

show very different field distribution characteristics: the edge modes have their strong

near-field distributed in the modal lobes around the circumferences of the MIM cavities,

on the other hand, the surface cavity modes have most of their energy confined in the

central modal lobes rather than the edge lobes. Moreover, different orders of surface

cavity modes show different confinement strength as shown in section 4.3.1. In this

section, the sensitivities of different orders of cavity modes to wet etching will be

investigated through experiments and simulations.

Figure 5.8: Measured extinction spectra for arrays of MIM cavities with RAu= 165 nm,
P = 440 nm (black curve) and RAu= 162 nm, P = 530 nm (red curve) are shown, before
(solid curves) and after (dashed curves) the wet etching step, respectively. Inserts are
the field maps of the TEM12 and TEM13 modes.

Figure 5.8 shows the extinction spectra before (solid curves) and after (dashed curves)

etching for arrays of MIM cavities with diameters around 320 nm and grating constants

of 440 nm (black) and 530 nm (red). Similar to Figure 5.7, the LSPR mode and hybrid

mode did not move before and after the etching step, while for the plasmon cavity

mode TEM12, the extinction peaks blue shifted from 696 nm to 670 nm for the cavity

array with a diameter of 331 nm, and shifted from 686 nm to 661 nm when the cavity

diameter is 324 nm. The TEM12 modes blue shifted by 26 nm and 25 nm after etching

respectively. The cavity plasmon mode TEM13 in the red curves blue shifts from
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629 nm to 623 nm. The resonance position of the TEM13 mode shifted by 6 nm,

significantly less influenced compared to the TEM12 mode. This can be explained by

the energy distributions of mode TEM12 and TEM13. In chapter 4, we demonstrated

that for higher order modes TEM12 and TEM13, the mode energy resides rather in

the central modal lobes than the edge lobes, as can be seen in the inserts of Figure 5.8.

A bigger portion of the near field is distributed at the edge of MIM cavities for mode

TEM12 than for TEM13. As a result, mode TEM12 is more sensitive to the change

of refractive index at the rim of MIM cavity than mode TEM13. In order to provide

theoretical support for the explanation, simulations were performed to investigate the

behaviours of different modes in response to the etching process.

Figure 5.9: Simulated extinction spectra for arrays of MIM cavities with radius of 160
nm (red) and 40 nm (black), before (solid curves) and after (dashed curves) the SiO2

spacer is reduced by 10 nm, respectively. Array constant is 350 nm. Inserts are the
field maps of plasmonic cavity modes.

Figure 5.9 shows the simulated extinction change when the SiO2 spacer is reduced by

10 nm, MIM cavities with radius of 40 nm and 130 nm are studied.

Table 5.2: The positions of extinction maxima resulting from the TEMmn modes in
the simulated extinction spectra before and after wet etching in Figure 5.9.

TEMmn before etching after etching shift
TEM11 684 nm 632 nm 52 nm
TEM12 780 nm 766 nm 14 nm
TEM13 616 nm 612 nm 4 nm
TEM31 886 nm 854 nm 32 nm
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The extinction peak blue shifts from 684 nm to 632 nm for the TEM11 mode when

RAu = 40 nm. The extinction peaks shift from 886 nm to 854 nm, 780 nm to 766 nm

and 616 nm to 612 nm for plasmonic modes TEM31, TEM12 and TEM13, respectively.

When the SiO2 spacer is etched by 10 nm, the TEM11, TEM12, TEM13 and TEM31

mode shift to a shorter wavelength by 52 nm, 14 nm, 4 nm and 32 nm. Comparing

the field maps of different modes, we can draw the conclusion that the modes with

more energy distributed at the edge of the MIM cavities, like the edge modes TEM11

and TEM31, show a higher sensitivity to the modification of the refractive index by

etching. For surface cavity modes TEM12 and TEM13, most of the energy resides in

the central modal lobes, these modes show a relatively moderate sensitivity.

We note that the blue-shift in simulations, assuming RSiO2 is reduced by 10 nm, is

larger than the blue-shift in experiments, where the radius is assumed to be ∼14 nm

smaller after etching. This maybe due to the slanted wall of the SiO2 disc spacer

in the experiment, while this is not considered in the simulations in Figure 5.9. As

presented in chapter 4, the slanted side wall of the SiO2 disc makes the radius of the

gold disc smaller than RSiO2 . This is also assumed to be the reason why the positions of

extinction maxima are at a shorter wavelength in experiments than in the simulations.

5.5 Conclusion

In this chapter, the author discussed the importance of exposing the ’hot spots’ for

plasmon-assisted spectroscopy and sensing. The influence of the spacer geometry on

the position of the ’hot spots’ and resonance wavelengths of cavity plasmon modes was

investigated. The cylindrical cavities for cavity modes are defined by the thickness

of the spacer layer and the diameter of the gold disc, instead of the diameter of the

dielectric spacer. The MIM cavity can be seen as a metal/insulator/metal waveguide

with finite dimensions, and the nature of the cavity resonant modes is due to formation

of standing waves by the interference of incoming and outgoing guided modes of the

MIM waveguide which were reflected at the edges of the MIM cavity. Thus, however

the geometry of the dielectric spacer changes, waveguide modes will always get mainly

reflected at the edges of the gold discs, forming field maxima at the end of an open

cavity. As a result, the change of refractive index in the spacer layer does not effect

much the field distribution, but affects significantly the resonance position. When the

size of the insulator spacer gets reduced by etching, the resonance positions of cavity

plasmon modes blue shift when the local refractive index at the modal lobes gets

modified, while the resonance positions stay unchanged if only the refractive index at

the modal nodes was changed by etching. Due to the fact that edge cavity modes
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possess more modal energy at the edges MIM cavities compared to surface cavity

modes, edge modes TEM11 and TEM31 show higher sensitivity to the decreasing

RSiO2 than surface modes TEM12 and TEM13.

From the point of application for plasmon-assisted sensing and spectroscopy, configu-

ration MIM(III) is superior to MIM(I) and MIM(II), because not only the strongest

near field is now accessible to the surrounding environment, also the accessible mode

volume is increased.



Chapter 6

Sensing performance of MIM

structure

In Chapter 4, we studied the physical properties of cavity plasmon modes in MIM

cavities. It has been show through simulations and experiments that the cavity plasmon

modes show advantageous properties such as strong near-field and narrow bandwidth.

However, the near-fields of the TEMmn modes are mostly confined in the continuous

insulator film in the MIM(I) structure, which is beyond the reach of the surrounding

medium. Then in chapter 5, we showed that the sensing capabilities of the TEMmn

can be significantly increased by exposing the near-field of cavity plasmon modes.

The TEMmn modes show increasing sensitivity in the order of MIM(I), MIM(II) and

MIM(III), indicating that the sensitivity of plasmonic modes increases continuously as

a function of increasing sensing volume where the plasmonic near-field interacts with

the detecting medium.

As has already been demonstrated in the measured or simulated far-field spectra in

the last chapters, several different types of modes can be identified through far-field

spectra: cavity plasmon modes, SPP modes on Au/glass and Au/air interfaces, SLR

modes resulting from the diffraction of metal gratings and LSPR modes of gold discs.

These plasmonic modes possess different dependencies on the surrounding media and

different ’hot spots’ locations. The goal of this chapter is to compare the sensing

capabilities of different plasmonic modes. The sensing performance of different modes

is studied in bulk RI sensing through simulations and experiments, where RI changes in

the bulk medium are detected. Then, their sensing performance in molecular sensing

configurations, where the RI is only modified locally in the vicinity of the metallic

structures, will be investigated by simulations.

113
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6.1 Sensing capability

In section 1.1.1, we presented two of the most common methods to describe the sensing

capability of a plasmonic mode. One is RI sensitivity S, defined by dλ
dn

as shown

in Figure 6.1(a), which describes how much the resonance wavelength would shift in

response to the refractive index change of one RI unit. The other most commonly

used standard is the FoM, which is obtained by dividing the sensitivity by the line

width ∆λ (FWHM) of the resonance: FoM= S
∆λ

. The definition for S and FoM can

Figure 6.1: (a) Definition of the S and FoM for a Lorentz-shaped resonance: S = dλ
dn

,

FoM = S
∆λ

; (b) Definition of FoM∗ for asymmetric plasmonic response: FoM∗ =
S dI
dλ

I
,

FoM∗ is not necessarily defined at the peak/dip position, but the wavelength that gives
the maximum intensity change with the refractive index change. SI = dI/dn = S dI

dλ
is

defined for intensity modulated sensors.

be seen in Figure 6.1. For the plasmonic modes appearing as a single sharp resonance

in the spectra, the S and FoM can be easily determined. However, it is difficult to

determine a consistent line width (FWHM) for complex plasmonic nanostructures with

complicated plasmonic resonances, in order to calculate the FoM. To settle this issue

for asymmetric plasmonic responses, Becker et al. suggested an alternative figure of

merit FoM∗ [11, 181]:

FoM∗ = (
dI
dn

I
)max = (

dI
dλ

dλ
dn

I
)max = (

S dI
dλ

I
)max (6.1)

In their concept of FoM∗, the relative intensity change dI/I which is proportional

to the relative resonance shift dλ/∆λ is measured at a fixed wavelength λd which

gives the maximum intensity change in response to an index change dn. Then there

is no necessity to measure the bandwidth of the plasmonic resonance. Moreover, the

sensing performance of sensors based on intensity change and those based on resonance

shift can be directly compared. From chapter 4 and chapter 5, we know that MIM
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cavities give a very complicated plasmonic response with different modes coupling to

each other, besides, the TEMmn modes appear as Fano shapes in extinction spectra

of MIM structures. FoM∗ suits our situation better than FoM. However, there are

negative values in extinction spectra because the transmission through a gold film is

taken as reference (as can be seen in Figure 4.13 and 4.21), which leads to a singularity

of FoM∗ at I→0. In this thesis, we make a modification on the basis of FoM∗: the

relative intensity change dI/∆I is measured instead of dI/I. So FoM∗ = (
S dI
dλ

∆I
)max

can be obtained. Moreover, we take into consideration the limit of detection (LOD)

and dynamic sensing range of sensors, which depend on the signal/noise ratio and are

proportional to ∆I, as in Figure 6.1. Then we obtain from FoM∗ the sensitivity of an

intensity modulated sensor S̄I . The definition can be seen in equation 6.2.

∆I ∗ FoM∗ = ∆I ∗ (
S dI
dλ

∆I
)max) = (S

dI

dλ
)max = dI/dn = S̄I (6.2)

The positive or negative signs of dI
dλ

and S̄I represent that either an intensity decrease

of increase is detected at the detecting wavelength λd. In this thesis, the modulus of

sensitivity is interested and is defined as:

SI = S(|dI
dλ
|)max (6.3)

In order to facilitate the comparison of sensing capability between different modes, SI is

used as a standard together with the sensitivity S and FoM to evaluate the performance

of plasmonic sensors. In this thesis, SI is obtained by evaluating the spectral shift S and

identify (| dI
dλ
|)max by matlab calculation, and then SI is calculated based on equation

6.3 by SI = S(| dI
dλ
|)max.

6.2 Sensitivities of modes in smaller MIM cavity

In this chapter, we will focus mainly on MIM(III) and MIM(II) where the advantageous

plasmonic properties of cavity plasmon modes are better exploited. For the MIM(III)

cavity studied in this chapter, RSiO2 = 1/2RAu. We start to characterize the sensing

performance of MIM cavities with smaller RAu, because their plasmonic response is

relatively simpler with the TEM11 mode predominating in the visible/near-IR region.

In this section, we choose MIM cavity arrays with a cavity radius of RAu=40 nm and

periodicity of P=450 nm and P=550 nm to study their sensing capabilities based on

extinction measurements and reflection measurements. The periodicity of 450 nm is

chosen so that we can compare the sensitivities of TEM11 mode and SPPAu/envir(0,1)
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mode. And in MIM(III) with RAu=40 nm, strong coupling will occur between SPP and

cavity modes when P=550 nm, providing a platform to study if the strong coupling

can improve the sensitivity of the TEMmn mode.

6.2.1 Sensing without strong coupling

6.2.1.1 Sensor properties based on reflection

The reflection dip is a straightforward indicator of the resonance wavelength of the

TEMmn modes, making it easier to identify each mode in sensing. We start from the

MIM(III) cavity array that gives a simpler plasmonic response with RAu=40 nm and

P=450 nm. We characterize the sensing capabilities of plasmonic resonances appearing

in the reflection spectra of a MIM(III) cavity. The RI of the surrounding medium ns

varies from 1, 1.33, 1.35, 1.38 to 1.43. The near-field resonance spectra are shown with

n=1.33, in order to identify the plasmonic modes.

Figure 6.2: (a) The near-field strength (|E| =
√
E2
x + E2

y + E2
z ) on the top corner and

bottom corner of the gold disc, as indicated by the black and blue dots in the inserted
picture. The MIM(III) has RAu=2RSiO2=40 nm, P=450 nm, and the MIM structure is
on top of an ITO substrate (tITO=50 nm). The nature of each resonance is labelled: a
LSPR mode, TEM11 mode, and SPPAu/envir(0,1) and SPPAu/ITO(0,1). Weak coupling
occurs between the TEM11 mode and SPPAu/envir(0,1) mode, resulting in the Fano
shape of the SPP, while the TEM11 mode is hardly disturbed. (b) The field maps in
side view for each plasmonic resonance peak: LSPR mode with strong near-field on
the top of the gold disc (λ=540 nm), TEM11 mode (λ=730 nm) with strong near-field
confined in the cavity. The field maps for SPPAu/envir(0,1) (λ=630 nm) from both the
top view and side view are shown.

In Figure 6.2(a), the E field strength (|E| =
√
E2
x + E2

y + E2
z ) on the top corner

and bottom corner of the gold disc as shown by the insert picture, are presented
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for MIM(III) with RAu=40 nm and P=450 nm. The MIM cavity is on top of an ITO

substrate, which is sometimes used in practice to promote the adhesion between gold

film and glass substrate. It influences the resonance position on the Au/ITO substrate

(50 nm ITO film on glass substrate), while it has no influence on the cavity modes

except when strong coupling occurs. The nature of the plasmonic resonance is iden-

tified by checking the field maps at each resonance and is labelled accordingly in the

resonance spectra. Figure 6.2(b) shows the corresponding near-field distributions. In

this MIM cavity array which is immersed in water, three types of plasmonic modes

are excited. The most pronounced mode is the TEM11 mode, appearing at 730 nm

with its strong near-field squeezed inside the cavity. A SPP mode on the Au film and

sensing environment interface, which is referred as Au/envir interface later, is excited.

The SPPAu/envir(0,1) couples with the TEM11 mode in the weak coupling regime, lead-

ing to a Fano resonance from 610 nm to 660 nm (The original resonance wavelength

λAu/envir(0,1) = 646 nm, according to equation 4.1). There is a SPPAu/ITO(0,1) mode

excited at 795 nm. A LSPR mode with ’hot spots’ on the top of the gold disc is excited

at 540 nm.

Figure 6.3: The simulated sensing spectra based on reflection for a MIM(III) cavity
with RAu=2RSiO2=40 nm, P=450 nm and tSiO2=10 nm. The RI of the detecting
solution varies from 1 (black curve) to 1.33 (blue curve), 1.38 (green curve) and 1.43
(red curve). The nature of the plamonic modes is labelled accordingly.

In Figure 6.3, the reflection spectra for the MIM cavity are presented with the RI

of the surrounding medium varying from 1 to 1.33, 1.38 and 1.43. The wavelength

shift of each plasmonic mode is labelled. It is clear that the SPPAu/envir(0,1) mode

and the TEM11 mode show notable red-shifts with increasing detecting RI, while the

SPPAu/ITO(0,1) mode hardly shows a response to the RI change. The LSPR mode at



118 Chapter 6. Sensing performance of MIM structure

short wavelengths shows resonance wavelength shifts to the RI change, however, not as

sensitive as the SPPAu/envir mode and the TEM11 mode. As it can be seen in Figure

6.3, the SPPAu/envir mode and TEM11 mode appear in the sensing spectra as discrete

reflection dips, which makes it possible to estimate their FWHM and evaluate the FoM.

The resonance positions of each mode and FWHMs are summarized in Table 6.1, and

the sensitivities S, FoM and SI are accordingly evaluated. The SPPAu/envir(0,1) shows

Table 6.1: The resonance wavelengths of plasmonic modes that are excited on a MIM
cavity array with RAu=40 nm, periodicity P=450 nm, with the surrounding RI varying
from 1 to 1.33, 1.38, 1.43. The bandwidths FWHM (∆λ ) of these modes are estimated
at n=1.33. The sensor qualities of sensitivities S, FoM and SI are evaluated. The
maximum |dI/dλ| can be achieved when the intensity change is detected at λd.

variables LSPR SPPAu/envir TEM11 SPPAu/ITO

n=1 613 776
n=1.33 542 633 732 776
n=1.38 547 656 750 776
n=1.43 550 678 767 776
FWHM (nm) 53 20 31
S (nm/RIU) 80 450 350 0
FoM (RIU−1) 1.51 21.5 11.3 0
(|dI/dλ|)max (%/nm) 0.13 1.1 2.58 0.26
λd (nm) (n=1.33) 558 640 724 790
SI(%/RIU) 10.4 495 903 0

the best sensitivity of 450 nm/RIU. This can be roughly predicted from the resonance

condition equation 4.1. S = ∂λres
∂nd
∼ |

√
εm

εm+εd
| P√

i2+j2
∼ P√

i2+j2
when |εm| � εd, thus the

sensitivity of SPPAu/envir(0,1) can be estimated to be 450 nm/RIU. The SPPAu/envir

mode shows a high sensitivity due to its strong dependency on the surrounding RI and

its big sensing volume. On the other hand, the SPPAu/ITO mode is insensitive to the

RI change in the surrounding environment, because the near-field of SPPAu/ITO(0,1)

is mostly on the substrate side and hardly disturbed by the RI change in the detecting

medium. The TEM11 mode shows a sensitivity of 350 nm/RIU due to the sensing

volume being increased by decreasing RSiO2 and making the near-field accessible to the

surrounding medium. The sensitivity of the LSPR mode is roughly estimated to be 80

nm/RIU, the broad line shapes make it hard to maintain high precision in reading out

the resonance position.

In Table 6.1, a FoM of 1.51 is estimated for the LSPR mode, while the SPPAu/envir(0,1)

shows the highest FOM of 21.5, due to its high sensitivity and narrow bandwidth. On

the other hand, the TEM11 mode shows a SI of 903, which is much better than 10.4 for

the LSPR mode and 495 for the SPPAu/envir(0,1) mode. The best FoM and SI occurs for

different resonance modes, because they evaluate the resolution in the spectral shift and
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intensity change, respectively. Even though the TEM11 mode does not show better S

than SPPAu/envir and possesses a broader bandwidth as well, it has a deep reflection dip

which provides promising resolution in intensity change and a steep resonance profile

which provides high sensitivity as an intensity-modulated sensor. This result means

that the SPPAu/envir(0,1) would be suited better for applications based on spectral shift,

and the TEM11 mode would give better performance in sensing based on measuring

the intensity changes at a fixed wavelength.

6.2.1.2 Sensor properties based on extinction

In chapter 4, it is demonstrated that the Lorentz shaped resonance appears as a Fano

line shape in extinction spectra of MIM structures due to the coupling with incident

radiance through the gold film. Engineering Fano line-shaped resonances in metallic

nanostructures has been one of the most common ways to improve the sensing ca-

pabilities of plasmonic sensors. Better sensing capabilities can be expected of MIM

structures with extinction measurements because the Fano profile provides a narrower

bandwidth and steeper resonance profile.

Figure 6.4: (a) The simulated sensing spectra based on extinction for MIM(III) cavity
with RAu=2RSiO2=40 nm, P=450 nm and tSiO2=10 nm. The RI of the detecting
solution varies from 1 (black curve) to 1.33 (blue curve), 1.38 (green curve) and 1.43
(red curve). The nature of the plamonic modes is labelled accordingly.

The simulated effect on the extinction spectra of a RI change of the bulk immersion

liquid from 1 to 1.43 is shown in Figure 6.4, for the same MIM cavity array as in the

last section. The corresponding modes are labelled, and the red-shift is indicated by an



120 Chapter 6. Sensing performance of MIM structure

arrow as a function of increasing RI. The plasmonic modes shift in the same manner

as in Figure 6.3: the SPPAu/envir(0,1) shows the strongest wavelength shift, followed

by the TEM11 mode, while the SPPAu/ITO(0,1) is insensitive to the RI change of the

detecting medium and the LSPR mode shows a slight red-shift.

Table 6.2: The position of the extinction maximum of plasmonic modes is recorded for
the same MIM(III) cavity array as in Table 6.1, while the detecting bulk RI varies from
1 to 1.33, 1.38, 1.43. The sensor qualities of sensitivities S and FoM∗ are evaluated.

variables LSPR SPPAu/envir TEM11 SPPAu/ITO

n=1 602 776
n=1.33 542 630 722 776
n=1.38 551 655 740 776
n=1.43 675 757 776
S (nm/RIU) 180 450 350 0
(|dI/dλ|)max (%/nm) 0.14 0.68 4.12 0.1
λd (nm) 556 636 734 790
SI (%/RIU) 25.2 306 1442 0

In Table 6.2, the maximum position of the Fano resonance is read for each RI of the

detecting medium. As it is difficult to estimate the FWHM of Fano resonances for the

FoM, we compare the sensing capabilities of each plasmonic mode by sensitivities S

and SI . The sensitivities of the SPPAu/envir, SPPAu/ITO and the TEM11 mode are the

same compared to those based on reflection sensing in Table 6.1, showing a value of 450

nm/RIU, 0 and 350 nm/RIU, respectively. While, the sensitivity of the LSPR seems

to be improved by extinction, it might result from estimation errors due to its shallow

and broad resonance. The TEM11 mode shows the highest SI of 1442 due to its drastic

intensity drop as a function of increasing RI of the surrounding medium. By comparing

the S and SI in Table 6.2 to Table 6.1, we find that the sensitivity S in the spectral shift

is mostly the same for reflection- and extinction-based sensors, while the Fano-shaped

extinction provides steeper profiles than Lorentz-shaped reflection, leading to better

sensitivity and resolution in intensity-modulated sensing for the TEM11 mode.

