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Abstract
Stroke is the third most common cause of death and the main cause of acquired

adult disability in developed countries. The most common consequence of stroke
is motor impairment, which becomes chronic in 56% of stroke survivors. However,
reorganization of brain networks can occur in response to sensory input, expe-
rience and learning. Although several post-stroke neurorehabilitation techniques
have been investigated, there is no standardized therapy for severely impaired
chronic stroke patients except for brain-machine interfaces (BMIs), which have
shown positive results but still fail to elicit full motor function restoration. This
work presents novel neural interfaces that aim to improve the existing rehabilita-
tion therapies and to offer an alternative treatment to severely paralyzed stroke
patients. First, we propose a novel myoelectric interface (MI) that is calibrated
with electromyographic (EMG) data from the healthy limb, mirrored and used as
a reference model for the paretic arm in order to reshape the pathological muscle
synergy organization of stroke patients. A 4-session motor training with this mir-
ror MI sufficed to induce motor learning in 10 healthy participants, suggesting that
it might be a potential tool for the correction of maladaptive muscle activations
and by extension, for the subsequent motor rehabilitation after stroke. Second,
although significant positive results have been achieved with non-invasive BMIs
based on electroencephalographic (EEG) activity, the functional motor recovery
induced by such therapies still remains modest mainly due to poor decoding per-
formance. Here, we explored the possibility of using novel algorithms to increase
the performance of multi-class EEG-decoding of movements from the same limb,
showing encouraging but still limited results. Finally, we propose integrating the
novel mirror MI into a cortico-muscular hybrid BMI that combines brain and resid-
ual muscle activity to increase decoding accuracy and hence, allow a more natural
and dexterous control of the interface, facilitating neuroplasticity and motor re-
covery. The system was validated in a healthy participant and a stroke patient,
setting the premise for its application in a clinical setup.

Keywords: Chronic stroke, motor rehabilitation, neural interfaces, MI, BMI,
hBMI.
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1. Synopsis

1.1 Introduction

1.1.1 Motor impairment as a consequence of stroke

Stroke is the third most common cause of death and the main cause of acquired
adult disability in developed countries [1]. The World Health Organization (WHO)
states that the incidence of stroke worldwide is around 200 cases per 100.000 in-
habitants/year, although this value varies across countries [2]. A stroke occurs
when the blood flow to the brain is interrupted because a blood vessel is blocked
by a clot (ischemic) or because it bursts (hemorrhagic). As a result, there is a
cutoff of nutrients and oxygen to the brain that can cause the death of brain cells.

The effects of stroke are various and depend mainly on the location and severity
of the damage. Among the survivors, the most common consequence of stroke is
motor impairment due to an injury in the motor cortex, premotor cortex, motor
tracts or related tracks in the cerebellum and cerebrum. It can be explained as
a loss or limitation of movement control that typically affects the extremities on
the side opposite to the injured hemisphere. From all stroke survivors showing no
active upper limb motion at hospital admission, 14% show complete recovery, 30%

show partial recovery and 56% show no recovery, but the grand majority retain
sensory function [3].

Spasticity, which is increased, involuntary and uncontrolled muscle tone that
especially affects flexor muscles, represents one of the handicaps that stroke pa-
tients need to overcome in order to produce the desired movements. Hence, most
impaired muscles can usually elicit, if any, very weak or uncontrolled (spastic)

1
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electromyographic (EMG) activity. In addition, movement dysfunction in chronic
(minimum of six months after stroke) stroke patients is often characterized by
abnormal patterns of muscle activations or muscle synergies [4–6], which may re-
sult from maladaptive compensatory strategies and are thought to be encoded
at the spinal or brainstem level [7–10]. After stroke, cortical damage interferes
with the flow of descending signals to the spinal cord, which leads to the creation
of abnormal patterns of muscle activations. It has been found that the preser-
vation of muscle synergies has a positive correlation with hand functionality in
severely paralyzed patients with intact sensorimotor cortex and only subcortical
lesions [5]. It follows that this abnormal movement coordination might consti-
tute the primary source of movement dysfunction (spasticity and muscle weakness
being secondary [11]) and that the recovery of normal synergies may be to some
extent, linked to the improvement of the upper limb motor function. Therefore,
voluntary muscle contraction and relaxation in chronic severely impaired patients
is either not feasible or accompanied by abnormal muscle synergies. These factors
lead to a reduction in the muscle use, to muscle atrophy and to abnormal attitudes
of the limbs such as the “claw hand” or the “foot drop”.

Since most of the chronic stroke patients are not able to perform activities of
daily living by themselves, they require the assistance of a caregiver or a family
member. This affects the quality of life of patients and their families and their
integration in society, and entails a serious global health-care problem due to the
high costs associated to life-time care. Therefore, several stroke rehabilitation
strategies for the upper limb have been investigated that attempt to achieve the
recovery of the lost motor function by inducing neuroplastic changes.

1.1.2 Neuroplasticity and neurorehabilitation

Neuroplasticity refers to the ability of the brain and other parts of the central
nervous system (CNS) to reorganize themselves and encompasses both structural
and functional changes. Among others, well-known Hebbian mechanisms, initi-
ated by coincident activation of presynaptic and postsynaptic neurons, might play
a fundamental role in generating activity-dependent plasticity. More specifically,
neuroplastic changes involve the alteration and/or creation of new synapses, the

2 Synopsis
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sprouting of dendrites and the production of neurochemicals, which are necessary
to create compensatory circuits that allow regaining the lost motor function [12].
Motor recovery is associated with the recruitment of intact cortical motor struc-
tures adjacent to the injury, which generate commands to the compromised muscles
that are relevant for the task [13]. This implies certain redundancy in regions of the
motor cortex and the uncovering of pre-existing cortico-cortical connections [14].
It has been demonstrated that this reorganization of brain networks occurs in re-
sponse to sensory input, experience and learning [15]. Hence, most of the motor
therapies designed for rehabilitation are based on motor learning principles.

Physical therapy is the traditionally accepted method of rehabilitation for
chronic stroke patients. Methods such as mirror therapy and constraint induced
movement therapy have also been extensively used to complement traditional phys-
iotherapy. However, there is evidence suggesting that the more repetitive, intensive
and engaging the practice the greater the induced plastic changes and the longer
the retention and generalization of the learned skills [13,16]. As a result, in the last
decade post stroke neurorehabilitation therapies have turned the focus towards the
use of robots that enable repetitive and intensive training, requiring less time and
effort from clinicians.

Many upper-limb robots (e.g., the MIT-MANUS, the ARM-GUIDE, the MIME,
the InMotion Shoulder-Elbow Robot) have been tested in randomized clinical tri-
als [17–22]. The most commonly used paradigms to control such devices have been:
passive, in which the robot moves the paretic arm of the patient; active-assistive,
in which the patient has to actively try to perform the movement while the robot
provides the patient with “assistance as needed”; active-resistive, in which the robot
exerts resistance to the patient′s movement; and bilateral, in which the healthy
arm motion is mirrored to move the paretic arm in a symmetric fashion.

Although the results from these studies suggest that robot-assisted therapies
may improve motor control [22,23], there is not consistent evidence of the positive
effect on functional abilities (i.e. ability to perform a movement or activity) and
neither of the long-term effects of such therapies [24]. Moreover, most severely
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affected stroke patients are not eligible for these rehabilitation therapies, as they
lack residual movement of the upper-limb. These limitations opened the way
for the development of alternative neurorehabilitation therapies based on residual
EMG activity, such as myoelectric interfaces (MIs) or brain activity, such as brain-
machine interfaces (BMIs).

