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Introduction 

1 Introduction 

1.1 Pathophysiology of neutropenia 

1.1.1  Basic classification of the human immune system  

In general, the main function of the human immune system is to discriminate between 

own and foreign cells. This is performed by the innate, inborn immune system and the 

adaptive or acquired immune system. Adaptive immunity reacts specifically and with a 

time delay to foreign tissue with the production of B  and T lymphocytes. In contrast, the 

innate immune system nonspecifically protects the body from exogenous threat, 

immediately after penetration. It consists of mechanical barriers (e.g., the skin), the 

humoral defense (e.g., the complement system) and finally the cellular components (e.g., 

phagocyting cells) (Beutler, 2004; Orkin et al., 2014). 

 

1.1.2 Neutrophil function 

The phagocyte system, as a substantial part of the innate immune system, consists of 

granulocytes (neutrophils, eosinophils and basophils) and mononuclear phagocytes 

(tissue macrophages and monocytes). It has the principal function to defend the host 

against microorganisms. When these permeate into tissue usually protected by the skin, 

or mucous membranes, the microbes themselves or macrophages activate endothelial 

cells that attract neutrophils through chemotactic signals. In the presence of the focus of 

infection, the neutrophils are able to detect the particulate matter with the aid of surface 

markers and thus ingest and phagocyte it (Iwasaki & Medzhitov, 2010; Borregaard, 

2010).  

For this phagocytic process, neutrophils make use of different kinds of antimicrobial toxic 

substances that are transported in granules. These organelles, which originate from the 

Golgi, were historically separated in four distinct groups according to their constituents. 

The first group is the azurophilic granules or primary granules, which are formed in the 

early stages of granulopoiesis and contain not only antimicrobial enzymes such as 

myeloperoxidase (MPO) but also defensins and the neutrophil elastase (NE). The second 

group is the specific granules, also called secondary granules, which are present in further 
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matured myelocytes and metamyelocytes. Proteins such as cysteine-rich secretory protein 

3 (CRISP3), lipocalin 2 (LCN2), secretory leukocyte peptidase inhibitor (SLPI), and 

lactoferrin are part of these structures. The third group is the gelatinase or tertiary 

granules, which still carry some antimicrobial toxics but rather serve as a storage for 

various metalloproteases, such as gelatinase. As a final group to mention are the secretory 

vesicles, which are not produced by the Golgi. These are built in the latest stages of 

neutrophil differentiation and no longer serve as antimicrobial containers but encase 

proteins such as the plasma protein albumin (Figure 1).  

Migrated by chemotaxis to the epicenter of inflammation, the activated neutrophils 

release their granule components through fusion with the plasma membrane or 

phagocyting organelles (Borregaard, 2010; Borregaard & Cowland, 1997; Borregaard et 

al., 2007; Nüsse & Lindau, 1988; Amulic et al., 2012; Borregaard et al., 1995).   
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Figure  1: The dependence of neutrophil granules on granulopoiesis stages.  
According to the respective stage of differentiation, neutrophils are influenced by 
diverse transcription factors. Correspondingly, stage-dependent expression of genes at 
the mRNA level control the synthesis of proteins. These proteins compose the 
characteristic formation of granules. The neutrophil granules can thus be separated 
according to their presence during neutrophil maturation. Also, the respective term 
reflects their characteristic compound. MB, myeloblast; PMC, promyelocyte; MC, 
myelocyte; MMC, metamyelocyte; BC, band cell; Seg, segmented cell (Modified from 
Borregaard & Cowland, 1997; Koschmieder et al., 2005). 

 

1.1.3 Physiology of neutrophil maturation 

The formation of granulocytes and monocytes as part of hematopoiesis takes place in the 

bone marrow, where on average 1 to 2 x 1011 neutrophils are produced per day. The origin 

of various types of blood cells are the hematopoietic stem cells (Maximow, 1909). Human 

hematopoietic stem cells that settle in niches built by osteoblasts are multipotent and self-

renewing (Borregaard, 2010; Winkler et al., 2010). Traditionally, according to the 

classical model of hematopoiesis, the hematopoietic differentiation is structured as a 

pyramidal hierarchy. From their apex, stem cells undergo restriction into oligopotent 

progenitors, which further develop into unipotent cells. Thus, hematopoietic cells 
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undergo a specification with a continuing loss of their differentiation potential. 

Previously, a multipotent progenitor cell was considered to follow two different paths – 

the myeloid or the lymphoid lineage (Figure 2). However, recent developments in this 

field have led to a new concept, which organizes the classical model of hematopoiesis in 

a new order. First, according to Notta et al., development of the fetal blood has to be 

delimited from that of the adult. While the fetal model still contains oligopotent 

progenitor cells, these should now no longer exist in the adult blood hierarchy. In contrast, 

a two-tier structure is defined in theory with multipotent stem cells and multipotent 

progenitors (MPPs) on the one plane and committed unipotent progenitors on the other 

plane. Second, concerns have arisen about the heterogeneity of classically defined 

oligopotent common myeloid progenitors (CMPs). Originally, they are expected to 

differentiate into the erythroid, megakaryocytic and myeloid lineage, while common 

lymphoid progenitors (CLPs) take the lymphoid direction. However, in the light of the 

recent findings, the first bifurcation in hematopoiesis is much more compound than the 

previous separation into the myeloid and lymphoid way. As an example, the 

megakaryocytic development is now expected to originate directly from multipotent cells 

(Notta et al., 2016). Although this approach is very fascinating, and might even be 

groundbreaking and challenging the classical view on hematopoiesis, it has not been dealt 

with in-depth sufficiently. Therefore, the following issues will be linked to the current 

scheme. 

Turning now to myeloid differentiation, neutrophil progenitors have a high requirement 

for different transcription factors and growth factors to eventually reach their fully 

endowed quality (Doulatov et al., 2012). The most important representatives are the 

transcription factors PU.1 and the CCAAT/enhancer-binding protein (C/EBP) family 

(Figures 1 and 2) (Koschmieder et al., 2005). PU.1 plays an essential role in the 

maturation control of early myeloid precursors (Iwasaki et al., 2005), whereas the C/EBP 

family has a number of representatives that are important at different times of 

granulopoiesis. Moreover, members of the C/EBP factors are required needs-based (Bedi 

et al., 2009). C/EBPa plays an active role in the progression of common myeloid 

progenitors (CMPs) to granulocyte/macrophage progenitors (GMPs) (Zhang et al., 2004). 

Additionally, it is said to be required for steady-state neutrophil production. In contrast, 

C/EBPb is highly expressed in situations with increased neutrophil demand such as stress 
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and infections (Hirai et al., 2006). C/EBPe, on the other hand, leads to the final 

differentiation steps of eosinophils and neutrophils, regulating the maturation from 

promyelocyte to myelocyte stage (Antonson et al., 1996; Friedman, 2007; Hirai et al., 

2006; Bedi et al., 2009).  

Besides, a number of cytokines serve as proliferation and differentiation factors of 

neutrophil and monocyte production and, moreover, cover the requirements for increased 

cell demand. These glycoprotein growth factors are referred to as colony-stimulating 

factors (CSF), among them interleukin 3 (IL-3, also called multi-CSF), IL-6, granulocyte-

macrophage CSF (GM-CSF), granulocyte CSF (G-CSF) and macrophage CSF (M-CSF) 

(Welte et al., 1985; Wong et al., 1985). While multi-CSF and GM-CSF stimulate 

immature cells of both cell lines, namely granulocytes and monocytes, G-CSF and M-

CSF influence more mature progenitor cells only on the corresponding cell lineage and 

thus occur later during maturation (Metcalf, 1989; Sieff, 1987). Thus, G-CSF plays an 

important role in the steady-state neutrophil production. It is also known to be responsible 

for the mobilization of neutrophils from the bone marrow into peripheral blood. Another 

function attributed to G-CSF is to inhibit neutrophil apoptosis and accelerate the 

neutrophil production (Basu et al., 2002; Haurie et al., 1998; Williams et al., 1990). While 

the G-CSF levels in healthy donors are usually below the detection limit of < 30 pg/ml, it 

increases strongly in the case of infections and consequently also induces proliferation 

under stress conditions  (K. Watari et al., 1989).  
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Figure  2: Classical view of the differentiation of hematopoietic cells. 
The origin of hematopoiesis is the hematopoietic stem cell, which can differentiate into two different 
lineages, the myeloid and the lymphoid path. Neutrophils develop out of the granulocyte/macrophage 
progenitors. The various growth and transcription factors that are necessary for this are represented in 
this graph. Early-represented hematopoietic growth factors are written in green. Transcription factors 
are in white round boxes. Growth factors, represented in later steps of hematopoiesis, are shown in 
little gray boxes: HSC, hematopoietic stem cells; MPP, multipotent progenitors; CMP, common 
myeloid progenitors; CLP, common lymphoid progenitors; MEP, megakaryocyte/erythroid 
progenitors; GMP, granulocyte/macrophage progenitors; BFU-MK, burst-forming unit-
megakaryocyte; BFU-E, burst-forming unit-erythrocyte; BFU-M, burst-forming unit-
monocyte/macrophage; BFU-G, burst-forming unit-granulocyte; BFU-Eo, burst-forming unit-
eosinophil; CFU-MK, colony-forming unit-megakaryocytes; CFU-E, colony-forming unit-
erythrocyte; CFU-M, colony-forming unit-monocyte/macrophage; CFU-G, colony-forming unit-
granulocyte; CFU-Eo, colony-forming unit-eosinophil; TPO, thrombopoietin; EPO, erythropoietin; 
M-CSF, monocyte/macrophage colony-stimulating factor; G-CSF, granulocyte colony stimulating 
factor; GM-CSF, granulocyte/(monocyte/macrophage) colony stimulating factor (Modified from 
Fernández & de Alarcón, 2013; Koschmieder et al., 2005). 
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1.1.4 Pathophysiology of genetic chronic neutropenia 

While the described maturation process leads to a neutrophil count of 1500 to 7500 

cells/µl in peripheral blood of healthy adults, gene defects are known to cause different 

forms of chronic neutropenia (Osgood et al., 1939).  

Congenital neutropenia, first mentioned by Kostmann in 1956, describes a group of 

hematopoietic disorders that are all characterized by diminished absolute neutrophil 

counts (ANC) (Kostmann, 1956; Welte & Boxer, 1997). On the one hand, non-cycling 

continuous absolute neutrophil counts (ANC) below 500 cells/µl, which produce the 

phenotype of severe neutropenia, are summarized as severe congenital neutropenia 

(SCN). On the other hand, a characteristic pattern of oscillating neutrophil counts, which 

was already observed in 1910, was delimited from SCN and defined as cyclic neutropenia 

(CyN) (Donadieu et al., 2011; Skokowa et al., 2017). This historical separation of SCN 

and CyN was questioned when causative mutations were found in the same gene, elastase 

- neutrophil expressed gene (ELANE). Since then, a continuum between SCN and CyN 

has been considered, with CyN being a type of SCN (Dale et al., 2000; Horwitz et al., 

1999). The list of genes associated with SCN is growing every year. In 2017, according 

to Skokowa et al., 29 neutropenia-related genes were counted. These can be sorted 

according to their type of inheritance. Mutations in five of 29 genes are known to show 

an autosomal dominant inheritance pattern. The most common gene of this group is 

ELANE, which causes 45% of all SCN cases (Dale et al., 2000; Horwitz et al., 1999). 

Among the 19 mutated, autosomal-recessive inherited genes are the HCLS1-associated 

protein X-1 gene (HAX1), causing 7% of the SCN cases, and the glucose 6 phosphatase 

catalytic 3 gene (G6PC3), associated with 2% of all SCN patients (Klein et al., 2007; 

Boztug et al., 2009). Besides, mixed autosomal inheritance, X-linked and mitochondrial 

DNA inheritance are published. This thesis focuses on CyN cases with mutations in  

ELANE (Donadieu et al., 2011; Skokowa et al., 2017).  

Due to the permanently low ANC, SCN shows clinical signs of persistent severe bacterial 

and fungal infections. The symptoms already appear in early infancy, making therapy 

with filgrastim (recombinant human granulocyte colony-stimulating factor [r-metHuG- 

CSF]; Neupogen, Amgen, Thousand Oaks, CA) essential (Bonilla et al., 1989).  
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CyN, as a subtype of SCN, was first described in 1910 with recurrent furunculosis, fever, 

and an atypical blood picture (Leale, 1910). It is an autosomal dominant inherited disorder 

that commonly also appears sporadically from new germline mutations (Horwitz et al., 

1999; Morley et al., 1967). Similarly to SCN, most cases of CyN are the consequence of 

heterozygous mutations in ELANE. SCN is actually associated with ELANE mutations in 

35-63% and CyN in 80-100% of cases. (Boxer & Newburger, 2007; Dale et al., 2000; 

Newburger et al., 2010). In contrast to typical SCN, CyN shows a cycling periodical 

pattern of ANC ranging between less than 200 cells/µl and near-physiological values. As 

a consequence of the recurring recovery of ANC, CyN appears in a milder clinical 

severity, and thus, lower doses of G-CSF treatment are required than in typical SCN 

(further information in Chapter 1.2) (Hammond et al., 1989; Leale, 1910; Skokowa et al., 

2017; Welte et al., 2006). 

The ELANE gene is located on chromosome 19p.13.3. Mutations occur especially on 

intron 4 and exon 5 of the ELANE gene, while exons 2, 3 and 4, as well as intron 3, may 

also be affected. At this point, more than 200 mutations in the ELANE gene have been 

reported (Horwitz et al., 1999; Makaryan et al., 2015). Interestingly, there is an overlap 

of ELANE mutations that can be detected in SCN as well as in CyN patients (Figure 3). 
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Figure  3: ELANE mutations in SCN and CyN patients.  
The various ELANE mutations with their respective gene locations of in a total 307 patients are indicated 
in a linear representation, showing 120 CyN cases in the lower part and 187 SCN cases above. Mutations 
that could be detected in both neutropenia forms are indicated in bold. Reported cases of neutropenic 
patients who developed myelodysplasia or acute myeloid leukemia are presented: AML, acute myeloid 
leukemia; CyN, cyclic neutropenia; MDS, myelodysplasia; SCN, severe congenital neutropenia (Makaryan 
et al., 2015). 

The cytotoxic serine protease ELANE is expressed in the promyelocyte and myelocyte 

stages. Being stored as a part of the innate immune system in the azurophil granules of 

the neutrophils, it is, among others, involved in the identification and degradation of 

microorganisms (Borregaard & Cowland, 1997; Dale et al., 2000; Germeshausen et al., 

2013; Ohlsson & Odsson, 1974; Spicer & Hardin, 1969). The precise pathomechanism 

how ELANE mutations induce neutropenia is not yet understood. However, several 

explanations have been made, one of which describes the cause of the elastase misfolding. 

Misfolded elastase induces stress in the endoplasmic reticulum and activates an unfolded 

protein response, which in turn leads to cell apoptosis and cell arrest of granulopoiesis 

(Grenda et al., 2007; Köllner et al., 2006).  

Moreover, the effects of the ELANE mutations are visible on the bone marrow level. 

There, SCN is associated with a maturation arrest of granulocyte differentiation at the 

promyelocyte stage, continuously in case of SCN, whereas a fluctuating cell production 
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can be examined in CyN (Figure 4). In turn, an increased amount of promyelocytes is 

observed in the bone marrow. However, the number of matured neutrophils in peripheral 

blood appear to be reduced, which causes an elevated risk of bacterial and fungal 

infections in SCN and CyN. (Klein, 2011; Dale & Hammond, 1988; Welte et al., 2006; 

Wriedt et al., 1970). 

 
Figure  4: Maturation arrest of the myeloid cells in CyN and SCN.  
(Modified from Klein, 2011; Dale & Hammond, 1988). 

While the neutrophils periodically cyclize in CyN as a result of the maturation arrest at 

the cycle nadir, other blood cells are known to show oscillating counts with the same 

cycle duration as neutrophils. First, monocyte counts may fluctuate in the opposite 

direction compared to neutrophils. Nevertheless, monocytosis can often be diagnosed by 

the time cycle. Next, platelet counts peak at the end of neutrophil recovery. Finally, 

reticulocyte counts reach their highest levels at the neutrophil nadir, and oscillating 

lymphocytes can also be registered (Guerry et al., 1973; Hammond et al., 1989; Wright 

et al., 1981). 

 

1.2 Clinical information about CyN 

1.2.1 Definition  

CyN is characterized by a regular periodic oscillation of peripheral blood neutrophils in 

an average 21-day rhythm. Characteristically, the ANC drops to a nadir of fewer than 200 

neutrophils per µl and does not increase much higher than 2000 neutrophils per µl at the 

cycle peak (Dale et al., 2000; Dale & Hammond, 1988). 