6.2.2 Sensing with strong coupling

In section 4.3.2, we demonstrated that Rabi-analogue mode splitting occurs when the

SPP and the TEMmn modes hybridize with each other. As a result, resonances with

narrower bandwidth and steeper profile can be created out of the coupling, showing

potential as a promising plasmonic sensor. In this section, the sensing capabilities of

plasmonic modes supported by MIM structures with RAu=40 nm and P =550 nm are

investigated.
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Figure 6.5: (a) The near-field strength (|E| =
√
E2
x + E2

y + E2
z ) on the top corner and

bottom corner of the gold disc, as indicated by the black and blue dots in the inserted
picture. The MIM(III) structure has RAu = 1/2RSiO2=40 nm, P =550 nm and tSiO2=
10 nm; (b) The field maps for each plasmonic resonance peak: two hybridized modes
(λ= 730 nm and λ= 780 nm) arise from the strong coupling of the SPP mode and
TEM11 mode, a LSPR mode shows a strong near-field on the top of the gold disc (λ=
550 nm). The field map at the resonance dip (λ= 760 nm) between the two hybridized
modes is shown as well. The simulating wavelength step is 10 nm.

Figure 6.5 shows the near-field resonance characteristics of a MIM(III) cavity array with

RAu = 1/2RSiO2=40 nm, P =550 nm and tSiO2= 10 nm. In Figure 6.5(a), the near-field

strength (|E| =
√
E2
x + E2

y + E2
z ) is plotted both on the top and bottom corner of a

gold disc. The mode hybridization can be seen in both near-field spectra: the Lorentz

shaped SPP mode and TEM11 mode hybridized and formed two hybridized modes with

Fano line shapes, and both contain part SPP energy and part TEM11 mode energy.

We refer to the resonance with peak position at 730 nm as the hybridized TEM11

(H-TEM11) mode, because it contains more TEM11 energy compared to the one at

780 nm, which is referred to as hybridized SPP mode (H-SPP). The LSPR mode still

appears at short wavelengths with its ’hot spot’ on top of the disc, as can be seen in

Figure 6.5(b).

Table 6.3: The positions of the extinction maxima of plasmonic modes are recorded
from Figure 6.6, with the detecting bulk RI varying from 1 to 1.33, 1.38, 1.43. The
(|dI/dλ|)max (%/nm) and λd (nm) are determined by calculation. The sensor qualities
of sensitivities S (nm/RIU) and SI (%/RIU) are evaluated.

RI 1 1.33 1.38 1.43 S (|dI/dλ|)max λd SI
H-TEM11 612 722 742 762 400 3.5 732 1400
H-SPPAu/envir(0,1) 770 800 820 500 2.27 774 1135

In Table 6.3, it is interesting to find out that the sensitivity S of H-SPPAu/envir(0,1)
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Figure 6.6: The simulated sensing spectra for MIM(III) cavity with RAu=2RSiO2=40
nm, P =550 nm and tSiO2=10 nm. The RI of detecting solution varies from 1 (black
curve), to 1.33 (blue curve), 1.38 (green curve), 1.43 (red curve). The nature of the
plamonic modes is labelled accordingly.

is 500 nm/RIU, which is decreased compared to 550 nm/RIU (S≈ P√
i2+j2

). On the

other hand, a sensitivity of 400 nm/RIU is achieved by the H-TEM11 mode, which

is increased compared to 350 nm/RIU without strong coupling (in Table 6.2). By

comparing the SI of Table 6.3 and Table 6.2, the SI of the TEM11 mode decreased

after hybridization and the SI of the SPP mode increased after hybridization. This

means the hybridized modes have part of the sensitivity from the TEM11 mode and

part of its sensitivity from the SPPAu/envir mode. This mode hybridization provides

a way to tune the sensitivity of plasmonic modes: to make the originally insensitive

mode show high sensitivity to the RI change in detecting medium, and make the highly

sensitive mode more stable to the environment change. This strong coupling effect will

be observed as well in experiments in section 6.4.6.

6.2.3 Conclusion

In small MIM(III) cavity arrays, the TEM11 mode is the most pronounced mode show-

ing a deep and narrow resonance dip in reflection spectra. Thus, it shows potential

for high resolution sensing due to high signal/ noise ratio and high precision in de-

termining the spectral shift. With RAu = 2RSiO2 , the sensing volume of the TEMmn

modes is significantly increased compared to those in MIM(I) by exposing the strong

near-field. A sensitivity of 350 nm/RIU, and a FoM of 11.3 in spectral shift based

sensing is predicted for a MIM(III) cavity with RAu=40 nm, P = 450 nm. A sensitiv-

ity of 903 %/RIU in intensity-modulated sensing can be achieved in reflection based



6.3. Sensitivities of modes in larger MIM cavity 123

sensing. While in extinction measurements, a Fano profile with high asymmetric factor

is created by coupling with the incidence radiance. In extinction based sensing, the

spectral sensitivity is the same as in the reflection sensing. However, the SI is notably

improved because the extinction spectra have steeper resonance profiles.

The LSPR mode in small MIM(III) arrays appears as a shallow and broad extinction

peak, which leads to poor resolution in both intensity change and spectral shift. It is

not the most promising candidate in MIM(III) cavity arrays with respect to resolution

and sensitivity. Whereas, the sensitivity of the LSPR mode increases with the disc

size and shows good performance in MIM(I) and MIM(II) when the sensitivity of the

TEMmn modes is restricted by its sensing volume, as will be seen in section 6.4.

The SPP modes show narrow resonance line shapes due to their non-radiative nature.

The SPPAu/substrate(i,j) mode is insensitive to the RI change in detecting medium due

to the fact that its near-field is in the substrate, resulting in almost no sensing volume.

The sensitivity of the SPPAu/envir(i,j) mode strongly depends on the periodicity P

with S≈ P√
i2+j2

when mode hybridization does not occur. When the SPPAu/envir(i,j)

mode coincides with the TEMmn mode, strong coupling occurs and the new hybridized

modes have physical properties of both their origins, including the sensitivity versus RI

changes. As a result, the two hybridized modes show sensitivities between the original

sensitivities of the SPP mode and the TEMmn mode.

6.3 Sensitivities of modes in larger MIM cavity

In a MIM(III) cavity with larger RAu, higher order TEMmn modes will be excited,

more higher order SPP modes will be excited as well with a larger periodicity. In this

section, the sensing performance of higher order TEMmn modes and SPP modes will

be studied. The near-field resonance spectra for a MIM(III) cavity with RAu= 160 nm,

P = 650 nm are presented in Figure 6.7, when the detecting bulk RI is 1.33. In Figure

6.7, two higher order cavity plasmon modes can be distinguished: the TEM12 and

TEM31 mode and two pronounced SPP modes: SPPAu/envir(0,1) and SPPAu/envir(1,1)

are identified. Strong coupling occurs between SPPAu/envir(0,1) and TEM31 as can be

seen from the near field distribution. We name the hybridized mode at λ= 890 nm

the H-SPPAu/envir(0,1) mode because it has more energy thus more physical properties

inherited from SPP modes, likewise, the one at λ= 930 nm is named H-TEM31.

It is worth noting that the field maps at the resonance wavelength of SPPAu/envir modes

show a localized near field at the disc edges together with their propagating near-field,

as can be seen in the side view field maps in Figure 6.7(b). I believe these strong ’hot
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Figure 6.7: (a) The near-field strength (|E| =
√
E2
x + E2

y + E2
z ) on the top corner

and bottom corner of the gold disc, as indicated by the black and blue dots in the
inserted picture. (b) The field maps from top view and side view are shown for
each plasmonic resonance peak: hybridized TEM31 (H-TEM31) at λ= 930 nm, hy-
bridized SPPAu/envir(0,1) at λ= 890 nm, the TEM12 mode at λ= 830 nm, and the
SPPAu/envir(1,1) mode at λ= 670 nm. The LSPR mode with strong near-field on top
of the gold disc (around λ= 550 nm) is not specifically shown due to complicated
coupling with the modes SPPAu/glass(0,1) and SPPAu/glass(1,1).

spots’ on the edges of the disc arise from the collective oscillation in the gold discs in

response to the near-field of the adjacent propagating SPP mode. As can be seen in the

black curve (or the blue curve), the near field intensity of SPP modes at the gold disc

edges can even surpass that of the cavity modes even at the bottom corner where the

’hot spots’ of the TEMmn mode reside, same at the upper corner. (It is not shown in

this thesis, but in the case of MIM(I), the near-field on the top edge is very strong due

to the near-field induced electron oscillation in the gold disc, nevertheless the near-field

at the bottom edge at λSPP is very weak due to the momentum mismatch between

Au/air interface in SPP and Au/glass interface at the bottom of disc. This can be

a supporting evidence of our assumption about the near-field induced LSPR in discs.)

This makes MIM arrays a promising candidate for plasmon assisted spectroscopy due to

its strong ’hot spots’ and easy accessibility. This can be the reason that in both Figure

7.4 (before undercut) and Figure 7.9 (after undercut), the MIM cavities with larger P

(P= 440 nm, 530 nm and 624 nm) showed higher SERS signals even though less MIM

cavities contributed to the signal: Because the LSPR mode excited by the near-field

of the SPPair/Au contributed to the enhancement as well. In the case of P=335 nm,

the SPPair/Au(0,1) mode appears around 450 nm, so does the SPP induced LSPR.

Neither the excitation process (λlaser=633 nm) nor emission process (λRaman=685 nm,

704 nm) of the Raman scattering can benefit from the strong near-field of this LSPR
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mode. While in the case of larger P, the λair/Au appear closer to the laser and Raman

wavelengths, thus the SPP excited LSPR mode can contribute to the SERS scattering

as well.

On the other hand, the RI sensitivity of this SPP mode is exclusively dependent of the

physical properties of the SPP resonance, but not at all influenced by this near-field

induced LSPR on the gold disc. As we already showed in the last section, the sensitivity

of SPPAu/envir is S≈ P√
i2+j2

. More details about the sensitivities of SPPAu/envir modes

will be given in section 6.5.

Figure 6.8: The simulated sensing spectra for a MIM(III) cavity with RAu=2RSiO2=160
nm, P =650 nm and tSiO2=10 nm. The RI of the detecting solution varies from 1 (black
curve) to 1.33 (blue curve), 1.38 (green curve), 1.43 (red curve). The nature of the
plamonic modes is labelled accordingly.

Table 6.4: The positions of the extinction maxima of plasmonic modes are recorded
from Figure 6.8, with the detecting bulk RI varying from 1 to 1.33, 1.38, 1.43. The
sensor qualities of sensitivities S (nm/RIU) and SI (%/RIU) by detecting the intensity
changes at λd (nm) are evaluated.

RI 1 1.33 1.38 1.43 S (|dI/dλ|)max λd SI
SPPAu/envir(1,1) 675 696 717 420 4.6 680 1932
TEM12 751 814 829 841 270 1.9 826 513
SPPAu/envir(0,1) 670 882 913 945 630 14.8 888 9324
TEM31 917 950 985 680 0.009 922 6.12

The extinction spectra for a MIM(III) cavity array with RAu=160 nm immersed in

detecting solution with RI of 1 (black curve), 1.33 (blue curve), 1.38 (green curve) and

1.43 (red curve), are presented in Figure 6.8. The different sets of plasmonic modes

are labelled and also mode SLRAu/envir(0,1) appeared at λd =
P
√
εd√

i2+j2
= nP . The

peak position of each mode is read and the spectral shift sensitivities S (nm/RIU) and
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intensity-modulated sensitivities SI are evaluated in Table 6.4. A spectral shift sensi-

tivity of 680 nm/RIU and 270 nm/RIU are obtained for the TEM31 mode and TEM12

mode, respectively. This sensitivity difference can be explained by the field distribution

of edge cavity mode and surface cavity mode: for edge modes, the strong near-field is

distributed along the circumference of the MIM cavity, while the surface modes have

their ’hot spots’ along the diameter. Besides, as can be seen in the field map in Figure

6.7, the central modal lobes provide hotter ’hot spots’ compared to those at the edge

of the cavity for surface modes TEM1n. As a result, the sensing volume of the TEM31

mode is much bigger than that of TEM12 in the MIM(III) cavity, therefore, resulting

in a higher sensitivity for edge plasmonic mode TEM31 compared to surface mode

TEM12. The sensitivities of the SPPAu/envir(0,1) mode and SPPAu/envir(1,1) mode are

evaluated as 630 nm/RIU and 420 nm/RIU , which are roughly in agreement with the

prediction by S≈ P√
i2+j2

. In the case of the SPPAu/envir(1,1) mode, its sensitivity is

decreased a bit by coupling with the TEM13 mode, which is a not very pronounced

but quite insensitive surface cavity mode with wavelength around 745 nm as in Figure

6.8. In the case of the SPPAu/envir(0,1) mode, both the H-SPP mdode and TEM31

mode show high sensitivities.

6.4 Experimental RI sensing

6.4.1 Sensing method

In this section, we present the experimental RI sensing results. We fabricate MIM(II)

cavities with different diameters and different periods and conduct RI sensing in bulk

immersion configuration. The standard RI solution is prepared by glycerin aqueous

solution with different concentrations: 7%, 22% and 37%. The refractive index is

then confirmed by a refractometer to be 1.34, 1.36 and 1.38 for these three mixtures

respectively. The sensing experiments are conducted based on extinction measurements

and the measuring configuration can be seen in Figure 6.9.

The incident light is from a Halogen lamp, it is illuminated from the bottom of vertical

MIM(III) cavity arrays. The transmission through the substrate is then collected by a

10× objective. A beam splitter then divides the transmitted light into two parts, one

part goes into a camera for the real-time imaging. The other part passes through a

confocal pinhole and a spectrometer entrance slit to get rid of the stray light before it

enters the spectrometer. The sensing area is shown in the insert image of Figure 6.9, the

MIM cavity array is immersed in 20 µL of glycerin aqueous solution. We recorded the

transmission through MIM substrate for 5 refractive indices, in the order of: n=1 (air),
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Figure 6.9: The RI sensing configuration. The extinction based sensing is conducted
on a confocal microscope. The white light source is illuminated from the bottom of
vertical MIM structures, and the transmission is collected by a 10× objective with a
N.A. of 0.3. The collected signal is then split into two parts: part of the signal goes
into the camera for imaging of the structures and part of the signal is passed through
a confocal pinhole and a spectrometer entrance slit into the spectrometer. The sensing
area is enlarged in the insert image, the MIM cavity array is immersed by the detecting
RI solution.



128 Chapter 6. Sensing performance of MIM structure

n=1.33 (water), n=1.34 (7% glycerin/water), n=1.36 (22% glycerin/water), n=1.38

(37% glycerin/water). The transmission through 50 nm Au film where there is no SiO2

and Au discs was also recorded for each refractive index as reference. The extinction is

evaluated by equation 3.2: the transmission difference between the 50 nm Au film area

and MIM cavity array divided by the transmission through 50 nm Au film. It is worth

noting that the glycerin solution becomes viscous at higher concentration, it helps to

decrease the influence from different RI solutions to start from the lower concentration

to higher ones. The influence is further eliminated by flushing the substrate with the

detecting solution for 5 times before the transmission spectra were recorded.

6.4.2 Resolution of MIM sensors

The resolution of plasmonic sensors is an important parameter to evaluate its sensing

performance, because it determines the limit of detection (LOD) which is the lowest

quantity of a substance that can be distinguished. The resolution of a sensor includes

the spectral resolution which can be evaluated by S and FoM. Besides, the signal/noise

ratio strongly affects the resolution as well.

In Figure 6.10, the sensing spectra for MIM cavities with a RAu of (a) 35 nm, (b) 68

nm, (c) 92 nm and (d) 131 nm, in different immersion bulk RIs are presented. The

cavity arrays have the same cavity height of tSiO2=12 nm and periodicity of P=335

nm. The refractive index varies from 1 to 1.38. The plasmonic modes are labelled

accordingly. It can be found that the extinction efficiency increases with increasing

disc size RAu. For instance, the extinction efficiencies of the LSPR mode are 0.08,

0.45, 0.79 and 0.92 at n=1.33 for RAu=35 nm, 68 nm, 92 nm and 131 nm, respectively.

The higher extinction efficiency results in a better resolution of signal from the intrinsic

noise of the measuring system. It is a general rule that we found out during the sensing

that the MIM(II) arrays with bigger disc size and denser gold coverage show stronger

signal, which leads to a better signal/noise ratio and better resolution.

6.4.3 Sensitivity of LSPR mode

In Rana Nicolas’ earlier work, the LSPR mode in MIM(I) structures has been studied,

and a highest sensitivity of 192 nm/RIU and a FoM of 3.76 has been achieved with

RAu=85 nm and P=350 nm [91]. In this section, we study the sensing capabilities of

MIM(II) structures with many different disc radii RAu and different periodicity. It can

be seen in Figure 6.10, that the LSPR mode in a MIM(II) cavity with its ’hot spots’

on top of the gold disc demonstrates high sensitivity as well.
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Figure 6.10: Sensing performance of LSPR mode. Measured extinction spectra through
MIM(II) cavity array with periodicity P=335 nm, (a) RAu=35 nm, (b) RAu=68 nm, (c)
RAu=92 nm, (d) RAu=131 nm, for different immersion bulk refractive index: 1 (black
curve), 1.33 (blue curve), 1.34 (green curve), 1.36 (cyan curve), 1.38 (red curve). The
plasmonic modes are labelled accordingly.

Table 6.5: The positions of the extinction maxima of the LSPR modes (nm) are
recorded for the spectra shown in Figure 6.10. The bandwidth FWHM (nm) is es-
timated at n=1.33 by measuring the bandwidth at the middle point of the wider side
of the resonance band, and the sensitivities S (nm/RIU) and FoM are evaluated.

RI 1 1.33 1.34 1.36 1.38 FWHM S FoM
RAu=35 nm 504 513 519 522 525 39 232 6
RAu=68 nm 542 545 550 554 38 248 7
RAu=92 nm 509 568 572 577 583 59 310 5
RAu=131 nm 520 590 595 598 603 80 245 3
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In Table 6.5, the position of the extinction maxima of the LSPR mode is recorded

for the spectra shown in Figure 6.10. The bandwidth ∆λ is estimated at n=1.33 by

measuring the bandwidth at the middle point of the wider side of the resonance and the

sensitivities S and FoM are evaluated (based on the shift between n=1.33 and 1.38).

The extinction efficiency and bandwidth, as well as sensitivity increases with increasing

disc size. The S increases from 232 nm/RIU , to 248 nm/RIU and 310 nm/RIU for

RAu = 35 nm, 68 nm and 92 nm, respectively. Then the S decreases to 245 nm/RIU

for RAu = 131 nm due to coupling with an insensitive mode TEM13, as can be seen

in Figure 6.10(d). A much higher FoM (7) is obtained from MIM(II) compared to

our previous work with MIM(I) (3.76). In order to understand the mechanism of this

improvement, we conducted sensing simulations based on MIM(I) and MIM(II) with

RAu = 68 nm P = 335 nm, as shown in Figure 6.11.

Figure 6.11: Simulated sensing performance of LSPR mode in MIM(I) (dashed curves)
and MIM(II) (solid curves). The RAu=68 nm, tSiO2= 12 nm and periodicity P = 335
nm for both MIM(I) and MIM(II). The spectra are presented for n = 1.33, 1.38 and
1.43.

From Figure 6.11, the simulated sensitivities for LSPR modes in both MIM(I) and

MIM(II) are 240 nm/RIU. The bandwidths of the LSPR mode in MIM(I) and MIM(II)

hardly changed, so the FoMs of the LSPR modes are similar in MIM(I) and MIM(II)

as well. This means the sensitivity of the LSPR mode cannot get improved by under-

etching, which is different from the TEMmn modes. The improvement in sensitivity

of the LSPR mode we achieved in MIM(II) compared to previous work on MIM(I)

is maybe due to the better resolution of the confocal measuring setup and the better

homogeneity of MIM structures fabricated with better EBL equipment.

Zhang et al. has developed a theory about achieving a LSPR mode with ’hot spots’ on

top of the gold disc by creating hybridization between a dipolar mode and a quadrupo-
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lar mode of the gold disc. As a result, the sensitivity of the LSPR mode has been

siginificantly improved by shifting the ’hot spots’ from the substrate to the top of the

disc [156]. The LSPR mode in MIM systems may as well arise from the strong coupling

between a quadrupolar mode of the gold disc and the gap plasmon polariton of the

cavity. This hybridized mode shows weak dependence on the disc size, as can be seen

in Table 6.5 for n=1, where the LSPR mode shifts from 504 nm to 520 nm with a large

disc size change from 35 nm to 131 nm. At the same time, this LSPR mode is insensi-

tive to the refractive index change under the gold disc, as can be found by comparing

the dashed curves and solid curves in Figure 6.11. These sensitivity dependencies are

in god agreement with the hybridized modes in Zhang’s work [156].

6.4.4 Intensity sensitivities of LSPR mode

As presented in the sensing simulation sections, the Fano extinction resonance with

steep resonance line shape suits well for the intensity modulated plasmonic sensor.

The sensitivities SI of the LSPR modes in Figure 6.10 based on intensity change are

shown in Table 6.6.