1.1.3 Neural interfaces for upper-limb motor rehabilitation
after stroke

Recovery of the motor function after stroke requires reorganization of the motor
structures of the CNS through neuroplastic changes. These changes can be ar-
tificially facilitated by using three stimulation paradigms: repetitive stimulation,
paired stimulation, and closed-loop stimulation [25]. Neural interfaces are optimal
tools to implement a closed-loop stimulation paradigm that associates volition and
action, exciting the motor network and reinforcing its synaptic connections. More
specifically, neural interfaces such as MIs or BMIs record, decode and translate
muscle or brain activity into an effector action. For instance, the information de-
coded from the muscle or brain activity while the patients are trying to move their
paretic limb, can be translated into control commands to a robotic or prosthetic
device that moves their paralyzed limb, exciting their afferent pathways. There-
fore, these neural interfaces establish a consistent timing of the afferent feedback
relative to the efferent electrophysiological signals, inducing Hebbian plasticity and
by extension, eliciting motor function restoration. Additionally, unlike many other
therapies that require residual movement in the affected arm, one of the advan-
tages of MIs and BMIs is that they can be used by completely paralyzed patients
or by patients with decodable residual EMG that is not strong enough to elicit
any movement.

Myoelectric interfaces

EMG activity has been recently proposed as an assessment tool to provide a
more objective and finer measurement of the patient′s motor function than stan-
dard clinical scales such as Fugl-Meyer [26], Wolf test [27], Action Research Arm
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Test (ARAT) [28], Motor Activity Log (MAL) [29], Ashworth test [30] and Goal
Attainment Scaling [31]. Furthermore, EMG has been extensively explored for
the control of prostheses, rehabilitation exoskeletons or functional electrical stim-
ulation systems, as it provides a direct measurement of the user′s motion intention.

Myoelectric interfaces (MIs) are systems that decode the motion intention of
patients from the electromyographic (EMG) signal of their paretic limb and send
control commands to a body actuator (e.g., wearable robot or prosthesis) attached
to their impaired limb to reproduce the decoded movement. MIs can impose a per-
sistent causal relationship between presynaptic and postsynaptic activity by timing
the visual and proprioceptive stimulation from the body actuator at one site rela-
tive to endogenous muscle activity recorded and decoded at a second site.

Among the existing control strategies, the simplest ones use threshold-based or
proportional controllers that trigger a predefined movement when the EMG activ-
ity amplitude reaches certain values. More complex myoelectric control paradigms
have been implemented by decoding the movement intention of the patient from
EMG signals with an algorithm based on classification or continuous trajectory-
decoding techniques. This however, raises the question of whether it is possible to
accurately decode the EMG activity of hemiplegic patients of any impairment level.
Previous studies reported a decoding accuracy between 36.7% and 96.1% with 4-20
movement classes using the EMG of the paretic upper limb in mild to severely im-
paired stroke patients [32–34]. Recently, in a study by Ramos-Murguialday et al.
that included 41 severe stroke patients, decodable EMG activity (accuracy >65%)
was found in 46% of the enrolled patients, even in the absence of movement of
the paretic arm [35]. These results suggest that rehabilitation techniques based
on EMG-decoding could be applicable even to a good amount of severely affected
stroke patients, who cannot benefit from many other rehabilitation techniques, in
which minimal movement of the paretic limb is necessary.

Classification techniques have been largely investigated for post-stroke reha-
bilitation showing encouraging but still limited results [32–34, 36]. On the other
hand, continuous trajectory-decoding strategies offer a more intuitive, natural and
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finer myoelectric control and thus, a better training [37–46]. However, most of
these studies are limited to healthy participants or to the simultaneous control
of up to 3 degrees of freedom (DoFs) of a cursor on a screen [44], a virtual re-
ality interface [43] or a simple wrist or shoulder exoskeleton [45]. This prevents
the training of functional movements involving proximal (shoulder and elbow) and
distal joints (wrist and fingers) of the upper limb simultaneously, which has been
demonstrated to be a potential rehabilitation strategy for stroke patients, since
the activation of the less affected proximal muscles could facilitate the activation
of the more compromised distal muscles [47].

Myoelectric training paradigms for rehabilitation aim at activating neuroplastic
mechanisms that reshape the pathological muscle activity present in most chronic
stroke patients leading to motor learning and eventually, to motor function restora-
tion. However, it could be argued that using a myoelectric decoder calibrated with
paretic EMG data (i.e. an ipsilateral myoelectric decoder), could indeed reinforce
the existence and maintenance of pathological muscle synergies (i.e. promote “bad”
neuroplasticity). Cesqui et al. [34] tackled this problem by building a model of
healthy muscle patterns from data collected on 9 healthy participants and using
it to classify the paretic EMG of stroke patients into reaching movements towards
4 different positions. Although this is the only approach designed to enhance the
recovery of healthy muscle activations, it is limited by: i) the necessity of forming a
large database of EMG activity from healthy subjects to generalize to the specific
anatomical and neurophysiological characteristics of each patient, and ii) the fact
that the decoder was confined to the classification of the EMG activity into four
discrete movements, involving only proximal joints. Therefore, the development of
a MI that can offer dexterous control of a multi-DoF body actuator while correct-
ing the pathological muscle synergy structure of stroke patients is the next step to
be taken.

Brain-machine interfaces

Brain-machine interfaces (BMIs) for stroke rehabilitation are systems that mea-
sure and decode the brain activity related to motor intention and bypass the lesion
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by translating this intention into the real movement of the patient′s paretic limb
through a body actuator. This enables patients to generate volitional movement
through the normal cortico-spinal pathways and provides them with contingent
feedback (e.g., proprioceptive and visual feedback) about their neural activations,
hence establishing a closed-loop system that promotes learning.

Brain electrophysiological activity can be recorded with non-invasive techniques
(e.g., electroencephalography (EEG), magnetoencephalography (MEG)) or inva-
sive techniques (e.g., electrocorticography (ECoG) and intracortical arrays). Non-
invasive recordings are lower cost and safer than invasive signals while the latter
are much more precise and offer higher resolution, and therefore, more dexterous
BMI control in more DoFs simultaneously.

From the first BMI study in which Birbaumer et al. [48] effectively linked
brain information acquired through EEG with functional electrical stimulation of
the muscles, several studies have explored the use of non-invasive BMIs for stroke
rehabilitation showing positive results. Ramos-Murguialday and colleagues [49]
demonstrated that contingently pairing the efferent motion intention decoded from
EEG activity with the afferent visual and proprioceptive feedback provided by the
movement of an orthosis could lead to partial motor recovery in severely impaired
chronic stroke patients. This study has been successfully replicated demonstrat-
ing the potential of non-invasive BMIs for neurorehabilitation, even in the chronic
state [50,51]. Nevertheless, although progress has been recently made in the clas-
sification of different motor tasks from EEG activity [52, 53], non-invasive BMI
performance is still far from providing natural and skilled control.

Invasive BMIs have been widely used to investigate neuroprosthetic control
and motor learning in primates. It was demonstrated that primates can achieve
skillful control of a BMI with intracortical neural activity and that this learn-
ing reshapes cortical networks producing larger scale modifications in the primate
brain [54,55]. Invasive BMIs have been recently used in human studies as assistive
technologies [56–58] and are currently being explored for rehabilitation applica-
tions, as they can offer more natural, intuitive and skillful control over more DoFs,

Synopsis 7



Andrea Sarasola Sanz

therefore boosting the potential of traditional non-invasive BMIs to elicit motor
rehabilitation.