Myeloblast Promyelocyte Myelocyte Metamyelocyte Neutrophil granulocytes

Maturation arrest

BONE MARROW BLOOD
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1.2.2 Epidemiology and etiology 

The incidence of CyN ranges between 0.5 and 1 patient per million population (Orkin et 

al., 2014). As described in Chapter 1.1.4, CyN is an autosomal dominant inherited or 

sporadically appearing disorder that is generally due to a gene mutation in ELANE. The 

reason how this mutation leads to the typical cycling ANC remains unclear (Horwitz et 

al., 1999; Morley et al., 1967).  

 

1.2.3 Clinical symptoms 

At the cycle nadir, which usually lasts three to six days, the untreated patients usually 

present with a typical symptom complex, which varies, however, from patient to patient 

and from cycle to cycle. Characteristically, CyN patients have fungal and bacterial 

infections triggered by the diminished neutropenic host defense. In contrast, viral or 

parasitic infections are not part of the typical appearance, as they are not affected by the 

neutrophil count. The cardinal symptoms during the neutropenic stage are various types 

of purulent inflammations, caused especially by Staphylococcus aureus and gram-

negative bacteria. Among them, furunculosis and cellulitis, abscesses, pneumonia, otitis 

media, stomatitis, gingivitis and periodontitis. In the first period of dropping neutrophil 

counts, the patients develop anorexia and malaise. Myalgia, headache, mouth ulcers and 

pharyngitis appear at the time the ANC reaches its nadir. Fever and cervical 

lymphadenopathy occur next. Once the ANC exceeds 500/µl, the patients are in general 

clinically silent except for chronic persistent gingivitis and periodontitis (Dale & 

Hammond, 1988; Leale, 1910). The symptoms generally appear in the first year after birth 

and occasionally show an improvement in early adulthood based on an increase of 

neutrophils at the cycle nadir. While the clinical appearances listed above are all cardinal 

symptoms of CyN, there are sporadically more serious, life-threatening complications. 

These range from intestinal perforation with peritonitis, necrotizing enterocolitis, 

mastoiditis, pneumonia, and Clostridium or Escherichia coli sepsis (Wright et al., 1981; 

Dale, 2002).  
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1.2.4 Diagnosis 

A reliable diagnosis of CyN, besides the clinical appearance, requires an ANC  

measurement at least three times a week for a total of six to eight weeks. In this way, 

ANC nadirs should be detected at levels lower than 200 neutrophils per µl. It should be 

noted, however, that less than 5% of the patients are known to show variable patterns, 

depending on the cycle duration or the amplitude of oscillations. Additionally, 

oscillations of other cells such as lymphocytes, eosinophils and platelets may increase 

suspicion. The examination of bone marrow aspirate is often helpful in proving the 

diagnosis. Thus, the neutrophil maturation arrest at the promyelocyte or myelocyte stage 

could be detectable during the cycle nadir as compared to the normal neutrophil formation 

at the remainder of the cycle. Finally, the clinically-based diagnosis can be confirmed by 

sequencing the ELANE gene (Dale et al., 2003; Dale, 2002).  

 

1.2.5 Therapy 

Prior to the introduction of treatment with G-CSF, there was no known long-term 

management that would improve the prognosis of CyN effectively. The conventional 

approaches have been to diminish acute clinical symptoms by antibiotic treatment, 

glucocorticosteroids, gamma globulin infusions or other methods. The only successful 

therapy to cure CyN was bone marrow transplantation.  Finally, in 1987, clinical trials 

were initiated that confirmed that G-CSF led to a selective increase of neutrophil 

production. Since then, it is known as the gold standard for CyN and SCN treatment with 

the best benefits for patient health (Cottle et al., 2002; Hammond et al., 1989; Rappeport 

et al., 1980). As a stimulator of myeloid proliferation and maturation, G-CSF induces an 

approximately 16-fold increase in ANCs in CyN patients (Dale et al., 1993). At the bone 

marrow level, an increased percentage of polymorphonuclear leukocytes (PMNs), as well 

as an increased count of postmitotic neutrophils, demonstrated increased neutrophil 

production. Thus, G-CSF treatment decreases the risk and frequency of oropharyngeal 

inflammation, fever and bacterial infections. As the cycle amplitude increases, the cycle 

length decreases from about 21 to 14 days (Hammond et al., 1989; Dale et al., 1993). 

Applied subcutaneously once a day, the dose ranges from 0.0 - 11.2 µg/kg/day with a 

median dose of 2.1 µg/kg/day for CyN patients. G-CSF is generally well tolerated for 
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long-term treatment, showing a relatively low number of side effects. Among them, bone 

pain and splenomegaly appear predominantly at the beginning of therapy and usually 

resolve spontaneously. In very few cases, osteoporosis, thrombocytopenia, vasculitis and 

proteinuria were observed (Cottle et al., 2002; Makaryan et al., 2015).  

 

1.2.6 Prognosis and risks associated with CyN 

While SCN is known to be a preleukemic bone marrow failure syndrome, CyN has long 

been known as a benign disease (Gilman et al., 1970; Skokowa et al., 2014). 

Approximately 20% of SCN patients develop myelodysplastic syndrome (MDS) or acute 

myeloid leukemia (AML) after 20 years. Eighty percent of those who develop AML are 

heterozygous for the acquired mutation of the colony stimulating factor 3 receptor gene 

(CSF3R). Thus, an association of CSF3R mutation with leukemogenesis can be expected. 

However, recent investigations have shown that CSF3R mutation itself is not entirely 

sufficient for leukemic transformation. Rather, it is considered an initial driver of AML 

development and only induces leukemogenesis in cooperation with mutations in the Runt-

related transcription factor 1 gene (RUNX1) (Cho & Jeon, 2014; Rosenberg et al., 2006; 

Rosenberg et al., 2010; Touw, 2015). The combination of RUNX1 mutations and CSF3R 

mutations could be found in > 65% of SCN patients suffering from MDS/AML. CSF3R 

and RUNX1 are consequently considered as combined drivers of leukemogenesis. In 

contrast, until 2016 CyN was predicted to be a disease with no risk of leukemic 

transformation (Klimiankou et al., 2016; Skokowa et al., 2014). 
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2 Aim 
 

SCN and CyN are considered as two related immunodeficiency diseases with similar 

clinical symptoms and overlapping heterozygous mutations in ELANE. However, they 

can be distinguished from each other by examining the severity and length of infectious 

diseases as well as the ANC counts. While SCN patients show a constant low level of 

neutrophils below 500 cells/µl, CyN patients are known to have a cycling count of 

neutrophils (Donadieu et al., 2011; Horwitz et al., 1999; Kostmann, 1956; Leale, 1910). 

It is still completely unclear which factors are responsible for the different ANC intervals 

and the cycling ANC in CyN patients. Within the framework of this poorly understood 

phenomenon, this work examines the gene expression of a CyN index patient using qPCR. 

The genes of interest included neutrophil granule proteins, the nicotinamide 

phosphoribosyltransferase gene (NAMPT) and the transferrin receptor gene (TFRC). 

Thereby, the gene expressions at the ANC cycle nadir and peak were compared to each 

other. This experiment aims to prove the hypothesis of a feedback regulation of neutrophil 

counts. Accordingly, the fluctuating ANC might be induced by a negative feedback loop 

and thus is reflected in an opposite oscillation of neutrophil proteins. With minimal ANC, 

neutrophil production and protein gene expression might be boosted. In contrast, 

granulopoiesis seems to be downregulated in CyN at the ANC peak. The elucidation of 

this principle could contribute to the fundamental understanding of CyN and, in the long 

term, lead to the development of new therapeutic approaches.   

Furthermore, the two forms of neutropenia could be distinguished by their propensity to 

develop leukemia (Chapter 1.2.6). SCN is known to be associated with MDS and AML. 

Especially, acquired mutations in CSF3R and RUNX1 contribute to leukemic progression. 

On the other hand, CyN was known as a benign disease (Skokowa et al., 2014). In 2016, 

however, Klimiankou et al. screened CyN patients for acquired CSF3R mutations using 

deep sequencing and identified one patient with the CSF3R mutation. Three years after 

the CSF3R acquisition, the RUNX1 mutation could be found in this patient and AML was 

diagnosed. With this in mind, a group of CyN patients was examined to detect the 

preleukemic CSF3R mutation prematurely (Klimiankou et al., 2016). This screening 
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aimed to identify those patients at risk of developing MDS, and if necessary, to provide 

them with regular follow-up monitoring. 
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3 Probands, materials and methods 

3.1  Proband samples 

In total, six patients suffering from CyN were examined. All of them are registered in the 

Severe Chronic Neutropenia International Registry (SCNIR) and diagnosed with CyN 

showing an approximately 21-day oscillating pattern and having a mutation at different 

positions of the gene ELANE (Table 1). As a comparison to CyN subjects, six healthy 

donor controls were used. Bone marrow samples were isolated by sterile puncture through 

the pelvis bone at the Universitätsklinikum Tübingen. All patients signed informed 

consent forms to take part in this study. 

 

3.1.1  Selection of CyN patients 

The first aim of this research was to broaden current knowledge of trigger mechanisms 

leading to neutrophil oscillations in CyN patients (Chapter 4.1). To shed light on this 

question, samples of five CyN patients were examined, namely CyN patients 1-5 (Table 

1). The patient cohort was selected according to the criteria of a diagnosed CyN, the 

existence of the cell fraction of interest and the sampling date. Only those samples were 

integrated that were taken at the time of the neutrophil peak corresponding to the cycle 

maximum or those at the neutrophil nadir. In this way, a direct comparison of gene 

expressions between the two cycle time points could be drawn. The investigated cell 

fractions were CD33+ and CD34+38+.  

For the second research aspect, CSF3R mutations in CyN patients (Chapter 4.2), CyN 

patients 4 and 6 were included (Table 1).  
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Table 1: Patient data with appropriate ELANE mutation. 

CyN patient Year of 
birth 

ELANE mutation Sample 
material  

   Cell lineage ANC/µl 

CyN patient 1 1978 NP_001963.1:p.Trp241Cys CD34+38+ 3.200 (MIN↓) 

   CD33+ 3.200 (MIN↓) 

   CD34+38+ 9.100 (MAX) 

   CD33+ 9.100 (MAX) 

CyN patient 2 1963 NP_001963.1:p.Val190_Phe199del CD34+38+ 1.200 (MIN↑) 

CyN patient 3 1989 NP_001963.1:p.Val190_Phe199del CD34+38+ 2.000 (MIN↑) 

CyN patient 4 2000 NP_001963.1:p.Val190_Phe199del CD34+38+ 

CD33+ 

23.400 (MAX) 

17.700 (MAX) 

CyN patient 5 1992 NP_001963.1:p.Arg220Gln CD34+38+ 6.900 (MAX) 

   CD33+ 6.900 (MAX) 

CyN patient 6 1997 
 

NP_001963.1:p.Ala233Pro 
NP_001963.1:p.Val235TrpfsX5 

  

  Two mutations were found on the same allele. 
 
-jkjklj 

  

Table 1 shows the data of the CyN patients included in this research work. Besides, their ELANE mutation, 
the isolated cell lineage, and the ANC/µl measured at the sample collection day are described. Whether the 
ANC is equivalent to the maximum or minimum of the neutrophil cycle is written in brackets. ANC, 
absolute neutrophil count; CyN, cyclic neutropenia; MAX, maximum; MIN, minimum; (MIN↓), shortly 
before cycle minimum, ANC still decreasing; (MIN↑), shortly after the cycle minimum, ANC increasing 
again. 
 
									

 
Figure  5: Family trees of examined CyN patients.  
The family tree of CyN patient 1 is indicated on the left and of CyN patients 2, 3 and 4 on the right side. 
Affected CyN patients are symbolized in black and numbered in the form of a white cipher according to 
Table 1. The corresponding mutations are indicated below each patient. CyN; cyclic neutropenia. 

CyN
ELANE p.Val190_Phe199del

CyN
ELANE p.Val190_Phe199del

2

3 4

CyN
ELANE p.Trp241Leu

1

C/EBPe p.Leu155MetTNFRSF1A p.Arg121Gln

C/EBPe p.Leu155Met
TNFRSF1A p.Arg121Gln
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Two family cases of CyN were included in this study (Figure 5). First, CyN patient 1 is 

presented with the sporadically appearing ELANE mutation and the TNF receptor 

superfamily member 1A gene (TNFRSF1A) mutation inherited from the mother, while 

the C/EBPe mutation is inherited from the father. In addition, the second family case of 

CyN includes CyN patients 2, 3 and 4, concerning a parent with his two female offspring, 

all bearing the same ELANE mutation, which was autosomal dominantly inherited 

(Table 1). Figure 6 presents ANC courses collected by the SCNIR. For CyN patient 1, the 

ANC at the two time points of sample collection is depicted. The courses of CyN patients 

3 and 4 represent exemplary neutrophil oscillations.  

 

Figure  6: ANC courses of CyN patients 1, 3 and 4.   
In the case of CyN patients 3 and 4, a representative ANC is illustrated. The graph, picturing the ANC 
course of CyN patient 1 shows the two points colored in red and green indicating the time and the 
corresponding ANC when the samples used for this research were obtained. ANC, absolute neutrophil 
count; CyN, cyclic neutropenia; G-CSF, granulocyte colony-stimulating factor; MAX, maximum; MIN, 
minimum (data have been kindly made available by Dr. C. Zeidler, Medizinische Hochschule Hannover). 
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3.2  Materials 

3.2.1  Chemicals 

3.2.1.1 Standard chemicals 
Table 2: Standard chemicals. 

Chemical Company, headquarter, country 

0.5% PFA FACS fixation Sigma Aldrich, St. Louis, USA 

1% BSA Sigma Aldrich, St. Louis, USA 

2-Mercaptoethanol 98% Sigma Aldrich, St. Louis, USA 

3% Acetic Acid with Methylene Blue Stem cell Technologies, Vancouver, Canada 

5x Colorless GoTaq Flexi Buffer Promega, Fitchburg, USA 

5x Green GoTaq Flexi Buffer Promega, Fitchburg, USA  

6x DNA Loading Dye Thermo Fisher Scientific, Waltham, USA 

AccuGene 10x TBE Buffer  Lonza, Basel, Switzerland 

Agencourt RNAClean XP Beads Roche, Basel, Switzerland 

Ampicillin sodium salt Roth, Karlsruhe, Germany 

Ampuwa ddH2O Fresenius, Homburg, Germany 

Anti-Biotin MicroBeads, isotype: mouse IgG1  Miltenyi Biotec, Auburn, USA  

Bromophenol blue Sigma Aldrich, St. Louis, USA 

CD33 MicroBeads, human, isotype: mouse IgG1  

CD34 MicroBeads, human, isotype: mouse IgG1 Miltenyi Biotec, Auburn, USA 

CD38-Biotin MicroBeads, human, isotype: mouse IgG2a                                                  Miltenyi Biotec, Auburn, USA 

CutSmart Buffer New England Biolabs, Hitchin, UK 

DMSO Sigma Aldrich, St. Louis, USA 

Ethanol absolute 100%, AnalaR NORMAPUR VWR Prolabo Chemicals, Radnor, USA 

FcR Blocking Reagent Miltenyi Biotec, Auburn, USA 

FCS, inactivated Sigma Aldrich, St. Louis, USA 

Ficoll-Paque-Plus GE Healthcare Life Sciences,  

 Chalfont St. Giles, UK 

GelRed Nucleic Acid Gel Stain Biotium, Hayward, USA 

Glycerol Fluka, St. Gallen, Switzerland 

GoTaq Hot Start Polymerase Promega, Fitchburg, USA 

HCL 2N Roth, Karlsruhe, Germany 
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HCL 32% Roth, Karlsruhe, Germany 

Human CD33 MicroBead Kit Miltenyi Biotec, Auburn, USA 

KCl 0.6 M  Carl Roth, Karlsruhe, Germany 

LightCycler 480 SYBR Green I Master                     Roche, Basel, Switzerland 

MACS buffer Miltenyi Biotec, Auburn, USA    

Methanol Roth, Karlsruhe, Germany 

MgCl2 25mM Promega, Fitchburg, USA  

MultiSort Release Reagent Miltenyi Biotec, Auburn, USA 

MultiSort Stop Reagent Miltenyi Biotec, Auburn, USA 

NaCl Roth, Karlsruhe, Germany 

NaOH Merck Millipore, Billerica, USA 

NEB PCR Cloning Kit New England Biolabs, Hitchin, UK 

Omniscript RT Kit (200) Qiagen, Hilden, Germany 

Ovation Pico WTA System 2 (Kit) NuGEN, San Carlos, USA 

PBS buffer Lonza, Basel, Switzerland 

PCR Nucleotide Mix Roche, Basel, Switzerland 

QIAquick PCR Purification Kit (250) Qiagen, Hilden, Germany 

Qubit dsDNA HS Assay Kit Thermo Scientific, Waltham, USA   

RLT buffer Qiagen, Hilden, Germany 

RNase-Free DNase Set Qiagen, Hilden, Germany 

RNase-Free Water Qiagen, Hilden, Germany 

RNeasy Micro Kit Qiagen, Hilden, Germany 

RNeasy Mini Kit Qiagen, Hilden, Germany 

SDS Roth, Karlsruhe, Germany 

SeaKem LE Agarose     Lonza, Basel, Switzerland 

Tris Base 0.5M, pH 6.8 Roth, Karlsruhe, Germany 
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3.2.1.2 Media 
Table 3: Media. 