Table 6.6: The wavelength λd (n = 1.33) which gives rise to the maximal (|dI/dλ|)max
are determined for the spectra in Figure 6.10. The sensitivities SI are evaluated then
based on equation 6.1.

RI S (nm/RIU) (|dI/dλ|)max(%/nm) λd (nm) SI(%/RIU)
RAu=35 nm 232 0.12 538 27.8
RAu=68 nm 248 1.26 559 312.5
RAu=92 nm 310 0.95 583 294.5
RAu=131 nm 245 0.65 605 159.3

In Table 6.6, the (|dI/dλ|)max is obtained at wavelength λd (n = 1.33), and the SI are

calculated based on equation 6.1. The sensitivity based on intensity change is a product

of S and |dI/dλ|, so it is determined by the overall effect of spectral shift sensitivity

and the slope of the resonance profile. The highest SI of 312.5 %/RIU is obtained by

the MIM cavity with RAu= 68 nm, when the intensity increase at a fixed wavelength

of 559 nm is detected as increasing RI. The MIM cavity with RAu=92 nm provides a

slightly smaller SI of 294 %/RIU by measuring the intensity change at 583 nm with

increasing detecting RI. The MIM cavity with RAu= 35 nm shows low sensitivity SI

compared to other bigger cavities. Besides, it does not hybridize with other modes

to create steep Fano profiles as shown in Figure 6.10, nevertheless, the LSPR modes

in other cavities all hybridized with the SPPAu/glass(0,1) mode to create Fano profiles

with higher asymmetry factor. As an overall effect, the RAu= 35 nm cavity provides
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the poorest LSPR sensing performance in both spectral shift modulated sensor and

intensity modulated sensor, and the RAu=68 nm cavity excels for both modulations.

6.4.5 Sensitivities of cavity plasmon modes

In Figure 6.10, a TEM11 mode appears in MIM(II) with RAu=35 nm, and a TEM12

and TEM13 mode appears in the cavity array with RAu=131 nm. The positions of

extinction maxima for the modes TEM11, TEM12 and TEM13 at n=1 and n=1.38

are read out and sensitivities are evaluated in Table 6.7. The TEM11 mode shows the

highest sensitivity of 108 nm/RIU which decreases to 33 nm for the TEM12 mode,

and to around 0 for the TEM13 mode. (The evaluation of TEM13 mode is problematic

due to the multiple resonance shoulders. I visually estimated the sensitivity to be 0).

From Chapter 4, we know that the confinement of MIM cavities on the TEMmn modes

increases from the TEM11 mode, to TEM12 mode and TEM13 mode with increasing

ngsp. For the higher order surface cavity modes TEM1n, most of their near-field energy

is confined in the central modal lobes rather than the edge lobes. As a result the near-

field of higher order surface TEM1n modes is less disturbed by the RI change in the

detecting medium. In Figure 5.8, the TEM13 mode only shifts 7 nm when the SiO2

spacer disc is reduced by ≈14 nm in experiments. The insensitivity of a TEM13 mode

in MIM(II) can be expected.

Table 6.7: The maxima positions (nm) of the Fano extinction resonances of the TEMmn
modes are recorded from spectra shown in Figure 6.10. The sensitivities S are evalu-
ated.

n=1 n=1.33 S (nm/RIU)
TEM11 744 785 108
TEM12 755 767 33
TEM13 623 623 0

It is worth noting that the sensitivity of the TEMmn mode can be significantly im-

proved from MIM(II) to MIM(III), because only the fringe field (near-field in the region

of ∆R) of the TEMmn mode is exposed in MIM(II) compared to MIM(I). In MIM(III),

the field maxima at the edge of the gold disc will be accessible to the detecting medium

and show higher sensitivity. For the higher order surface cavity modes TEM1n, they

are not as sensitive compared to the edge cavity modes TEMm1 with most of their

energy residing in the center of the cavity, however they provide a narrower band width

which is good for resolution. From last section, we learnt that MIM(II) with smaller

RAu does not show promising sensing capability based on LSPR sensing. However, the
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TEM11 mode in small MIM(II) cavities shows higher sensitivity with sensing based

on cavity plasmon modes, compared to higher order surface cavity modes in bigger

MIM(II) arrays.

6.4.6 Sensitivities of SPP modes

In this section, we study the sensitivity of SPP modes by experiments. MIM(II) cavities

with the varying periodicity ranging from 440 nm, 530 nm, 625 nm to 720 nm, and

radius of RAu = 162±5 nm are fabricated. The extinction spectra through the MIM(II)

arrays with varying bulk RI are presented in the following figure.

Figure 6.12: Sensing performance of SPP mode. Measured extinction spectra through
MIM(II) cavity array with radius and periodicity of (a) P=440 nm, RAu=166 nm, (b)
P= 530 nm, RAu=162 nm, (c) P=625 nm, RAu=157 nm, (d) P=720 nm, RAu=157 nm,
for detecting solution with different bulk refractive index: 1 (black curve), 1.33 (blue
curve), 1.34 (green curve), 1.36 (cyan curve), 1.38 (red curve). The plasmonic modes
are labelled accordingly.

In Figure 6.12, the sensing spectra are shown for MIM(II) cavities with (a) P=440

nm, RAu=166 nm, (b) P=530 nm, RAu=162 nm, (c) P=625 nm, RAu=157 nm, (d)

P=720 nm, RAu=157 nm. It can be seen that the TEM12 modes appear at around

830 nm with poor sensitivity for all the four arrays. The plasmonic modes are labelled
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correspondingly next to the spectra, and the peak position of the sensitive SPP modes

or hybridized SPP modes are recorded in Table 6.8.

Table 6.8: The positions of extinction maxima of the SPPAu/envir modes for a MIM(II)
cavity array with periodicities of 440 nm, 530 nm, 625 nm and 720 nm and a radius of
RAu = 162± 5 nm. The spectral shift sensitivities S (nm/RIU) are evaluated.

P (nm) mode 1.33 1.34 1.36 1.38 S

440
H-SPPAu/envir(0,1) 677 682 690 699 425

H-TEM13 632 638 647 655 425

530
SPPAu/envir(0,1) 727 736 749 762 650

H-SPPAu/envir(1,1) 608 613 620 627 350

625
H-TEM13 640 646 657 668 550

H-SPPAu/envir(1,1) 676 683 694 706 575
720 SPPAu/envir(0,2) 615 622 350

We firstly look at Figure 6.12(a) and (c) where the mode hybridization occurs. From

the simulations earlier (Figure 4.2 and 5.9), we know that for a MIM cavity with

RAu=160 nm, a TEM13 mode appears at around 650 nm. According to equations 4.1

and 4.2, resonance wavelength of SPPAu/envir(0,1) and SLRAu/envir(0,1) should appear

at around 640 nm and 585 nm, respectively, when n=1.33 (blue curve) for P=440 nm

(Figure 6.12(a)). So the double-band structure from 630 nm to 700 nm arise from the

hybridize of SPPAu/envir(0,1) mode (originally ∼640 nm) and TEM13 mode (originally

∼650 nm), resulting in two hybridized modes H-SPPAu/envir(0,1) at 677 nm and H-

TEM13 mode at 632 nm, respectively. This hybridization rule applies to the double-

band structures around 650 nm in both Figure 6.12(a) and (c). It is worth noting that

this hybridization results in notably increased sensitivity for the TEM13 mode and

decreased sensitivity for the SPP mode. In the case of P= 440 nm, the sensitivity of

SPPAu/envir(0,1) is predicted by S ∼ |
√

εm
εm+εd

| P√
i2+j2

to be around 470 nm/RIU (εm

and εd are -15.7 and 1.9, respectively), while the sensitivity of the TEM13 mode can

be predicted to be 0 as in Table 6.7. After strong coupling, the hybridized modes show

both high sensitivity due to their SPP origin: the H-SPPAu/envir(0,1) shows a sensitivity

of 425 nm/RIU and the H-TEM13 mode shows a sensitivity around 425 nm/RIU as

well. The same phenomenon happens when P=625 nm in Figure 6.12(c), then the

TEM13 mode hybridizes with SPPAu/envir(1,1). As a result of the mode hybridization,

the H-TEM13 mode shows a sensitivity of 550 nm/RIU and the H-SPPAu/envir(1,1)

shows a sensitivity of 575 nm. The sensitivity of TEM13 mode has been significantly

increased after hybridizing with SPP modes. These sensing results means that the

sensitivity of cavity plasmon mode can be increased as well by mode hybridization

with a delocalized SPP mode, besides creating a spacer undercut shown in chapter 5.
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In Figure 6.12(b), when P=530 nm, the SPPAu/envir(1,1) mode couples to the TEM13

mode as well. A sensitivity of 350 nm/RIU is obtained for H-SPPAu/envir(1,1) mode,

which is smaller than 401 nm/RIU predicted by |
√

εm
εm+εd

| P√
i2+j2

. This results from

coupling to the less sensitive cavity modes. A sensitivity of 650 nm/RIU is obtained

for SPPAu/envir(0,1), which is similar to 567 nm/RIU by prediction. In Figure 6.12(d),

the resonance wavelength of the SPPAu/envir(0,2) mode appears at 620 nm when the de-

tecting medium is 1.38, so the SPPAu/envir(0,2) mode is almost decoupled with TEM13

mode, and a sensitivity is evaluated to be around 350 nm/RIU , which roughly agrees

with the prediction of S≈ |
√

εm
εm+εd

| P√
i2+j2

.

6.5 Molecular sensing

It is widely known that the SPP mode is a better candidate for bulk sensing attributed

to its well-defined line shapes and big sensing volume interacting with bulk media,

however, the LSPR mode suits better for molecular sensing, for instance, immuno-

essay sensing in biomedicine, where the effective sensing volume is within ∼10 nm

in most cases. In MIM cavity arrays, the TEMmn mode has well confined strong

near-fields inside the cavity, which can result in promising sensing performance in

molecular sensing. In bio-molecules sensing, the sizes of most proteins, for instance

antibodies, are known to be around 5 ∼ 10 nm diameter, and the refractive index of

a monolayer of these proteins is estimated to be around 1.5 [90, 181]. The molecular

sensitivities depend on the size and refractive index of the detecting molecules. In

order to numerically investigate the performance of MIM cavity arrays in biosensing,

we put a thin layer with a thickness of 10 nm and refractive index of n=1.5 on the top

of MIM arrays. In this section, we simulated a MIM(III) cavity with periodicity P=650

nm, and RAu=70 nm and 160 nm respectively, to compare the sensitivities of different

orders of cavity plasmon modes, SPP modes and LSPR mode in the molecular sensing

configuration.

In Figure 6.13, the reflection spectra of MIM(III) cavity arrays with (a) RAu=160 nm,

(b) RAu=70 nm, when they are in air (n=1) and when the arrays are covered with

a 10 nm thick layer of organic molecules (n =1.5), are shown. The plasmonic modes

are labelled accordingly. The resonance wavelengths indicated by the reflection dips in

Figure 6.13 are recorded in Table 6.9 and the sensitivies S are evaluated. In Table 6.9,

as one would predict, the TEM11 mode and TEM12 mode show the highest sensitivities

of 520 nm/RIU and 168 nm/RIU , respectively, due to their strongly enhanced near-

field within 10 nm distance from the Au surface. The TEM11 mode shows a higher

sensitivity because it has ’hot spots’ at the ends of the cavity which are accessible
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Figure 6.13: Simulated molecular sensing for MIM(III) cavities with (a) RAu =
2RSiO2=160 nm, (b) RAu = 2RSiO2=70 nm and fixed periodicity of 650 nm, cavity
height tSiO2=10 nm. The black curves present the reflection spectra without molecules
(n=1), while the red curves present the reflection when molecules bond to the metal
surface and form an organic layer with a thickness of 10 nm and effective refractive
index of 1.5. The TEMmn modes show much higher sensitivities compared to those of
SPP modes and LSPR modes.

Table 6.9: The reflection positions of the different plasmonic modes in MIM(III) are
recorded from Figure 6.13. The simulated molecular sensing sensitivities S are evalu-
ated.

RAu modes n=1 n=1.5 S (nm/RIU)

160 nm
LSPR 538 568 60

SPPAu/air(0,1) 675 691 32
TEM12 762 846 168

70 nm
LSPR 530 550 40

SPPAu/air(0,1) 670 680 20
TEM11 802 1062 520
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to the molecules with RAu=2RSiO2 , while the TEM12 mode has most of its near-field

confined in the central modal lobes, which are only partly accessible to the molecules.

As a result, the TEM11 mode shows a higher molecular sensitivity than the TEM12

mode. The LSPR mode at a short wavelength around 535 nm also showed a sensitivity

of 60 nm/RIU and 40 nm/RIU in cavities with RAu= 160 nm and RAu= 70 nm, the

sensitivity of the LSPR mode increases when the disc size increases. The SPPAu/envir

mode shows the poorest molecular sensitivities. In section 6.3, we discussed about

the interesting near-field of SPP modes in a gold disc-on-film system, and there is a

LSPR mode that gets excited on the gold disc by the near-field of SPPs, which shows

impressive near-field intensity at the top and bottom corner of the disc. From the small

molecular sensitivities of the SPPAu/envir mode, we can conclude that the sensitivity of

the SPP mode is not affected by the LSPR mode excited by it at the same wavelength,

even though this LSPR shows very high localized near-field intensity. Nevertheless, the

high field strength of the near-field induced LSPR on the gold disc can improve the

performance of plasmon-assisted spectroscopy, as in Figure 7.4 and Figure 7.9.

6.6 Conclusion

From chapter 5, it is clear that the sensitivity of TEMmn modes gets improved from

MIM(I) to (III), by increasing their sensing volume through exposing the ’hot spots’.

In this section, we discussed the sensing performance of the improved structures:

MIM(III) and MIM(II). Firstly, the bulk RI sensing capability is studied. We showed

by simulation in MIM(III), that the reflection measurements are suitable for sensing

based on spectral shifts due to the narrow Lorentz resonance band of the TEMmn

mode and SPP mode, while sensing based on extinction provides the same spectral

shift sensitivity, but higher intensity modulated sensitivity due to the steeper spectral

profile created by coupling with the incidence radiance. Then we show that the sensi-

tivities of the TEMmn mode and SPPAu/envir can be tuned by mode hybridization. The

hybridized modes through Rabi-splitting have part of the energy and physical proper-

ties inherited from both their origins, including sensitivity. After that we studied the

sensitivity of higher order cavity modes and higher order SPPAu/envir modes in larger

MIM(III) cavity arrays with larger periodicity as well. It is shown that the higher

order edge modes TEMm1 possess a better sensitivity than the higher order surface

modes TEM1n due to differences in field distribution. The sensitivities of different

orders of SPPAu/envir(i,j) can be roughly estimated by S ≈ |
√

εm
εm+εd

| P√
i2+j2

if mode

hybridization does not occur.

In the next section, we showed the bulk RI sensing with MIM(II) cavity arrays. We
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found that the sensitivity of the LSPR mode increases with increasing RAu before it

couples with the insensitive TEM13 mode. A FoM of 6.53 is achieved in experiments

with a MIM(II) cavity array with RAu = 68 nm. It is also proved by simulation that

the sensitivity of the LSPR mode would not be improved by underetching. Then we

compared the sensitivities of different orders of surface cavity modes TEMm1, where

the sensitivity decreases drastically with increasing orders due to decreasing sensing

volume. For the SPPAu/envir(i,j) modes, it is proved in the experiments that the RI

sensitivity exchanges between the SPP mode and TEMmn mode through mode hy-

bridization. The originally insensitive TEM13 mode gets very sensitive to bulk RI

change with a sensitivity of 299 nm/RIU , while the highly sensitive SPP modes gets

more stable to the RI change of the surrounding environment.

In the last section, the molecular sensitivities of different plasmonic modes are studied.

The TEMmn modes with strong localized near-field present the best sensing perfor-

mance. The TEM11 mode has a high sensitivity which is three times that of the TEM12

mode. While the SPP modes show impressive sensing capabilities in bulk sensing, their

sensitivity in the molecular sensing configuration is poor due to the near-field not being

as strong within 10 nm distance from the Au surface. In this chapter, we also discussed

the interesting LSPR mode which is excited at λSPP on the gold disc by the near-field

of SPP modes. It possesses near-fields even stronger than the TEMmn modes, which

makes disc arrays on gold film a promising candidate for plasmon-assisted spectroscopy.

On the other hand, the molecular sensitivity of SPPAu/envir modes is not improved by

the strong near-field of this LSPR mode.
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SERS based on MIM structures

Surface enhanced Raman scattering (SERS) can yield valuable structural and chemical

information about detected molecules. Raman scattering is an inelastic scattering pro-

cess, which delivers spectra with distinct features, that are specific to the investigated

molecules. Therefore, the technique can e.g. be used in sensing applications for human

gene analysis, clinical diagnosis, pharmacology, forensic investigation and others [64].

As presented in section 1.1.2, the intensity of Raman scattering however is very low,

compared to the intensity of elastic scattering. Therefore, many attempts for enhanc-

ing the signal have been pursued [182]. It is widely believed that the enhancement

factor (EF) of SERS substrates arises from two mechanisms: electromagnetic (EM)

enhancement by strong local electromagnetic fields and chemical enhancement, while

the former mechanism dominates by many orders of magnitude in most applications

[4]. In most cases, the EF can be roughly estimated as being proportional to the fourth

power of the electric field enhancement, since the Raman wavelengths are usually close

to the laser wavelength and both the intensity of the exciting and the scattered field are

enhanced. Therefore, a common approach is to make use of the strong near-fields in the

vicinity of plasmonic nanoparticles. Thus, in order to boost the enhancement of local

electromagnetic (EM) fields, nanostructures with gaps on the scale of few nanometers,

such as homo-dimers, hetero-dimers, trimers, and vertical metal-insulator-metal (MIM)

structures were investigated extensively, due to the particularly strong EM near-field

in nanogaps. These SERS substrates were presented in section 1.1.2.2 and MIM struc-

tures have shown great study interest. In this section, SERS performance of MIM(II)

and MIM(III) will be investigated with different Raman active molecules.

139
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7.1 Evaluation of SERS EF

The estimation of the SERS EF in most cases, where the contribution of chemical

enhancement can be neglected, has been given by equations 1.4 and 1.5. However, these

definitions fail to take into consideration that SERS is a type of surface spectroscopy,

and only the absorbed molecules which are accessible to the enhanced EM field can

contribute to the SERS signal. To fix this problem, the experimental approach to

define the average SERS EF for a given SERS substrate has been given by [4] :

EF =
ISERS/NSurf

IRaman/NRaman

(7.1)

Here, NSurf and NRaman represent the average number of Raman molecules involved

in SERS and normal Raman experiments, respectively, ISERS and IRaman mean the

measured intensity of SERS signal and normal Raman signal, respectively.

7.1.1 Relative enhancement factor

In the case of molecules with big Raman cross sections, for instance dyes, normal

Raman signal can be obtained easily. Nevertheless, for most Raman molecules like

4-mercaptobenzoic acid (4-MBA) and trans-1,2-bi-(4-pyridyl) ethylene (BPE), Raman

scattering cross sections are small. Besides, the solubility of these molecules in water

is not high enough to obtain high concentration aqueous solutions in order to generate

distinguishable normal Raman signal (IRaman). Some groups obtained normal Raman

intensity (IRaman) and the involved molecule numbers NRaman of these molecules by

dissolving Raman molecules in ethanol. However, the fast evaporation rate of ethanol

under room temperature and the fact that heat is produced by the laser during Raman

measurements undermines the credibility of the estimation of NRaman.

Thus, in this work, 5 nm Au island films are taken as reference sample to evaluate the

relative enhancement factor (REF) of MIM structures. As already presented in section

1.1.2.2, thin metallic island films are very well known SERS substrates. These nano-

islands separated by nanometric gaps, when under illumination with visible light, give

rise to ’hot spots’ in the gaps. The highly dense ’hot spots’ feature strongly enhanced

electric fields resulting in a high EF for SERS, which makes island films good reference

samples. Another advantage of REF is that Raman signals arise from the Au/molecule

complex composites in both MIM structures and reference substrate, leading to no

Raman band position shift between the SERS substrate under evaluation and that of

the reference Raman substrate. Details can be seen in section 7.2.
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The reference samples were prepared according to the following process: firstly, a glass

substrate (22 mm × 22 mm) was cleaned the same way as stated in section 3. Then

5 nm of gold were thermally deposited on the glass substrate with a rate of 0.2 nm/s,

and island films instead of continuous gold films were obtained [183]. Figure 7.1 shows

Figure 7.1: SEM image of 5 nm Au island film. The coverage of Au islands is evaluated
to be 91% using imageJ. Acknowledgement to Dr. Sergei Kostcheev for helping me
with this SEM image.

a SEM image of an as-fabricated 5 nm Au island film following the process presented

above (with sincere acknowledgement to Dr. Sergei Kostcheev for kind help). As can

be observed in Figure 7.1, the reference SERS substrate is covered by nano-islands

separated by nano-gaps, which can give rise to high SERS signal. The Au coverage

is estimated to be 91% by software imageJ. The 5 nm gold island films are immersed

in 4-MBA/ethanol mixture with a concentration of 1 mM for 24 h, in order to get a

monolayer of molecules on top of the gold nano-structures. The reference SERS signals

of the island films were averaged over 5 measurements on 5 spots on each island film

and further averaged over 2 island films for each Raman molecule. The relative EF of

the MIM structure compared to 5 nm Au island film, was then evaluated in this work

by

REF =
IMIM/NMIM

Iisland/Nisland

(7.2)

Here, NMIM and Nisland represent the average number of Raman molecules covered by

the laser spot. IMIM is the Raman intensity for the MIM substrate and Iisland for the

island film, respectively.