Hybrid brain-machine interfaces as optimized tools for motor recovery

Although even severely impaired patients can achieve skillful control of BMI
systems [49, 50, 59, 60], big improvements are still needed in order to evoke clear
positive functional outcomes in stroke rehabilitation. The inclusion of additional
non-physiological information such as kinematics, may improve BMI performance.
However, kinematic signals are not a direct link to the nervous system and might
be less efficient producing functional neuroplasticity in a rehabilitative framework.
On the other hand, EMG can offer valuable additional information of the motion
intention of patients, as demonstrated in MI studies. However, factors such as
muscle fatigue or the absence of residual EMG in patients with high severity levels
hinder the rehabilitative potential of MIs.

Combining BMI technology with supplementary information from EMG ac-
tivity of the muscles has led to the formulation of optimized BMIs referred to
as cortico-muscular hybrid BMIs (hBMIs). Cortico-muscular hBMIs integrate
brain and muscle activity as input control signals achieving higher decoding ac-
curacy [61–66] over more DoFs [67] than BMIs or MIs alone and thus, allowing a
richer and smoother control that involves central and peripheral structures of the
nervous system. Therefore, hBMIs build on the advantages and alleviate the limi-
tations of BMIs and MIs, boosting the rehabilitation potential of neural interfaces.

The method to integrate brain and EMG signals in the control of a body ac-
tuator varies among applications and is not trivial, as patients could tend to rely
only on one type of signal to control the interface if the integration formula was
not appropriately defined. Little research has been done about the way both in-
put signals should be processed (e.g., sequentially, simultaneously) and fused (e.g.,
Bayesian algorithms, equally balanced weights to both inputs), and further inves-
tigation is needed to find optimal hybrid control strategies for stroke rehabilitation.
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1.2 Objectives

This thesis is divided into 6 studies that present the work done with different
neural interfaces for stroke motor rehabilitation. The main objective of this thesis
was to develop a myoelectric decoding algorithm that could be integrated within a
closed-loop rehabilitation system to control a multi-DoF exoskeleton and eventu-
ally, within a cortico-muscular hBMI that would act at both central and peripheral
levels of the nervous system to elicit motor recovery in severely impaired chronic
stroke patients. More specifically, the objectives of each study are the following:

1. Study 1: EMG-based multi-joint kinematics decoding for robot-aided reha-
bilitation therapies [68].

In this study surface EMG activity from the upper limb of 8 healthy partici-
pants was recorded during functional tasks performed with a 7-DoF exoskele-
ton. As there were no previous studies that could continuously map EMG
activity into the speed and direction of a multiple-DoF wearable exoskele-
ton during complex tasks, the objective of this work was to compare the
offline performance of two linear algorithms that could offer such multi-DoF
myoelectric control with acceptable accuracy.

2. Study 2: Design and effectiveness evaluation of mirror myoelectric interfaces:
a novel method to restore movement in hemiplegic patients [69].

Most studies involving MIs for rehabilitation overlooked the presence of
pathological synergies in chronic stroke patients. Thus, the objective of this
study was to propose and validate a novel myoelectric decoding method that
would focus on the restoration of healthy and natural muscle synergies. To
this end, EMG activity was recorded from both arms in 8 healthy partici-
pants and 2 chronic stroke patients and the knowledge learned from Study 1
was used. We evaluated if a decoder trained with the EMG and kinematics
of one arm could be mirrored and used as a reference model for the oppo-
site arm to learn the encoded healthy EMG-to-kinematics mapping during
multiple tasks, which could eventually reshape the abnormal muscle synergy
structure in stroke patients.
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3. Study 3: Motor learning with a multi-degree-of-freedom mirror myoelectric
interface during functional task training.

The objective of this study was twofold:

First, to integrate the mirror myoelectric decoder of Study 2 within a rehabil-
itation platform and validate its use with 10 healthy participants controlling
a 7-DoF exoskeleton in real-time during functional tasks.

Second, to investigate whether training with this mirror myoelectric interface
during 4 sessions could elicit EMG activity adaptation and motor learning
in healthy participants, establishing the premise for its clinical test in stroke
patients.

4. Study 4: An EEG-based brain-machine interface to control a 7-degrees of
freedom exoskeleton for stroke rehabilitation [70].

In this study, an EEG-decoding method proven to induce significant motor
recovery [49] was integrated in the rehabilitation platform of Studies 1-3 and
its use was validated with 6 subjects and a chronic stroke patient, who con-
trolled the BMI in real-time during a functional task, involving 7 DOFs of the
arm, wrist and hand. This was a step forward towards the implementation
of an hBMI for rehabilitation.

5. Study 5: Classification of different reaching movements from the same limb
using EEG [53].

The objective of this work was to improve the state of the art EEG-decoding
algorithms by classifying brain activity from healthy participants into differ-
ent reaching movements of the same limb, and thus increasing the decoding
accuracy and control possibilities of existing BMIs.

6. Study 6: A Hybrid Brain-Machine Interface based on EEG and EMG activity
for the Motor Rehabilitation of Stroke Patients [71].

The existing non-invasive cortico-muscular hBMIs are limited to one DoF
or to offline tests. This work combined the work done in Studies 1-4 to
implement and validate the first cortico-muscular hBMI that could be used
to control a 7-DoF exoskeleton in real-time during a functional task involving
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proximal and distal joints of the upper-limb. As a proof of concept, we
aimed to demonstrate that one healthy participant and one chronic severely
paralyzed stroke patient could successfully control this hBMI.

1.3 Results and Discussion

The results of the studies of this thesis are organized into three main topics and
summarized here. Their implication in the motor rehabilitation of stroke patients
is also discussed.

1.3.1 Myoelectric interfaces

It has recently been demonstrated that residual EMG of stroke patients, even in
a severe impairment level, can be decoded with acceptable (>65%) accuracy [35].
This has stressed the potential of MIs for the rehabilitation of this population and
has led to the investigation of several EMG-decoding methods and training proto-
cols. However, there are several factors that have prevented them from becoming
an established clinical or “at home” rehabilitation method.

A significant effort has been invested in the development of EMG-decoding
algorithms that enable natural and skillful control of MIs. Most studies have used
algorithms that decode EMG signals into different movement classes [32,72]. How-
ever, these approaches fail to offer natural and smooth control of a trajectory and
to generalize to untrained movements. On the other hand, algorithms that map
EMG activity into a continuous velocity profile could lead to more intuitive and
natural control of the interface. However, the existing continuous decoding algo-
rithms are limited to the offline decoding of simple movements involving only a
few DoFs of the arm, wrist or hand [42, 73–78]. Another limiting factor in the
use of MIs is the non-stationary nature of EMG signals. Adaptive algorithms or
recalibration protocols have been proposed to address this problem.