Media Company, headquarter, country 

Agar Agar Kobe I Roth 

LB-Medium (Luria/Miller)  New England Biolabs, Hitchin, UK 

SOC Outgrowth Medium New England Biolabs, Hitchin, UK 

 

LB-Agar-Ampicillin Medium                

200 ml LB-Medium                      

3 g Agar                   

200 µl Ampicillin (final concentration: 100 µg/ml)  

 

3.2.1.3 Primers 

The primers for qPCR were selected from Harvard Medical School’s PrimerBank 

database (Wang et al., 2012) and rechecked by NCBI Primer-Blast (Ye et al., 2012) for 

their specificity. They were synthesized by Eurofins Genomics (Ebersberg, Germany) 

and aliquoted in concentrations of 100 µg/ml before being stored at -20 °C.  
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Table 4: Primers for qPCR. 

Gene of interest Primer sequence (5' à 3') Product 
length 

Melting 
temperature 

cebpε_qF1 TCCATTGACCTCTCCGCCTA 72 60.03 

cebpε_qR1 TGGCTTCACGGCAAAGAGAT  59.96 

DEFA4_qF1 TCTTCAGGTTTCAGGCTCAACA 93 59.83 

DEFA4_qR1 ATGAGGCAGTTCCCAACACG  60.61 

ELA2_qF GGCTCTACCCCGATGCCT 69 60.84 

ELA2_qR AGCGTTGGATGATAGAGTCGATC  60.06 

h beta-actin_qF TTCCTGGGCATGGAGTC 84 55.57 

h beta-actin_qR CAGGTCTTTGCGGATGTC  55.79 

hCEBPE C-term F CCCTTACACAAGGGCAAGAA 153 57.71 

hCEBPE C-term R CTCTGCCATGTACTCCAGCA  59.46 

hCEBPE N-term F TCTCCGCCTACATCGAGTCT 163 59.82 

hCEBPE N-term R CCGAAGGTATGTGGAGGGTA  58.22 

HSLPI_qF TCTCAGCCATCCACCCAGAC 142 61.27 

HSLPI_qR TCACCTTGCCTTTGGCCTC  60.23 

LCN2_qF1 ACCCTCTACGGGAGAACCAA 82 59.88 

LCN2_qR1 CAGGGAGGCCCAGAGATTTG  60.11 

MMP8_qF1 AGCCAGGAGGGGTAGAGTTT 145 59.88 

MMP8_qR1 TCCAGGTAGTCCTGAACAGTTT  58.69 

NAMPT_310_qF AGGGCTTTGTCATTCCCAGA 254 58.92 

NAMPT_563_qR GCCAGCAGTCTCTTGGGAAG  60.68 

OLFM4-634_qF ATTCGCCGAGAAATCGTGG 201 58.32 

OLFM4-834_qF GTAATCCCTACCCCAAGCACC  60.13 

qCRISP3_F TACAGACACAGTAACCCAAAGGA 98 59.03 

qCRISP3_R TGGATTGCTTGTGACCATGAG  58.56 

TCN1_qF CATCCGCCTAAAACCTCTGTT 179 57.9 

TCN1_qR CCGAGCTTACATCTGACAATCTG  60.6 

TFRC_qF GGCTACTTGGGCTATTGTAAAGG 156 60.6 

TFRC_qR CAGTTTCTCCGACAACTTTCTCT  58.9 
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Table 5: Primers for PCR. 

Gene of interest Primer sequence (5' à 3') Product 
length 

Melting  
temperature 

CSF3R_RNA4_837-F GCCCGCCAGTCTGTATCAC 823 60.52 

CSF3R_RNA4_837-R GTCATGGGCTTATGGACCCT  59.15 

RUNX1ex3D171N_qF CCTCAGGTTTGTCGGTCGAA 705 59.97 

RUNX1ex3D171N_qR CAGATCCAACCATCCCCACC  60.11 

RUNX1ex3D171N_qF CCTCAGGTTTGTCGGTCGAA 309 59.97 

RUNX1D171N309.R GGCTGAGGGTTAAAGGCAGT  59.4 

 

Table 6: Primers for reverse transcription. 

Primer Company, headquarters, country  

Oligo(dT)18 Primer 100 µM Thermo Scientific, Waltham, USA  

Random Primer Hexamer 100 µM Thermo Scientific, Waltham, USA  

 

 

3.2.1.4 Antibodies and isotypes 
Table 7: Antibodies and isotypes for FACS. 

Antibody and isotype Company, headquarters, country 

APC CD34 (8G12), order number: 345804 BD, Franklin Lakes, USA 

APC-Mouse IgG1 k Isotype Control, order number: 555751 BD, Franklin Lakes, USA 

PE Mouse Anti-Human CD38, order number: 555460 BD, Franklin Lakes, USA 

PE Mouse IgG1, k Isotype Control, order number: 556650 BD, Franklin Lakes, USA 

 

 

3.2.1.5 Enzymes 
Table 8: Enzymes. 

Enzymes Company, headquarters, country 

Restriction enzyme BtsCI New England Biolabs, Hitchin, UK 
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3.2.1.6 Molecular weight standards 
Table 9: Molecular weight standards. 

Molecular weight standard Company, headquarters, country 

Gene Ruler 100 bp DNA Ladder Thermo Scientific, Waltham, USA   

Quick-Loading 1 kb DNA Ladder New England Biolabs, Hitchin, UK 

 

 

3.2.2  Buffers and standard compositions      

AccuGene 10x TBE Buffer                                             

Tris-borate 0.89 M            

EDTA (disodium salt) 0.02 M               

pH 8.3 

FACS Buffer           

PBS buffer              

1% BSA 

MACS Buffer                      

PBS buffer, pH 7.2          

0.5% bovine serum albumin                                                                                           

EDTA 2 mM        

 

3.2.3  Consumables 
Table 10: Consumables. 

Consumable Company, headquarters, country 

Bacterial cell spreader Roth, Karlsruhe, Germany 

Hemocytometer (C-Chip disposable) NanoEnTek, Seoul, Korea 

LightCycler plate with adhesive seal (96 wells) Sarstedt, Nümbrecht, Germany 

MS- and LS-column Miltenyi Biotec, Bergisch Gladbach, Germany 

Petri Dish 94x16 Greiner Bio-One, Kremsmuenster, Austria 

Pipette filter tips:  

-       Biosphere plus Filter Tips    Sarstedt, Nümbrecht, Germany  
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-       Filter Tips Safeguard                                  Peqlab, Erlangen, Germany 

-       Filter Tip Ultrapoint TipOne                         Starlab, Hamburg, Germany 

Pre-separation filters 30 µm Miltenyi Biotec, Bergisch Gladbach, Germany 

Reaction tubes:  

-       DNA LoBind Tube 0.5, 1.5 ml Eppendorf, Hamburg, Germany 

-       PCR tubes 0.2 ml                                             Starlab, Hamburg, Germany 

-       Qubit assay tubes Life technologies, Carlsbad, USA 

-       Falcon tube 15, 50 ml                                      Sarstedt, Nümbrecht, Germany 

-       Polystyrene Round-Bottom Tube Thermo Fisher Scientific, Waltham, USA 

 

 

3.2.4  Equipment 
Table 11: Equipment. 

Equipment Company, headquarters, country 

Automatic Ice Flaker Machine (AF 100 AS)               Scotsman, Vernon Hills, USA 

Centrifuges:  

-       Centrifuge 5424 Eppendorf, Hamburg, Germany 

-       Crystal 8 Micro Centrifuge                    LMS, Brigachtal, Germany 

-       Megafuge 1.0 R Heraeus, Hanau, Germany 

Erlenmeyer flasks Th. Geyer, Erlangen, Germany 

FACSCanto II Flow Cytometer BD, Franklin Lakes, USA        

Fluorometer (Qubit 2.0) Life technologies, Carlsbad, USA 

Gel electrophoresis equipment  Bio-Rad, Hercules, USA 

(Wide Mini-Sub Cell GT Complete Systems)  

Hoods:  

-       Safety Workbench LaminAir HB 2448       Heraeus, Hanau, Germany 

-       Hood Biowizard Golden Line                     Kojair, Vilppula, Finland 

-       Air Clean 600 PCR Workstation                 Starlab, Hamburg, Germany 

-       DNA/RNA UV-Cleaner UVC/T-AR             Biosan, Riga, Lativa 

Ice Pan (9l “Magic Touch 2”) Bel-Art SP Scienceware, Wayne, USA 

Incubator (Kelvitron T) Heraeus, Hanau, Germany 

LightCycler 480 (96-well version) Roche, Basel, Switzerland 

Magnet (DynaMag-2) Thermo Fisher Scientific, Waltham, USA      
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Microscope (Laborlux S) Leitz, Wetzlar, Germany 

Microwave (Micromat 15-w) AEG, Nuremberg, Germany 

NanoDrop 2000/2000c Spectrophotometer Thermo Fisher Scientific, Waltham, USA        

Pipettes:    

-     Pipetus 100-240 V        Hirschmann, Eberstadt, Germany             

-     Reference variable                                       Eppendorf, Hamburg, Germany 

-     Research plus variable                           Eppendorf, Hamburg, Germany 

-     Serological pipette 5, 10, 25 ml                   Sarstedt, Nümbrecht, Germany 

-     Transfer pipette                                              Sarstedt, Nümbrecht, Germany                  

Precision balance (EMB)  Kern, Balingen, Germany 

Refrigerators Liebherr, Bulle, Switzerland 

Separator  Miltenyi Biotec, Bergisch Gladbach, Germany 

(MACS Multi Stand, QuadroMACS Separator)  

Thermocycler (Mastercycler nexus GX2) Eppendorf, Hamburg, Germany 

Thermomixer compact Eppendorf, Hamburg, Germany 

UV transilluminator (Gel iX Imager) Intas Science Imaging, Göttingen, Germany 

Vortex mixer (Genius 3) IKA, Staufen, Germany 

 

 

3.2.5  Software 
Table 12: Software. 

Software Company, headquarters, country 

Chromas Pro 1.7.7 Technelysium, South Brisbane, Australia 

EazyDraw EazyDraw, Poynette, USA 

FACSCanto II Software BD Biosciences, Franklin Lakes, USA 

FACSDiva BD Biosciences, Franklin Lakes, USA 

FlowJo Tree Star, Ashland, USA   

LightCycler 480 Software release 1.5.0 Roche, Basel, Switzerland 

Microsoft Office Microsoft, Redmond, USA 

-        Microsoft Word for Mac version 15.19.1  

-        Microsoft Excel for Mac version 15.19.1  

-        Microsoft PowerPoint for Mac version 15.19.1  

NanoDrop 2000 Software Thermo Fisher Scientific, Waltham, USA      
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3.3 Methods 

3.3.1  Preparation and quantification of RNA samples 

The following two steps, which resulted in separate cell fractions, were performed in 

cooperation with medical technical assistants. 

 

3.3.1.1 Isolation of MNCs from bone marrow samples 
The bone marrow samples were diluted in a ratio of 1:2 with PBS buffer, overlaid on 

Ficoll-Plaque Plus and centrifuged (25 min, 1600 rpm). Thus, a gradient of the different 

blood components was obtained, from which the interphase containing mononuclear cells 

was isolated. Then, the mononuclear cells (MNCs) were washed in two steps with 30 ml 

4 °C cold PBS buffer and centrifuged (8 min, 1300 rpm). For the cell counting, the 

remaining pellet was resuspended in 1-5 ml PBS buffer, mixed with methylene blue in a 

1:10 ratio and then pipetted onto a Neubauer chamber. Depending on the cell material of 

interest (RNA, DNA or proteins), different lysis solutions were added before freezing. To 

freeze MNCs, a mixture of 900 µl FCS and 100 µl DMSO was added. AllPrep and RNA 

samples were mixed with 350 µl RLT buffer for up to 5x10^6 cells. To obtain proteins, 

20 µl Lämmli buffer was used for approximately 1x10^5 cells. When a special cell 

fraction, such as CD33+ for example, should be obtained, the magnetic separation 

protocol was started immediately. 

 

3.3.1.2 Magnetic separation of CD33+ and CD34+ cells 
To separate the different cell fractions, the freshly isolated cells were resuspended with 

MACS buffer and then mixed with the appropriate magnetic beads. For this, the 

CD33+/CD34+/CD38+ MultiSort Kit protocols of Miltenyi Biotec were used. In the case 

of the CD34+38+ fraction, the CD34+ cells were first separated before adding the second 

CD38+ marker. Corresponding to the MNC isolation protocol, the cell number was 

counted under the microscope.  
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3.3.1.3 Detection of isolated cell fractions by FACS 

After having isolated a cell lineage of interest by magnetic separation, its percentage was 

determined by FACS, a method that makes it possible to verify the success of the 

magnetic bead protocol. The separated cells were evenly distributed to the FACS tubes, 

which were then filled up to 2 ml with FACS buffer and centrifuged (5 min, 300 g, 4 °C). 

The corresponding antibodies or isotypes were then added to the cells before being 

incubated (20 min, 4 °C in the dark). After a washing and centrifugation step, the 

supernatant was aspirated. Next, 200 µl of 0.5% PFA were added as a cell fixative before 

the cells were stored at 4 °C. The measurement was performed under standard conditions 

using the Canto II flow cytometer and analyzed with the software FACSDiva and Flowjo. 

Unstained cells were used as negative control. The isotypes were then measured to set a 

gate for the following measurements between negative and positive cells. Both 

monochrome and multicolored samples were prepared to detect double positive cells. To 

prevent false positive results due to cell duplicates, these were excluded by gating. 

Furthermore, a gating step helped to prevent neutrophils from being measured by FACS. 

 

3.3.1.4 Total RNA purification protocol 
The total RNA purification protocol was used to isolate RNA from cells lysed in RLT 

buffer. Depending on the number of cells, two different protocols were used: ≤ 5x10^5 

cells - Micro kit and ≤ 5x10^6 cells - Mini kit.  

 

3.3.1.5 Quantification of RNA products by NanoDrop 
The NanoDrop spectrophotometer was used to measure RNA concentration. Therefore, 

1 µl of RNase-free water served as blank. The samples were also measured in an amount 

of 1 µl. 
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3.3.2 Preparation and quantification of cDNA samples 

3.3.2.1 Reverse transcription 
RNA samples in the range of 500 to 1000 ng were transcribed into cDNA with a low 

expenditure of time according to the Omniscript Reverse Transcription Kit protocol. First, 

the master mix 1 was prepared and incubated with program 1 (Table 13 and 14). Next, 

the master mix 2 was pipetted. After the first incubation step was completed, 9 µl of the 

master mix 2 was added to the first sample solution and then again incubated with 

program 2. The completed cDNA was finally stored at -20 °C. 

Table 13: Master mixes for reverse transcription. 

Master mix Master mix components Amount 

Master mix 1 Oligo(dT) 18 primer (10 µM)  2 µl 

 Random Hexamer Primer (10 µM) 2 µl 

 ddH2O-RNA mixture  27 µl 

 Total volume 31 µl   

Master mix 2 10x RT buffer 4 µl 

 dNTPs 4 µl 

 RT enzyme 1 µl 
  

 Total volume 9 µl 

 

Table 14: Thermocycler setup for reverse transcription. 

 Temperature Time 

Program 1 70 °C 5 min 
Program 2 RT 2 min 
 42 °C 60 min 
 72 °C 10 min 
 4 °C hold 
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3.3.2.2 WTA Ovation protocol 

The Ovation Pico WTA system amplifies cDNA out of a small quantity of RNA. The 

procedure includes the synthesis of a DNA/RNA heteroduplex double-stranded cDNA, 

followed by the SPIA amplification (Kurn et al., 2005). The Ovation Pico WTA System 

V2 protocol starts with the synthesis of first strand cDNA from total RNA. For this 

purpose, master mix 1 was prepared and incubated with program 1 (Table 15 and 16). 

Then master mix 2 was mixed, added to mix 1 and incubated with program 2. The result 

of this step was single cDNA strands with a unique RNA portion at the 5’ end. Next, the 

generation of the second strand of cDNA was started. Master mix 3 was prepared, pipetted 

into the reaction tube of the first strand cDNA synthesis and then incubated with program 

3. Then, the cDNA was purified using magnetic separation. The last step consisted in the 

SPIA amplification, which relied on the application of chimeric primer, DNA 

polymerase, and RNase H to finally obtain a strong accumulation of cDNA (Kurn et al., 

2005). Master mix 4 was prepared and added to the reaction tube that was incubated with 

program 4. The tube was then again transferred to the magnet. The cleared supernatant 

containing SPIA cDNA could finally be collected and purified using the QIAquick PCR 

Purification Kit.  

Table 15: Master mixes for WTA Ovation protocol. 