The MIM(II) and (III) samples are prepared following the same protocols as in the

case of the 5 nm Au island film, in order to achieve a monolayer of 4MBA or BPE
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molecules on the surface of the MIM(II) substrates. Besides, the SERS experiments

were performed under the identical measuring configuration using a LabRam from

Horiba JobinYvon, so the laser spot size is consistent in the experimental and reference

group. Based on the high Au coverage of 91% of the 5 nm Au island films and 100%

in the cases of the MIM(II) and MIM(III) structures, we assume that the average

numbers of molecules covered by the laser spot on the MIM susbtrates and gold islands

are approximately the same, NMIM ≈ NRaman. Thus, the relative enhancement factor

REF can be given by:

REF =
IMIM

Iisland
(7.3)

7.1.2 Effective relative enhancement factor

REF evaluates the average SERS EF of MIM structures with respect to 5 nm island

films on the scale of the laser spot sizes. However, not all the Raman molecules covered

by the laser spot contributed to the SERS signal. Figure 7.2 shows the Raman signal

Figure 7.2: Raman signals recorded on MIM(II) structure (red curve) with a periodicity
of 430 nm and cavity radius of 145 nm, on glass substrate (black curve) and 50 nm
continuous Au film (blue curve) under the same SERS measuring configuration. The
Raman spectra are not treated with baseline correction.

for a MIM(II) structure (red curve) with a periodicity of 430 nm and cavity radius of

145 nm, recorded on glass substrate (black curve) and 50 nm continuous Au film (blue

curve) under the same treatment procedure and measuring configuration. The Raman

spectra in Figure 7.2 are not treated with baseline correction. We found that the

baseline intensity is reduced on the 50 nm continuous Au film (blue curve) compared
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to the glass substrate (black curve). The nature of the baseline in Raman spectra

is still partly unknown and under debate [4]. It is possible that the baseline in our

Raman spectra arises from fluorescence of the Raman molecules. The fluorescence

gets quenched on the continuous Au film which leads to reduced baseline intensity

compared to the glass substrate, nevertheless, in the case of the MIM structure, the

fluorescence gets enhanced together with the Raman bands. In order to improve the

signal/noise ratio of Raman peaks, the subtraction of fluorescence from Raman spectra

is performed by applying and subtracting a polynomial fit to the spectra in the SERS

spectra presented in the following chapter. This polynomial fit allows to reduce the

signal without losing information of small peaks and changing the peak ratio which

holds important information [184].

As for the enhancement of the continuous Au film, it can be seen from Figure 7.2,

no SERS enhancement is obtained (blue curve). This means: although the MIM(II)

structure provides high SERS signal (red curve), the molecules adsorbed on Au film

(blue curve) rather than gold discs, have negligible contribution to the SERS signal

of the MIM substrate. We know that the number of molecules that contribute to the

SERS EF is proportional to the enhanced area, or the size of the hot spots. Therefore,

in order to take into consideration the number of molecules that contribute to SERS

EF, the concept of REFeff is introduced, which is defined by:

REFeff =
IMIM/Aeff
Iisland/Alaser

=
IMIM

Iisland
∗ Alaser
Aeff

(7.4)

where, Alaser and Aeff present the areas of accessible enhanced near-field covered by

laser spot in island film and MIM structures, respectively.

In this thesis, Alaser is taken for the enhanced area of the island films assuming that

the surface of the island film is covered by accessible ’hot spots’. In Ref. [185], Enders

et al. showed that a strong near-field appears around the gold islands at low coverage

of Au islands. Also a huge electromagnetic enhancement occurs in the nanometric

gaps of the densely packed islands due to near-field interaction. As a result, the field

enhancement (as shown in Figure 1.11(a)) and the Raman scattering enhancement

(as shown in Figure 1.11(b)) on the island film fluctuates strongly on the nanometer

scale [67]. Even though the field enhancement of the island film is macroscopically

homogeneous [67], the strong enhancement fluctuation in the nanometer scale makes

it difficult to make a simple and precise approximation about its effectively enhanced

area. We note, that the assumption, that the enhanced area of the island film is equal

to Alaser may result in an overestimated REFeff .

In the case of MIM(II), the accessible near-fields of cavity plasmon modes are only at
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the edges of the SiO2 discs, while we take the effective area Aeff to be the area of the

Au discs in MIM structures which may result in an underestimated REFeff . So we

get Aeff = Ceff ∗Alaser =
πR2

Au

P 2 ∗Alaser, where Ceff means the coverage of Au discs in

MIM structures. Then we get
Aeff
Alaser

= πR2
Au/P

2, and the REFeff for MIM(II) can be

evaluated as:

REFeff =
IMIM

Iisland
∗ P 2

πR2
Au

(7.5)

Evaluating or comparing of the overall EF of a SERS substrate to a common and

well-performing SERS substrate can be seen as well in the literature [186, 187], which

are similar to the method presented in this thesis in section 7.1.1. To the author’s

knowledge, there is no widely accepted approximation of the enhanced area of an

island film available. In this thesis, the REFeff is an estimated relative enhancement

factor based on approximations of the enhanced area in both MIM structures and a

5 nm Au film, in an attempt to compare the ’hot spots’ intensity in these two SERS

substrates. We are well aware that the values of REFeff might vary with a more

accurate approximation of the enhanced near-field of the island film. Nevertheless,

despite the compromised accuracy of the values of REFeff , the variation trend of

REFeff of MIM cavities with different cavity radii and periodicities would be realistic

because they are obtained by taking the effective enhancement factor of an island

film as unity (which is a constant). Therefore, it is possible to relate the variation of

REFeff of different MIM cavities, for both cavities with and without undercut and

with different geometrical parameters, to the SERS EM enhancement theory as shown

in section 1.1.2.1.

7.2 SERS experiments with 4-MBA

The SERS spectra were recorded using a LabRam from HORIBA Jobin-Yvon with a

He-Ne laser source. The laser wavelength is 633 nm and the full laser power is 8.3 mW.

There are a sequence of attenuating filters to decrease the excitation power by 2, 4, 10,

100, 103 and 104 times. Different sizes of laser spots can be chosen by applying different

objectives. In this work, the 10 times objective was used if not stated otherwise. This

means the SERS measurements were performed in reflection confocal geometry with

the 10 times objective for sample illumination and the scattered light collecting. The

laser spot at the focus plane is around 10 µm. The typical acquisition times range from

5 s to 20 s, while the spectra were later normalized to 20 s acquisition time for the sake

of comparison. All SERS measurements were designed to record with averaging over 5

spectral sets. The SERS spectra in this work are presented after baseline correction,
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that was performed by fitting polynomial baselines to the SERS spectra to determine

the background and then subtracting it.

The SERS EFs of MIM structures with Au discs on the top of a Au film separated

by a SiO2 spacer disc (RSiO2 = RAu), were investigated with 4-MBA molecules. MIM

structures with different radius (RAu) and grating constants P ranging from 350 nm to

750 nm in 100 nm steps, were studied.

Figure 7.3: (a) Enhanced Raman spectra of 4-MBA on Au MIM(II) structure with P
= 335 nm and RAu=113 nm (red curve) and 5 nm Au island film (black curve), (b)
chemical structure of 4-MBA.

4-mercaptobenzoic acid (4-MBA) is a widely used Raman analyte due to its well-defined

Raman peaks and the fact that idealized, ordered self-assembled monolayers (SAMs)

can be easily achieved with a simple treatment process [188]. A 4-MBA molecule

consists of a thiol group, an aromatic ring and a carboxyl group, as shown in Figure

7.3 (b). The thiol group will covalently adsorb on the gold surface forming a gold-

thiolated complex. Freshly fabricated MIM structures and 5 nm gold island films were

immersed in 4-MBA/ethanol mixture with a concentration of 1 mM for 24 h, in order to

get a monolayer of molecules on top of the gold nano-structures. Then the structures

are rinsed with ethanol to remove the molecules adsorbed on the substrate surface

through physical absorption, so that a better control of the involved Raman molecules

was assured. Samples are then dried by a diffuse stream of high purity nitrogen. Figure

7.3 (a) show a SERS spectrum recorded on a gold disc MIM array with RAu=113 nm

and P=335 nm. The SERS spectra were similar to the previously reported spectra of

4-MBA on the surface of other gold nanostructures [189–192].

The Raman band positions of bulk 4-MBA are adapted from Ref. [193] and presented in
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Table 7.1: Raman bands assignment for bulk 4-MBA and 4-MBA/Au complex, ν –
stretch; δ – in-plane bend.

Bulk 4-MBA 4-MBA/Au complex Assignment
1087 cm−1 1072 cm−1 ring-breathe + ν(C − S)
1182 cm−1 1178 cm−1 δ(C-H)
1596 cm−1 1587 cm−1 ν(C − C)ring

Table 7.1, together with the Raman bands position of 4-MBA/Au complexes obtained

from Figure 7.3. It is worth noting that there is a blue shift of the Raman bands

of 4-MBA molecules adsorbed on the Au surface compared to the bulk 4-MBA. Our

observation of the Raman bands shift between SERS and normal Raman spectra is

in agreement with other SERS experiments, and the spectral shift is attributed to

the charge transfer effect [4, 191, 194]. On the contrary, there are no band position

variations between MIM structures and the Au island film because both the Raman

bands arise from the vibrational modes of 4-MBA/Au complexes. This is one of the

advantages of evaluating REF rather than absolute EF as stated in the previous section.

The peak in the spectrum at around 1072 cm−1 is assigned to the overall effect of

(C-C)ring ring-breathing modes and vibration of C-S bonds. The band at 1178 cm−1

is due to the bending of C-H bonds, and the Raman band at 1586 cm−1 arises from the

aromatic ring breathing mode [190]. The SERS performances of SERS substrates are

later evaluated at the Raman bands with higher intensity: 1072 cm−1 and 1586 cm−1,

which are referred to as Peak 1 and Peak 2 later.

7.2.1 SERS experiments with unetched MIM

7.2.1.1 Experimental EF

MIM(II) structures with different radii of the Au discs RAu and periods were investi-

gated for their SERS performance under identical SERS measuring configuration. The

cavity thickness was tSiO2=12 nm for all the experimentally investigated MIM(II) cav-

ities. The REFs and REFeffs of MIM(II) substrates with respect to the island film are

calculated according to formula 7.3 and 7.5.

Figure 7.4 presents the measured SERS performance of MIM(II) with respect to gold

island films, the relative enhancement factor (REF) and effective REF (REFeff ) are

shown in Figure 7.4(a) and (b), respectively. In Figure 7.4(a), the intensity of the SERS

signal showed a trend of increasing first then decreasing as a function of increasing

RAu, for both grating constant P=335 nm and P=430 nm. The SERS signal of the
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Figure 7.4: Measured (a) REFs and (b) REFeffs with respect to island film for MIM
(II) with different radii of the Au disc RAu and grating constant P. Aeff/Alaser was
given by πR2

Au/P
2 as in equation 7.5

investigated MIM(II) was not as strong as that of island films. The best REF of 0.72

occurs for MIM(II) with RAu=130 nm and P=430 nm.

The REFeffs were calculated based on formula 7.5, while taking the area covered by

Au discs as the effective Raman enhancing area (Aeff/Alaser = πRAu/P
2). In Figure

7.4(b), the MIM(II) structure with a RAu of 40 nm shows a high REFeff of 23, though

the REF is quite small due to its small effective area. It can be observed that the

evaluated REFs at Raman peak 1 and peak 2 show the same variation profile as a

function of cavity radius in Figure 7.4(a), also the same variation can be found for the

REFeffs in Figure 7.4(b). This is because the Raman wavelengths of peak 1 (1072

cm−1) and peak 2 (1587 cm−1) are 680 nm and 704 nm, respectively, and it is possible

that the two closely separated Raman bands receive comparable enhancement factors

from the near-field of plasmonic modes. More details can be found in the simulated

EF. In Figure 7.4(b), the magnitudes of REFeff showed a complicated behaviour as a

function of RAu. Here, in order to understand the variation of the REFeffs, simulations

were performed to theoretically determine the REFeffs at peak 1 and peak 2 with

varying cavity radius.

7.2.1.2 Simulated EF

According to formula 1.4, the Raman signal enhancing capability of SERS substrates

can be estimated by |ẼLoc(ωL)|2 × |ẼLoc(ωR)|2. As the enhancement of the E field at

the laser and Raman wavelengths is crucial to the SERS EF, in the FEM simulations,

|E|2 (|E| =
√
E2
x + E2

y + E2
z ) was integrated over the Au discs surface (top surface and

side wall).

The integrated field intensities as a function of RAu are presented in Figure 7.5 for dif-
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Figure 7.5: The near-field intensity is presented as a function of RAu, at the laser
wavelength λlaser= 633 nm (black curve), the Raman wavelength of peak 1 λR1= 680
nm (red curve), and peak 2 λR2= 704 nm (blue curve), respectively. The near-field
intensity is obtained by integrating |E|2 over the discs surface (top surface and side
wall).

ferent wavelengths: |ẼLoc(ωL)|2 at λlaser=633 nm (black curve), |ẼLoc(ωR)|2 at λR1=680

nm (red curve) and λR2=704 nm (blue curve). In chapter 4, it is presented that cav-

ity plasmon mode TEM11 dominates in the visible region for smaller discs (RAu ∼
40 nm, 70 nm) and the TEM12 mode dominates the spectra of larger discs (RAu ∼
100 nm, 130 nm, and 160 nm), respectively. For the near-field integrated at 633 nm

(black curve), there are two pronounced peaks through the investigated RAu range.

The E field resonance appearing for the smaller disc size RAu= 38 nm results from

the cavity mode TEM11, which can be confirmed by the inserted field map. Simi-

larly, the field resonance at RAu= 108 nm is due to cavity plasmon mode TEM12.

The E field increases again for RAu > 150 nm, which may result from the TEM31 or

TEM13 mode of larger cavities. The near-field resonances at the Raman wavelengths

(red and blue curves) show the same profile except the resonance RAu for the modes

TEM11 and TEM12 shifted to larger radii due to increasing wavelength. For increasing

wavelength, the resonance RAu also increases, as can be deduced through the formula

kgsp(RAu + ∆R) = χ′mn. On the other hand, the integrated E field is significantly

smaller for MIM structures with Au disc radii around 70 nm and 160 nm, because

both the laser and Raman wavelengths are out of the plasmonic resonance of TEM11

(RAu = 70 nm) and TEM12 mode (RAu = 160 nm).

It is worth noting that the E field resonances attributed to the TEM11 mode show

a notably stronger field enhancement at the smaller RAu compared to those resulting
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from the TEM12 mode at the larger RAu. In the case of the near-field at λR2 = 704

nm (blue curve), the |E|2 at the resonance RAu of the TEM11 mode is 3 times that

of the TEM12 mode. In chapter 4, it is presented that surface cavity mode TEM12

shows a better field confinement than the TEM11 mode. Different from the edge mode

TEM11, the surface mode TEM12 has most of its energy in its central modal lobes

rather than the edge lobes, which can be seen by comparing the inserted field maps.

As a result, the local field strength of the TEM12 mode at the cavity ends is found to

be considerably lower than that of the TEM11 mode. As a result, the integrated field

at the surface of the Au disc is lower for the TEM12 mode than that of the TEM11

mode, as can be seen in Figure 7.5.

Figure 7.6: Simulated REFeff for MIM(II) are presented as a function of varying radius
of Au disc RAu for peak 1 (red curve) and peak 2 (blue curve), the periodicity is fixed
at P = 335 nm. REFeff = |ẼLoc(ωL)|2 × |ẼLoc(ωR)|2 based on equation 1.4.

The EFs in Figure 7.6 are the products of the integrated field intensity at the laser wave-

length and corresponding Raman wavelengths, REFeff = |ẼLoc(ωL)|2 × |ẼLoc(ωR)|2.

For Raman peak 2, the MIM structures with RAu of 48 nm and 130 nm show peaks

of REFeff , resulting from enhanced E fields of cavity plasmon modes TEM11 and

TEM12. MIM(II) with radius RAu out of the resonance range show not very impres-

sive enhancement factors, due to the fact that no cavity plasmon mode is excited at

neither laser wavelength nor Raman wavelengths. Consequently, the REFeff decreases

and then increases, and again decreases as a function of increasing RAu. The same

variation pattern can be seen for peak 1, except with smaller resonance RAu due to the

smaller Raman wavelength.

The enhancement peak due to the TEM11 enhancement at smaller RAu is much stronger

than that of the TEM12 mode at the larger RAu. It can be explained by the same reason
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as in Figure 7.5: because of the field distribution difference between edge cavity mode

TEM11 and surface cavity mode TEM12. The nature of the small bumps at RAu=38

nm, 143 nm, 155 nm are not clear yet, they may arise from the LSPR mode of the Au

disc, or SPP modes or higher order cavity plasmon modes, or maybe just because the

calculation mesh size is not fine enough.

7.2.1.3 Comparison between Experimental and Simulated EF

In the experiments (Figure 7.4(b)), the steps between two investigated RAu are too

large to show as much details as in the simulation (Figure 7.6). The REFeff peak

due to enhancement of the TEM12 mode is hardly visible for the MIM structures

with big RAu between 100 nm and 160 nm. The REFeff contributed by the TEM11

mode between RAu = 40 nm and 60 nm did not appear as a peak in experiments,

because only RAu = 35 nm and 70 nm were investigated experimentally. However, the

trend of higher REFeff due to enhancement of the TEM11 mode at smaller disc radius

and lower REFeff due to enhancement of the TEM12 mode is in good agreement as

predicted by simulations.

In Figure 7.4(b), the same
Aeff
Alaser

= πR2
Au/P

2 were applied for the TEM11 mode and

TEM12 mode when the REFeff is calculated based on equation 7.5. However, the field

distribution difference between edge cavity modes and surface cavity modes makes

the enhanced near-field of the TEM12 mode less accessible at the MIM(II) structure

surface compared to that of the TEM11 mode. In Figure 7.7(a), field maps for TEM11

mode and TEM12 mode are presented at their resonance wavelengths. An energy

threshold is set so that the energy above this threshold would appear in dark red. The

accessible enhanced near-field is outlined by black lines. The TEM12 mode is not as

accessible as TEM11 mode because the energy of surface mode TEM12 is strongly

confined in the center of the MIM cavity, whereas the energy of edge mode TEM11 is

distributed at the cavity edge. To evaluate the experimental REFeff , for simplicity,

we take
Aeff
Alaser

= πR2
Au/P

2 for RAu 6 100 nm where the TEM11 mode dominates, and
Aeff
Alaser

= 0.5πR2
Au/P

2 for 100 nm < RAu < 160 nm where the TEM12 mode dominates.

The evaluated REFeffs are then presented in Figure 7.7(b). Compared to Figure 7.4(b),

the REFeff peak attributed to the TEM12 mode can be distinguished at RAu = 130

nm, after the different accessible enhanced areas of TEM12 and TEM11 are taking into

consideration.

To conclude, the experimental REFeff follows the prediction of FEM simulations,

while more different radii would be required to compare the curve shapes. For the

smaller RAu, the TEM11 mode dominates at the laser and Raman wavelengths, and
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Figure 7.7: (a) Field maps of TEM11 mode and TEM12 mode at resonance wave-
lengths. An energy threshold is set, and the energy above this threshold appears in
dark red. The enhanced field of TEM11 is more accessible at the MIM structure sur-
face than that of TEM12 mode. (b)The REFeff evaluated based on equation 7.5 while
taking into consideration of the accessible enhanced area of TEM12 and TEM11 mode:
Aeff
Alaser

= πR2
Au/P

2 for RAu 6 100 nm, and
Aeff
Alaser

= 0.5πR2
Au/P

2 for 100 nm < RAu <
160 nm.

the TEM12 mode dominates in the case of larger RAu. Compared to the TEM12 mode,

the enhanced near-field of the TEM11 mode is more accessible for molecules adsorbed

on the MIM structure surface, resulting from the fact that the near-field of edge cavity

mode TEM11 resides at the edges of the MIM(II) cavity and that of the TEM12 mode

resides at the center of the MIM(II) cavity. As a result, the REFeff peak attributed to

the TEM11 mode shows a higher amplitude than the peak attributed to the TEM12

mode.

7.2.2 SERS experiments with under-etched MIM

7.2.2.1 SERS experiments

While the MIM(II) shows good REFeff compared to island films, even better SERS

performance can be expected, as stated in chapter 5. In this section, another MIM(II)

sample was fabricated in parallel to the SERS sample investigated in the previous

section. It was then studied in chapter 5 for exposing the hot spot by wet etching. By

comparing the blue shift of the extinction measurements to the simulated extinction

spectra, it was estimated that the RSiO2 was decreased by 14 nm after etching by HF

acid with a concentration of 0.03 % (wt) for 50 seconds. Because it is an isotropic

etching process, we assume that RSiO2 for different MIM structures were all reduced

by 14 nm. This sample was then treated with 4-MBA with the same method as for

the unetched sample, and SERS signals were recorded under the identical measuring
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configuration.

Figure 7.8: the REFs of MIM structures before and after wet etching for different Au
disc radius and grating constants (a) P = 335 nm and (b) P = 440 nm.

Figure 7.8 presents the REFs of MIM structures before and after wet etching for dif-

ferent disc radius and periods. It is quite clear that the underetched MIM structures

show better SERS capability than island films (REF > 1), whereas their non-etched

counterparts show weaker SERS signal than island films, with REF below 1.

Figure 7.9: The REFs of MIM(II) structures after wet etching (MIM(III)) for different
Au disc radii RAu ranging from 20 nm to 160 nm, and grating constants P ranging
from 335 nm to 720 nm.

SERS signals were also recorded and evaluated for higher grating constants, P = 530

nm, 620 nm and 720 nm. In Figure 7.9, REFs for different etched samples with different

geometrical parameters are presented. Stronger SERS signals than those obtained with

island films were achieved for MIM structures with big grating constants, even though
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these substrates have a very small enhancing effective area compared to island films.