In Study 1 [68], we evaluated the offline performance of two algorithms (the
Kalman filter and the ridge regression) for the continuous decoding of EMG ac-
tivity. We tested these algorithms for the simultaneous decoding of multiple DoFs
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(upper arm, forearm, wrist and hand) of the upper limb during functional tasks,
which has not been achieved before. Moreover, we implemented various decoding
schemes (within-session, across-session and recalibrated across-session) to analyze
how susceptible they are to non-stationarities across-days. The results show that
although the Kalman filter has been more widely used in MI applications, the
ridge regression outperformed the former and could successfully be used for the
simultaneous control of 7 DoFs (proximal and distal) of the upper limb. The reg-
ularization implicit in the ridge regression algorithm can prevent overfitting and
makes the model more robust to across-session non-stationarities. Furthermore,
the results show that including a short recalibration phase at the beginning of
each session could offer a much more accurate EMG-decoding and control. Nev-
ertheless, the benefits and disadvantages of including a daily re-calibration phase
should be carefully considered in order to choose the most suitable approach for
each particular scenario.

Rehabilitation therapies based on MIs aim to activate neuroplastic mechanisms
that can correct compensatory muscle activation patterns developed after stroke,
resulting in functional improvements. However, Cesqui et al. [34] argued that all
existing MIs were calibrated with EMG from the paretic arm and that using this
as a reference model during motor training could in fact reinforce the pathological
muscle activity. Hence, Cesqui et al. proposed building a model of healthy muscle
activity from a pool of healthy participants that could be utilized to enhance the
correction of abnormal muscle synergies in stroke patients. Although this was a
promising approach, it had two main limitations: data from a large number of
subjects was needed to generalize to the neurophysiological characteristics of each
patient, and the decoding was restricted to the classification of four movements
involving proximal joints only.

In Study 2 [71], we proposed a novel myoelectric decoding method that could
reshape the abnormal muscle synergy structure after stroke. Since previous evi-
dence [79, 80] indicates that there are no substantial inter-limb differences in the
synergy structure of healthy individuals, we proposed and tested a myoelectric
interface calibrated with EMG activity of one arm, which was mirrored to be
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used as a reference model for the opposite arm. The proposed mirror decoder
showed performance values comparable or even higher to those of ipsilateral de-
coders tested across sessions (calibrated and tested in the same arm in different
days). This demonstrates that the inter-limb variability of the EMG patterns is
not big enough to produce a significant drop in the decoding performance and so,
confirms the validity of our mirror decoder approach.

Additionally, we evaluated the generalization ability of the ridge regression
algorithm to untrained tasks, which is a relevant factor for rehabilitation thera-
pies during which, the trained tasks and range of motion vary according to the
evolution of the patient. We compared a task-specific decoder, trained with a
specific task only, and a general decoder trained with various tasks. The results
show lower decoding errors for the general decoder than the task-specific decoder,
especially when tested in untrained tasks. Therefore, a general decoder would
perform better when decoding new tasks or different ranges of motion and would
avoid the need of switching between decoders depending on the task being trained.

In Study 3 [69], the mirror decoder was tested in a real-time control paradigm
with healthy participants proving that they could successfully control the mirror
MI. More relevant is that a 4-day training with the mirror MI induced motor learn-
ing, reflected in significantly less time spent to reach the target and higher number
of accomplished trials over sessions. Although long-term changes in the muscle ac-
tivation patterns of healthy subjects could not be demonstrated, this study shows
evidence that the users adapted their EMG activity to achieve smoother and more
skillful control of the exoskeleton. This finding is very relevant for post-stroke
rehabilitation, as reorganization of the motor networks occurs in response to sen-
sory input, experience and learning [15], implying that a longer training with this
mirror MI might induce the reorganization of brain and lower structures of the
CNS, eventually reshaping the pathological muscle synergy structure and leading
to motor recovery.

Another relevant finding of Study 3 is the degrading control of the distal DoFs
observed along the experiment. Conversely, there was an improvement in the prox-
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imal DoFs control over the sessions. One reason that could explain this difference
is that the decoding accuracy for the distal DoFs is in general poorer than for the
proximal DoFs, as individual finger movements are finer and more difficult to dis-
criminate from surface EMG than proximal joint movements [68]. In addition, the
task completion condition was based only on the proximal DoF position, although
participants were not told about it. They could control and receive feedback on
the distal DoFs but they were never informed whether they reached the target
position on those DoFs (i.e., they never got a reward related to the distal DoFs).
This lack of information might have impeded the occurrence of a learning process
based on reinforcement learning (i.e., on reward), which would have been reflected
in a more accurate control of the distal DoFs over time. This supports the im-
portance of receiving not only contingent sensory feedback but also reward (e.g.,
beep indicating task completion) of the DoFs being controlled for motor control
and learning [49,81,82].

1.3.2 Brain-machine interfaces

Despite the limitations of EEG technology and the moderated performance of
EEG-decoding methods, several studies [49–51, 83] have demonstrated the poten-
tial of EEG-based BMIs as a tool for post-stroke rehabilitation. In Study 4 [70],
we implemented and tested an EEG-based decoding algorithm, whose effectiveness
for eliciting partial recovery was already proved, within a closed-loop rehabilita-
tion platform with a 7-DoF exoskeleton. Eight healthy participants and a chronic
stroke patient could successfully control the BMI in real-time by modulating their
sensorimotor rhythms (SMR rhythms) from 2-3 motor cortex channels, during a
functional task involving proximal and distal segments of the upper limb. The
validated system constituted a potential rehabilitation platform, as it established
a contingent link between motion intention and movement of the paralyzed limb,
it provided a suitable setup for the training of functional tasks including the in-
teraction with objects, and it opened the doors for the integration of additional
neurophysiological signals in the control of the interface.

Neural populations modulate movements of the arm in different directions [84],
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which can be decoded from brain activity with invasive techniques [57, 85]. The
EEG-based BMI of Study 4 allowed the binary control of the interface, triggering
or stopping a pre-programmed movement including several DoFs. Although this
approach established a contingent connection between motion volition and action
activating neuroplastic mechanisms that lead to motor recovery, we believed that
discriminating different movements within the same limb would allow more intu-
itive and natural control of the neural interface. Upper limb and especially hand
movement decoding from EEG activity is still challenging mainly due to poor
signal to noise ratio and spatial resolution. Recent studies have classified EEG
activity into up to 3 movement classes of the same limb [52,86–88], although they
are still far from providing natural and skillful control. In Study 5 [53], we went a
step further and proved that the Filter Bank Common Spatial Pattern (FBCSP)
algorithm could classify EEG activity into 6 different movements (reaching to-
wards four different targets, rest and backwards movement from the targets) with
a mean decoding accuracy above 50%. Mean performance raises to 69% and 62%

when the number of classes is reduced to 3 and 4, respectively.

Motor execution of reaching movements of the same limb activates regions
with very close representation on the motor cortex [89]. This spatial proximity,
EEG volume conducting effects, limited spatial resolution and signal to noise ratio
and electrical and neurophysiological artefacts hinders classification of such move-
ments. Furthermore, this problem gets magnified when attempting to classify
reaching movements towards close-by targets, as our results suggest [53]. Adding
more features such as motor related cortical potentials, using longer time windows
for the decoding, having higher density of electrodes over the motor cortex or
including other neurophysiological signal in the control (i.e., hybrid BMIs) could
improve these results. Nevertheless, this study sets the basis of multi-directional
EEG-decoding for BMI rehabilitation applications.