Master mix Master mix components Amount 

Master mix 1 First Strand Primer Mix 2 µl 

 Total RNA sample (500 pg to 50 ng) 5 µl 

 Total volume 7 µl 

Master mix 2 First Strand Buffer Mix 2.5 µl 

 First Strand Enzyme (RT) 0.5 µl 

 Total volume 2.5 µl 

Master mix 3 Second Strand Buffer Mix 9.7 µl 

 Second Strand Enzyme Mix (DNA polymerase) 0.3 µl 

 Total volume 10 µl 

Master mix 4 SPIA Buffer Mix 50 µl 

 SPIA Primer Mix 25 µl 

 SPIA Enzyme Mix 25 µl 

 Total volume 100 µl
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    Table 16: Thermocycler setup for WTA Ovation protocol. 

 Temperature Time 

Program 1 65 °C 
4 °C 

2 min 
hold 

Program 2 4 °C 
25 °C 
42 °C 
70 °C 
4 °C 

2 min 
30 min 
15 min 
15 min 
hold 

Program 3 4 °C 
25 °C 
50 °C  
80 °C 
4 °C 

1 min 
10 min 
30 min 
20 min 
hold 

Program 4 4 °C 
47 °C 
95 °C 
4 °C 

1 min 
75 min 
4 min 
hold 

 
 

3.3.2.3 Quantification of cDNA products by Qubit 
The cDNA samples were measured by Qubit by mixing 1 µl sample with 1 µl fluorescent 

dye and 199 µl buffer. After an incubation of 2 min at RT, the tube was transferred to the 

fluorometer. 

 

3.3.3 Real-time quantitative PCR 

Real-time quantitative PCR (qPCR) enables the quantification of amplified PCR products 

in real time, according to the log phase of accumulation. It shows highly reproducible 

results, allows a high throughput of samples and provides a broad dynamic range (Heid 

et al., 1996). This method is intended to measure the expression of different granule 

protein genes in patient samples. The qPCR uses fluorescent technologies; in this setup, 

the dye SYBR Green I was used (Fraga et al., 2008). All cDNA dilutions were adjusted 

to a b-actin average Cp value of 21.5, with b-actin being selected as the reference 

housekeeping gene. First, master mix 1 was prepared and pipetted into a 96-well plate, 

followed by centrifugation (Table 17). According to the LightCycler 480 protocol of 

Roche, the reaction setup of program 1 was used (Table 18). Beside non-template controls 

used as contamination control, each gene was tested in triplicate (Bustin et al., 2009). The 

data were finally interpreted and checked for specificity using the LightCycler Software. 
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The checked data were then transferred to an Excel table to calculate the triplicate’s Cp 

average and the Δ-Cp value (deviation of the target’s Cp average to the housekeeping 

gene’s Cp average) (Bustin et al., 2009). Based on this Δ-Cp value, further calculations 

as ratios could be performed.  

Table 17: Master mix 1 for qPCR. 

Master mix Master mix components Amount 

Master mix 1 SYBR Green 10 mmol 5 µl 

 Primer mix (F and R primer) 0.8 µl 

 cDNA  4.2 µl 

 Total volume 10 µl 

 

Table 18: Thermocycler setup for qPCR. 

 Temperature Time Cycles 

Program 1: 
(1) Pre-incubation 

 
95 °C 

 
10 min 

 
1x 

(2) Amplification 
- Denaturation 
- Annealing 
- Amplification 

 
95 °C 
60 °C 
72 °C 

 
10 sec 
10 sec 
30 sec 

45x 

(3) Melting program 95 °C 
65 °C 

4 sec 
1 min 

1x 

(4) Cooling Program 40 °C 10 sec 1x 

 
 

3.3.4 PCR 

PCR was used to detect the CSF3R and RUNX1 mutations. The PCR products were 

purified with the QIAquick PCR Purification Kit (250) and further used for restriction 

digestion or directly sent for Sanger sequencing. The standard master mix used for each 

PCR reaction and the primer-specific thermocycler installations are shown in Table 19, 

20 and 21. 
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Table 19: Master mix for standard PCR . 

Master mix Master mix components Amount 

PCR master mix (1x) Green Flexi buffer 4 µl 

 25 mM MgCl2 1 µl 

 10 mM dNTPs 0.5 µl 

 GoTaq polymerase 0.2 µl 

 Forward Primer 10 pmol/µl 1 µl 

 Reverse Primer 10 pmol/µl 1 µl 

 ddH2O 10.3 µl 

 Template 2 µl 

 Total volume 20 µl 

 

Table 20: Thermocycler setup for PCR (CSF3R_NGS5F/R). 

CSF3R setup Temperature Time Cycles 

 98 °C 30 sec 1x 
Denaturation 98 °C 40 sec 30x 
Annealing 58 °C 7 sec 30x 
Amplification 72 °C 7 sec 30x 
 72 °C 5 min 1x 
 8 °C hold hold 

 

Table 21: Thermocycler setup for PCR (RUNX1ex3D17N_F/RUNX1D171N309.R). 

RUNX1 setup Temperature Time Cycles 

 95 °C 10 min 1x 
Denaturation 95 °C 40 sec 35x 
Annealing 63 °C 20 sec 35x 
Amplification 72 °C 30 sec 35x 
 72 °C 2 min 1x 
 8 °C hold hold 

 

 

3.3.5 Restriction digestion of wild type allele sequences 

This method served to increase the ratio of acquired, mutated alleles that would otherwise 

be below the detection limit of Sanger sequencing. The principle is based on a restriction 

enzyme that binds to a specific nucleotide of a PCR product and cuts the strand into two 

parts at this position. If the enzyme binds precisely to the nucleotide that is partially 

mutated, only the wild-type alleles will be cut. The enzyme will not work with the mutated 
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alleles because there is no binding site for the enzyme due to the change of nucleotide. 

Next, PCR followed, and only the resistant complete mutated strands were amplified.  

In this case, the restriction enzyme BtSCI was used, which binds and cuts the wild type 

of the RUNX1 gene (Figure 7). The master mix (Table 22) was prepared and then 

incubated in the thermocycler (15 min, 300 rpm, 50 °C). To see whether the digestion had 

worked, a 15 µl sample was pipetted into a 2% agarose gel, where, in the case of a healthy 

donor sample, two bands were expected. For further examinations, the enzyme in the 

remaining sample was inactivated at 80 °C for 20 minutes in the thermocycler. After the 

inactivation, the probes were again amplified by PCR using the same protocol as usual, 

purified, and then sent for Sanger sequencing.  

 

 
Figure  7: Restriction digestion of RUNX1 allele by BtSCI enzyme.  
While the wild type allele is cut into two pieces, the mutant allele has its mutation exactly at 
the position where the enzyme would cut and is thereby protected.  

 
 
 
 
 
 
 
 
 

Digested sequence: RUNX1ex3D171N q wildtype

1 100

BtSCI

1 100

200 309

200 309

Undigested sequence: RUNX1ex3D171N q mutant

1001 200 309
5´...	G	G	A	T	G	(N)2	...	3´

3´...	C	C	T	A	C											...	5´
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Table 22: Master mix for restriction digestion with BtsCI enzyme. 

Master mix Master mix components Amount 

Master mix 1 Restriction enzyme BtsCI 10 units = 1 µl 

 DNA (PCR product) 1 µg 

 10X CutSmart Buffer 5 µl  

 ddH2O Filled up to total volume of 50 µl 
 
  Total Volume 50 µl 

 
 

3.3.6 Molecular cloning 

With the molecular cloning method, patient DNA was ligated in a vector, which was then 

introduced into the host organisms, which were E. coli bacteria. For this, the gene segment 

of interest, the CSF3R gene, was first worked out by PCR using the CSF3R_RNA4_837 

F and CSF3R_RNA4_837 R primers. The PCR product was tested for its specificity by 

gel electrophoresis, purified with the QIAquick PCR Purification Kit (250) and measured 

with Qubit. According to the sample concentration, the product was diluted to a final 

concentration of 6.5 ng/µl. Then the ligation process began, starting with the preparation 

of the following master mix (Table 23) containing the chemicals of the NEB-PCR 

Cloning Kit. 

Table 23: Master mix for ligation. 

Master mix Master mix components Amount 

Ligation master mix DNA (PCR product) 4 µl 

 Linearized pMiniT Vector 1 µl 

 Cloning master mix 2 µl 

 Total volume 7 µl 

 

This ligation master mix was incubated (15 min at 25 °C and then 2 min on ice). In the 

meanwhile, the NEB 10-beta Competent E. coli cells stored at -80 °C were thawed on ice. 

After the incubation time, 2 µl of the completed ligation reaction was added to the 

competent cells, mixed together and again incubated (25 min on ice). In the following 

transformation step, the bacteria-ligation mix was heat shocked (30 sec, 42 °C) and then 

incubated (5 min on ice). Next, 950 µl of SOC medium was added for the outgrowth 
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process, and the mixture could then be incubated (1 h, 250 rpm, 37 °C) in the 

thermoblock. In the end, 50 µl of the suspension was spread on an ampicillin LB medium 

petri dish, which was then incubated (18 h, 37 °C). Afterward, the clones could be picked, 

and every single one was mixed with 20 µl of ddH2O. Of these, another PCR was 

performed with the same primers as before under the standard conditions. The PCR 

product could then be purified with the QIAquick PCR Purification Kit (250) and sent for 

Sanger sequencing.  

 

3.3.7 Sanger sequencing 

With Sanger sequencing, the patient DNA could be examined at the nucleotide level, 

whereby single nucleotide mutations could be detected with very high specificity. The 

method was performed by the GATC Sequencing Service offered by GATC Biotech in 

Konstanz. Two 1.5 µl tubes were prepared, each containing 10 µl of purified PCR product 

and 0.25 µl of either the forward or the reverse primer. The results were finally analyzed 

with Chromas Pro 1.7.7.  

 

3.3.8 Gel electrophoresis 

Agarose gel electrophoresis was done to check the specificity of qPCR and to confirm the 

quantitative amount of cDNA amplified by qPCR. This procedure was performed by 

default with an agarose concentration of 2% in a 1x TBE buffer system. As nucleic acid 

gel stain, 10 µl of GelRed was used. The samples were stained with 6x DNA loading dye 

and thickened. As a molecular-weight size marker, 3 µl of a 100 bp ladder was utilized.  

Subsequently, the samples were separated in their fragments by a constant voltage of 80 V 

for 50 min. When the run was complete, the bands were visualized by UV 

transillumination at a wavelength of 312 nm and recorded by a documentation system. 
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4  Results 

4.1 Explanatory approach for neutrophil oscillation in CyN 

This chapter is dedicated to the project on the cycling ANC phenomenon in CyN, which 

constitutes the main difference to SCN. 

 

4.1.1 Neutrophil protein gene expression of a CyN patient in the microarray  

A microarray run had been performed by the research group of Prof. Dr. J. Skokowa/Prof. 

Dr. K. Welte with the samples of a CyN patient, CyN patient 1 (Table 1). In this context, 

it was found that several granule protein genes, as well as NAMPT and TFRC, showed an 

oscillating expression between the cycle peak and nadir of ANC. The hypothesis here is 

that the ANC course has an inhibitory or excitatory influence on granulopoiesis. To 

validate the microarray data received from the bone marrow samples of CyN patient 1, 

alternative methods had to be performed and additional CyN patients examined.  

The samples used for this microarray originated from a CyN patient (CyN patient 1) and 

a healthy donor treated with G-CSF as a control. In both cases, CD34+38- (hematopoietic 

stem cells, HSC) and CD33+ (myeloid progenitor) cells were collected. CD33, CD34 and 

CD38 are detectable at different points of hematopoietic differentiation and are therefore 

used to select cells and examine their gene expressions at specific maturity levels (Nielsen 

& McNagny, 2008). Additionally, in the case of the CyN patient, two samples of each 

cell line, CD33+ and CD34+38-, were chosen. Samples were obtained at different times of 

the ANC cycle. One was obtained at the ANC peak of the patient, and the other was 

obtained at the ANC nadir (Figures 6 and 8). In this way, gene expressions could be 

compared over the time of hematopoietic maturation and also over the time of neutrophil 

oscillation. As those RNA expression oscillations reproduced the patient’s ANC 

oscillations, an induction and cycling of granulopoiesis in stem cells (CD34+ CD38-) and 

myeloid progenitors (CD33+) was deduced. Finally, candidates were selected from the 

top list of upregulated/downregulated genes in microarray assays that showed a very low 

expression at the cycle peak compared to the cycle nadir of the CyN patient 1. These 

genes of interest were the granule protein genes called cysteine-rich secretory protein 3 
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(CRISP3), defensin alpha 4 (DEFA4), elastase - neutrophil expressed (ELANE), lipocalin 

2 (LCN2), matrix metallopeptidase 8 (MMP8), olfactomedin 4 (OLFM4), secretory 

leukocyte protease inhibitor (SLPI) and transcobalamin 1 (TCN1). Additionally, 

nicotinamide phosphoribosyltransferase gene (NAMPT) was analyzed, which induces 

neutrophil activation, myeloid differentiation and also prevents neutrophil apoptosis 

(Skokowa et al., 2009). The transferrin receptor gene (TFRC) served as a reference gene 

and is expressed in various cell types (Vorachek et al., 2013). 

 
Figure  8: Sample selection for microarray setup.  
In total, four samples of CyN patient 1 were chosen. The CD33+ and CD34+38- cell 
populations were processed, from which in both cases two samples were taken (ANC peak 
and nadir respectively). A healthy donor treated with G-CSF served as a control. From these 
data, ten genes were selected that all showed a different expression at the ANC peak and 
nadir of the CyN patient. ANC, absolute neutrophil count; CyN, cyclic neutropenia; G-
CSF, Granulocyte colony-stimulating factor.  

 

4.1.2 Validation of microarray data by qPCR 

To confirm microarray data, qPCR is usually performed. The validity of microarray data 

was proven by using the same samples of CyN patient 1 for qPCR. First, the gene 

expression at the cycle peak was compared to the expression at the cycle nadir in CyN 

patient 1. Next, CyN patient 1 was compared to healthy donors. The following step was 

to analyze CyN patient 1 against four other CyN patients. To fulfill the criteria for being 

included in this study, the additional CyN patient samples had to be obtained at either the 

ANC peak or the nadir (Table 1). The final step was to compare the four CyN patients to 

healthy donors (Figure 9). 

CyN patient 1

     CD33+ cells

ANC           ANC

     CD34+38- cells

   ANC           ANC

Healthy donor 
    + GCSF

CD33+     
cells

CD34+38- 
cells

Selection of genes that show a very low expression at the cycle peak compared to the 
cycle nadir: ELANE, DEFA4, LCN2, MMP8, OLFM4, CRISP3, NAMPT, TCN1

MICROARRAY

Selection of genes that show a downregulation at the cycle peak compared to the 
cycle nadir: CRISP3, DEFA4, ELANE, LCN2, MMP8, NAMPT, OLFM4, SLPI, 
TCN1 and TFRC
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Figure  9: Graphic representation of group of patients and experimental 
setup.  
The scheme represents the order of steps performed by qPCR with the aim to 
confirm the approach based on the microarray data. The first experiments were 
performed on the samples of CyN patient 1, which were then correlated with 
healthy donor samples. Afterward, the results were to be verified by analyzing 
four additional CyN patients. CyN, cyclic neutropenia; HD, healthy donors. 

 

4.1.2.1 Cycling gene expression pattern in CyN patient 1 
First, the cycling gene expression of granule proteins, NAMPT and TFRC in CyN patient 

1, previously detected in the microarray, was verified (Figure 9). Due to the small amount 

of RNA from the patient’s samples, the RNA was amplified using the WTA Ovation 

protocol (Chapter 3.3.2.2). Consequently, as an intermediate target, the reproducibility of 

data should be evaluated by using either the WTA Ovation protocol or the usual reverse 

transcription protocol (Chapter 3.3.2.1). In the case of the CD33+ cells, the same cell 

populations could be utilized for qPCR. However, the CD34+38- cell fraction examined 

in microarray could not be reevaluated, so CD34+38+ cells were used instead for qPCR.  

The gene expression of eight granule protein genes of interest as well as of NAMPT and 

TFRC in CD33+ cells of CyN patient 1 was measured. To correlate the expression of 

granule protein genes with the ANC in CyN patients, the ratio of the gene expression at 

CyN patient 1

Other CyN patientsHealthy donors

 Groups of 
comparison

1. 
Comparison of cycle 

maximum to cycle minimum 
in CyN patient 1

2. 
Analysis of 

CyN patient 1 
against HD

3.
Analysis of 

CyN patient 1 
against 4 CyN 

patients

4.
Analysis of 4 CyN 
patients against HD



  40 

Results 

the ANC peak and the expression at the ANC nadir was calculated in each case. This ratio 

is illustrated as the fold change in the form of a bar graph (Figure 10). 		