It is interesting to notice that for grating constants P = 620 nm, 530 nm and 440 nm,

the recorded maxima SERS signals are stronger than those of MIM with P = 335 nm,

even though less Au disc MIMs were involved (laser spot size around 10 µm). For the

nonetched MIM, in Figure 7.4(a), the SERS signal was also stronger for P = 440 nm

than that of P = 335 nm. In chapter 4, it was stated that the near-field and resonance

position of cavity plasmon modes is independent of the grating constants except when

strong coupling occurs. The position of SPP modes can be easily calculated based

on equation 4.1. The grating induced surface polaritons at the substrate/Au film

interface (SPPAu/glass(0,1)) occur at 709 nm for P = 440 nm and the SPPAu/glass(1,1)

mode appears at 632 nm for P = 530 nm, respectively. Although these resonances are

close to the wavelengths of interest (λlaser = 633 nm, λR2 = 704 nm), the SPP field

is propagating on the glass/Au film interface, beyond the reach of Raman molecules.

For P = 620 nm, SPPAu/glass(1,1) and SPPAu/air(0,1) appears at 702 nm and 647 nm,

respectively. The near-field of SPPAu/glass(1,1) is not accessible to the molecules, and

SPPAu/air(0,1) is out of the wavelengths of interest (bandwidths of SPP modes are ∼30

nm as in Figure 4.11). For P = 720 nm, SPPAu/glass(0,2) and SPPAu/air(0,1) appear

at 612 nm and 741 nm, respectively, both out of the range of interesting wavelengths.

So the stronger SERS signals for higher grating constants do not come directly from

the near-field contribution of SPP modes. There are two possible reasons to explain

the stronger SERS signal for larger periodicity: first, the mode hybridization between

SPP mode and cavity mode shifts the resonance positions of hybridized modes to a

more beneficial position for the electromagnetic enhancement effect. Second, the strong

localized field of the LSPR mode induced by SPPAu/air modes contributes to the higher

SERS signal. Details about this LSPR mode at λSPPAu/air were presented in section

6.3.

Figure 7.10: REFeff evaluated from Figure 7.9 with Aeff/Alaser = πR2
Au/P

2: (a)
Raman peak at 1084 cm−1, (b) Raman peak at 1586 cm−1.



154 Chapter 7. SERS based on MIM structures

Figure 7.10 presents the measured SERS REFeffs with respect to island films with

Aeff/Alaser = πR2
Au/P

2 based on formula 7.1. REFeff up to 160 were found compared

to island film, which is much higher than the best REFeff of 23 of the unetched MIM

structures. It can be seen in Figure 7.10 that MIM(III) structures with smaller RAu

show higher REFeffs than MIM(III) with larger RAu. The REFeff peaks evaluated for

Raman bands at 1084 cm−1 (Figure 7.10(a)) and 1586 cm−1 (Figure 7.10(b)) seem to

appear between RAu = 40 nm to 80 nm. Simulations were performed to understand

the dependency of REFeff on the Au disc size RAu in MIM(III) structures.

7.2.2.2 Simulated SERS EF

In Figure 7.11, the simulated E field intensity and REFeffs for the investigated MIM(III)

structures in Figure 7.10 are presented. The simulated E field intensity and REFeffs for

corresponding MIM(II) in Figure 7.5 and 7.6 are also shown for comparison purposes.

In chapter 5, it is shown by experiments and simulations that the resonance wavelengths

of cavity plasmon modes shift to a shorter wavelength after the undercut is created by

wet etching. That means the resonance RAu for a given investigated wavelength shift

to a larger RAu. As shown in Figure 7.11(a), after the effective refractive index inside

the plasmonic resonator MIM(III) is smaller than that of MIM(II), the resonance RAu

for laser wavelength and Raman wavelengths shift to bigger RAu. It is worth noting

that the accessible enhanced E field increased from MIM(II) to MIM(III). This can

be explained by the fact that the near-fields of cavity plasmon modes are partially

exposed to the Raman molecules after wet etching. In Figure 7.11(b), the simulated

REFeff were shown for the etched (MIM(III)) and unetched sample (MIM(II)). It can

be seen that the resonant REFeff due to enhancement from the cavity modes TEM11

and TEM12 both shifted to bigger RAu after etching, and the REFeffs in MIM(III)

structures are higher than in the corresponding MIM(II) structures.

Now back to the experiment REFeff in Figure 7.10. By comparing the peak position

attributed to the TEM11 mode for etched and unetched MIM structures (Figure 7.10

and 7.4(b), respectively), the corresponding REFeff shifted to a larger RAu after etching

and appear at RAu between 40 nm and 90 nm. The red shift of REFeff attributed to

the TEM11 mode is in good agreement with simulations, while the resonance position

of REFeff is moved a bit more to bigger disc radii, and the band width of the resonance

is wider than the simulated resonance. The wider resonance bandwidth in experiments

compared to the simulations may arise from the smaller quality factors of fabricated

MIM cavities compared to the perfect cavity in simulations. In the simulations, a

red-shift of ∼ 5 nm and a REFeff improvement of 2 are predicted. Nevertheless, by

comparing Figure 7.10 and 7.4(b), a red-shift of ∼ 20 nm and a REFeff improvement
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Figure 7.11: (a) The E field was integrated on the Au disc and Au surface exposed
by wet etching. The integrated field intensities are shown for laser wavelength and
Raman wavelengths for nonetched and etched MIM structures; (b) Simulated REFeff
for nonetched and etched MIM structures at two Raman bands. Solid and dotted
curves for etched and unetched MIM structures respectively.

of 7 are achieved in experiments after wet etching. This may result from the different

SiO2 disc profile after etching in experiments and simulations. In simulations, a side

wall with right angle is applied as can be seen in Figure 3.11. However, in experiments,

excessive etching occurs at the Au/SiO2 interface due to the fact that the HF etchant is

drawn along the interface by capillary action [195], which can result in larger exposed

enhanced area in the cavity than we estimated based on the resonance shift after

etching in Figure 5.7. As a result, better REFeff enhancement and stronger red-shift

of the REFeffs are observed in experiments. For etched MIM structures, it is similar

to unetched MIM structures that the REFeffs attributed to the enhancement of the

TEM11 mode are much stronger than those contributed by the TEM12 mode.

It is worth noting that the TEM11 mode enhanced REFeff is not always stronger than

the one enhanced by the TEM12 mode in etched samples. It is true that mainly the hot

spots of cavity plasmon modes localized under the edges of Au discs will be exposed by

wet etching, thus the SERS EF can benefit more from the strong field of the TEM11

mode than the TEM12 mode at the disc edge. Whereas, when the TEM12 mode is

excited in the visible spectral range, that means the Au disc is big and a larger exposed

area (enhanced area by cavity modes) can be achieved by etching compared to small

discs, resulting in more binding spots for the Raman molecules. In our experiments

and simulations, the SiO2 disc is reduced by 14 nm, however, only 2 nm into the edge

of the Au disc because of the slanted side wall of the SiO2 disc, as showed in Figure

3.11. Consequently, in our experiments, the EF contributed by the TEM11 mode is

stronger than that of TEM12 mode. If the etching time was increased, RSiO2 would

be reduced more. There is a possibility that the bigger exposed area for the TEM12

mode will compensate for the fact that the local field at the disc edges is not as strong
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as for the TEM11 mode, and the REFeff contributed by the TEM12 mode dominates.

7.3 SERS experiments with BPE

The SERS EFs of disc-on-film MIM structures with Au discs on top of a Au film sep-

arated by a SiO2 spacer disc (RSiO2 = RAu), were investigated with BPE molecules.

MIM structures with different radii (RAu) and grating constants were studied. The

MIM structures and island films were incubated in 1 mM BPE( trans-1,2-bis(4-pyridyl)-

ethylene)/ethanol solution. The surface treatment times were optimized by measuring

the SERS signal after incubating for different times. It is found that the SERS inten-

sity stopped increasing after incubating for 15 min. We assume that a monolayer of

molecules was formed on the substrate surface after 15 min of incubation. After 15

min, there remain no free binding spots on metallic structures for more BPE molecules,

though the substrates were immersed in BPE solution for 2 h or 2 weeks.

SERS measurements were performed on island films rinsed or without rinsing after the

incubation process as well. It is found that a better homogeneity of the SERS signal can

be obtained on island films which were rinsed after incubation. This is due to the fact

that the BPE molecules that were adsorbed randomly on the surface through physical

absorption were washed away during the rinsing process, while the monolayer of BPE

molecules bound through chemical covalent bonds remained. Therefore, the rinsing

process is important to have a homogeneous monolayer of BPE molecules, thus ap-

proximately equal numbers of BPE molecules are involved in each SERS measurement

when the size of the laser spot is kept the same.

According to the optimized surface treatment process, MIM structures and island films

were immersed in 1 mM BPE ethanol for 2 h, then rinsed with ethanol and blown dry

by nitrogen gun. The BPE molecules are believed to bind to the metallic surface

through the nitrogen atom with the long-axis of the BPE molecule along the Au-N

bond. A schematic of a BPE molecule can be seen in the insert of Figure 7.12(a).

Figure 7.12(a) presents the averaged SERS spectra for Au island films and a connected

MIM structure, where 2RAu > P . The SERS spectra for island films were averaged

over 5 different locations on each sample, and further averaged over 3 different 5 nm

Au island films, in order to rule out too high or too low reference SERS signals. The

SERS spectrum for a connected MIM structure was also averaged over three different

measurements at different locations. The SERS signal shows distinct Raman peaks in

accordance with other works [106, 196]. The most dominant Raman peaks appeared

at 1636, 1607 and 1199 cm−1, the corresponding assignment of the Raman bands can
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Figure 7.12: (a) Averaged SERS spectra recorded for connected MIM structures and
island films, insert is a schematic of a BPE molecule, (b) a SEM image of connected
MIM structures

be seen in Table 7.2. The Raman band at 1636 cm−1 is attributed to stretching of

the C=C bond in the vinyl group. The Raman band at 1607 cm−1 is assigned to the

stretching of the C-C bond in the pyridine ring and C-H in-plane bending vibration.

The stretching of the C-C bond in the pyridine ring and the in-plane deformation of

the C-N bond in the pyridine ring contribute altogether to the Raman band at 1199

cm−1 [197].

Table 7.2: Raman bands assignment for Au-BPE complex. ν – stretch; δ – in-plane
bend; v – vinyl; p – pyridyl ring.

Raman bands Assignment
1636 cm−1 ν(C = C)v
1607 cm−1 ν(C–C)p, δ(C–H)
1199 cm−1 ν(C–N)p, ν(C–C)p

The connected MIM structure was produced when the EBL exposure dose was too high

to generate hole patterns with disc sizes of 320 nm and grating constants of 350 nm.

As a result, connected discs on top of a Au film separated by a SiO2 insulator layer and

additional gold particles from incomplete lift-off are obtained, instead of the designed

MIM cavity array. Here we can assume that the average numbers of BPE molecules

covered by the laser spot in each SERS measurement are approximately the same due

to the molecular monolayer formation and the same laser spot size. So the REFs can

be calculated using formula 7.2. The REFs of connected MIM structures are evaluated

to be 9.7, 8 and 9.1 at Raman bands 1636, 1607 and 1199 cm−1, respectively. The good

SERS enhancement factor of this connected MIM structure may arise from its special
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structural configuration or from the high EM field in nanogaps which were formed

accidentally from the high exposure dose. Similar high REFs appeared for connected

MIM structures investigated with 4-MBA in the previous section as well (not shown).

A further investigation in this connected MIM structure may suggest a possibility for

excellent SERS substrates (outlook).

For all the MIM(II) cavities investigated with different radii of Au discs RAu and

grating constants P, in most cases, the effective relative EFs are either comparable to

or smaller than that of the 5 nm Au island film, as in the case of 4-MBA enhanced

by unetched MIM structures. Just two MIM(II) structures were found showing better

SERS performance than island films. In Figure 7.13, the solid curves show the REFeffs

Figure 7.13: The REFeff of two MIM(II) structures with respect to the island film
is shown as a function of wavelength. Corresponding extinction measurements were
shown to indicate the resonance positions of plasmonic modes. The laser wavelength
and Raman wavelengths are marked by the dotted black lines at 633 nm, 685 nm, 704
nm and 706 nm.

for two different disc-on-film MIM structures: RAu= 130 nm, P = 350 nm (solid red

curve) and RAu= 160 nm, P = 450 nm (solid blue curve). The REFeffs were calculated

according to formula 7.3. The corresponding extinction measurements were presented

in dashed curves to indicate the resonance wavelengths of the plasmonic modes. The

black dotted lines mark the important wavelengths for SERS: laser wavelength λL =

633 nm, Raman scattering wavelengths λR = 685 nm, λR = 705 nm and λR = 706 nm

for Raman bands at 1199 cm−1, 1607 cm−1 and 1636 cm−1, respectively. A REFeff

of 3.3 was observed for MIM structures with RAu= 130 nm, P = 350 nm at Raman

bands 1636 and 1607 cm−1. As explained in chapter 4, the resonance wavelength

of the cavity plasmon mode lies between the peak and dip position of the asymmetric
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extinction spectra: between 680 nm and 730 nm for RAu= 130 nm, and at a wavelength

longer than 740 nm for RAu= 160 nm. So, the Raman scattering wavelengths λR = 705

nm and λR = 706 nm are relatively closer to the cavity plasmon resonance when RAu=

130 nm. As a result, MIM structures with RAu= 130 nm showed a larger REFeff (3.8)

than RAu= 160 nm (3.2).

7.3.1 SERS based on vertical disc dimer

Vertical dimer samples with different RAu and P were fabricated by the lift-off method

as stated in section 3.1. The as-fabricated structures were treated with BPE/ethanol

solution following the same protocol as in the last section, and the SERS capabilities

are investigated under identical measuring configuration. In Figure 1.21, it is shown

that the field intensity at the edges of the vertical Au disc dimer is not as strong as

that for a disc-on-film structure at the cavity resonance wavelength. However, the

accessible hot spot on the disc dimer is bigger than on the disc-on-film system. So it

is interesting to study the SERS performance of vertical dimers.

Figure 7.14: REFs of vertical dimers as a function of Au disc radius RAu and varying
grating constant P = 335 nm, 440 nm, 530 nm, 625 nm, 720nm, with respect to island
films
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Figure 7.14 shows the measured REFs of vertical dimers with varying geometrical

parameters, calculated based on formula 7.3. The highest REF appears for a substrate

with a disc radius of RAu = 100 nm and grating constant P = 335 nm. The highest

REF of vertical dimers of ∼1.5 is a bit smaller than for the unetched MIM(II) structure,

as REF of 3.3 was observed in Figure 7.13.

Figure 7.15: (a) Measured REFeffs of vertical dimers with different Au disc radii RAu,
for Raman band λRaman = 704 nm with respect to island films. (b) Simulated REFeff
for vertical dimers as a function of increasing RAu for two Raman bands: λRaman = 685
and λRaman = 704 nm.

The corresponding REFeffs were evaluated from Figure 7.14 based on formula 7.1 and

presented in Figure 7.15(a). The effective Raman enhancing area fraction is given by

Aeff/Alaser = πRAu/P
2. The REFeff shows a decrease from RAu = 70 nm to RAu =

130 nm, then slightly increases from RAu = 130 nm to RAu = 160 nm. This evolution

trend of REFeff as a function of RAu is in good agreement with simulations in Figure

7.15(b).

In the vertical disc dimers, the circular FP cavity is defined by the two Au/SiO2

interfaces and the edge of the Au disc RAu, the resonance condition of TEMmn modes

is the same as that in MIM(II) structures. As a result, the vertical disc dimer shows

identical near-field distributions and resonance wavelengths (also shown in Figure 1.21)

as the MIM(II) structure when the FP cavity has the same insulator thickness and

Au disc radius, even though the far-field spectra are very different from each other.

SERS is more about near-field enhancement, so the dependency of REFeff on RAu

should be very similar. This is proven by the fact that the simulated REFeff for these

two structures, presented in Figure 7.15(b) and 7.6 respectively, show similar profiles.

Nevertheless, the REFeff peaks in vertical MIM structures appear at a larger RAu.

This is because the simulations are adapted to the fabricated structures in shape and

size. It is inevitable for structures fabricated by EBL and evaporation to feature slanted

side walls. For a vertical dimer consisting of a 50 nm Au disc/10 nm SiO2 disc/50 nm
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Au disc in height, the side walls of Au discs show a tilting angle of ∼ 75◦ and the

side walls of SiO2 discs show an angle of ∼ 45◦ due to different evaporation rates of

metal and dielectric in experiments. If the base radius of the bottom disc is RAu, then

the base radius of the upper disc is only (RAu - 23.4) nm. The radius of a plasmonic

resonator is determined by this smaller radius. This means when the vertical dimer

and MIM(II) structure with a disc spacer have the same RAu, the resonance radius in

the vertical disc dimer is ∼ 23.4 nm smaller. This is the reason why the REFeff shifted

to a bigger RAu in Figure 7.15(b) compared Figure 7.6.

Similar to the MIM(II) structures, the REFeff attributed to the TEM11 mode is also

stronger than the one attributed to the TEM12 mode. As a result, vertical dimers with

a smaller RAu show a relatively higher REFeff in Figure 7.15. The SERS capability

of vertical dimers can be significantly improved by exposing the hot spots of cavity

modes.

7.4 Conclusion

In this chapter, SERS capabilities of cavity plasmon modes in unetched MIM(II) struc-

tures and etched MIM structures (MIM(III)) were investigated with 4-MBA and BPE

molecules. The dependency of the SERS EFs on geometrical parameters were evaluated

from measurements and explained with simulations. Notable SERS EF improvements

have been achieved by MIM(III) structures which are obtained by wet etching MIM(II)

structures. The RAu which gives rise to the highest REFeff shifts to a larger RAu af-

ter wet etchig. Good qualitative agreement has been found between measured and

simulated REFeffs. The TEM11 mode enhanced REFeff peaks appear at a smaller

RAu and have bigger magnitude than those enhanced by the TEM12 mode. However,

a dominant REFeff at a bigger RAu attributed to the enhancement of the TEM12

mode may be expected by greatly reducing the radius RSiO2 . Much stronger EFs can

also be expected from greatly reducing RSiO2 with increasing the accessible enhanced

area. The content presented in this chapter will provide us with a guidance to optimize

the geometrical parameters of plasmonic resonators according to different measuring

situations.



Appendix A

Cones-on-film MIM structure

Cones-on-film MIM structures are studied experimentally and theoretically as well,

the detailed results are not shown here due to the length of this thesis. However, the

fabrication process is shown here.

Besides the advantageous properties of strong field confinement and enhancement, cone

MIM cavities provide more tunability compared to disc MIM cavities, thanks to their

sharp-tipped geometry. Both in-plane base plasmonic modes and out-of-plane modes

are excited with proper excitation conditions. The out-of-plane plasmonic mode in

nanocones with a well-defined localized excitation area and high field intensity is of

great interest for research on single photon light sources, near-field microscopes and

plasmon-assisted spectroscopy [198].

Fabrication of gold cones on a gold film sandwiched with a dielectric insulator layer

is very similar as for gold discs on gold film, as presented in Figure 3.1. To fabricate

a gold cones MIM structure, firstly, glass substrates were cleaned, 50 nm ITO were

deposited as adhesion layer and also to promote the conductivity for EBL. 50 nm gold

and 10 nm SiO2 were subsequently deposited. For the spin coating process, after the

first layer of PMMA was spin coated with the same parameters as in the last section,

the substrate was placed in the oven at 150 ◦C for 10 min. Then the same spin coating

process was repeated on top of the first PMMA layer, then postbake in the same oven

for 1 h. The thickness of this two-layer PMMA was around 300 nm. According to

the experience that when the height of the deposited structures is less than 1/3 of

that of the PMMA layer, lift-off works out the best, this height of 300 nm PMMA fits

well to produce cones with 100 nm height. E-beam lithography and development were

performed. A deposition rate of 0.02 nm/s was applied to fabricate gold cones, which

is only 1/15 of the deposition rate for fabricating nano discs. As the thickness of the

gold film is growing thicker on top of the PMMA layer, the mask holes are also closing
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up with time until they are completely closed, resulting in a nanocone structure with

a sharp tip. The lift-off process yields gold nanocones on a gold film sandwiched with

an insulator layer.

While the same methods, e-beam lithography and deposition, are used for the fabri-

cation of gold discs and cones, the aspect ratio of the PMMA height and structure

diameters, as well as the deposition rate of gold play an important role in the final

structure geometry. The reason behind the structural difference is that the deposited

gold on the PMMA mask reduces the hole size constantly as the gold film grows thicker,

until it is closed completely. Attributed to the same reason, gold discs obtained by this

method cannot achieve straight side walls. Instead, those discs have sloped side walls

and rounded corners on the edge, more like truncated cones.

Figure A.1: Arrays of cone MIM cavities. (a) SEM image of cone array on gold film
with a SiO2 film spacer, the radius of the cone base is 50 nm, the height of the cones
is 130 nm and the grating constant is 550 nm. (b) SEM image of a single cone MIM
cavity of 50 nm radius and 130 nm height. (c) Dark-field image for arrays of cone MIM
cavities consisting of cones with heights of 130 nm on gold film separated by a 10 nm
SiO2 layer, the radius increases gradually from the first row to the fifth row and the
grating constant increases from left to right. Area size in (c): 25 µm×25 µm.