1.3.3 Hybrid brain-machine interfaces

Non-invasive BMIs have been proven to induce partial motor recovery post-stroke.
However, the limitations of non-invasive recording techniques and the fact that
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BMIs directly target brain networks only, prevent them from becoming fully ef-
fective tools for motor rehabilitation. On the other hand, decoding of arm, wrist
and individual fingers movements from EMG activity is feasible [36,68,72,90] and
has been utilized in MIs for the control of body actuators [91]. However, accurate
decoding of EMG activity in stroke patients is challenging and might not be pos-
sible in some severely paralyzed cases. Therefore, cortico-muscular hBMIs that
merge brain and residual EMG in the control of the interface, have recently arisen
as optimized systems that overcome some of the limitations of BMIs and MIs alone.

The MI and the BMI validated throughout Studies 1-4 were integrated into
a cortico-muscular hBMI tested in Study 6 [71]. This hBMI required the ac-
tive participation of both central (brain) and peripheral (muscles) structures in a
biologically-inspired hierarchical control, which mimicked the natural motor com-
mand flow. One healthy subject and one stroke patient received contingent visual
and proprioceptive feedback about their EEG and EMG activity in the form of
velocity modulation of an exoskeleton during functional task training.

No evidence of motor learning was found due to the short length of the train-
ing in Study 6. However, both the healthy participant and the stroke patient
were able to modulate their SMR rhythms and their EMG activity to successfully
operate the hBMI. The stroke patient presented less stable desynchronization of
SMR rhythms during the trial time than the healthy subject, which can be caused
by periods of attention deficit often occurring in this population. Initially, longer
latency periods prior to the movement onset and smaller amount of movement
time during the trial periods were observed in the patient. However, the patient
achieved better control of the hBMI over the course of the session. Similarly, EMG
decoding values were poorer in the stroke patient than in the healthy participant,
due to the existence of muscle weakness and abnormal activation patterns. How-
ever, both were able to modulate their EMG activity to bring the exoskeleton to
the target position in 3-5 attempts.

The control of the hBMI in Study 6 followed the natural human motor com-
mand flow. In healthy individuals, motor commands are initiated at the brain,
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travelling through the spinal cord to reach the peripheral nerves and eventually the
muscles. Thus, it seems natural to think that an effective hBMI control strategy
should constantly require an initial command from the brain to later on transfer
the control to the muscles. In this way, the active participation of both the brain
and the muscles is necessary, which prevents patients from remaining passive and
tackles various problems generally present after stroke, such as muscle weakness or
maladaptive muscle activation patterns. Moreover, stroke patients without resid-
ual EMG could initially train with the BMI only, until they recovered enough EMG
to be decoded and introduced in the control of the hBMI. Despite the encouraging
results, more research is needed to evaluate whether this type of hierarchical hBMI
control is adequate not only to achieve higher decoding accuracy and more dex-
terous and smoother control of the exoskeleton, but also to activate neuroplastic
mechanisms and induce a joint brain and muscle rehabilitation process.

1.4 Conclusions

The conclusions and implications for stroke rehabilitation that can be drawn from
the presented studies are the following:

• A simple linear algorithm such as the ridge regression can offer accurate
continuous EMG control of 7-DoF trajectories with an arm, wrist and hand
exoskeleton. This allows the training of functional tasks involving simul-
taneous and coordinated proximal and distal DoF movements of the upper
limb in a synergistic fashion, which might facilitate the translation of the
re-learned motor skills to activities of daily living [5, 6].

• A myoelectric decoder based on the ridge regression algorithm and calibrated
with various tasks would perform well if new (untrained) tasks or movements
with wider ranges of motion were included in the therapy, as patients′ severity
stage varied in the course of the treatment.

• A mirror myoelectric decoder calibrated with data from the healthy arm
could be used as a reference model for the paretic arm to reshape the patho-
logical muscle synergy structure in stroke patients, as there are no substantial
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inter-limb differences in the muscle synergy organization of healthy individ-
uals [79,80] and the decoding performance of mirror decoders (across arms)
does not differ significantly from ipsilateral (within arm) decoders.

• Training of functional tasks with a mirror myoelectric interface that estab-
lishes a contingent link between the EMG activity of the arm and the move-
ment of a multi-DoF upper limb exoskeleton can induce motor learning in
healthy individuals. If the healthy population can adapt their muscle activa-
tions and learn the imposed EMG-to-kinematics mapping, this myoelectric
interface might be a potential tool for the correction of the pathological syn-
ergy structure and eventually, for the motor rehabilitation of stroke patients.

• Simple EEG-decoding algorithms such as linear discriminant analysis, proven
to induce partial motor recovery in BMI training therapies [49], can be used
to control more complex body actuators involving simultaneous and coordi-
nated movements of several DoFs of the upper limb.

• Three, four and six-class EEG-decoding of reaching movements of the same
limb is possible with the Filter Bank Common Spatial Pattern algorithm,
achieving mean performances of 50%, 62% and 69% respectively in healthy
participants. Although this is a step further in the multi-class decoding of
EEG signals, higher accuracy is necessary to allow more natural and skillful
control of body actuators and thus, boost the potential of BMI therapies for
post-stroke rehabilitation.

• Cortico-muscular hybrid BMIs are systems designed to build on the advan-
tages and alleviate the limitations of BMIs and MIs alone, resulting in more
robust interfaces that aim to boost motor recovery by acting at both cen-
tral (brain) and peripheral (muscle) structures. Successful operation of a
multi-DoF exoskeleton with an hBMI that follows a top-down hierarchical
control flow (i.e., continuous EEG gating EMG control) has been demon-
strated. Nevertheless, the advantages of hBMIs over regular BMIs or MIs
should be directly compared and the effects of hBMI training in the motor
rehabilitation of stroke should be investigated.
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1.5 Outlook

Neural interfaces have provided us with the possibility to interact directly with
the human nervous system and to understand some neuroplastic mechanisms that
play a key role in motor learning and recovery. There is evidence that closed-loop
systems such as BMIs or MIs that establish a contingent link between motion
volition decoded from neurophysiological signals and afferent visual and proprio-
ceptive feedback can induce partial motor recovery in severely impaired chronic
stroke patients. However, neural interfaces have not yet been fully effective for
motor rehabilitation due to several factors.

The huge heterogeneity of brain lesions due to stroke and the subsequent mo-
tor disorders hampers the use of standard neural interfaces and the generalization
of the learned knowledge to every other patient. Moreover, the fundamental sin-
gularity of cortical patterns in each individual, derives in diverse neural activity
among patients performing the same task [92–95]. Up to know this issue has been
mitigated by customizing neural interfaces and therapies for the specific anatomi-
cal and neurophysiological characteristics of each patient with daily re-calibrations
or adaptive algorithms, which are sometimes time-consuming processes. Reducing
this calibration process to the minimum in order to achieve optimized subject-
dependent training strategies or finding new methods effective for various patients
would facilitate the standardized use of neural interfaces for stroke rehabilitation.

Another limitation of neural interfaces is the decoding accuracy that can be
achieved with non-invasive techniques. EEG-decoding algorithms still fail to accu-
rately decode several DoFs of the arm due to low signal to noise ratio and spatial
resolution constraints. Invasive techniques can offer higher decoding performance
over several DoFs of the upper limb [57, 85] but acceptance of invasive BMIs is
still low, due to the risks associated with the surgical intervention. On the other
hand, myoelectric decoders using surface EMG signals have demonstrated accept-
able performance for the decoding of arm, wrist and individual finger movements,
especially when employing high-density electrode arrays [36, 42, 69, 74, 96]. How-
ever, the correction of the pathological synergy organization of stroke patients
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has been ignored and accurate decoding of coordinated and simultaneous move-
ments of several DoFs still remains a challenge, due to signal non-stationarities and
the across-session variability of factors such as electrode position and arm posture.
Cortico-muscular hBMIs might offer an alternative to this issue by combining brain
and residual EMG activity in the control of the interface and so, improving the
decoding accuracy and allowing more natural and dexterous control. Nevertheless,
hBMIs are still in an early stage of development and further clinical research is
needed to evaluate their influence in motor rehabilitation.