 
Figure  10:	 Gene expression in CD33+ cells of CyN patient 1.  
The bar graph illustrates the fold changes in gene expression at the ANC maximum compared to the 
ANC minimum of CyN patient 1 measured by microarray, qPCR and WTA qPCR. MAX, maximum; 
MIN, minimum; qPCR, real-time quantitative polymerase chain reaction; vs., versus; WTA, whole 
transcriptome amplification. 

First, the RNA expression fold changes from microarray data were confirmed by using 

qPCR of normal cDNA or qPCR of WTA cDNA for CRISP3, DEFA4, LCN2, MMP8 and 

OLFM4. The same trend in RNA expression fold changes was observed for ELANE, 

NAMPT, SLPI and TCN1. Only the microarray data of TFRC could not be reproduced. 

As a result, WTA samples were used instead of conventional reverse transcription 

samples for further investigation.  

Next, for both methods, WTA qPCR and microarray, a trend could be analyzed for five 

out of ten genes of interest (Figure 10). Here, the gene expression at the ANC nadir is 

strikingly higher compared to the ANC maximum. This was detectable in CRISP3, 

DEFA4, LCN2, MMP8 and OLFM4. Whereas, ELANE, NAMPT, SLPI and TCN1 showed 

the same trend with a higher expression at the cycle nadir compared to the peak in a less 

remarkable way. The WTA qPCR results showed an increased fold change in gene 

expression between the ANC minimum and maximum in every tested gene, despite 
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TFRC. The fold change ranged between 5,000 for CRISP3 expression and 5.9 for NAMPT 

expression, comparing the cycle nadir to the peak. Only TFRC gene expression behaved 

differently according to the WTA qPCR results. Here, the expression at the ANC 

maximum had a 1.1-fold increase compared to the minimum (Figure 10). 

The five mentioned genes (CRISP3, DEFA4, LCN2, MMP8 and OLFM4), which showed 

a high reproducibility and a pronounced expression oscillation, are presented in detail 

(Figure 11). Thereby, the qPCR results of CRISP3, LCN2 and OLFM4 were confirmed 

by gel electrophoresis. In the case of those samples that were obtained at the minimum of 

ANC, the bright PCR product bands appeared. In contrast, there was no, or rather a 

weaker, band in the CyN samples at the ANC maximum. A possible method limitation is 

that the qPCR difference between the ANC maximum and minimum of DEFA4 and 

MMP8 is not large enough to be visualized in gel electrophoresis.  
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Figure  11: Five oscillating genes of interest in CD33+ cells of CyN patient 1.  
This detailed illustration shows the fold change difference in the expression of five granule protein genes 
with a high expression oscillation in CD33+ cells of CyN patient 1. The bars in dark gray represent the fold 
change in the expression at the ANC maximum compared to the ANC minimum in qPCR data, while the 
bars in light gray represent the fold change in microarray data. At the right of three bar graphs, gel 
electrophoresis data underline the results of the corresponding gene. ANC, absolute neutrophil count; 
MAX, maximum; MIN, minimum; qPCR, real-time quantitative polymerase chain reaction; vs., versus; 
WTA, whole transcriptome amplification.  
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Then, a similar experimental setup was performed for CD34+38+ cells (Figure 12). It 

was not possible to work with the same samples as utilized for microarray (CD34+38- 

cells) because the samples of the two specific dates were inaccessible. Again, the bars 

represent the fold change in gene expression at the ANC peak compared to the nadir.  

 
Figure  12:  Gene expression in CD34+38+ cells of CyN patient 1. 
The bar graph illustrates the fold changes in gene expression at the ANC maximum compared to 
the ANC minimum of CyN patient 1 measured by microarray and WTA qPCR. MAX, maximum; 
MIN, minimum; qPCR, real-time quantitative polymerase chain reaction; vs., versus; WTA, whole 
transcriptome amplification.  

Compared to the microarray results, the WTA qPCR data showed the same trend of gene 

expression for nine out of ten genes, so the results were considered confirmed. Again, 

only the microarray data for TFRC could not be confirmed. In conclusion, the trend of 

increased gene expression at the ANC minimum appeared noticeable compared to the 

ANC maximum. The fold change in gene expression between the ANC minimum and 

maximum ranged between 1 million for TCN1 and 1.9 for TFRC.  

As a first result, oscillating granule proteins and NAMPT gene expression in CyN patient 

1 could be confirmed for nine out of ten genes. A strong upregulation of the gene 

expression at the ANC nadir compared to the ANC maximum was detectable. 

Furthermore, the gene expression of both subpopulations of CD34+ cells, CD34+38- and 
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continued by using the CD34+38+ fraction. Finally, these experiments revealed that the 

expression of the annotated protein genes displays the same behavior by taking into 

consideration that nine out of ten genes tested showed the same pattern.  

 

4.1.2.2 Expression of granule protein genes in CyN patient 1 vs. HDs 
Having confirmed the oscillating granule protein and NAMPT gene expression in the first 

patient, CyN patient 1, the next aim was to examine this phenomenon in comparison to 

healthy donors.  

For this, CD33+ and CD34+38+ cells from three healthy donors per cell fraction were 

measured. The WTA qPCR data from CyN patient 1 (Chapter 4.1.2.1) were then set in 

relation to the average gene expression of the three healthy donors (Figure 13). In 

addition, the gel electrophoresis data according to each gene were examined.		
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Figure  13: Relative gene expression of CyN patient 1 vs. HDs.  
The bar graphs illustrate the WTA qPCR data of CyN patient 1’s relative granule protein and NAMPT gene 
expression in CD33+ and CD34+38+ cells in comparison to healthy donors. These data are presented in the 
form of fold changes of gene expression in CyN patient 1 at the ANC maximum versus healthy donors as 
well as the fold changes of CyN patient 1 at the ANC minimum versus healthy donors. The same data were 
simplified by being transformed into the logarithmic number lines below the bar graphs, that represents 
relations between the gene expression in CyN patient 1 and healthy donors. On the right side, gel 
electrophoresis data corresponding to each granule gene are illustrated. HD, healthy donor; MAX, 
maximum; MIN, minimum; NTC, negative template control; qPCR, real-time quantitative polymerase 
chain reaction; vs., versus; WTA, whole transcriptome amplification.  

By analyzing the expressions of the nine granule protein genes (Figure 13), it was 

apparent that for all analyzed genes, the expression fold change of CyN patient 1 at the 

ANC minimum to healthy donors was higher than the fold change of CyN patient 1 at the 

ANC maximum to healthy donors. It was concluded that upregulation is manifested at the 

cycle nadir compared to the peak. The healthy donors’ gene expression of CRISP3, 

DEFA4, LCN2, MMP8, NAMPT, SLPI and TCN1 was approximately as high as the 

expression at the ANC minimum of CyN patient 1. In contrast, the gene expression at the 

cycle peak of ANC of CyN patient 1 was different from healthy donors. In the cases of 

ELANE and OLFM4, however, the expression of healthy donors resembled the expression 

rate at the ANC maximum of CyN patient 1. In summary, oscillating RNA granule protein 

and NAMPT gene expression could be seen in early progenitor cells of CyN patient 1. 

This oscillation became apparent with the up- and downregulation of gene expression in 

CyN patient 1’s CD33+ and CD34+38+ cells compared to healthy donors. This expression 

change oscillated between the two different samples obtained at the ANC minimum and 

maximum of CyN patient 1.  
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At this point, TFRC was tested (Figure 14). For this purpose, the same experimental setup 

was used as described for the other nine genes. In contrast to the nine cycling gene 

patterns already introduced, TFRC cannot be included in this group because CyN patient 

1 has a TFRC expression corresponding to healthy donors at both times of the cycle. This 

is true for CD33+ and CD34+38+ cells. Thus, TFRC underlined that the phenomenon 

observed in the other nine genes tested is specific to a special group and does not appear 

in every gene checked. Consequently, genes expressed in myeloid cells were identified 

that were not up- and downregulated between the ANC cycle compared to healthy donors.  

 

Figure  14: Relative TFRC expression of CyN patient 1 vs. HDs.  
The bar graphs illustrate the fold changes of TFRC gene expression at the ANC maximum in CyN patient 
1 versus healthy donors as well as the fold change at the ANC minimum of CyN patient 1 versus healthy 
donors. The WTA qPCR results of CD33+ and CD34+38+ cells are shown. The same data were simplified 
by being transformed into the logarithmic number lines below the bar graphs, where relations between the 
gene expression in CyN patient 1 and healthy donors are symbolized. On the right side, the corresponding 
gel electrophoresis data are illustrated. HD, healthy donor; MAX, maximum; MIN, minimum; NTC, 
negative template control; qPCR, real-time quantitative polymerase chain reaction; vs., versus; WTA, 
whole transcriptome amplification. 

 

4.1.2.3 Expression of granule protein genes in four other CyN patients 

As a next step, the cycle pattern of granule protein genes and NAMPT confirmed in CyN 

patient 1 should be similarly verified in four other CyN patients (Table 1). These four 

patients were again selected according to the ANC at the date when the samples were 

obtained. Here, only CD34+38+ cells were included due to a lack of CD33+ samples. 

Thereby two CyN patients, patient 2 and patient 3, represented the fraction of low ANC, 

whereas patient 4 and patient 5 represented the fraction of high ANC. 
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The first step was to perform qPCR for these four CyN patients and calculate the 

expression level of granule protein gene and NAMPT expression relative to a reference 

gene expression that was b-actin (Figure 15). 

 
Figure  15: Relative gene expression of CyN patients 2, 3, 4 and 5 vs. b-actin.  
The bar graphs illustrate the relative expression level of granule protein genes in those patients compared 
to the expression of the reference gene b-actin. Two CyN patients (patient 4 and 5) are referred to the ANC 
maximum whereas two (patient 2 and 3) are referred to the ANC minimum. MAX, maximum; MIN, 
minimum; qPCR, real-time quantitative polymerase chain reaction; WTA, whole transcriptome 
amplification. 

Only the three granule protein genes of interest, DEFA4, ELANE and OLFM4 showed the 

expected trend of an increased expression at the ANC minimum compared to the 

maximum. However, only in DEFA4 the difference between ANC minimum and 

maximum was strikingly apparent. The expression at the ANC minimum appeared 

slightly increased in ELANE and OLFM4. To obtain direct information as to whether this 

trend is equivalent to what was seen in CyN patient 1, the fold changes between the four 

CyN patients and CyN patient 1 had to be calculated (Figure 16).		
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Figure  16: Relative gene expression of four further CyN patients vs. CyN patient 1.  
While the green bars illustrate the fold changes of granule protein gene expression in the four CyN patients 
compared to the expression at the ANC minimum of CyN patient 1, the red bars visualize the four patients’ 
gene expressions at the ANC maximum against CyN patient 1. ANC, absolute neutrophil count; MAX, 
maximum; MIN, minimum; qPCR, real-time quantitative polymerase chain reaction; vs., versus; WTA, 
whole transcriptome amplification. 
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In this setup, the expression of the granule protein genes in the four additional CyN 

patients was compared to either the expression at the ANC minimum or maximum of 

CyN patient 1 (Figure 16). As already mentioned before, not all granule protein genes 

showed the expected expression pattern in the four additional CyN patients. Only DEFA4, 

ELANE and OLFM4 could reinforce the suspicion that there might also be an oscillating 

expression in other CyN patients. Samples of CyN patients 2 and 3, both belonging to the 

ANC minimum fraction, showed a substantially increased expression in comparison to 

CyN patient 1 at maximum ANC. On the other side, the expression of CyN patient 1 at 

the cycle minimum was approximately in the same range as in CyN patients 2 and 3. 

Samples of CyN patients 4 and 5, both of which were part of the ANC maximum fraction, 

showed an increased expression in comparison to CyN patient 1 ANC maximum. 

However, they had a decreased expression in comparison to CyN patient 1 at the ANC 

minimum.  

As a result, the index CyN patient 1 at the ANC maximum is likely to be different from 

healthy donors as well as further CyN patients.  

 

4.1.2.4 Expression of granule protein genes in four CyN patients vs. HDs 

Before focusing on a possible reason for the unique phenomenon in CyN patient 1, the 

four additional CyN patients should be compared to healthy donors by qPCR. 

Again, the three granule protein genes of interest, DEFA4, ELANE and OLFM4 were 

highlighted, as they showed the expected trend in CD34+38+ cells (Figure 17).  
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Figure  17: Relative gene expression of four CyN patients vs. HDs.  
The WTA qPCR results of the granule protein gene expression in four CyN patients is illustrated as fold 
change to HDs. The green bars show the fold change at the ANC minimum of the two CyN patients to 
healthy donors, while the red bars show the fold change at the ANC maximum of the two patients to healthy 
donors. ANC, absolute neutrophil count; HD, healthy donor; CyN, cyclic neutropenia; MAX, maximum; 
MIN, minimum; qPCR, real-time quantitative polymerase chain reaction; vs., versus; WTA, whole 
transcriptome amplification. 

In each gene, a remarkable difference was visible between the expression in patients at 

the cycle nadir and the expression in patients at the cycle peak (Figure 17). The highest 

difference could be seen in OLFM4, which has a 28- to 65-fold increased expression in 

patients at the ANC minimum compared to healthy donors. However, the expression 

amplitude between maximum and minimum in these four CyN patients was not to the 

same extent as seen in CyN patient 1.  

Consequently, an oscillating trend was detectable in three out of ten gene expressions of 

the additional CyN patients with an upregulation in every patient at the ANC minimum. 

However, the other six genes of interest, CRISP3, LCN2, MMP8, NAMPT, SLPI and 
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TCN1, which were noticeably cycling in the case of CyN patient 1, showed a pattern that 

is rather comparable to healthy donors and thus totally differed from the oscillating 

phenomenon. Thus, these experiments confirmed a cycling granule protein gene and 

NAMPT expression in CyN patient 1 but could not be confirmed in the same manifestation 

in the additionally examined CyN patients. CyN patient 1 seemed to occupy a unique 

position. As a consequence, the question arose as to which variables might cause the 

oscillations in all tested granule protein genes and NAMPT in CyN patient 1.  

 

4.1.3  C/EBPe and TNFRSF1A mutations of CyN patient 1 

To explain the unique phenomenon of cycling NAMPT and granule protein genes in CyN 

patient 1, a whole genome sequencing (WGS) was performed of CyN patient 1 and the 

family of CyN patient 1. Two interesting mutations were found in CyN patient 1’s sample: 

a TNFRSF1A mutation inherited from the mother and a C/EBPe mutation inherited from 

the father (Figure 5). C/EBPe is a transcription factor in the final differentiation steps 

towards eosinophils and neutrophils (Figure 2) and plays an indispensable role in 

granulopoiesis. In humans, four different isoforms are known (isoforms 32, 30, 27 and 

14). While isoforms 32 and 30 are predicted to have an activating role on myeloid 

promoters, isoforms 27 and 14 are considered to be transcriptional repressors. Isoform 

14, which is said to function as a dominant-negative C/EBPe repressor, might stimulate 

erythropoiesis at the expense of the maturation towards the granulocyte-macrophage 

lineage. Mutations in the C/EBPe gene are known to induce a lack of neutrophil secondary 

granule proteins (Bedi et al., 2009; Lekstrom-Himes et al., 1999; Yamanaka et al., 1997).  

In the sample of CyN patient 1, we found the heterozygous C/EBPe p.Leu155Met single 

nucleotide variant (SNP). The Sorting Intolerant from Tolerant (SIFT) and Polymorphism 

Phenotyping v2 (PolyPhen-2) tools predict the functional consequences of human single 

nucleotide polymorphisms (SNPs) (Adzhubei et al., 2010; Ng & Henikoff, 2001). 

Thereby, C/EBPe p.Leu155Met is predicted to be damaging by PolyPhen-2 and 

deleterious by SIFT. 

C/EBPe p.Leu155Met is a known low-frequency SNP with an allele frequency of 

p = 0.007 and a homozygous amount of 𝑝" = 4/60,706 according to the ExAC browser. 
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The ExAC browser does not include samples of individuals with severe pediatric diseases 

(Karczewski et al., 2017). Therefore, it had to be proven whether the mentioned 

homozygous amount of the four people already corresponds to the total number of 

homozygotes, or rather, only the proportion that does not suffer from severe diseases.  

According to the allele frequency of p = 0.007, a homozygote frequency of 𝑝" = 5/100,000 

could be calculated using the Hardy-Weinberg equation:  

𝑝" + 2𝑝𝑞 +	𝑞" = 1 

p = frequency of mutant C/EBPe p.Leu155Met allele 

q = frequency of wildtype allele 

𝑝" / 𝑞" = frequency of according homozygous genotype 

2pq = frequency of heterozygous genotype 
 

Thus, the homozygous amount of four listed in ExAC is what is expected according to 

the Hardy-Weinberg distribution. Consequently, there is no report of homozygous 

carriers of the C/EBPe p.Leu155Met mutation with severe disease. Since the number of 

homozygous carriers corresponds to the theoretical estimate, it is unlikely that this SNP 

has a pathogenic effect in the heterozygous state. Moreover, there is a significant number 

of heterozygous carriers of C/EBPe p.Leu155Met mutation. In total, the population 

frequency of the C/EBPe p.Leu155Met mutation is much higher than that of neutropenia 

in the general population.  