Figure A.1 (c) shows a dark field image for arrays of cone MIM cavities where the

height of the cones is 130 nm, the height of the gold film is 50 nm and the insulator

layer is an evaporated 10 nm SiO2 film. The radius of the cone base is 50 nm.
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French summary

B.1 Nos objectifs

Les résonances plasmoniques de surface (SPR) sont des oscillations collectives de gaz

d’électrons, qui peuvent être excitées à des interfaces métal noble/diélectrique lorsque

la lumière interagit avec des nanostructures métalliques. Le gaz d’électrons libres dans

le métal oscille en fonction du champ électrique local par rapport aux noyaux ion-

iques fixes, ce qui crée un champ électromagnétique (EM) bien confiné et renforcé à

la surface des nanostructures métalliques. En raison du mécanisme de cette oscilla-

tion plasmonique, la position de résonance et l’intensité sont très sensibles au change-

ment de milieu environnant, ainsi que la taille et la forme des nanostructures [1–4].

Ces propriétés permettent de créer des capteurs biomédicaux et des capteurs Raman

s’appuyant sur des plasmons générés par de telles nanostructures. Ainsi, depuis la

découverte des SPR, de nombreux efforts ont été consacrés à l’utilisation de capteurs

plasmoniques pour le diagnostic clinique, la sécurité alimentaire ou la surveillance de

l’environnement.

Dans l’état actuel des connaissances, il n’est pas surprenant que les structures métal-

isolant-métal (MIM) offrent en général de meilleures performances de détection in-

dice de réfraction (IR) et améliorent le signal Raman par rapport aux nanostructures

monomères dans les mêmes conditions. Ensuite, les applications basées sur des struc-

tures MIM verticales, qui sont relativement faciles à fabriquer en laboratoire, ont

été brièvement passées en revue. Poussé par la volonté d’améliorer les capacités de

détection, il a été conclu qu’il était nécessaire d’exposer le ‘point chaud’ dans les struc-

tures MIM verticales.

Notre objectif est de développer un substrat plasmonique ordonné et reproductible,
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tout en offrant des champs proches fortement renforcés et des largeurs de raies étroites

pour des applications de détection plasmoniques performantes. Différents modes plas-

moniques, tels que les SPR induits par réseau, les modes résonance plasmonique de

surface localisée (LSPR) au niveau de nanoparticules d’or et les modes de cavité dans

la cavité isolante seront identifiés lors d’expériences et de simulations. L’influence de

chaque élément de construction de la structure MIM sur les propriétés plasmoniques, en

particulier la géométrie de la couche isolante, sera étudiée. Une meilleure compréhension

de la physique fondamentale de la structure MIM de la cavité nous guidera la voie vers

une géométrie d’échantillon optimisée. Un vide sera créé par gravure humide de la

couche d’espacement. Le potentiel de cette structure MIM dans la détection IR et le

SERS sera étudié.

B.1.1 ‘Hot spot’ reproductible et accessible

De nombreux efforts ont été consacrés à la fabrication et à la valorisation des ‘points

chauds’ des structures MIM latérales [37, 39, 40]. La force de couplage des modes

plasmoniques dépend fortement de la distance de l’intervalle entre les nanostructures.

Le confinement et l’amélioration du champ augmentent considérablement à mesure que

la distance est réduite.

Figure B.1: Schématique du dimère latéral (à gauche) et dimère vertical (à droite).

Pour les structures MIM latérales ordonnées, comme le montre la figure B.1, les la-

cunes sont le plus souvent créées par lithographie à faisceau électronique (EBL), ce qui

signifie que les espaces inférieurs à 10 nm ont une faible reproductibilité, limités par la

résolution de la technique EBL. En revanche, dans le cas de structures MIM verticales,

le contrôle précis d’un intervalle jusqu’à quelques nanomètres est mieux contrôlable,

car l’intervalle dans une structure MIM verticale est défini par des techniques de

dépôt en couche mince, telles que l’évaporation thermique par faisceau d’électrons,

la pulvérisation cathodique ou le dépôt de couche atomique, comme indiqué pour un

dimère vertical dans la Figure B.1. Un espace inférieur au nanomètre peut être obtenu

lorsqu’une couche isolante d’épaisseur inférieure à un nanomètre est prise en sand-

wich entre deux nanostructures métalliques par dépôt atomique [96, 97]. De plus,
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la réalisation reproductible d’espaces supérieurs à 5 nm peut être obtenue avec un

contrôle d’épaisseur suffisant par des techniques éprouvées telles que l’évaporation et

la pulvérisation cathodique.

Outre l’avantage du contrôle de l’espacement et de la reproductibilité, les structures

MIM verticales constituent également une meilleure configuration pour la fabrication

d’hétérodimères. Les hétérodimères sont un moyen d’obtenir plus d’accordabilité de

la résonance plasmonique en utilisant des métaux différents pour deux nanostructures.

Dans le cas des hétérodimères latéraux, on utilise généralement une méthode à double

exposition qui nécessite une grande précision d’alignement, un équipement sophistiqué

et une expertise des opérations. En comparaison, les structures MIM verticales peuvent

être facilement obtenues en utilisant une source de dépôt différente.

Enfin, les structures MIM verticales peuvent présenter des volumes de modes plus

importants dans l’espace (une carte de champ sera présentée au chapitre 4) par rapport

aux MIM latéraux, tels que les nœuds papillons. De plus, le chevauchement spatial de

différentes résonances plasmoniques peut être important, ce qui permet à une molécule

Raman résidant à cet emplacement d’avoir signal exalté simultanément aux longueurs

d’onde d’excitation et d’émission de la diffusion Raman [94].

Les ‘points chauds’ ordonnés dans les structures MIM verticales seront exposés à

l’environnement de détection après une gravure humide bien contrôlée dans cette

thèse. Le changement d’indice de réfraction dans le ‘point chaud’ modifiera con-

sidérablement la condition de résonance des modes plasmoniques de la cavité, en-

trâınant de forts changements de position de résonance. Ceci est montré dans le

chapitre de detection LSPR. Dans le cas d’applications SERS, les molécules Raman

immobilisées dans le ‘point chaud’ de la structure MIM verticale diffuseront un signal

Raman considérablement augumenté, conformément à la formule EF ∼ |Eloc|4.

B.1.2 Physique fondamentale dans les structures MIM verti-

cales

Dans une structure MIM verticale , par exemple des matrices de disques d’or sur un film

d’or séparées par une mince couche isolante, un ensemble riche de modes plasmoniques

de différentes natures peut être excité. Ceux-ci comprennent des résonances de plasmon

de surface localisées (LSPR) de nanoparticules d’or, des modes de réseau de surface

résultant de l’interaction de champ lointain du rayonnement plasmonique entre voisins

nanoparticules et plasmons de surface polaritons (SPR) des deux côtés du film d’or

excité par les matrices de disques d’or.
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En faisant varier les paramètres géométriques ou les matériaux des structures MIM,

les modes plasmoniques peuvent être perturbés et interférer les uns avec les autres,

entrâınant des positions de résonance décalées, des profils d’extinction de type Fano et

un champ proche encore exalté. Les applications plasmoniques optimales de MIM pour

les substrats de spectroscopie Raman exaltée de surface (SERS) peuvent être conçues

en fonction de différentes conditions d’éclairage et de molécules à détecter, sur la base

d’une meilleure compréhension de la manière dont ces différents modes se couplent et

s’hybrident.

Parmi tous les modes excités des structures MIM, les modes plasmoniques à cavité sont

les plus intéressants avec des champs localisés hautement confinés et améliorés, pris en

sandwich entre des nanostructures en or. Il est nécessaire d’étudier systématiquement

les modes et sa dépendance aux dimensions des structures MIM .

Étant donné que nous souhaitons introduire un défaut dans la couche isolante et exposer

les ‘points chauds’ des structures MIM , il est essentiel de savoir comment le champ

proche serait modifié lors de la réduction des dimensions de l’isolant.

B.1.3 Amélioration des performances du capteur LSPR

Selon l’équation FoM = S
∆λ

(FoM est la figure de mérite, S est la sensibilité et ∆λ est la

largeur de raie.), la capacité de détection IR peut être améliorée en réduisant la largeur

de raie ou en augmentant la sensibilité IR des modes plasmoniques. Comme cela a déjà

été dit précédemment et sera démontré en détail dans cette thèse, on peut s’attendre

à une sensibilité élevée du IR lorsqu’un champ local fortement renforcé est soumis au

changement d’indice de réfraction du milieu environnant. De plus, les structures MIM

offrent un moyen très simple d’obtenir une largeur de raie très étroite en confinant les

modes plasmoniques dans une cavité de Fabry-Pérot.

La figure B.2 montre les spectres d’extinction et de réflexion simulés pour des matrices

de nanodisques Au sur un substrat de verre et sur un film d’or séparé par un disque

isolant SiO2, le rayon du disque Au et l’isolateur SiO2 isolant sont de 40 nm pour les

deux exemples de configuration. Les spectres d’extinction ont été évalués en prenant la

transmission à travers le film Au comme référence (c’est pourquoi l’extinction négative

apparâıt dans les spectres d’extinxtion). L’extinction des réseaux de nanodisques Au,

courbe rouge dans la figure B.2, montre un pic d’extinction avec une largeur de raie de

37 nm et une valeur d’extinction d’environ 0,28, tandis que dans le cas de la structure

MIM le spectre d’extinction (La courbe noir de la figure B.2) fournit une largeur de

raie de 37 nm pour les spectres à extinction positive et une valeur d’extinction de

0,52. Le spectre de réflexion (courbe bleue de la figure B.2) montre un creux avec une
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Figure B.2: Spectres d’extinction et de réflexion simulés pour des matrices de nanodis-
ques Au sur substrat de verre et sur film d’or, séparés par un disque isolant SiO2, le
rayon du disque est de 40 nm dans les deux cas

FWHM de 26 nm et une perte de réflexion de 0,71. La résolution de détection IR

sera améliorée à la fois par la largeur de raie plus étroite et par le rapport signal/bruit

plus élevé obtenu dans la structure MIM par rapport aux nanostructures sur verre.

En outre, au lieu d’une extinction en forme de raie de Lorentz dans l’ensemble de

disques sur verre, le spectre d’extinction des structures MIM présente une forme de

raie de Fano, avec une diminution abrupte entre 684 nm et 716 nm et une efficacité

d’extinction variant de 0,52 à -0,39. Cette caractéristique de la forme de la raie de

Fano peut être avantageuse pour la conception d’un capteur IR modulé en intensité

extrêmement sensible en évaluant l’intensité à une certaine longueur d’onde [98].

Un autre avantage très important d’une structure MIM en tant qu’élément de détection

IR est que ses modes plasmoniques peuvent toujours afficher des largeurs de raie très

étroites, même pour les grands disques. La figure B.3 montre les spectres de réflexion

diffuse (La réflexion diffuse est la réflexion de la lumière d’une surface qui est collectée

sous plusieurs angles plutôt que sous un seul angle comme dans le cas de la réflexion

spéculaire) simulés pour les matrices de disques sur verre (courbe rouge) et sur film

mince Au (courbe bleue). Le diamètre du disque est de 320 nm dans les deux cas. Pour

les matrices de Au disques sur verre, le mode dipolaire plasmonique est difficilement

perceptible en raison d’excitations multi-modes et d’effets de retard, avec une FWHM

de 227 nm. Dans la structure MIM, les modes plasmoniques se manifestent par des

creux de réflexion. Dans les spectres de réflexion pour les structures MIM, une série de

modes plasmoniques bien définis et distincts dans les cavités peut être trouvée à 640
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Figure B.3: Spectres de réflexion simulés pour des matrices Au nanodisc Au sur un
substrat en verre et sur un film d’or séparés par un disque isolant SiO 2 , les diamètres
du disque sont de 320 nm dans les deux cas

nm, 838 nm et 940 nm, avec une largeur de raie de 18 nm, 39 nm et 24 nm, amélioration

comparée à 227 nm dans les matrices de disques Au sur verre.

En conclusion, la structure MIM peut améliorer la capacité de détection IR de quatre

manières:

• Sensibilité plus élevée basée sur un champ proche plus fort [93].

• Largeur de raie plus étroite pour une meilleure résolution de détection.

• Des pics d’extinction et des creux de réflexion plus prononcés permettent d’obtenir

un rapport signal / bruit plus élevé pour une meilleure résolution de détection.

• Le profil de Fano montre un fort potentiel pour le capteur IR à modulation

d’intensité .

B.1.4 Augmentation de l’ EF du substrat SERS

Selon l’équation EF ∼ |Eloc|4, le facteur d’exaltation (EF) de SERS est proportionnel

à la puissance quatre de l’intensité du champ proche local. Concevoir une configuration

de nanostructures capable d’améliorer encore le champ local est le moyen le plus simple

de fabriquer un substrat SERS avec un facteur EF élevé. Dans la figure B.4, les simulées

champ E (|E| =
√
E2
x + E2

y + E2
z ) sont présentées pour différentes structures, excitées

dans les mêmes conditions. Dans la figure B.4 (a), les dimensions des sous-parties

correspondantes sont les mêmes. La hauteur des disques Au et des films Au est de 50
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Figure B.4: Intensité de champ proche simulée pour différentes configurations de struc-
ture.

nm, la couche d’espacement est de 10 nm SiO2. Les courbes de différentes couleurs

dans la figure B.4 (b) représentent les de champ E de la structure dans un cadre

de même couleur dans la figure B.4(a). Le champ E est évalué au bord inférieur des

disques dorés dans chaque configuration, comme indiqué à la figure B.4(a) par les points

bleus. Dans la figure B.4(b), il est clair que les champs locaux des structures MIM

présentent une amélioration de champ supérieure à celle des réseaux de nanodisques sur

verre. Dans le cas d’empilements de disques verticaux, la longueur d’onde de résonance

plasmonique est décalée vers le rouge par rapport aux matrices de nanodisques, et

seule une augmentation de champ local légèrement supérieure à la longueur d’onde de

résonance est trouvée. Les nanoparticules sur Au film MIM montrent une amélioration

plus forte que les nanoparticules sur verre. Dans le cas de nanodisques Au sur un

film Au avec un disque intercalaire SiO2, le champ proche amélioré est égal à 3 fois

l’intensité de champ proche des nanodisques sur verre. Cependant, nous pouvons nous

attendre à une meilleure capacité SERS des structures MIM que des nanodisques sur

des substrats de verre. Des performances encore meilleures peuvent être attendues des

structures MIM verticales lorsque le ‘point chaud’ dans l’isolant diélectrique est exposé

à l’environnement de détection par gravure.
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B.2 Fabrication de cavités MIM verticales

Des techniques sont demandées afin de fabriquer des structures ordonnées, par exem-

ple, la technique EBL, fraisage faisceau d’ions focalisé (FIB). Pour les nanoparticules

sur un film d’or pris en sandwich avec une couche isolante diélectrique, il est plus

pratique de fabriquer avec la technique EBL. Les processus de fabrication des trois

structures MIM verticales différentes que nous avons étudiées dans cette thèse sont

plus ou moins similaires, l’EBL permettant d’obtenir les motifs souhaités en réserve

puis de les transférer à la structure réelle par dépôt.

Figure B.5: Schéma de la fabrication des structures MIM verticales: avec une couche
d’espacement de film SiO2 (I), une isolant de disque SiO2 où RSiO2 = RAu (II), et disque
SiO2 où R SiO2 < RAu (III).

Le processus de fabrication de matrices de cavités MIM, composées de disques d’or

sur un film d’or séparés par un isolant diélectrique, est relativement simple. Comme

le montre la figure B.5, le processus de fabrication commence par le nettoyage des

substrats, le premier dépôt, le dépôt par centrifugation, la lithographie par faisceau

d’électrons, puis le deuxième dépôt, suivi du soulèvement. Les détails de la fabrication

d’un réseau de cavités MIM à disque avec SiO2 film isolant, présentés dans la figure

B.5 sous la forme MIM(I) sont les suivants:

* Nettoyage des substrats: Les substrats en verre ont d’abord été nettoyés dans

une solution aqueuse d’hydroxyde de sodium dans un bain à ultrasons pendant

5 min, puis le même volume de peroxyde d’hydrogène à 35 % a été ajouté à



172 Chapter B. French summary

l’intérieur pour éliminer davantage les contaminants organiques présents sur le

substrat. substrats, encore dans le bain à ultrasons pendant 5 min. Les substrats

de verre ont ensuite été rincés à l’eau distillée et immergés dans de l’eau distillée

propre et placés dans un bain à ultrasons pendant 5 min. Les substrats de verre

nettoyés ont été séchés à l’aide d’un pistolet à azote.

* Premier dépôt: En raison de la faible adhérence de l’or évaporé thermiquement

sur des substrats de verre, une couche d’adhérence entre le substrat et le film

d’or est nécessaire. Certains utilisent des agents chimiques pour introduire des

groupes actifs sur le substrat de verre, de manière à favoriser l’adhésion entre le

film d’or et le substrat de verre. Une autre possibilité consiste à évaporer une fine

couche de Cr, Ti ou TiOx avant l’évaporation de l’or. Pour nos échantillons, nous

avons évaporé 3 nm de Cr en tant que couche d’adhésion. Il existe deux types

d’évaporation: l’évaporation thermique et l’évaporation par faisceau d’électrons,

selon que le matériau cible soit chauffé par chauffage ohmique depuis un creuset

ou par bombardement électronique d’un creuset. Dans nos expériences, le dépôt a

été réalisé à l’aide de l’évaporateur PLASSYS MEB400. Dans cet évaporateur, il

y a deux creusets pour l’évaporation thermique et six creusets pour l’évaporation

par faisceau d’électrons avec contrôle automatique pour sélectionner le matériau

de ciblage actif sans ouvrir la chambre d’évaporation. Habituellement, les métaux

nobles sont évaporés par évaporation thermique, les matériaux diélectriques et

les métaux à température de fusion élevée sont évaporés avec évaporation par

faisceau d’électrons.

La chambre d’évaporation a été pompée jusqu’à ce que la pression à l’intérieur

de la chambre à vide soit de ∼ 4 × 10−6 Torr . On a ensuite fait évaporer la

couche de Cr à 3 nm par évaporation par faisceau électronique à une vitesse de

0,3 nm/s, puis par évaporation thermique du film de Au à 50 nm à une vitesse

d’évaporation de 0,3 nm/s, puis par des couches isolantes prises en sandwich dans

des cavités MIM. Les couches isolantes ont été obtenues en faisant évaporer 10

nm de SiO2 en utilisant une évaporation par faisceau d’électrons à une vitesse de

0,03 nm/s.

* Revêtement de spin: Le polyméthacrylate de méthyle (PMMA) est le vernis

EBL le plus couramment utilisé. La recette présentée ici est conçue pour obtenir

une couche de PMMA d’une épaisseur d’environ 160 nm. 2.5 % PMMA dans

MIBK (méthylisobutyle cétone) a été utilisée. Afin d’obtenir des couches minces

de PMMA de haute qualité sur le substrat, un procédé de revêtement par cen-

trifugation en deux étapes a été appliqué. Une faible vitesse de rotation de 2600

rps/min a été appliquée pendant 6 s pour étaler la résine sur tout le substrat et

obtenir approximativement l’épaisseur de film conçue, puis une vitesse de rota-
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tion élevée de 5000 rps/min pendant 60 s a été utilisée pour retirer les bourrelets

d’angle et obtenir une couche de PMMA avec l’épaisseur désirée. Après le spin-

coating de PMMA, les substrats sont postcuits à l’intérieur d’ un four à 150 ◦ C

pour évaporer le solvant restant et pour améliorer l’adhérence du PMMA sur le

substrat.

* Lithographie par faisceau d’électrons: Les motifs à disques circulaires sont

conçus avec des rayons différents et des distances d’espacement différentes. Au

cours d’un processus EBL, un générateur de motifs et un dispositif de suppres-

sion de faisceau contrôlent les champs d’exposition et n’exposent que la zone

structurée avec la dose d’exposition souhaitée. Il est essentiel de bien aligner

le faisceau d’électrons avant de commencer l’exposition, afin d’obtenir les car-

actéristiques de structure souhaitées à l’ échelle nanométrique. Lorsque le PMMA

est soumis à une exposition aux électrons, les châınes de PMMA se cassent et

conduisent à une plus grande solubilité dans le MIBK. Après exposition au fais-

ceau d’électrons, le substrat a ensuite été immergé dans un révélateur constitué

de MIBK (méthylisobutyle cétone) / IPA (isopropanol) 1: 3, pendant 1 min

15 s, puis rincé à l’IPA et séché à l’aide d’un pistolet à azote. Les molécules de

PMMA exposées se dissolvent dans le révélateur et sont éliminées par lavage. Par

conséquent, l’étape de développement produira le motif conçu et un microscope

à fond noir peut être utilisé pour vérifier facilement si la lithographie par faisceau

d’électrons a été un succès en raison de l’effet de réseau des trous ordonnés dans

le PMMA.

* Deuxième dépôt: Une deuxième évaporation est nécessaire pour obtenir la

deuxième couche métallique afin de former la cavité MIM. Ainsi dans cette étape,

50 nm d’or ont été déposés par évaporation thermique à la vitesse de 0,3 nm/s.

* Lift-off: Après le second dépôt, le substrat a été immergé dans de l’acétone

pendant 1 h. L’acétone attaque le PMMA et dissout la couche de PMMA avec

le temps. En conséquence, la superstrat comprenant du PMMA non exposé

et de l’or déposé par la deuxième évaporation pourrait être évacué doucement

du substrat avec une pipette. Le processus de décollement donne la structure

plasmonique constituée de cavités MIM ordonnées.

Dans la figure B.5, outre le disque MIM (I) avec un espaceur de film, les étapes de

fabrication du disque MIM (II) et du disque MIM (III) sont également présentées. Le

disque MIM (II) peut être obtenu en déplaçant simplement l’évaporation de 10 nm de

SiO2 de la première évaporation (appelée étape (1)) à la deuxième évaporation (appelée

étape (4)). MIM (III) peut être fabriqué par gravure humide MIM (II) avec de l’ acide
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fluorhydrique dilué (HF). Ces trois structures ont été étudiées plus tard pour leurs

différentes réponses plasmoniques et leurs performances en pour des applications de

spectroscopie et de détection assistées par plasmon.