Providing patients with somatosensory afferent feedback related to their neural
activations is a key component of neural interfaces for motor control and learning,
as most stroke patients preserve their afferent pathways intact [97]. Furthermore,
this feedback should be contingent to the generated motion volition to elicit mo-
tor recovery [49]. Stimulation of central or peripheral structures of the nervous
system through electrical or magnetic stimulation could also be a reactivation
method to excite neural networks and facilitate plasticity, boosting the effects of
BMI therapies and accelerating the recovery process [98,99]. Nevertheless, a better
understanding of the behavior of the neural networks associated with sensorimo-
tor integration and neuroplastic processes would allow the design of more effective
stimulation and rehabilitation paradigms.

Finally, most of the current studies in stroke patients apply their proposed
rehabilitation paradigm during periods shorter than a month. While this might
be long enough to demonstrate the potential of the proposed method, the limited
duration of the treatment often prevents them from achieving relevant and long-
term effects on the motor recovery process of their patients. Longer practices
that would adapt the therapy according to the patient′s evolution may lead to
significant functional changes and have a real impact on the patient′s quality of
life.
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2. Chapter 2: EMG-based
multi-joint kinematics decoding for
robot-aided rehabilitation therapies

This manuscript has been published as [68].

2.1 Abstract

In recent years, a significant effort has been invested in the development of kinematics-
decoding models from electromyographic (EMG) signals to achieve more natural
control interfaces for rehabilitation therapies. However, the development of a dex-
terous EMG-based control interface including multiple degrees of freedom (DOFs)
of the upper limb still remains a challenge. Another persistent issue in surface
myoelectric control is the non-stationarity of EMG signals across sessions. In this
work, the decoding of 7 distal and proximal DOFs’ kinematics during coordinated
upper-arm, fore-arm and hand movements was performed. The influence of the
EMG non-stationarity was tested by training a continuous EMG decoder in three
different scenarios. Moreover, the generalization characteristics of two algorithms
(ridge regression and Kalman filter) were compared in the aforementioned sce-
narios. Eight healthy participants underwent EMG and kinematics recordings
while performing three functional tasks. We demonstrated that ridge regression
significantly outperformed the Kalman filter, indicating a superior generalization
ability. Furthermore, we proved that the performance drop caused by the session-
to-session non-stationarities could be significantly mitigated by including a short
re-calibration phase. Although further tests should be performed, these prelim-
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inary findings constitute a step forward towards the non-invasive control of the
next generation of upper limb rehabilitation robotics.

2.2 Introduction

In recent years, several studies have been carried out in the field of myoelectric
control for applications such as teleoperation of robots, prosthesis for amputees
and rehabilitation of patients with paralyzed limbs [32, 35, 42, 72–78]. However,
the development of dexterous and natural myoelectric control interfaces with mul-
tiple degrees of freedom still remains a challenge.

Most of the studies in this field have emphasized the use of EMG signals for
the classification of different movement classes [32,72]. However, these approaches
have limited success when natural and smooth control of the trajectory is neces-
sary. A decoder that maps EMG signals into a continuous profile of upper limb
kinematics could overcome this limitation. Studies developing such decoders have
already been performed, although most of them are limited to simple movements
of either distal [42, 73, 75] or proximal [76–78] degrees of freedom (DOFs) of the
upper limb. To the best of our knowledge, the only study that reported decoding
of several distal and proximal DOFs of the upper limb [74] was not focused on reha-
bilitation approaches. Moreover, in that study target-specific and object-specific
models were built for the decoding of reach-to-grasp movements, which led to high
error values.

A ubiquitous issue in the field of EMG control interfaces is the non-stationarity
of EMG signals that occurs across multiple sessions. Factors such as sweat, fa-
tigue, varying upper limb configurations, electrode shift and impedance changes,
could change the EMG signal distribution. This change is referred to as covariate
shift and could notably affect the performance of the decoder.

In this study we aimed to decode the motion of seven DOFs (distal and proxi-
mal) of the upper limb from surface EMG signals, while participants performed dif-
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ferent functional tasks of increasing complexity. Three different decoding schemes
were implemented: within-session decoder (WS), session-to-session decoder (SS)
and re-calibrated session-to-session decoder (RSS). As re-calibration was shown to
improve decoding performance (e.g. by classifier adaptation [100]), a re-calibration
phase using data from the beginning of the subsequent session was used to com-
pensate for the negative effects of the session-to-session covariate shift. The per-
formance of these three decoders was compared in order to assess the influence
of the EMG non-stationarity on the decoding accuracy. Furthermore, this anal-
ysis was performed using two different algorithms, namely, ridge regression [101]
and Kalman filter (KF) [102]. Up to this point, Kalman filter has been the most
widely used algorithm for these applications [73,76,77]. However, the ridge regres-
sion technique is often underestimated and has been included in very few recent
studies [42] for the decoding of EMG signals. Nevertheless, we hypothesized that,
due to regularization (i.e. penalizing model complexity by imposing a constraint
to the coefficients to prevent overfitting), the ridge regression technique could have
a better generalization ability than the KF (i.e. predict kinematics under variable
conditions more accurately).

2.3 Methods

2.3.1 Experimental Protocol

Eight healthy participants (3 females, 5 males, age 20-28, all right-handed) par-
ticipated in this study. None of them had any neuromuscular disorder and all of
them gave written consent to the procedures as approved by the ethics committee
of the Faculty of Medicine of the University of Tübingen, Germany. Participants
performed three different tasks while sitting and wearing a 7-DOF exoskeleton
(Tecnalia, San Sebastian, Spain) on their right upper limb placed over a 70 × 50

cm mat. The exoskeleton allowed movements in 7 DOFs (see Fig. 2.1): displace-
ment and rotation of the forearm in a 2D horizontal plane parallel to the mat’s
plane (3 proximal DOFs: (i) px position; (ii) py position; (iii) θxy orientation an-
gle), pronation and supination of the wrist (1 distal DOF: (iv) φwrist angle) flexion
and extension of the thumb, index and the group of middle, ring and pinky fingers
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measured as the angle of rotation with respect to the metacarpophalangeal joints
(3 distal DOFs: (v) δthumb; (vi) ψindex; (vii) α3fingers).

All the participants underwent two sessions that were separated by 2-9 days.
During these sessions they were instructed, by means of imperative auditory cues,
to perform three different tasks that always started and ended at a predefined rest
position.

1) The first task consisted of reaching movements (hand relaxed) towards one
of the four different targets around the mat.

2) In the second task, participants were asked to reach and point to two different
targets with his/her index finger, moving towards the first target from the
rest position and towards the second target immediately after reaching the
first target.

3) In the third task, three objects of different shapes and sizes were located in
one of the four target positions. Participants had to reach a target, grab the
object placed in that position, move it to another target and then come back
to the rest position. It should be noted that each of the objects required a
different grasp type, which were: pinch grip, key grasp and cylindrical grasp.