The effect of the C/EBPe p.Leu155Met mutation is not fully understood. However, one 

cannot rule out that the mutation creates a new start codon so that a shorter isoform is 

induced besides the 32, 30, 27 and 14 isoforms (Figure 18). The mutated isoform has its 

start codon two base pairs downstream from the start codon of isoform 14. Thus, in theory 

this mutated isoform might have the same effect as the short isoform 14, which would 

lead to an inhibited expression of secondary granule proteins. In the case of CyN patient 

1, this C/EBPe mutation could enhance neutropenia in addition to the ELANE mutation 

effect.  
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Figure  18: Overview of different C/EBPe isoforms.  
In humans, four different C/EBPe isoforms are known (32, 30, 27 and 14). The C/EBPe mutation 
p.Leu155Met, indicated in red, leads to a short C/EBPe isoform due to a newly created start 
codon at the mutation site. The start codon of the mutated isoform is located two base pairs apart 
to the start codon of isoform 14. All indicated isoforms share the identical carboxyl terminus 
(Modified from Bedi et al., 2009; additional data have been kindly made available by Prof. Dr. 
J. Skokowa, Universitätsklinikum Tübingen). 

To get an idea whether, due to the mutation, the C/EBPe expression in CyN patient 1 

differs from other CyN patients and healthy donors, an isoform-specific qPCR run was 

performed. Also, to find out which C/EBPe isoform predominates in CyN patient 1, qPCR 

was done by using a C/EBPe C-terminal primer pair that binds to each isoform and a 

C/EBPe N-terminal primer pair that attaches only to the long isoforms (Figures 18 and 

19).  

TTAD I TAD IIRD	I RD II BR LZ

TTAD I TAD IIRD I RD II BR LZ

TRD 27 TAD IIRD I RD II BR LZ

TRD II BR LZ

C/EBPe 32 isoform

C/EBPe 30 isoform

C/EBPe 27 isoform

C/EBPe 14 isoform

TRD II BR LZ C/EBPe MUT Leu155Met 

C/EBPe MUT p.Leu155Met

new start codon

C/EBPe p.Leu155Met mutation results in a new start codon
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Figure  19: Overview of C/EBPe mRNA sequence with primer binding sites. 
The figure shows the entire C/EBPe mRNA sequence. The primer binding sites of the primer pairs 
used for the experiments are indicated.  The coding part of the C/EBPe mRNA sequence is 
underlined, while the sequence of the small isoform 14 is indicated in light gray. The p.Leu155Met 
mutation position is framed in black. The C/EBPe primers utilized for our experiments are framed 
in different colors, which are listed below in the legend. mRNA, messenger ribonucleic acid; 
qPCR, real-time quantitative polymerase chain reaction. 

 

4.1.3.1 Expression of C/EBPe in CyN patients vs. HDs 

The C/EBPe expression in CyN patient 1 and further CyN patients were compared to 

healthy donors (Figures 20 and 21). The cebpε_qF1 and cebpε_R1 primer pair (Table 4 

and Figure 19) was used.  

ctcattctgcatagaactttttcaaagtcggagggaggaggttgctcagagtggggtgttgccctctgcgagg
atttggagtcccctggcctcccagcagggagtggagaggcattcccagaagcatcagcttcgggcatctccag
aaccctggcttggtccctgaccaaggagtgtccccaactgctgaataggccaggagtcgcctttctctaaggc
ttacatctctccctctggggtgtgtcctgcccctccctgagtcaccccaaggggagagaggggaaaaaaggga
agagaagagaggcattgactacagaggaaggaaaaggaagcagagcagaggggggagagaggccacacaggag
tgggtgacagaggagactgcagagggcaggtctagggcagaagatcgagagagggcaggcccaggtcaggagg
aggtagagagagggcagccggagcaccccaaggggtgcctcaagagcaggtgggggcggggagccgagggggc
gggccggccatgtcccacgggacctactacgagtgtgagccccggggtggccagcagccactcgagttctcag
ggggccgagctgggcccggggagctaggggacatgtgtgagcatgaggcctccattgacctctccgcctacat
cgagtctggggaagagcagcttctctccgatctctttgccgtgaagccagcgcctgaggccagaggcctcaag
ggccccggaacccctgccttcccccactacttgccgcctgaccctcggccctttgcctaccctccacatacct
tcggcccagacaggaaggcgctggggcctggcatctacagcagcccagggagctacgaccccagggctgtggc
ggtgaaggaggagccccgggggccagagggcagccgagctgccagccgaggcagctacaatcccctgcagtac
caagtggcacactgtgggcagacagccatgcacctgcccccaactctggcagcacccggccagcctctgcgcg
ttctcaaggcccctttggccactgccgcacccccctgcagtcccctcctgaaggcgccctccccggctggccc
cttacacaagggcaagaaggcagtgaacaaagatagccttgagtaccggctgaggcgggagcgcaacaacatc
gccgtgcgcaagagccgagacaaggccaagaggcgcattctggagacgcagcagaaggtgctggagtacatgg
cagagaacgagcgcctccgcagccgcgtggagcagctcacccaggagctagacaccctccgcaacctcttccg
ccagattcctgaggcggccaacctcatcaagggcgtggggggttgcagctgaggctggctggtggattgtggg
caccaggctccctggcacggcctaactctgcggacccccatcctgctgggggcctagaaccctgagacataga
ccatggataaatggcaaccggggtggcaaagagggcaggacccagcataatgattatatggctgaataaagtt
gcactgtgactgggaaa

Legend:

__________ - coding part of C/EBPe sequence
Orange letters - start codon and stop codon of C/EBPe sequence
Turquoise letters - sequence of small C/EBPe 14 isoform

- qPCR primer pair (cebpe_qF1 and R1)  
- qPCR primer pair (hCEBPE C-term F and R)
- qPCR primer pair (hCEBPE N-term F and R)
- mutation p.Leu155Met position

Homo sapiens CCAAT/enhancer binding protein epsilon gene (C/EBPe), mRNA
Primer binding sites
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Figure  20: Relative C/EBPe expression of CyN patient 1 vs. HDs.  
The bar graphs illustrate the fold changes of C/EBPe gene expression at the ANC maximum 
and minimum in CD33+ and CD34+38+ cells of CyN patient 1versus healthy donors. Below 
each bar graph, gel electrophoresis data in relation to the WTA qPCR data are shown. HD, 
healthy donor; MAX, maximum; MIN, minimum; qPCR, real-time quantitative polymerase 
chain reaction; vs., versus; WTA, whole transcriptome amplification. 

 

Figure  21: Relative C/EBPe expression of four CyN patients vs. HDs.  
The bar graphs illustrate the fold changes of C/EBPe gene expression in CD33+ and 
CD34+38+ cells of CyN patients that are either at the minimum or maximum of their ANC 
cycle, versus healthy donors. Below each bar graph, gel electrophoresis data in relation to 
the WTA qPCR data are illustrated. HD, healthy donor; MAX, maximum; MIN, minimum; 
qPCR, real-time quantitative polymerase chain reaction; vs., versus; WTA, whole 
transcriptome amplification. 
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As a result, no gene expression was measurable in qPCR and gel electrophoresis in the 

CD34+38+ cell fraction of CyN patient 1 (Figure 20). In comparison, a C/EBPe expression 

was seen in CD33+ cells at the cycle minimum of CyN patient 1.  

CyN patients 2, 3, 4 and 5, independently of their cycle stage and the cell fraction, showed 

a C/EBPe expression similar to healthy donors (Figure 21). Moreover, the trend of a 

cycling C/EBPe expression in other CyN patients can be considered, as the expression of 

the patients at the ANC minimum is increased compared to b-actin, while it is decreased 

at the ANC maximum (Figure 22).  

 
Figure  22: Relative C/EBPe expression of four CyN patients vs. HDs.  
The bar graph illustrates the relative expression level of C/EBPe in the four 
CyN patients compared to the expression of the reference gene b-actin. Two 
CyN patients (patients 4 and 5) are referred to the ANC maximum, whereas 
two (patients 2 and 3) are referred to the ANC minimum. MAX, maximum; 
MIN, minimum; qPCR, real-time quantitative polymerase chain reaction 
WTA, whole transcriptome amplification. 

It should be noted that the utilized primers did not cover the short isoform that was 

expressed due to the mutation.  For this purpose, two new primer pairs were designed to 

distinguish between the long and short isoforms of C/EBPe. The first primer pair of 

C/EBPe are the C/EBPe C-terminal primers that cover every isotype because of their 

identical carboxyl terminus. The second primer pair, the C/EBPe N-terminal primers, 

however, only amplify the long isoforms so that isoform 14 and the novel isoform with 

the C/EBPe p.Leu155Met mutation will not be amplified (Figure 19). First, the C/EBPe 

C-terminal primers were utilized (Figures 23 and 24). 
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Figure  23: Relative C/EBPe C-terminal expression of CyN patient 1 vs. HDs.  
The bar graphs illustrate the fold changes of C/EBPe gene expression at the ANC maximum 
and minimum in CyN patient 1 versus healthy donors. Below each bar graph, gel 
electrophoresis data according to the WTA qPCR data are illustrated. HD, healthy donor; 
MAX, maximum; MIN, minimum; qPCR, real-time quantitative polymerase chain 
reaction; vs, versus; WTA, whole transcriptome amplification. 

 

Figure  24: Relative C/EBPe C-terminal expression of four CyN patients vs. HDs.  
The graph shows the fold changes of C/EBPe gene expression in CyN patients that are 
either at the minimum or maximum of ANC cycle versus healthy donors. Below each bar 
graph, the gel electrophoresis data in relation to the WTA qPCR data are shown. HD, 
healthy donor; MAX, maximum; MIN, minimum; qPCR, real-time quantitative polymerase 
chain reaction; vs, versus; WTA, whole transcriptome amplification. 
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Using the C/EBPe C-terminal primers, CyN patient 1 was analyzed and compared to 

healthy donors (Figure 23). According to the gel electrophoresis results, C/EBPe was 

expressed at the ANC minimum and maximum and in the two different cell lineages. This 

indicates that there was a C/EBPe expression in CyN patient 1, but it is not possible to 

say which isoform was expressed at this point. Next, in CD33+ and CD34+38+ cells, the 

C/EBPe expression in CyN patient 1 is higher at the ANC minimum compared to the 

maximum.  

In the next step, the CyN patients 2, 3, 4 and 5 were again compared to healthy donors 

(Figure 24). Again, their C/EBPe expression resembled that of healthy donors, and again, 

the expression at the ANC minimum was increased at the minimum compared to the 

maximum. 

The same experimental setup was performed by using the C/EBPe N-terminal primers 

(Figures 25 and 26).  
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Figure  25: Relative C/EBPe N-terminal expression of CyN patient 1 vs. HDs.  
The bar graphs show the fold changes of C/EBPe gene expression at the ANC maximum 
and minimum in CyN patient 1 versus healthy donors. Gel electrophoresis data in relation 
to the WTA qPCR data are illustrated below each bar graph. HD, healthy donor; MAX, 
maximum; MIN, minimum; qPCR, real-time quantitative polymerase chain reaction; vs, 
versus; WTA, whole transcriptome amplification. 

 
Figure  26: Relative C/EBPe N-terminal expression of four CyN patients vs. HDs.  
The bar graphs illustrate the fold changes of C/EBPe N-terminal gene expression in CyN 
patients that are either at the minimum or maximum of their ANC cycle, versus healthy 
donors. Below each bar graph, gel electrophoresis data in relation to the WTA qPCR data 
are illustrated. HD, healthy donor; MAX, maximum; MIN, minimum; qPCR, real-time 
quantitative polymerase chain reaction; vs, versus; WTA, whole transcriptome 
amplification. 

C
yN

patient1 A
N

C
 M

IN
 C

D
33

+

C
yN

patient1 A
N

C
 M

A
X

 C
D

33
+

H
D

 C
D

33
+

H
D

 C
D

34
+38

+

C
yN

patient1 A
N

C
 M

A
X

 C
D

34
+38

+

C
yN

patient1 A
N

C
 M

IN
 C

D
34

+38
+

0,84

0,07
0

1

2

Patient1 MIN vs HD Patient1 MAX vs HD

C/EBPeN-term.: CD33+

WTA qPCR: CyN patient 1 ANC MIN/MAX vs. HD

Fo
ld

ch
an

ge
of

ge
ne

ex
pr

es
si

on
(A

N
C

 M
IN

/M
A

X
 v

s.
 H

D
)

0,06

0,02

0

0,04

0,08

Patient1 MIN vs HD Patient1 MAX vs HD

C/EBPeN-term.: CD34+38+

WTA qPCR: CyN patient 1 ANC MIN/MAX vs. HD

Fo
ld

ch
an

ge
of

ge
ne

ex
pr

es
si

on
(A

N
C

 M
IN

/M
A

X
 v

s.
 H

D
)

CyN p. 1 
ANC MIN

CyN p. 1 
ANC MIN

CyN p. 1 
ANC MAX

CyN p. 1 
ANC MAX

H
D

 C
D

34
+38

+

C
yN

patient5 A
N

C
 M

A
X

 C
D

34
+38

+

C
yN

patient1 A
N

C
 M

A
X

 C
D

33
+

C
yN

patient4 A
N

C
 M

IN
 C

D
34

+38
+

C
yN

patient3 A
N

C
 M

IN
 C

D
34

+38
+

H
D

 C
D

33
+

0,51

0

0,5

Patient5 (MAX) vs HD

C/EBPeN-term.: CD33+

WTA qPCR: CyN patient 5 vs. HD

Fo
ld

ch
an

ge
of

ge
ne

ex
pr

es
si

on
(A

N
C

 M
A

X
 v

s.
 H

D
)

5,72

0,48 0,4
0

3

6

Patient3 (MIN) vs 
HD

Patient4 (MAX) vs 
HD

Patient5 (MAX) vs 
HD

C/EBPeN-term.: CD34+38+

WTA qPCR: CyN patients 3/4/5 vs. HD

Fo
ld

ch
an

ge
of

ge
ne

ex
pr

es
si

on
(A

N
C

 M
IN

/M
A

X
 v

s.
 H

D
)

CyN p. 3 
ANC MINCyN p. 5 ANC MAX CyN p. 4 

ANC MAX
CyN p. 5 

ANC MAX



  62 

Results 

This last run again produced the expected results. In early matured CD34+38+ cells of 

CyN patient 1, almost no long C/EBPe isoforms are expressed (Figure 25). However, 

looking at the expression in further matured CD33+ cells, long C/EBPe isoforms were 

expressed at the ANC minimum.  

In summary, the expression of C/EBPe isoforms in the four CyN patients is comparable 

to what was measured in healthy donors. In CyN patient 1, the expression of the C/EBPe 

short isoform was measurable in both cell lineages, CD34+38+ and CD33+ cells. However, 

it was increased in the ANC minimum samples compared to those obtained at the ANC 

maximum. In contrast, CyN patient 1 showed no expression of the C/EBPe long isoform 

in CD34+38+ cells at both time points. In further differentiated CD33+ cells, the C/EBPe 

long isoform was expressed in the ANC minimum sample (Table 24).  

Table 24: Overview of C/EBPe expression in CyN patients. 

                       

The table simplifies the results discussed in Chapter 4.1.3.1. According to 
the different primers used, the results of qPCR and gel electrophoresis were 
summarized. The green plus sign symbolizes a detected expression of the 
C/EBPe gene, while the red minus sign means that no expression was 
measurable. MAX, maximum; MIN, minimum. 

 

C/EBPe N-term. C/EBPe C-term.

Primer 1:
cebpε

Primer 2:
hCEBPE N-term.

CyN patient 1 
MAX

Long and 
short 
isoform

Only short 
isoform

Primer 3:
hCEBPE C-term.

Other CyN 
patients

Healthy donors
Long and
short
isoform
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4.2 CSF3R and RUNX1 mutations in CyN patients 

SCN is well known to be associated with MDS and AML, while CyN has long been 

considered benign and CSF3R or RUNX1 mutations have not been reported in CyN 

patients (Chapter 1.2.6) (Germeshausen et al., 2007). In 2016, however, Klimiankou et 

al. detected the first CyN patient with the AML associated CSF3R and RUNX1 mutations, 

followed by a second with an acquired CSF3R mutation. These results, presented in the 

following part of this thesis, were published in Blood: “Two cases of cyclic neutropenia 

with acquired CSF3R mutations, with 1 developing AML” (Klimiankou et al., 2016). The 

acquired CSF3R mutations of CyN patient 4 are Gln743, Gln749 and Tyr752. CyN patient 

6 has the acquired mutation Gln741 (Figure 27).  