La géométrie et la dimension de l’échantillon fabriqué sont cruciales pour l’analyse

numérique des modes plasmoniques et fournissent également des indications pour la

cellule de simulation dans Comsol. Cependant, la résolution du microscope optique est

limitée par la limite de diffraction optique, des nanostructures à l’échelle de quelques

dizaines de nanomètres dépassant les capacités d’imagerie d’un microscope optique clas-

sique. La microscopie électronique à balayage (SEM) est beaucoup plus sophistiquée et

constitue la méthode appropriée pour étudier la forme et les dimensions géométriques

des nanostructures.

Figure B.6: Images SEM des cavités MIM du disque avec une entretoise de disque SiO2.
La première rangée présente des réseaux de cavités MIM ayant un rayon d’environ 260
nm et des périodes allant de 335 nm à 440 nm, 530 nm, 620 nm et 720 nm. La deuxième
rangée présente des matrices de cavités MIM avec une période de 530 nm et leur rayon
varie de 162 nm, 130 nm, 100 nm, 62 nm and 35 nm. Les cavités de monomère MIM
avec des rayons de 169 nm, 132 nm, 103 nm, 70 nm, 35 nm sont représentées dans la
troisième rangée. Les images de la même ligne partagent la même barre d’échelle que
celle indiquée dans la dernière image de chaque ligne.

B.3 Géométrie des nanostructures

L’épaisseur de l’espaceur isolant pris en sandwich dans les cavités MIM était cruciale

pour l’analyse numérique des réponses plasmoniques des structures MIM de la cavité,

car le confinement du champ proche à l’intérieur de la cavité est associé à d−3, où

d est l’épaisseur de la couche isolante. L’ellipsométrie a également été utilisée pour
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déterminer l’épaisseur de la couche d’espacement en film SiO2. Cependant, les struc-

tures de cavité MIM sont trop compliquées avec trop de variables à déterminer: les

épaisseurs du film d’or et de la couche de SiO2, les constantes optiques de l’or évaporé

et du SiO2. D’autre part, une section transversale obtenue par usinage par faisceau

d’ions focalisé constitue un moyen simple de vérifier l’épaisseur de la couche diélectrique

mince, et les autres informations géométriques telles que l’angle d’inclinaison des parois

latérales et les courbures des bords arrondis du disque en or peuvent également être

obtenus à partir de la section transversale.

Un microscope à ions d’hélium (HIM) a été notre premier choix pour obtenir des sec-

tions transversales des cavités MIM en raison de sa résolution élevée, ce qui nous permet

de découper chaque cavité MIM sélectionnée. Cependant, sans superstrat sacrificiel, la

redéposition de l’or broyé entrâıne une forte déformation de la structure usinée. Donc,

dans cette thèse, nous avons finalement utilisé un microscope ionique de gallium fo-

calisé (GIM) pour accomplir la section, même si la résolution (∼ 50 nm) est beaucoup

plus faible par rapport au HIM.

Figure B.7: Images SEM (a), (c-f) à un angle d’inclinaison de 52 ◦ et image FIB (b)
de la vue de dessus du MIM des cavités après chaque étape afin de réaliser une section
transversale par GIM. (a) ∼ 300 nm de platine sont déposées par faisceau d’électrons
induite par un dépôt (BIDC) à une superficie de 4 µm× 4µm. (b) ont été déposés ∼
800 nm de platine par FIB (-de faisceau d’ions) le dépôt induit dans le même secteur
que dans (a). (c) Une coupe préliminaire de la coupe transversale de 3 µm × 2µm
a été réalisée au bord de certaines cavités MIM. (d) Des coupes transversales avec
des marches fines ont été réalisées afin d’obtenir une coupe transversale au centre des
cavités MIM. (e) Une série de polis fins de la section transversale ont été réalisés afin
d’obtenir une section transversale propre. (f) Une image en coupe transversale agrandie
d’une cavité MIM. (Remerciement à Dr. Ronny Löffler pour son aimable collaboration)

La figure B.7 montre les images SEM du même réseau de cavités MIM après chaque
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étape. Pour obtenir une coupe franche, les structures ont d’abord été recouvertes d’une

couche sacrificielle de platine, puis découpées avec un faisceau d’ions gallium focalisé.

Le dépôt de la couche de platine est crucial pour deux raisons: éliminer la déformation

des structures MIM résultant de la redéposition et compenser la faible résolution de

coupe pour obtenir une image en coupe nette au niveau de la région des cavités MIM.

La figure B.7 (a), (c-f) a été obtenue par imagerie par faisceau d’électrons à un angle

d’inclinaison de 52◦, et la figure B.7 (b) a été obtenue avec une imagerie FIB de haut.

De la vapeur de (méthylcyclopentadiényl) triméthyl platine a été introduite en tant

que gaz précurseur pour déposer la couche de platine. Le dépôt induit par le FIB est

beaucoup plus efficace que le dépôt induit par faisceau d’électrons (EBID) en raison de

l’énergie beaucoup plus élevée du faisceau d’ions gallium. Toutefois, le faisceau d’ions

risque de détruire les cavités en or du MIM lors du dépôt de platine. Nous avons donc

appliqué la technique EBID pour réaliser tout d’abord une couche de platine de ∼ 300

nm, comme le montre la figure B.7(a), pour protéger les cavités de MIM faisceau d’ions.

Ensuite, le dépôt induit par FIB a été effectuée pour obtenir efficacement une couche

de platine d’ épaisseur de ∼ 800 nm, comme dans la figure B.7 (b). Dans la figure

B.7 (c), une coupe transversale préliminaire a été réalisée parallèlement aux bords des

cavités MIM à une certaine rangée du réseau. Les cavités MIM situées en dehors de la

couche de platine peuvent servir de référence. Cette opération est suivie d’une série de

coupes transversales avec de petits pas pour se rapprocher du centre des cavités MIM

sélectionnées, comme illustré à la figure B.7 (d). Dans la figure B.7 (e), les structures

ont été inclinées de - 2 ◦ par rapport au faisceau d’ions focalisé, une série de polissages

très fins de la section transversale ont été réalisés afin de nettoyer la croix section et se

débarrasser des contaminants de la redéposition. La figure B.7 (f) montre une image

agrandie d’une cavité MIM. La section transversale du film d’or, des disques et de

l’espaceur est clairement visible dans la figure B.7(e-f). Les images en coupe obtenues

par découpe FIB nous donneront des indications pour la conception de la cellule de

simulation, afin d’avoir une meilleure correspondance entre la structure expérimentale

et simulée.

B.4 Méthodes de simulation

Les structures plasmoniques couplées donnent des réponses plasmoniques très com-

pliquées. Pour comprendre la physique qui se cache derrière la capacité de détection

et d’amélioration du champ proche, il est important de mieux comprendre la nature

des modes. D’autre part, si les simulations sont en bon accord avec les expériences,

nous pouvons également utiliser la simulation comme moyen plus efficace d’optimiser la

géométrie des cavités MIM en fonction de différentes situations. Dans cette thèse, des
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simulations ont été effectuées à l’aide de Comsol Multiphysics, basée sur la méthode

des éléments finis (FEM). La FEM est l’un des solveurs EM les plus populaires et il

convient à l’analyse de la performance et de la géométrie d’antennes à une échelle plus

petite que la longueur d’onde. Des simulations ont été effectuées pour des structures

MIM de différentes géométries afin d’étudier leurs influences sur la distribution du

champ et la longueur d’onde de résonance des modes plasmoniques. La figure B.8(a)

Figure B.8: Schéma de l’unité de simulation pour MIM(II) dans Comsol Multiphysics.

montre la cellule de simulation pour les matrices de MIM(II), pour un rayon de base

du disque (RAu) de 130 nm. Les paramètres géométriques ont été déterminés par les

techniques de caractérisation afin d’avoir une bonne correspondance entre expériences

et simulations. Dans ce chapitre, les méthodes et techniques utilisées dans cette thèse

ont été présentées. Tout d’abord, les procédés de fabrication de différents systèmes

MIM, allant du disque Au sur film aux cônes Au sur film, en passant par les dimères de

disques optiques, ont été présentés. La technique EBL a été appliquée pour définir le

motif, y compris le rayon du disque et les périodes, puis une méthode d’évaporation a

été utilisée pour transférer le motif de la résistance aux structures MIM. Des écarts de

distance de ∼ 10 µm peuvent facilement être réalisés avec des techniques d’évaporation

bien établies avec une précision et une reproductibilité élevées. Différentes méthodes

optiques ont été introduites pour étudier les propriétés plasmoniques des structures

MIM fabriquées.

Les caractéristiques de champ lointain des modes plamoniques peuvent être étudiées

par des méthodes d’extinction, de réflexion et de diffusion. Alors que ces méthodes

de caractérisation en champ lointain peuvent montrer différentes caractéristiques des

résonances plasmoniques en raison de différentes configurations d’excitation et de mesure,

ces méthodes combinées permettent donc une étude plus systématique des modes plas-

moniques dans les cavités MIM. La spectroscopie Raman est un outil d’analyse puissant
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basé sur la caractéristique de champ proche des résonances plasmoniques. Grâce aux

mesures en Raman, l’intensité du champ proche en fonction de MIM rayon de la cavité,

différentes géométries d’isolant peuvent être démontrées sans SNOM.

B.5 Mode plasmon dans la cavité

Les modes plasmoniques des cavités MIM seront l’objet principal de l’étude. Les

modes plasmoniques de la cavité dans les matrices de cavités MIM seront étudiés par

différentes mesures optiques. Les résultats de la simulation FEM avec Comsol Multi-

physics seront présentés afin de comprendre la physique fondamentale de ce système

couplé et de fournir des directions pour la conception d’échantillons optimaux en fonc-

tion de différentes situations d’application. Pour simplifier, les modes plasmoniques de

la cavité ont été étudiés dans un système à disque MIM (I) où les modes plasmoniques

de la cavité se répartissent dans un isolant homogène (SiO2 film continu), sauf indi-

cation contraire. Les modes plasmoniques de la cavité proviennent de l’interférence

de SPP contre-propagatifs, qui sont réfléchis aux bords des cavités plasmoniques. La

Figure B.9: (a) Spectres de résonance de champ proche simulés pour une structure
MIM (I) avec un rayon de cavité de RAu=160 nm, une hauteur de cavité de tSiO2=10
nm, une périodicité de P=350 nm. L’intensité du champ proche est intégrée à la
surface inférieure du disque Au. Les modes plasmoniques de la cavité sont marqués
dans les spectres, et les cartes de champ correspondantes aux longueurs d’onde de
résonance sont représentées dans le panneau de droite (b). Deux ensembles de modes
plasmoniques à cavité sont distingués: les modes bord et les modes surface.

figure B.9 montre le spectre de résonance en champ proche qui a été obtenu par simu-

lation Comsol pour une structure de disque MIM (I) avec un rayon de cavité de R Au

= 160 nm, une hauteur de cavité de t SiO2 = 10 nm, une périodicité de P = 350 nm.

Le champ proche était intégré au bas des disques d’or. Les cartes de champ proche
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à chaque longueur d’onde de résonance sont affichées dans le panneau de droite de la

figure B.9. Les cartes de champ montrent des caractéristiques d’ondes stationnaires

très claires et ressemblent à leurs homologues dans une cavité diélectrique Fabry-Pérot

(FP). Dans la figure B.9 (a), deux ensembles de modes sont excités. D’une part, il

existe des modes TEMm1 avec des lobes modaux le long des circonférences de la cavité

circulaire, tels que les modes TEM11 et TEM31 comme dans la figure B.9 (b), appelés

modes de bord de cavité. Par ailleurs, il existe les modes TEM1n appelés modes cavité

de surface, notamment les modes TEM12 et TEM13. Ces modes de cavité de surface

possèdent des lobes modaux le long du diamètre de la cavité, la plus grande partie de

l’énergie de champ proche résidant dans les lobes modaux centraux plutôt que dans les

lobes périphériques. La condition de résonance des modes plasmons dans une cavité

circulaire FP peut être décrite comme kgsp(RAu + ∆R) = χ′mn, où kgsp est le nombre

d’ondes des modes de plasmons, ∆R est induit par le déphasage lors de la réflexion,

RAu + ∆R représente le rayon de résonance, χ′mn est la racine n-ième de la première

dérivée de la fonction de Bessel d’ordre m J ′m. Le mode TEMmn représente les modes

plasmoniques de la cavité avec m nombre de maxima le long de la circonférence et n

nombre de maxima le long du diamètre, respectivement.

Figure B.10: Simulées spectres d’extinction de groupes de disques d’or avec un rayon
de 160 nm sur de l’oxyde d’indium étain (ITO) (courbe rouge) et le substrat en verre
standard (courbe noire). Le verre ITO est recouvert de 50 nm de film ITO. P=350 nm.
Les cartes de champ proche sont affichées à côté de chaque résonance plasmonique.

La figure B.10 montre les spectres d’extinction d’un réseau de disques d’or avec un

rayon de 160 nm et une périodicité de 350 nm sur substrat de verre (courbe noire)

et du substrat en ITO (courbe rouge). L’épaisseur d’ITO est de 50 nm. Trois modes

plasmoniques peuvent être identifiés par les maxima d’extinction: TEM11, TEM31

et TEM12. Les cartes de champ proche pour chaque résonance plasmonique sont
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présentées sous chaque pic d’extinction, montrant les caractéristiques de l’onde sta-

tionnaire et un modèle modal similaire à ceux de la figure B.9. Pour un disque d’or

de rayon 160 nm, la taille du disque est comparable à la longueur d’onde des modes

SPP se propageant sur l’interface Au/SiO2. Ainsi, une séquence d’ordres différents

de modes stationnaires apparâıt dans les spectres visible / IR proche, comme dans la

figure B.9. La matrice de disques d’or sur un substrat de verre normal (courbe noire)

présente le même profil que celle de l’ITO, mais avec des modes d’ordres supérieurs

moins prononcés et des longueurs d’onde de résonance plus courtes en raison d’un in-

dice de réfraction plus faible. Nos cartes de champ du mode TEMmn dans des matrices

de disques d’or sont conformes aux cartes de champ obtenues en étudiant de grands

nanodisques d’argent avec spectroscopie de perte d’énergie électronique (EELS) [162].

Nous concluons que une disque d’ or fonctionne aussi en résonateur FP 2D circulaire

comme une MIM cavité. Il existe deux raisons principales pour lesquelles les modes

plasmoniques de la cavité dans les structures à disque d’or et les cavités MIM présentent

des propriétés différentes. La plus importante est due à différents mécanismes d’amortissement

plasmoniques. La forte atténuation des radiations des modes plasmoniques sur les

structures de disque en or conduit à un élargissement des raies des modes. Pour

les petits disques en or, seul le mode fondamental TEM11 apparâıt dans la plage

étudiée. Pour les gros disques d’or, les modes plasmoniques d’ordre supérieur sont

excités. Cependant, en raison de la large largeur de raie de chaque mode plasmonique,

leurs spectres de champ lointain se chevauchent, ce qui les rend difficiles à distinguer.

En conséquence, aucun mode plasmonique distinct ne peut être identifié dans un spectre

optique en champ lointain, comme le montre la figure B.10. Au contraire, les plasmons

de surface gap dans les cavités MIM sont des plasmons lents avec un indice de réfraction

effectif plus grand et ont une durée de vie beaucoup plus longue (la plus grande partie

de l’énergie est confinée dans la cavité plutôt que de s’atténuer). Par conséquent, dans

les cavités MIM, l’amortissement plasmonique provient principalement de désexitations

non radiatives, ce qui conduit à une résonance avec une largeur de ligne étroite.. En

conséquence, les modes plasmoniques de la cavité se présentent sous la forme de raie

distinctes à bande passante étroite dans les spectres de champ lointain. La différence

dans l’origine de l’amortissement conduit à une largeur de bande différente de chaque

mode plasmonique dans le champ lointain. C’est la raison pour laquelle les modes

TEMmn montrent toujours des creux de réflexion et des pics d’extinction bien définis

dans le cas de la cavité MIM avec un grand RAu, alors qu’aucun pic prononcé ne peut

être identifié pour un grand disque d’or sur un substrat de verre.

La figure B.11(a) présente l’intensité de champ intégrée au fond du disque d’or dans le

disque MIM (I) et les matrices de disques d’or pour les mêmes tailles et périodicités de

disque. L’intensité de champ pour les modes TEM12 et TEM11 dans la cavité MIM
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Figure B.11: (a) Forces du champ E simulé intégrée au fond du disque en or pour la
cavité du disque MIM (I) (courbes pleines) et les matrices de disques en or (courbes
en pointillés). La périodicité P=350 nm et la hauteur de la cavité tSiO2=10 nm. Le
rayon du disque d’or RAu=40 nm (courbes noires), RAu=160 nm (courbes rouges).
(B) Distribution du champ du mode de cavité TEM11 dans la section de cavité Mode
TEM11 dans le disque d’or et la cavité MIM, RAu=40 nm

(I) est 4,5 et 3 fois supérieure à celle du disque, lorsque RAu = 160 nm et RAu = 40

nm, respectivement. Dans la figure B.11(b), les cartes de champ en coupe transversale

pour les modes de cavité TEM11 étaient représentées pour le disque en or et la cavité

MIM. Dans le cas du disque en or, le mode LSPR est confiné sur environ dizaines de

nanomètres. L’amélioration du confinement dans la direction perpendiculaire dans la

cavité MIM est évidente car la distance entre les extrémmités du disque est beaucoup

plus petite que la longueur de désintégration des plasmons de surface. Dans le sens

radial, nous savons que le rayon de la cavité de résonance est égal à RAu + ∆R, comme

le montre l’équation kgsp(RAu + ∆R) = χ′mn, où ∆R est introduit par le déphasage

lors de la réflexion au bord du disque. La profondeur de pénétration ∆R est analogue

à la profondeur de pénétration au niveau des réflecteurs de Bragg dans un résonateur

acoustique à fibre optique, où la profondeur de pénétration ∆R est proportionnelle

à r−1 (r représente le reflet coefficacité) [165]. L’indice effectif plus élevé du mode

TEMmn dans la cavité MIM, entrâıne un coefficient de réfraction plus élevé dans le

cas MIM, entrâınant une réduction de la valeur de ∆R. Par conséquent, la cavité

MIM offre également un meilleur confinement dans la direction radiale, par rapport

aux disques en or, comme on peut le constater à la figure B.11(b).

Ainsi, dans les cavités MIM, l’étendue spatiale de l’énergie des plasmons est réduite per-

pendiculairement par les gaines en or et confinée radialement par les bords de la cavité

circulaire hautement réfléchissants. L’énergie plasmonique est confinée à l’intérieur

d’une cavité à très faible volume, jusqu’à λ3/1000 dans une cavité MIM à disque, d’où
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une intensité de champ plus élevée des modes TEMmn.

Lorsque la taille du disque est comparable à la longueur d’onde des polaritons plam-

oniques (polaritons de plasmons de surface dans le disque d’or et plasmons de surface

gap (PSG) dans la structure MIM), l’optique classique est toujours applicable dans

ces cavités de PF. Cependant, la courte durée de vie des plasmons de surface dans

l’interface métal unique/diélectrique conduit à une large largeur de raie de résonance

dans les spectres de champ lointain. En conséquence, une séquence de différents ordres

de modes de cavité n’a pas été repérée dans les expériences optiques. Les modes plas-

moniques dans les grands disques métalliques sont toutefois distincts dans les spectres

obtenus par EELS où la largeur de raie dépend principalement de l’amortissement non

radiatif des plasmons de surface [162].

La présence d’un film d’or déplace les modes de cavité dans les échantillons de disque

d’or vers une longueur d’onde plus longue. Plus important encore, l’amortissement des

radiations au bord du disque de cavité est considérablement réduite en améliorant le

coefficient de réflexion. Le facteur de qualité de la cavité FP circulaire est amélioré,

et donc la durée de vie des modes TEMmn dans la cavité MIM est plus longue que

dans le disque d’or. La durée de vie plus longue du PSG conduit à un faible amor-

tissement du rayonnement et à une largeur de raie plus étroite du mode TEMmn dans

les spectres en champ lointain. En conséquence, contrairement aux disques en or, les

modes plasmoniques dans les cavités MIM peuvent être facilement distingués dans les

spectres de champ lointain. Dans les cavités MIM, la lumière est confinée perpendic-

ulairement dans le film diélectrique d’une épaisseur de quelques nanomètres sous la

forme de polaritons de plasmon.

B.6 La dépendance sur la périodicité

Dans la figure B.12(a), des spectres de champ proche simulés intégrés au bas du disque

dans le MIM(I) avec une périodicité différente P = 350 nm (courbe noire), P = 450 nm

(courbe bleue), P = 550 nm (courbe verte), P = 650 nm (courbe rouge) sont présentés,

respectivement. Hormis la périodicité, tous les autres paramètres sont fixes: RAu =

160 nm, tSiO2 = 10 nm.

La position de résonance des modes plamoniques en fonction de la périodicité variable

est présentée à la figure B.12(b). Le mode TEM11 dépend fortement des constantes

de réseau et passe de 2330 nm à 2130 nm à 2090 nm, puis à 2080 nm pour P = 350

nm, 450 nm, 550 nm et 650 nm, respectivement. En revanche, les longueurs d’onde

de résonance des modes de cavité TEM31, TEM12 et TEM13 ne sont guère modifiées
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Figure B.12: (a) Spectres de résonance en champ proche simulés du disque MIM (I)
avec RAu = 160 nm et hauteur de la cavité tSiO2 = 10 nm, et constantes de réseau
variables de P = 350 nm (courbe noire), P = 450 nm (courbe bleue), P = 550 nm
(courbe verte), P = 650 nm (courbe rouge); (b) Les longueurs d’onde de résonance de
différents ordres de cavités en fonction de la périodicité.

par la périodicité variable apparaissant à 970 nm, 850 nm et 650 nm, respectivement.