Each of the tasks was divided in 5 blocks, which consisted of a set of 10-40
trials depending on the task type (40 for task 1; 10 for task 2; 22 for task 3).
Resting intervals of 1-5 minutes were included between blocks in order to avoid
fatigue. Participants were asked to perform the movements at their own pace and
were given 4 seconds to complete task 1 trials and 6 seconds for task 2 and task 3
trials. This makes a total of approximately 30 min (task 1), 7 min (task 2) and 15
min (task 3) of recorded data per participant in each of the two sessions. It should
be pointed out that, although participants performed the trials at their own pace,
the aforementioned trial durations (task 1: 4 sec; task 2 and task 3: 6 sec) implied
that they had to keep a rapid pace in order to accomplish the trials within the
given time limits.
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Figure 2.1: (Left): Workspace where the experiments were performed. Pos1, Pos2,
Pos3 and Pos4 correspond to the four targets and Rest was the predefined rest
position where all the trials started and ended. (Right): Schematic of the 7 DOFs
of the exoskeleton: (1) px; (2) py; (3) θxy; (4) φwrist; (5) δthumb; (6) ψindex; (7)
α3fingers

2.3.2 Data Collection

Surface EMG activity from 10 disposable bipolar electrodes (Myotronics-Noromed,
Tukwila, WA, USA) over the upper-arm and fore-arm was acquired at 2500Hz using
a bipolar amplifier (Brain Products GmbH, Gilching, Germany). The electrodes
were placed over: 1) the abductor pollicis longus, 2) the extensor carpi ulnaris,
3) the extensor digitorium, 4) the flexor carpi radialis, palmaris longus and flexor
carpi ulnaris, 5) the pronator teres, 6) the long head of biceps, 7) the external head
of triceps, 8) the anterior portion of deltoid, 9) the lateral portion of deltoid and 10)
the posterior portion of deltoid over the teres minor and infraespinatus muscles.
The ground monopolar electrode was placed over the right clavicle. Kinematic
activity of the above mentioned DOFs was recorded at 18Hz and synchronized
offline with the EMG signals. The kinematics of the fore-arm DOFs, namely, px,
py and θxy, were collected with a camera attached to the bottom of the exoskele-
ton, which tracked the movements by using an optical symbol recognition system
(more details in [103]). The prono-supination angle φwrist was captured from a
motor encoder and the fingers’ angles δthumb, ψindex and α3fingers were acquired
using potentiometers. Nevertheless, all the kinematic data was acquired with the
same software and at the same frequency. Therefore, only the synchronization of
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the kinematics with the EMG signal had to be done. For this purpose, the EMG
recording was initiated first. At the beginning of each block, along with the ini-
tiation of the kinematics recordings, a step signal was generated and fed into the
EMG recording so that both signals could be synchronized offline.

2.3.3 Data processing

EMG data was filtered using a 4th order Butterworth band-pass filter (10-500 Hz)
to remove movement artifacts and high frequency noise. In addition, a 50 Hz comb
filter was utilized in order to remove power line noise and its harmonics. Kine-
matic data was low-pass filtered with a 4th order Butterworth filter (fc = 1.5 Hz).
The derivation of the positions and angles with respect to time was computed in
order to obtain linear and angular velocity profiles, which were the variables to
be predicted from EMG signals. The kinematic signal predicted from the decoder
was filtered using a moving average with a backwards time window of 180 ms to
improve movement smoothness towards online robot control.

Seven time-domain features typically used for myoelectric interfaces (Mean
of absolute values, Variance, Waveform Length, Root-mean-square error, Willison
Amplitude (WAMP), Zero crossing (ZC) and Slope sign changes (SSC)) [104] were
extracted from each of the 10 EMG channels in 200 ms windows, resulting in a
70-element EMG feature set (7 features x 10 channels). The thresholds for the
last three features were empirically selected and fixed to the same values for all
the participants (THWAMP = 30 µV; THZC = 30 µV; THSSC = 700 µV). Each
of the EMG features of the generated set was normalized to zero mean and unit
variance before being fed to the decoder. The testing data was normalized using
the mean and standard deviation computed on the training dataset.

2.3.4 Algorithms

1) Kalman filter
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A Kalman filter models the system by the state transition equation:

xt+1 = Atxt + wt (2.1)

Where xt is the state at time t, At is the state transition matrix and wt is
the model white noise ∼ N (0, Q).

The observations of the state are made through a measurement system which
can be represented by the following linear equation:

yt = Ctxt + vt (2.2)

Where yt is the observation or measurement at time t, xt is the state at
time t, Ct is the measurement matrix and vt is additive measurement noise
∼ N (0, R).

2) Ridge regression

The relationship between the dependent variable of length n, y ∈ <1×n,
in this case velocity, and the independent variable, a p-dimensional EMG
feature set X ∈ <pxn, is modeled as follows:

y = βTX + β0 s.t.
p∑

j=1

β2
j ≤ s (2.3)

With βT ∈ <px1 being the vector of coefficients and β0 the intercept term.
The regularization consists of constraining the sum of squared coefficients
with some value s > 0.

The solution is the one that minimizes the penalized residual sum of squares,
which is expressed as:

n∑
i=1

(yi −
p∑

j=1

xijβj)
2 + λ

p∑
j=1

β2
j (2.4)
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With λ being the regularization parameter. Since the penalized residual sum
of squares in equation 2.4 is convex, it has a unique solution given by:

βridge = (XTX + λIp)
−1XTy (2.5)

2.3.5 Decoding schemes

Three decoding schemes were implemented by using different training and testing
conditions:

• Within-session decoder (WS): This decoder was trained and tested with data
from the same session. It was implemented in order to have a metric of how
good our decoder could work. Since we collected data during two sessions, we
developed two types of decoders: one using only data from the first session S1
(WS1) and the other one only with data from the second session S2 (WS2).

• Session-to-session decoder (SS): This decoder was trained and validated in
the first session S1 and tested in the next session S2. A performance drop
due to the session-to-session transfer was expected when comparing its per-
formance to the one of the WS decoder.

• Re-calibrated session-to-session decoder (RSS): This decoder was similar to
the SS decoder explained above with the difference that a few minutes of data
were collected at the beginning of S2 in order to re-calibrate the decoder.
This was useful in order to check if this re-calibration phase could compensate
for the expected performance drop due to the session-to-session transfer.

2.3.6 Cross-validation

All three of the decoding schemes were implemented for each task and DOF sepa-
rately. The data from each session, task and DOF was divided into 5 blocks, each
of them containing trials of all the trajectory types. These five blocks were divided
into the training and test sets as follows:

For the WS decoding scheme, a 5-fold cross-validation (CV) was applied using
only data from either S1 (for WS1) or S2 (for WS2). The values obtained from
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Figure 2.2: Correlation coefficient (left) and normalized root mean squared error
(right) for each combination of decoding scheme (WS1, WS2, SS or RSS) and
algorithm (Kalman filter or ridge regression) after averaging over all subjects, tasks
and involved DOFs. The median and the 25th and 75th percentiles are shown.
Significant differences found between the decoding schemes using ridge regression
are marked with an asterisk.

the testing phase of each CV-fold were averaged to compute the reported final
performance. The SS decoding scheme, instead, consisted of a training phase with
all 5 blocks of S1 and a testing phase with all 5 blocks of S2. For the RSS decoding
scheme, all 5 blocks of S1 and the first block of S2 were included in the training set
in order to re-calibrate the decoder. The remaining 4 blocks of S2 were assigned
to the test set.