                                   
Figure  27: Acquired mutations in cytoplasmic domain of G-CSFR.  
The cytoplasmic domain of G-CSFR is presented. The bracket beside the gene 
domain includes those locations, where known G-CSFR mutations are sited. 
Moreover, the association with AML development is added to the 
corresponding mutations. The four mutations that could be detected in CyN 
patients 4 and 6 are indicated in red. AML, acute myeloid leukemia (data have 
kindly been provided by M. Klimiankou). 
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4.2.1  CSF3R and RUNX1 mutation in CyN patient 6 

To get a follow-up examination, various CyN patients were screened with deep 

sequencing by the research group of Prof. Dr. J. Skokowa/Prof. Dr. K. Welte. CyN patient 

6, who had previously been negative for leukemic mutations, attracted particular 

attention, as the sample, taken three years before the AML diagnosis, showed that 3% of 

the peripheral blood mononuclear cells (PB MNCs) had the CSF3R p.Gln741* mutation. 

The bone marrow mononuclear cell (BM MNC) sample, which was taken two years later 

(one year before AML diagnosis), showed a mutant allele frequency (MAF) of 8%. Then, 

in the latest sample of 2016, when the patient was 17 years old, the CSF3R mutation had 

increased to an amount of 50% according to the following deep sequencing run. 

Moreover, 10% of the BM MNCs carried the RUNX1 mutation p.Asp171Asn. This was 

accompanied by an acquired trisomy 21 and monosomy 7 and a blast frequency of 33% 

in bone marrow (Figure 28). At this point, AML (French-American-British-classification 

M2) was diagnosed so that the first CyN patient developing AML was detected 

(Figures 28 and 29) (Klimiankou et al., 2016).  

 
Figure  28: Time line of CSF3R and RUNX1  mutation acquisition in CyN patient 6.  
The black frames contain the examinations and results that were gained prior to this work, while the green 
frame contains the step that is part of this thesis. AML, acute myeloid leukemia; BM MNC, bone marrow 
mononuclear cells; CyN, cyclic neutropenia; deep seq, deep sequencing; PB MNC, peripheral blood 
mononuclear cells (data were kindly provided by M. Klimiankou). 

The result of a 10% amount of RUNX1 mutation in the BM MNCs of CyN patient 6, 

which was obtained by using deep sequencing, should be validated by a second, 

alternative method. Therefore, Sanger sequencing should be performed. In the first step, 

eight different colony-forming units (CFUs) of CyN patient 6 were amplified using the 

RUNX1ex3D17N_F/RUNX1D171N309.R primer pair (Table 5) and sent for Sanger 

sequencing. However, the sequencing results were negative for the RUNX1 mutation in 

every CFU sample. One reason might have been that the cells with the RUNX1 mutation 

PB MNC
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had not been growing in the in-vitro mediums. In the next step, cDNA of CyN patient 6 

should be used. Two different samples were included. The first sample originated from 

CD34+ cells that had been cultured in stem cell CD34+ expansion cocktail + G-CSF + 

FCS for 1.5 months before RNA was isolated and transcribed into cDNA. The second 

sample originated from PM MNCs. As a tiny percentage of RUNX1 mutation was 

expected, the use of a restriction enzyme should help to increase the amount of mutant 

allele. Thus, the detection limit of Sanger sequencing should be reached. In this process, 

the RUNX1 cDNA allele was amplified by PCR, and then the product was incubated with 

the restriction enzyme. Having cut the wild-type RUNX1 alleles, the entire mutant alleles 

were selectively amplified by PCR and could then be sent for Sanger sequencing (Chapter 

3.3.5).  

 
Figure  29: Sanger sequencing results of RUNX1 mutation in CyN patient 6.  
The figures show the detection of the RUNX1 mutation in PM MNCs of CyN patient 6. The left figure 
contains the results obtained without BtsCI digestion. As indicated on the right, an elevated signal could be 
detected after the digestion step with BtsCI was included in the sample preparation. PCR, polymerase chain 
reaction; wt, wild type.  

The results of Sanger sequencing showed that with the use of the BtsCI restriction enzyme 

an enrichment of the mutant RUNX1 allele was observed in the sample of CyN patient 6 

(Figure 29). In contrast, the sample that was not digested did not show mutant allele 

enrichment in Sanger sequencing. In this way, the presence of the RUNX1 mutant clone 

was confirmed in both samples, in the cultured ones as well as in the PM MNCs. 

 

4.2.2  CSF3R mutation in CyN patient 4 

Having proven that there is a risk for myeloid transformation in CyN, 18 further patients 

were screened for CSF3R and RUNX1 mutations by deep sequencing. In this process, this 

research group pointed out CyN patient 4, aged 15.4 years at that time, who had also 

10% RUNX1 p.Asp171Asn

RUNX1 Sanger Sequencing after BtsCI digestion of  
wtRUNX1 allele followed by PCR

RUNX1 p.Asp171Asn

RUNX1 Sanger sequencing without BtsCI digestion
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acquired the CSF3R mutation. This result was measured by deep sequencing in a BM 

MNC sample that has been obtained two years before the time of measurement. This 

sample showed a mutant allele frequency of 2.6%. To get further information, the same 

sample was sent for ultra-deep sequencing. Here, 2.2% of the cells showed the p.Gln734* 

mutation, 0.81% the p.Tyr752*, and the p.Gln749* mutation was represented in an 

amount of 1% with this method. These are all mutations of the G-CSFR gene and, 

furthermore, associated with AML (Figure 27). The latest PB MNC sample, obtained two 

years later, was examined with exome sequencing and showed an increased amount of 

9% p.Gln749* mutated cells. In contrast to CyN patient 6, CyN patient 4 had not 

developed MDS or AML to date (Klimiankou et al., 2016). To get a confirming result of 

this data by an alternative method, Sanger sequencing was again performed (Figures 30 

and 31).  

         

Figure  30: Time line of CSF3R mutation acquisition in CyN patient 4.  
The black boxes contain the experiments and results obtained prior to this work, while the green box 
contains the step that is part of this thesis. BM MNC, bone marrow mononuclear cells; CyN, cyclic 
neutropenia; deep seq, deep sequencing; PB MNC, peripheral blood mononuclear cells (data were kindly 
provided by M. Klimiankou). 

The mutated cell fraction in CyN patient 4 was below 10% in exome sequencing, and thus 

below the detection limit of Sanger sequencing. Different methods were tested to increase 

the level of mutant alleles. The use of a restriction enzyme could not show a signal 

elevation despite optimization of the protocol. Furthermore, COLD-PCR was established. 

This model is based on the optimization of the denaturation temperature in PCR, which 

barely divides mutant double-strands but not the wild-type double strands. In this way, 

only the mutant strands will be amplified. However, the use of this technique did not lead 

to success. Finally, molecular cloning was result-producing. For this purpose, 25 clones 
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of the latest PB MNC sample that was used for exome sequencing earlier were prepared 

(according to the protocol in Chapter 3.3.6) and sent for Sanger sequencing.  

 
Figure  31: Sanger sequencing results of CSF3R mutation in CyN 
patient 4.  
This Sanger sequencing result shows the presence of the CSF3R p.Gln749* 
mutation in 11 of 25 PB MNC clones. PB MNC, peripheral blood mononuclear 
cell.  

Eleven of the 25 sequenced clones were positive for the p.Gln749* mutation after very 

clear signals in Sanger sequencing (Figure 31). Consequently, the mutant allele frequency 

has increased to 44%. As a result, the second CyN patient with an acquired CSF3R 

mutation was detected.  
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5  Discussion 

5.1 Oscillating granule protein gene expression in CyN patient 1 

5.1.1 Discussion of data collection and experimental setup 

In the first project, the gene expression of an index CyN patient was compared to six 

healthy donors and four further CyN patients. It was imperative that the samples included 

in this study undergo a selection to guarantee high comparability. Thus, the selection 

criteria for the CyN patients were very specific: the diagnosis of CyN had to be 

documented. A BM sample obtained at either the ANC minimum or the maximum had to 

be available, which indicates that the ANC course of these patients had to be documented 

over a period of time. For reasons of comparability, only CD33+ or CD34+38+ cells could 

be used. However, this selection had the disadvantage that the examined cohort was far 

to small for being able to draw a significant conclusion. Due to this lack of samples, 

except for CyN patient 1, only two patients could be included per granulocyte cycle time 

point (ANC maximum and minimum, respectively). Under the concept of this study, at 

least three patients should have been worked with per comparison group. In addition, only 

in the case of CyN patient 1 the corresponding samples of ANC maximum and minimum 

could be used. It would have been favorable to have both samples (ANC maximum and 

minimum) for each CyN patient.  

Consequently, bias due to individual expression variabilities between those two time 

points could not be excluded. However, it was assumed that the same mechanisms of 

granulocyte number regulation (ANC maximum vs. minimum) exist in the HSCs of each 

CyN patient and are active permanently, independently of the patient’s conditions at the 

time points of the study. Therefore, based on this assumption, the comparison of cells 

from different patient cycles was considered possible. 

A positive aspect of the study is that every result obtained by qPCR was measured in 

triplicate. As shown in the various bar graphs, the standard deviation in most of the 

measurements is tolerably small so that measurement errors could be minimized. 

Moreover, the comparison of two different methods, namely microarray and qPCR, 

confirmed the results independently.  An additional positive aspect worth mentioning is 
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that each group of comparison, CyN patient 1, the four other CyN patients (CyN patients 

2, 3, 4 and 5) and the healthy donors, was set in relation to the others. This experimental 

setup allowed statements about the direct ratio between those groups.  

 

5.1.2 Basic findings about cycling genes in CyN patient 1 

The analysis of the granule protein genes and NAMPT expression of CyN patient 1  in 

comparison to healthy donors (Chapter 4.1.2.2) showed that CyN patient 1 differs clearly 

from the healthy ones. The detailed view of each divergent gene will be the subject of the 

subsequent chapter. In this context, basic perceptions about the tested gene expression in 

CyN patient 1 as well as the correlation of the patient’s gene oscillation with the ANC 

cycle time will be discussed.  

First, in this index patient, granule protein genes and NAMPT appeared to be coordinately 

expressed, as nine out of ten tested genes showed the same pattern. This confirms the 

hypothesis of Graubert et al. (1993) and Berliner et al. (1995) who described a tightly 

controlled and synchronized expression of secondary granule proteins and defensin. In 

addition to the known dependency on maturation level of granulopoiesis, granule protein 

gene expression also seems to depend on the timing of the ANC cycle (Graubert et al., 

1993; Berliner et al., 1995). Accordingly, not only the gene expression in CyN patient 1 

but also in the four other CyN patients oscillated in the opposite direction to the ANC 

(Figures 13 and 17). At the myelopoiesis level, this means that myelopoiesis is inhibited 

at the ANC peak and, conversely, an induction of myelopoiesis occurs at the ANC nadir. 

In other words, the elevation of ANC in CyN could lead to its subsequent drop. These 

observations made a negative feedback loop of neutrophil stimulation conceivable. In 

1966, healthy individuals with oscillating neutrophil counts were already described. In 

this context, a negative feedback regulation of neutrophil production was first mentioned 

(Morley, 1966). Moreover, in 1998, Haurie et al. have set up the thesis of a negative 

feedback loop regulation of neutrophils in view of the same principle confirmed in 

erythropoiesis and thrombopoiesis. They especially focused on G-CSF, which is 

produced inversely to neutrophil counts and is thus highly expressed at the ANC 

minimum and vice versa (Haurie et al., 1998). G-CSF is known to induce granule protein 
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genes so that a connection could be expected between the expression of those genes and 

the cycling ANC (Nakajima & Ihle, 2001).  

Additionally, gel electrophoresis results of CyN patient 1 (Figure 13) showed that three 

genes (MMP8, SLPI and NAMPT) were expressed in CD33+ cells but not in CD34+38+ 

cells. This could support the hypothesis that granule protein genes and NAMPT 

expression increase in the course of neutrophil maturation.  

 

5.1.3 C/EBPe mutation correlated with cycling genes in CyN patient 1 

This chapter discusses the phenomenon of the unique presence of oscillating granule and 

NAMPT proteins in CyN patient 1. Therefore, the focus must once again be placed on 

the gene expression of CyN patient 1 compared to healthy donors (Chapter 4.1.2.2). The 

integrated view of WTA qPCR and gel electrophoresis data pointed out three groups of 

genes that needed to be separated from each other (Table 25). First, there was the group 

of four genes (CRISP3, LCN2, OLFM4 and TCN1) that all showed a strongly decreased 

expression at the ANC maximum of CyN patient 1 compared to healthy donors in both 

cell lineages and, accordingly, had no PCR product in gel electrophoresis. This indicates 

that these genes are downregulated at the ANC maximum of CyN patient 1 at the different 

maturation levels of granulopoiesis. In contrast, there was another group of genes 

(MMP8, SLPI and NAMPT) that also had a decreased expression at the ANC maximum 

compared to healthy donors but showed an elevated expression in more matured CD33+ 

cells compared to CD34+38+ cells. Thus, a product was visible at the ANC peak in CD33+ 

cells but not in CD34+38+ cells. Finally, the third group contained two genes (DEFA4 and 

ELANE) that indeed showed a downregulated expression at the ANC maximum of CyN 

patient 1 compared to healthy donors but still had a product in gel electrophoresis in both 

cell lineages. Interestingly, the genes of group one and two belong to the secondary 

granule protein genes and are known to modify the myeloid differentiation in case of 

NAMPT, while DEFA4 and ELANE, belonging to group three, are primary granule protein 

genes (Yang-Feng et al., 1991; Faurschou & Borregaard, 2003; Skokowa et al., 2009; 

Kobayashi, 2015).   
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On the other hand, it was apparent, that the other four CyN patients did not show these 

obvious oscillating amplitudes in the granule protein gene and NAMPT expression 

(Chapter 4.1.2.3). Here we could only see a minimally downregulated expression at the 

ANC maximum compared to the minimum in three genes, ELANE, DEFA4 and OLFM4. 

Table 25: Simplified WTA qPCR and gel electrophoresis results of Figure 13. 

Genes WTA qPCR gene expression at 
the ANC MAX vs. HD 

Gel electrophoresis product in 
the ANC MAX samples Comment 

  CD33+ cells CD34+38+ cells CD33+ cells CD34+38+ cells   

CRISP3 ↓↓↓ ↓↓↓ ⎼ ⎼  

LCN2 ↓↓↓ ↓↓↓ ⎼ ⎼   

OLFM4 ↓ ↓ ⎼ ⎼ 
 

TCN1 ↓↓↓ ↓↓ ⎼ ⎼   

MMP8 ↓ ↓↓↓ + ⎼   

SLPI ↓ ↓ + ⎼   

NAMPT ↓↓ ↓↓↓ + ⎼   

DEFA4 ↓ ↓↓↓ + +	   

ELANE ↓ ↓ + +	  
      

WTA qPCR and gel electrophoresis results of nine genes (listed in Figure 13) in CyN patient 1. The gene 
expression, as well as the results in agarose gel, are indicated for both cell lineages, CD33+ and CD34+38+ 

cells. The data were being simplified so that three different patterns of gene expression and the 
corresponding protein product were remarkable. The first group of genes is indicated in red, the second 
group in orange and the third group in blue. The arrows symbolize the intensity of downregulated 
expression at the ANC maximum of CyN patient 1 compared to HD. One arrow corresponds to low 
downregulation, while two arrows correspond to a middle and three arrows to a high downregulation. In 
case of the gel electrophoresis results, the plus sign indicates an existing product, while the minus sign 
indicates that there was no product in the gel. ANC, absolute neutrophil count; diff., differentiation; HD, 
healthy donor; qPCR, real-time quantitative polymerase chain reaction; vs., versus; WTA, whole 
transcriptome amplification. 

The integration of the gene expression of CyN patient 1 into the classification of primary 

and secondary granule proteins leads back to the C/EBPe mutation of CyN patient 1, 

which was considered as a possible explanation for the unique phenomenon of cycling 

granule protein genes and NAMPT in this patient.  

To summarize the findings concerning C/EBPe, it was confirmed that C/EBPe is 

expressed in CyN patient 1, but in a great surplus of the short and probable mutated 

isoform. It was also concluded that in CyN patient 1, C/EBPe expression is elevated at 

the cycle nadir compared to the peak. Considering other CyN patients, a similar C/EBPe 

Secondary 
granule 
protein gene 

Primary 
granule 
protein gene 

Myeloid diff. 
modifying 
protein 
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expression to healthy donors could be detected independently of the isoform. However, a 

slightly oscillating C/EBPe expression could also be seen in those patients between the 

ANC maximum and minimum. 

Interestingly, C/EBPe expression is induced by G-CSF (Nakajima & Ihle, 2001). As 

already discussed, G-CSF levels in CyN patients depend on the ANC cycle in the form 

of a negative feedback loop. At the neutrophilic stage, the G-CSF level is decreased, while 

it is increased in the neutropenic phase (Kiyoshi Watari et al., 1989; Foley et al., 2006). 