Le mode TEM11 est notamment influencé dans la petite plage de périodicité P =

350 nm. Cependant, comme le montre la courbe noire de la figure B.12(b), le mode

TEM11 devient moins sensible à la variation de périodicité à mesure que la périodicité

augmente, en raison du découplage des champs des modes TEM11 de disques voisins.

Dans le cas des modes de cavité TEM31, TEM12 et TEM13, la longueur d’onde de

PSG λgsp est plus courte que le mode TEM11. En outre, les indices de réfraction

effectifs ngsp sont supérieurs à TEM11, ce qui permet un meilleur confinement pour

les modes TEMmn d’ordre supérieur. En conséquence, les champs proches de TEM31,

TEM12 et TEM13 de deux cavités voisines sont découplés lorsque P> 350 nm. Ceci

explique pourquoi les modes de cavité d’ordre supérieur ne présentent aucune variation

en fonction de la périodicité de la figure B.12(b). Nous pouvons en conclure qu’en

général, les modes de cavité dans les cavités MIM sont très insensibles à la périodicité

par rapport à ceux des matrices de disques d’or.

B.7 Comportement anti-croisement

Le comportement de séparation de Rabi a été largement étudié dans des nanosystèmes

métalliques hybrides avec des points quantiques (QD), des colorants et des fluorophores,

en mettant l’accent sur la modification de l’émission par couplage fort des émetteurs

avec les modes plasmoniques. Un phénomène similaire se produit dans les cavités MIM

consistant également en des matrices de disques d’or sur un système à film d’or. Le fort

couplage entre les modes SPP et cavité entrâıne des comportements d’anti-croisement
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des modes plasmoniques, ce qui est la signature classique de la separation de Rabi.

Figure B.13: Graphique du contour de la réflectance simulée en fonction de la
périodicité et de la longueur d’onde pour les cavités MIM constituées de matrices
de disques sur un film d’or. Les marqueurs circulaires et les marqueurs triangulaires
indiquent la position de résonance du mode TEM11 et de SPPverre/Au (0,1), respec-
tivement. Le rayon de la cavité RAu = 40 nm et la hauteur de la cavité tSiO2 = 10
nm.

La figure B.13 montre la variation simulée de la réflectance en fonction de la longueur

d’onde et de la périodicité dans MIM(I) avec RAu = 40 nm, tSiO2 = 10 nm. Les

positions de résonance de SPPverre/Au(0,1) et du mode TEM11 se manifestent dans les

spectres de réflexion par les minima d’intensité et sont désignées par des triangles et des

cercles, respectivement. D’une part, le mode SPP dépend fortement de la périodicité:

la longueur d’onde de résonance λverre/Au (0,1) passe de 711 nm à 836 nm lorsque la

périodicité varie de 440 nm à 530 nm. En revanche, le mode de cavité n’est guère

influencé par la périodicité dans la plupart des cas. Cependant, à la périodicité P =

480 nm, le mode SPPverre/Au (0,1) (λverre/Au(0,1) = 762 nm initialement) et le mode

TEM11 (∼760 nm) cöıncident. Un comportement d’anti-croisement peut être observé,

impliquant un fort couplage entre les modes plasmoniques de la cavité et le mode SPP.

Le couplage forme deux modes hybrides: l’un avec une longueur d’onde de résonance

plus courte et l’autre avec une longueur d’onde de résonance plus longue que 760

nm. Les petites perturbations à la périodicité P = 620 nm sont dues à des modes

SPPair/Au(0,1).

Les spectres de réflexion simulés correspondants de la figure B.14(b) ont été obtenus

avec une incidence normale de lumière collimatée et une ouverture numérique égale à

1. Un bon accord de la position de résonance des modes plasmoniques de la cavité

peut être trouvé entre les expériences et les simulations pour différents RAu. Sur la
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Figure B.14: Caractéristiques de résonance mesurées et simulées des modes plas-
moniques dans les matrices de disques MIM. (a) Spectres de réflexion mesurés pour
des matrices de disques avec la même périodicité de réseau P = 335 nm, hauteur
de la cavité tSiO2 = 12 nm et rayon de la cavité variable: 38 nm (courbe noire), 74
nm (courbe bleue), 113 nm (courbe verte) et 150 nm (courbe rouge); (b) spectres de
réflexion simulés correspondant aux réseaux de cavités de disques de (a); (c) Cartes de
terrain pour différents ordres de modes plasmoniques dans la cavité.
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figure B.14(a), les modes TEM11, appelés mode (1), apparaissent à 670 nm et à 955 nm

pour des nanocavités de rayons de 38 et 74 nm, respectivement. Les cartes de champ

sont illustrées à la figure B.14 (c). Pour les plus grandes cavités, le mode TEM11 est

décalé hors de la plage concernée. Un mode d’ordre supérieur, TEM12 qui est étiqueté

comme mode (2), apparait pour les plus grandes cavités et passe de 630 nm à 728 nm

lorsque le rayon augmente de 113 nm à 150 nm. En outre, pour les cavités de rayon 150

nm, deux autres modes d’ordre supérieur, les modes TEM31 et TEM13, apparaissent

respectivement à 807 nm et à 570 nm, et sont désignés par les modes (4) et (3). En

conclusion, la position de résonance d’un certain ordre de modes plasmoniques dans

la cavité se déplace en fonction du rayon croissant, tandis que les modes plasmoniques

dans la cavité d’ordre supérieur apparaissent dans la plage spectrale concernée.

B.8 Champ EM amélioré accessible

Figure B.15: Simulations de carte de champ pour différentes structures de cavité
MIM.(a)-(c)schémas de structures MIM similaires avec des entretoises diamétrales
différentes: le diamètre du disque en or est de 80 nm et le réseau constant de 350 nm.
(a) intercalaire de film diélectrique; (b) un espaceur de disque diélectrique de rayon 40
nm; (c) espaceur diélectrique de diamètre 25 nm. (d) - (f) cartes de terrain des mêmes
modes plasmoniques dans la cavité dans des simulations pour la configuration (a)-(c).

Dans la figure B.15, des cavités MIM avec un rayon de disque d’or de 40 nm et une

constante de réseau de 350 nm ont été étudiées. La couche d’espacement varie d’un

film de silice continu (a) à des espaceurs de disque de silice ayant le même diamètre

RSiO2 = RAu = 40nm (b) et plus petit que celui du disque d’or, RSiO2 = 25nm (c). La

figure B.15(a)-(c) montre les schémas des trois différentes configurations de cavité MIM

étudiées. Les cartes de champ correspondantes pour le mode de cavité fondamentale

TEM11 pour chaque configuration sont illustrées sur la figure B.15(d)-(f).
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Les distributions de champ de ce mode de cavité ne sont que légèrement modifiées

lorsque la géométrie de l’espaceur est modifiée, tandis que les maxima de champ

restent à leurs positions sous les bords du disque d’or. L’interprétation sera donnée

dans la section suivante. Ici, il est important de noter que dans la configuration de

cavité MIM(III), les ‘points chauds’ des modes de la cavité plasmonique sont exposés à

l’environnement. Cela revêt une grande importance pour les amplifications des champs

électromagnétiques où l’accessibilité à ces champs électromagnétiques fortement am-

plifiés est cruciale.

B.9 Décalage de résonance induit par sous-gravure

En conclusion, dans une cavité MIM ouverte, les distributions de champ des modes plas-

moniques de la cavité sont insensibles au changement de la couche d’espacement. Les

‘points chauds’ des modes de la cavité plamonique peuvent être exposés à l’environnement

en créant une dépression dans la cavité MIM. Alors que la distribution de champ ne

Figure B.16: Simulation des spectres de réflexion (a) et d’extinction (b) pour des cavités
MIM avec différentes géométries d’espaceur isolant. Courbe bleue: SiO2 film spacer
(MIM (I)), courbe noire: SiO2 disc spacer (MIM (II)), courbe verte: gravée SiO2 disc
spacer RSiO2 = RAu/2 (MIM (III)). L’épaisseur de l’entretoise, le rayon du disque d’or
et la constante du réseau sont respectivement de 10 nm, 130 nm et 350 nm.

présente qu’une perturbation mineure de la variation de taille de l’espaceur isolant, la

position de la longueur d’onde de résonance de la cavité est nettement décalée du bleu

de la configuration (a) à (c), comme le montre la figure B.16. Les spectres d’extinction

des matrices de cavités MIM ont été enregistrés en prenant comme référence la trans-

mission à travers un film d’or de 50 nm, avant et après que les matrices de structure

MIM aient été gravées pendant 50 s. Une illumination collimatée a été utilisée et

l’ouverture numérique de l’objectif de collecte est de 0,4.

La figure B.17 montre l’évolution des spectres d’extinction pour les cavités MIM de
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Figure B.17: Spectres d’extinction pour les réseaux de cavités MIM de diamètre environ
260 nm, avant (courbes pleines) et après (courbes en pointillés) l’étape de gravure
humide, respectivement. Des réseaux de cavités MIM avec différentes constantes de
réseau ont été étudiés: 335 nm (bleu), 440 nm (noir), 530 nm (rouge).

rayon environ 130 nm et de constantes de réseau variables, avant et après le processus

de gravure. Les dimensions des cavités sont indiquées dans la légende avec RAu et P

indiquant le rayon et la période, respectivement. Le processus de gravure n’influence

pas les positions de résonance des modes LSPR avec des ‘points chauds’ sur le bord

supérieur des disques d’or (étudiés dans notre précédent ouvrage [91]), lorsque les

constantes du réseau sont 335 nm et 440 nm. Dans le cas où la constante de réseau est

de 530 nm, le mode montrant un pic d’extinction à 559 nm est un mode hybridé d’un

mode LSPR et d’un mode SPP excité à l’interface air/or.De plus, ce mode hybride

est également insensible au processus de gravure. Ceci peut être facilement compris

par la condition de résonance du mode LSPR et du mode SPP. Les modes LSPR sont

très sensibles au changement d’indice de réfraction à l’intérieur de ses ‘points chauds’,

qui se situent à 50 nm environ de la variation de l’indice de réfraction dans l’isolant.

D’autre part, les modes SPP induits par le réseau dépendent des constantes du réseau,

de l’angle d’incidence et du changement de l’indice de réfraction à l’intérieur de leur

champ proche. Par conséquent, les modes LSPR et SPP sont insensibles au changement

d’indice de réfraction dans la couche isolante. En conséquence, ces modes restent à la

même position avant et après la gravure, comme on peut le voir sur la figure B.17.

Par ailleurs, les modes TEM12, comme indiqué dans la figure B.17, se décalent en bleu

notamment après le processus de gravure, et correspondent bien aux simulations de la

figure B.16. Les maxima d’extinction du mode TEM12 est passé de 647 nm à 626 nm,

de 619 nm à 598 nm et de 616 nm à 600 nm, respectivement.
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B.10 Détection de variation d’indice de réfraction

Dans cette section, nous présentons les résultats expérimentaux de détection du IR.

Nous fabriquons des cavités MIM (II) de différents diamètres et périodes, et effectuons

une détection IR en configuration d’immersion en masse. La solution IR standard est

préparée avec une solution aqueuse de glycérine à différentes concentrations: 7%, 22%

et 37%. L’indice de réfraction est ensuite confirmé par un réfractomètre: 1,34, 1,36

et 1,38 pour ces trois mélanges, respectivement. Les expériences de détection sont

effectuées sur la base de mesures d’extinction et la configuration de mesure est illustrée

à la figureB.18.

Figure B.18: La configuration de détection IR. La détection basée sur l’extinction est
réalisée sur un microscope confocal. La source de lumière est illuminée à partir du
bas des structures MIM verticales et la transmission est collectée selon un objectif de
10× avec un NA de 0,3. Le signal collecté est ensuite divisé en deux parties: une
partie du signal passe dans la caméra pour une imagerie des structures et une partie
du signal passe à travers un trou confocal et une fente d’entrée est insérée avant le
spectromètre. La zone de détection est agrandie à mesure que l’image d’insertion, la
matrice de cavités MIM est immergée par la solution de détection IR.

La configuration pour la détection IR basée sur l’extinction est illustrée à la figure

B.18. La lumière incidente provient d’une lampe halogène, elle est éclairée par le

bas de réseaux de cavités MIM verticales. La transmission à travers le substrat est

ensuite collectée par un objectif de 10×. Un diviseur de faisceau divise ensuite la

lumière transmise en deux parties, une partie étant envoyée vers une caméra pour

la prise de vue en temps réel. L’autre partie traverse un trou confocal et une fente

d’entrée du spectromètre pour éviter la lumière parasite avant qu’elle ne pénètre dans
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le spectromètre. La zone de détection est montrée dans l’image d’insertion de la figure

B.18, le réseau de cavités MIM est immergé dans 20 µL de solution aqueuse de glycérine.

Nous avons enregistré la transmission à travers le substrat MIM pour 5 indices de

réfraction, dans l’ordre: n = 1 (air), n = 1,33 (eau), n = 1,34 (7% glycérine/eau), n

= 1,36 (22% glycérine/eau), n = 1,38 (37% glycérine/eau). Dans la figure B.19, les

Figure B.19: Performances de détection du mode LSPR. Spectre d’extinction mesuré
à travers le réseau de cavités MIM (II) avec une périodicité P = 335 nm, (a) RAu = 35
nm, (b) RAu = 68 nm, (c) RAu = 92 nm, (d) RAu = 131 nm, pour différents indices
de réfraction d’immersion: 1 (courbe noire), 1,33 (courbe bleue), 1,34 (courbe verte),
1,36 (courbe cyan), 1,38 (courbe rouge). Les modes plasmoniques sont étiquetés en
conséquence.

spectres de détection de cavités MIM avec différents RAu: (a) 35 nm, (b) 68 nm, (c)

92 nm et (d) 131 nm, en immersion dans différentes IR sont présentés. Les réseaux de

cavités ont la même hauteur de cavité que tSiO2 = 12 nm et une périodicité de P = 335

nm. L’indice de réfraction varie de 1 à 1,38. Les modes plasmoniques sont étiquetés

en conséquence. L’efficacité d’extinction et la largeur de raie, ainsi que la sensibilité,

augmentent avec la taille du disque. La sensibilité augmente de 232 nm/RIU et 248

nm/RIU , 310 nm/RIU pour RAu = 35 nm, 68 nm et 92 nm, respectivement. Ensuite,

la sensibilité diminue à 245 nm/RIU pour RAu = 131 nm en raison du couplage avec

un mode insensible TEM13, comme le montre la figure B.19(d). Un FoM beaucoup

plus élevé (6,53) est obtenu à partir de MIM(II) par rapport à travaux réalisés au
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laboratoire précédents avec MIM(I) (3,76).

B.11 Expériences SERS

Figure B.20: Les facteurs relative d’amélioration des structures MIM en ce qui concerne
le signal des films d’̂ıles de 5 nm avant et après la gravure humide pour différents rayons
de rayon Au disque et constantes de réseau (a) P = 335 nm et (b) P = 440 nm. les pics
1 et pics 2 représentent les bandes Raman à 1072 cm−1 et 1587 cm−1, respectivement

La figure B.20 présente les REF des structures MIM avant et après la gravure humide

pour différents rayons et différentes constantes de réseau. Il est tout à fait clair que

les structures MIM après gravure présentent une meilleure capacité SERS que les films

d’̂ılots (Film d’or 5 nm) (REF>1, sauf RAu <40 nm). Tandis que leurs homologues

non gravés présentent un signal SERS plus faible que le film d’̂ılots, avec une REF

inférieure à 1.

B.12 Conclusion

Nous avons étudié les performances des structures verticales métal-isolant-métal (MIM)

en tant que capteurs d’indice de réfraction (RI) et substrats SERS. Les structures en

disques sur films avec différents paramètres géométriques et différentes configurations

d’espaceurs ont été étudiées de manière systématique par des expériences et des sim-

ulations. Les modèles circulaires de cavité FP (Fabry-Pérot) ont été appliqués pour

décrire les modes de plasmon dans les cavités MIM. Les modes de plasmon de la cavité

ont été divisés en modes de cavité de bord et modes de cavité de surface, ce qui mon-

tre différentes variations avec la gravure humide, les performances de détection RI et

SERS. La dépendance des modes de plasmon de la cavité en fonction de la périodicité,

du rayon de la cavité et de sa hauteur a été étudiée. L’origine des différentes raies
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présentes dans les spectres optiques en champ lointain a été révélée. L’influence de

différents espaceurs sur la localisation des ’points chauds’ et des longueurs d’onde de

résonance a été systématiquement étudiée. Les ’points chauds’ des modes de plasmon

dans la cavité ont été révélés par gravure humide. Les sensibilités RI des structures

MIM ont été minutieusement étudiées. Des EF (facteur d’amélioration) SERS notables

ont été atteints en sous-gravant. Des pics EF attribuables à différents ordres de modes

de plasmon dans la cavité ont été observés à la fois dans les expériences et les simula-

tions. Une comparaison de performance SERS a été faite entre le dimère de disque sur

film et les dimères de disque verticaux.
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[52] Dana Cialla, Anne März, René Böhme, Frank Theil, Karina Weber, Michael

Schmitt, and Jürgen Popp. Surface-enhanced Raman spectroscopy (SERS):

progress and trends. Analytical and bioanalytical chemistry, 403(1):27–54, 2012.

[53] Zhipeng Li and Hongxing Xu. Nanoantenna effect of surface-enhanced Raman

scattering: managing light with plasmons at the nanometer scale. Advances in

Physics: X, 1(3):492–521, 2016.

[54] Shahin Bagheri, Ksenia Weber, Timo Gissibl, Thomas Weiss, Frank Neubrech,

and Harald Giessen. Fabrication of square-centimeter plasmonic nanoantenna

arrays by femtosecond direct laser writing lithography: effects of collective exci-

tations on SEIRA enhancement. ACS Photonics, 2(6):779–786, 2015.

[55] Frank Neubrech, Annemarie Pucci, Thomas Walter Cornelius, Shafqat Karim,
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Giessen. From near-field to far-field coupling in the third dimension: retarded

interaction of particle plasmons. Nano letters, 11(10):4421–4424, 2011.

[105] Xiaoli Wang, Philippe Gogol, Edmond Cambril, and Bruno Palpant. Near-and

far-field effects on the plasmon coupling in gold nanoparticle arrays. The Journal

of Physical Chemistry C, 116(46):24741–24747, 2012.

[106] Nordin Félidj, Jean Aubard, Georges Lévi, Joachim R Krenn, Marco Salerno,
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[167] P Törmä and William L Barnes. Strong coupling between surface plasmon po-

laritons and emitters: a review. Reports on Progress in Physics, 78(1):013901,

2014.

[168] A Christ, SG Tikhodeev, NA Gippius, J Kuhl, and H Giessen. Waveguide-

plasmon polaritons: strong coupling of photonic and electronic resonances in a

metallic photonic crystal slab. Physical review letters, 91(18):183901, 2003.

[169] Ralf Ameling and Harald Giessen. Microcavity plasmonics: strong coupling of

photonic cavities and plasmons. Laser & Photonics Reviews, 7(2):141–169, 2013.

[170] Zhiguang Liu, Jiafang Li, Zhe Liu, Wuxia Li, Junjie Li, Changzhi Gu, and Zhi-

Yuan Li. Fano resonance Rabi splitting of surface plasmons. Scientific reports,

7(1):8010, 2017.

[171] Shumei Chen, Guixin Li, Dangyuan Lei, and Kok Wai Cheah. Efficient energy

exchange between plasmon and cavity modes via Rabi-analogue splitting in a

hybrid plasmonic nanocavity. Nanoscale, 5(19):9129–9133, 2013.

[172] DS Dovzhenko, SV Ryabchuk, Yu P Rakovich, and IR Nabiev. Light–matter

interaction in the strong coupling regime: configurations, conditions, and appli-

cations. Nanoscale, 10(8):3589–3605, 2018.

[173] Gülis Zengin, Martin Wersäll, Sara Nilsson, Tomasz J Antosiewicz, Mikael Käll,

and Timur Shegai. Realizing strong light-matter interactions between single-

nanoparticle plasmons and molecular excitons at ambient conditions. Physical

Review Letters, 114(15):157401, 2015.

[174] Lukas Novotny. Strong coupling, energy splitting, and level crossings: A classical

perspective. American Journal of Physics, 78(11):1199–1202, 2010.

[175] Galina Khitrova, HM Gibbs, M Kira, Stephan W Koch, and Axel Scherer. Vac-

uum Rabi splitting in semiconductors. Nature physics, 2(2):81, 2006.

[176] Kotni Santhosh, Ora Bitton, Lev Chuntonov, and Gilad Haran. Vacuum Rabi

splitting in a plasmonic cavity at the single quantum emitter limit. Nature com-

munications, 7:ncomms11823, 2016.

[177] Fatemeh Hosseini Alast, Guixin Li, and KW Cheah. Rabi-like splitting from

large area plasmonic microcavity. AIP Advances, 7(8):085201, 2017.

[178] Benjamin Gallinet and Olivier JF Martin. Ab initio theory of Fano resonances in

plasmonic nanostructures and metamaterials. Physical Review B, 83(23):235427,

2011.



BIBLIOGRAPHY 209

[179] Hideki T Miyazaki and Yoichi Kurokawa. Controlled plasmon resonance in closed

metal/insulator/metal nanocavities. Applied physics letters, 89(21):211126, 2006.
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