Consequently, at the maximum of ANC, G-CSF levels are decreased in CyN patients, 

which induces a downregulation of  C/EBPe (Figure 32). Against this background, an 

oscillation of the expression of C/EBPe or secondary granule protein genes could be 

explained in CyN patients.  

However, CyN patients 1, 2, 3, 4 and 5 were all treated with G-CSF at the time the samples 

were obtained. So, due to unphysiologically high G-CSF levels, an increased C/EBPe 

expression over the time cycle was expected. Looking at the four CyN patients (CyN 

patients 2, 3, 4 and 5), a slightly oscillating pattern of C/EBPe expression was detected, 

which, however, was comparable to healthy donors (Figures 21, 24 and 26). The moderate 

level of up- and downregulation of C/EBPe expression that could nevertheless be 

measured in those four CyN patients, could be attributed to the additional specific G-CSF 

oscillation of the CyN patients, fluctuating between <30 pg/ml at the ANC maximum and 

up to 165 pg/ml at the ANC minimum in untreated patients (Kiyoshi Watari et al., 1989). 

In consequence of the almost steady C/EBPe expression, the secondary granule protein 

gene expression in the four CyN patients was possibly comparable to healthy donors or 

showed a discreetly cycling pattern in some genes.  

CyN patient 1 has the heterozygous C/EBPe p.Leu155Met mutation (Chapter 4.1.3). 

Homozygous mutations in C/EBPe, in general, are known to provoke a lack of neutrophil 

secondary granule proteins (Lekstrom-Himes et al., 1999). However, the effect of the rare 

heterozygous SNP C/EBPe p.Leu155Met in CyN patient 1 can only be speculated. 

Referring to the research on this SNP in the ExAC database, a damaging effect of the 

heterozygous C/EBPe p.Leu155Met mutation seems unlikely. However, according to 

PolyPhen-2 and SIFT, this SNP is said to be damaging and deleterious (Chapter 4.1.3). 

This work has demonstrated changes in the C/EBPe isoforms in CyN patient 1. Thereby 
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one can imagine a potentially damaging effect of the heterozygous mutation in creating a 

new start codon leading to an isoform that is likely to have the same dominant-negative 

effect as the C/EBPe isoform 14 (Chapter 4.1.3). In other words, since CyN patient 1 has 

the heterozygous mutation in C/EBPe, the mutant protein must act in a dominant-negative 

manner to inhibit the wild-type protein.  

 
Figure  32: Influence of ANC on G-CSF level and C/EBPe expression. 
The consequences of a neutropenic phase in CyN patients are indicated on the left side, 
while the neutrophilic state with its influences in CyN patients is indicated on the right 
side. ANC, absolute neutrophil count; G-CSF, granulocyte-colony stimulating factor; 
MAX, maximum; MIN, minimum. 

 

5.2  Discussion of pathomechanism in general CyN  

5.2.1  Role of ELANE as a cycling gene in CyN patients 

As already discussed, the granule protein gene expression in the four CyN patients (CyN 

patients 2, 3, 4 and 5) did not show the same obvious oscillating trend that was detected 

in CyN patient 1. Only the three genes DEFA4, ELANE and OLFM4 had a cycling pattern 

(Figures 15 and 17). OLFM4 is known to be expressed heterogeneously in healthy 

individuals depending for example, on the maturation level of neutrophils. This 

complicates speculations about its influence on the cycling ANC (Clemmensen et al., 

2012). However, since ELANE is the causative gene for CyN, it has been of particular 

interest (Horwitz et al., 1999). The hypothesis of a negative feedback loop inducing the 

cycling ANC was already mentioned (Chapter 5.1.2). Knowing that the majority of 
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granule protein genes oscillate only in CyN patient 1, this phenomenon can probably be 

attributed to influences of the C/EBPe mutation or, rather, other individual variables 

(Chapter 5.1.3). However, the fact that ELANE was also cycling in the four additional 

CyN patients brings the assumption that the ELANE mutation might be predominantly 

involved in the ANC oscillations. This observation had already been reported by 

Klimenkova et al. (2015), who identified cycling granule protein genes as possible 

regulators of oscillating myeloid cells. To confirm this observation, it would have been 

desirable to examine sample pairs (ANC maximum and minimum) of each CyN patient, 

instead of comparing the two cycle time points of different patients. Furthermore, it would 

have been interesting to see these oscillations also in CD33+ myeloid cell populations. 

Next, measurements of ELANE expression in additional CyN patients may further prove 

whether a cycling pattern is detectable in every CyN patient and thus is an integral part 

of the disease’s pathomechanism. 

 

5.2.2 Regeneration of neutrophil production at the ANC nadir  

Next, a closer look shall be taken at those three cycling genes (DEFA4, ELANE and 

OLFM4) in the additional four examined CyN patients. For each of these genes, it was 

seen that the expression at the ANC maximum resembled that of healthy donors, while 

an elevated expression at the ANC minimum was detectable compared to healthy donors. 

In other words, CyN patients appear to have stable, physiological expression of the 

primary granule protein genes DEFA4 and ELANE, as well as OLFM4 at the ANC peak, 

while their expression is boosted at the ANC nadir. Consequently, despite low ANC 

counts, the ANC minimum does not appear to be a time point of cycle at which 

granulopoiesis is deficient, but rather the point at which neutrophil production is 

stimulated. DEFA4 and ELANE, being primary granule protein genes, are thus expressed 

in early neutrophil progenitors. Knowing that they are highly expressed at the ANC 

minimum in CyN patients compared to healthy donors underlines that the starting point 

of boosted granulopoiesis takes place at the nadir of ANC. Interestingly, comparable 

results for DEFA4, ELANE and OLFM4 could be seen in CyN patient 1, with the 

expression at the ANC maximum more or less at the level of healthy donors and the 

expression at the ANC minimum higher than in healthy donors. As a result, the 
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phenomenon of enhanced early expressed neutrophil granule protein genes at the nadir of 

ANC could be reinforced in each examined CyN patient. 

 

5.2.3  Biological difference of SCN and CyN in neutrophil production  

At this point, a view of the biological difference between CyN and SCN becomes obvious. 

While the ANC is consistently low in SCN patients, one can conclude that those patients 

cannot produce enough neutrophils with the G-CSF level they naturally have without 

additional substitution. In contrast, CyN patients indeed have deficient mechanisms to 

produce a constant sufficient neutrophil count. However, in the case of low ANC, 

emergency pathways are active and lead to a strong recovery of neutrophil production. 

 

5.3. Cooperativity of CSF3R and RUNX1 mutations in CyN 

5.3.1 CSF3R and RUNX1 mutations in SCN 

As presented by Skokowa et al. in 2014, CSF3R mutations play an important role in the 

leukemogenesis of SCN. Interestingly, 80% of all AML/SCN patients harbor CSF3R 

mutations, making them an essential driver of MDS and AML development. However, it 

only leads to malignant transformation if other genetic defects contribute, with the 

RUNX1 mutation being the most frequent example. Thus, the CSF3R mutation was 

suggested as the initial driver of MDS/AML, favoring cell growth and the acquisition of 

the crucial leukemic driver, the RUNX1 mutation. This cooperativity appears to be 

pathognomic for MDS/AML development in SCN (Skokowa et al., 2014). 

 

5.3.2 CSF3R and RUNX1 mutations in CyN 

Until 2016, it was a common knowledge that CyN patients do not acquire CSF3R 

mutations (Zeidler et al., 2009). Then, Klimiankou et al. (2016) identified the first two 

patients (CyN patients 4 and 6) harboring this preleukemic mutation in CSF3R (Chapter 

4.2). CyN patient 4, same as her sister, has the ELANE mutation, p.Val190_Phe199del, 

that was found in both phenotypes, SCN and CyN. This mutation was inherited from her 



  76 

Discussion 

father. CyN patient 6 has the sporadic p.Ala233Pro and the p.Val235TrpfsX5 mutations 

that were previously documented only in SCN cases. Clinically, both patients were 

specific for CyN so that bias due to masked SCN could be excluded (Klimiankou et al., 

2016). This led to the assumption that the acquisition of CSF3R mutations might be 

correlated with ELANE mutations associated with SCN. This would imply, that any 

patient harboring an ELANE mutation related to SCN should be screened for CSF3R 

mutations as a precaution, regardless of whether the appropriate patient has the SCN or 

CyN phenotype. To date, a third CyN patient with an acquired CSF3R mutation was 

found. Consequently, the importance of regular screening procedures for CyN patients, 

in general, becomes even more apparent.  

 

5.3.3 G-CSF dose dependence of CSF3R mutation 

Daily treatment with G-CSF could raise the suspicion that the constant high level of 

influence and stimulation of HSCs of SCN and CyN patients with G-CSF might induce 

the acquisition of CSF3R mutations. Interestingly, G-CSF does not likely facilitate the 

occurrence of CSF3R mutations in SCN. The time of the first AML/SCN case was well 

before the introduction of G-CSF treatment (Skokowa et al., 2014; Gilman et al., 1970).  

While the median G-CSF dose for CyN patients registered in the European section of 

SCNIR averages at 2.6 µg/kg per day, CyN patient 4 is treated with very low doses, 

namely 1.5 µg/kg per day. Whereas, CyN patient 6 receives comparatively high doses of 

7.5 µg/kg per day. Despite the controversial data, the possibility of a G-CSF-induced risk 

of malignancy as a function of the treatment dose should be considered (Klimiankou et 

al., 2016).  

 

 5.4 Perspectives in CyN treatment 

In addition to the known ELANE mutations, there are still many open questions about the 

cycling phenomenon of neutrophils in CyN patients (Grenda et al., 2007). The ultimate 

understanding of all modifiers and variables that induce these oscillations is indispensable 
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for an adequate adjustment of therapy. The actual treatment, based on the daily 

application of G-CSF, might be fraught with risk of malignant mutations, such as the 

acquisition of CSF3R and RUNX1 mutations (Klimiankou et al., 2016). Thus, alternative 

ways to increase the ANC at the neutropenic stage are brought into focus.  

In this context, vitamin B3 has gained importance. Vitamin B3, also called nicotinamide, 

is known to be converted by NAMPT into nicotinamide adenine dinucleotide (NAD+). 

NAD+, on the other hand, leads to the induction of G-CSF-triggered granulocyte 

differentiation and thus induces steady-state and stress-induced granulopoiesis. In vitro 

and in vivo studies proved elevated neutrophil granulocyte counts under vitamin B3 

treatment (Skokowa et al., 2009). To get further information about the influence of G-

CSF treatment on the acquisition of leukemic mutations, further studies are required; 

comparing G-CSF treated SCN and CyN patients to vitamin B3 treated patients would be 

interesting. This therapeutic approach is still in its trial phase. However, if this treatment 

is successful, G-CSF therapy could be replaced, or at least reduced, potentially resulting 

in the reduction of pre-leukemic cell clones.  
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6  Summary 

6.1  Summary (English version) 

CyN is a rare hematopoietic disorder characterized by an oscillating count of neutrophils 

ranging from less than 200 neutrophils per µl at the cycle nadir to a maximum of 2000 

neutrophils per µl at the cycle peak in an average 21-day rhythm. At the nadir of the ANC 

cycle, the patients consequently suffer from multiple bacterial and fungal infections. As 

a subtype of SCN, which shows a constant low ANC, both phenotypes are known to be 

associated with mutations in ELANE. However, the pathomechanism leading to the 

typical ANC cycling in CyN is unclear.  

This work focuses on the probable influences and regulatory mechanisms that could 

contribute to this cycling phenomenon. A microarray run performed with an index CyN 

patient represented the starting point of experiments. This microarray showed cycling 

patterns of granule protein genes and NAMPT expressions inverse to the ANC course. To 

confirm these findings, the index patient’s data were verified by using qPCR. 

Additionally, four further CyN patients and six healthy donors served as comparison 

groups. While the cycling character in nine out of ten examined genes was confirmed in 

the index CyN patient, only three genes were cycling only slightly in the other CyN 

patients, among them ELANE. This inversely cycling ELANE expression, as compared to 

the ANC oscillations in all examined CyN patients, contributed to the hypothesis of a 

negative feedback regulation of neutrophil maturation. Moreover, as a reason for the 

difference in expression of the index patient to the others, the index patient’s additionally 

inherited C/EBPe mutation was discussed. This mutation could lead to the inhibition of 

secondary granule proteins, thus contributing, besides other variables, to the unique 

protein expression and the neutropenic situation in this patient.  

As another differentiating criterion to SCN, CyN was always described as benign and not 

to be associated with MDS/AML. However, in 2016, the author’s research group 

identified the first two CyN patients harboring the preleukemic CSF3R mutation by deep, 

ultradeep, and exome sequencing. One of these patients additionally acquired the RUNX1 
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mutation and was diagnosed with AML. With this knowledge, a prophylactic screening 

of CyN patients becomes particularly important. 

   

6.2  Summary (German version) 

Die zyklische Neutropenie ist eine seltene Erkrankung aus der Gruppe der angeborenen 

Neutropenien und charakterisiert durch den oszillierenden Verlauf von neutrophilen 

Granulozyten. Dabei schwankt deren Zahl in einem durchschnittlich 21-tägigen 

Rhythmus zwischen <200 pro µl und maximalen Werten von etwa 2000 pro µl. In der 

neutropenischen Phase dieses Zyklus leiden die Patienten an diversen bakteriellen 

Infekten und Pilzerkrankungen. Dem gegenüber steht die schwere kongenitale 

Neutropenie mit einer durchgängig niedrigen Anzahl an Neutrophilen. Interessanterweise 

sind beide Phänotypen auf Mutationen im gleichen Gen ELANE zurückzuführen. Es ist 

bisher jedoch noch völlig unklar, welche Variablen letztlich zu dem typisch oszillierenden 

Neutrophilenmuster im Rahmen der zyklischen Neutropenie beitragen und damit den 

entscheidenden Unterschied zur schweren kongenitalen Neutropenie definieren.  

Um dieser Frage auf den Grund zu gehen, wurden im ersten Teil der Arbeit Microarray-

Daten einer Indexpatientin mit zyklischer Neutropenie untersucht. Diese zeigten einige 

neutrophile Granulaproteingene, deren Expression sich zyklisch verhielt, jedoch dem 

absoluten Neutrophilenwert im Blut entgegengesetzt war. Basierend auf dieser 

Erkenntnis wurde die Hypothese aufgestellt, dass ein negativer 

Rückkopplungsmechanismus die Granulopoese reguliert. Dementsprechend erwarteten 

wir, dass die Neutrophilenproduktion und damit die Proteingenexpression am Tiefpunkt 

des Neutrophilenzyklus hochreguliert und am Neutrophilenpeak entsprechend 

herabgesenkt sei. Nachdem die Microarray-Daten der Indexpatientin mittels qPCR in 

neun von zehn untersuchten Genen bestätigt werden konnten, dienten im weiteren 

Versuchsaufbau vier zusätzliche Patienten, sowie sechs gesunde Probanden als 

Vergleichsgruppen. Entgegen unserer Erwartungen zeigten die anderen Patienten 

hingegen lediglich eine leicht zyklische Tendenz in der Expression von drei der zehn 

untersuchten Genen, eines darunter ELANE. Dessen Expression verlief in allen Patienten 
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antizyklisch zum Neutrophilenwert und stützte damit die Hypothese eines negativen 

Rückkopplungsmechanismus der Granulopoese. Eine Bestätigung der antizyklischen 

Expression des ELANE Genes in weiteren Patienten mit zyklischer Neutropenie könnte 

zukünftig zu einem besseren Verständnis der Neutrophilenoszillation und damit des 

Pathomechanismus der Erkrankung beitragen.  

Als mögliche Ursache für das abweichende Expressionsverhalten in der Indexpatientin 

im Vergleich zu den anderen Patienten, wurde deren vererbte C/EBPe Mutation als 

Ursache diskutiert. Die Mutation könnte zu einer Hemmung der sekundären 

Granulaproteine führen, hierdurch zu deren einzigartigen Expressionsmuster beitragen 

und letztendlich die Ausprägung der Neutropenie der Patientin verstärken.   

Neben den Neutrophilenzahlen diente bisher der gutartige Verlauf der zyklischen 

Neutropenie als klares Abgrenzungsmerkmal zur schweren kongenitalen Neutropenie, 

die mit einem erhöhten Risiko für MDS/AML assoziiert ist. Im Jahr 2016 hingegen 

identifizierte die Arbeitsgruppe der Autorin die ersten beiden Patientinnen mit zyklischer 

Neutropenie, bei welchen die präleukämische CSF3R Mutation auftrat. Eine dieser 

Patientinnen wies zusätzlich die RUNX1 Mutation auf und entwickelte im Verlauf eine 

AML. Im Zuge dieser Arbeit konnte mittels Sanger-Sequenzierung der betroffenen 

Allele, die Existenz der durch Deep-, Ultradeep- und Exome-Sequenzierung ermittelten 

Mutationen bestätigt werden. Durch diese neue Erkenntnis kommt dem prophylaktischen 

Screening von an zyklischer Neutropenie erkrankter Patienten ein besonderer Stellenwert 

zu. 
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