It should be mentioned that in the case of ridge regression, a nested CV was ap-
plied in all the decoding schemes because an optimum value for the regularization
parameter had to be found. In each fold of the inner CV-loop, one of the blocks
from the training set was employed as validation data in order to find the optimum
regularization parameter. A grid search of values in the range [10−7 − 107] was
utilized to find the best parameter. After this, the decoder was once again trained
with this optimized parameter and tested in the outer loop.

2.3.7 Performance evaluation

The correlation coefficient (CC) and the normalized root mean squared error
(NRMSE) were employed as performance metrics. The reported performance val-
ues for each combination of decoding scheme and algorithm were computed as the
average over the three tasks and the 8 participants. Each task’s performance was
in turn computed as the mean performance of the DOFs involved (i.e. actively
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used) in the corresponding task only.

Both for the CC and NRMSE values the following tests were applied:

Data was assumed to be normally distributed and a 2-way repeated mea-
sures Analysis of Variance (ANOVA) test with two factors (Algorithm and De-
coding Scheme) was performed. The algorithm factor was comprised of two levels:
Kalman filter and ridge regression while the decoding scheme factor consisted of
three levels: WS2, SS and RSS.

This first test was used in order to find out which algorithm performed bet-
ter overall and if that difference in performance was significant. Subsequent tests
were then limited to the best algorithm. Secondly, a one-way repeated measures
ANOVA was performed to test the effect of the decoding scheme factor only for the
best algorithm. Post-hoc pairwise comparisons of the three decoding schemes were
performed and controlled for multiple comparisons using Bonferroni correction.

For the best algorithm, a paired t-test comparing WS1 and WS2 decoding per-
formance was also carried out in order to analyze the performance stability of the
WS decoder and by extension, the reliability of session S1 and S2 data.

2.4 Results

For both metrics, the ANOVA resulted in a significant effect for both the algo-
rithm (CC: p = 10−6; NRMSE: p = 10−5) and decoding scheme (CC: p = 10−6;
NRMSE: p = 0.011) factors while the interaction turned out to be non-significant
(CC: p = 0.075; NRMSE: p = 0.070). The ridge regression algorithm performed
significantly better than the Kalman filter and thereby, the subsequent tests were
reduced to the comparison of the different decoding schemes using only ridge re-
gression.

With the factor algorithm fixed at ridge regression, the one-way ANOVA test
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Figure 2.3: Mean and standard deviation values of correlation coefficient (top)
and normalized root mean squared error (bottom) for the decoded linear or angular
velocities in each individual DOF, obtained with the WS2 (left), SS (middle) and
RSS (right) decoding schemes. DOFs 1-2 correspond to linear velocities of: (1) px,
(2) py; and DOFs 3-7 correspond to angular velocities of: (3) θxy; (4) φwrist; (5)
δthumb; (6) ψindex; (7) α3fingers.

resulted in a significant decoding scheme effect in both cases (CC: p < 10−6;
NRMSE: p = 10−5). Post-hoc Bonferroni corrected test results differed for each
metric (see Fig. 2.2). For the CC, post-hoc tests revealed significant differences be-
tween the three decoding schemes. (WS2 vs SS: p < 10−6; SS vs RSS: p = 2.1·10−4;
WS2 vs RSS: p = 3.1 · 10−5). However, for the NRMSE metric, significant differ-
ences were found for the comparisons WS2 vs SS (p = 4.5 · 10−3) and SS vs RSS
(p = 7.5 ·10−4) while the comparison WS2 vs RSS showed no significant difference
(p = 0.129).

The paired t-test comparing WS1 and WS2 decoding schemes performance
showed no significant difference for both CC (p = 0.918) and NRMSE (p = 0.859).

Additionally, for each of the three decoding schemes based on the ridge regres-
sion algorithm, the performance values (CC and NRMSE) for each of the DOFs
separately were computed (see Fig. 2.3 and values in Table 2.1). The performance
values obtained for each DOF were consistent across decoding schemes. A signif-
icantly (p = 10−6) lower CC for the distal DOFs (mean CC = 0.39) compared to
the proximal DOFs (mean CC = 0.68) can be seen. However, the NRMSE stayed
stable at a mean value of 0.077 (7.7%) for all the DOFs.
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Table 2.1: Mean and std values of cc and nrmse for each dof and decoding schemes
using only ridge regression

2.5 Discussion

In this study, multiple decoding schemes and algorithms for the continuous map-
ping of EMG signals into upper limb kinematics were tested. The analysis included
the decoding of distal and proximal DOFs during complex functional movements
involving coordinated upper-arm and fore-arm muscle activity. Kalman filter and
ridge regression techniques were compared across different decoding scenarios in
order to test their ability to overcome the EMG non-stationarity as well as the
variability in the performed movements. All these aspects are of great importance
and have a direct impact on the clinical applications of EMG decoding.

The Kalman filter model has been extensively used before for myoelectric con-
trol applications. However, simple algorithms like ridge regression are often un-
derestimated and therefore excluded from EMG decoding studies. Regularization
methods impose a constraint to the model coefficients (i.e. control how large the
coefficients are). This introduces the advantage of preventing overfitting and thus,
of having a model with good generalization characteristics. This is highly desir-
able, especially in situations in which the decoder should be able to generalize to
movements from which sufficient training data is not available. The results of the
work presented here confirm our hypothesis that ridge regression generalizes to new
EMG data better than the Kalman filter. Therefore, ridge regression constitutes
a desirable algorithm for the continuous EMG decoding of upper limb kinematics.
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Factors such as external interference, electrode shift and lift, electrode impedance
changes, muscle fatigue, sweat and varying upper-limb positions alter the EMG
signal distribution. Sources of variation like external interference can be mostly
suppressed by filtering or electromagnetic shielding techniques. However, the re-
maining sources constitute a persistent issue in clinical practice and severely affect
the performance of myoelectric decoders. In fact, we believe that in this particu-
lar study, one of the main factors affecting the performance stability could have
been the variable positioning of the EMG electrodes from session-to-session since
they were just placed within the general vicinity. A daily re-calibration phase was
proposed as a solution to alleviate the effects of such non-stationarities. The addi-
tional time of re-calibrating the decoder and the cost of recording new data at the
beginning of each session could be a concern for certain applications. Neverthe-
less, the performance comparisons between the three developed decoding schemes
showed that there was a significant improvement in performance (a 14% increase
in CC and a 8% reduction in NRMSE with respect to SS) when a re-calibration
of the decoder was carried out. Moreover, the NRMSE values of the re-calibrated
decoder were not significantly different from those achieved when training and test-
ing the decoder with data from the same session (WS2 decoder). This implies that
a re-calibration phase could reduce the error to the extent that the values would
be just as low as if the decoder was trained using a larger amount of data only
from the current session. It should also be mentioned that the calibration data
length was 5 min, 1.5 min and 3 min for each task respectively and that it took
a negligible amount of time to build the decoding model and choose the optimal
regularization parameter, as opposed to other more complex algorithms. There-
fore, the proposed approach was not very time and computationally demanding
and served to significantly raise the performance. Nonetheless, the benefits and
disadvantages of including a daily re-calibration phase should be carefully consid-
ered in order to choose the most suitable approach for each particular scenario.

The majority of recent studies in the field of myoelectric control interfaces are
constrained to the decoding of a few distal or proximal DOFs. These devices could
be employed for those cases in which impaired function of a few specific DOFs is
present. However, the ability for interfaces to control multiple DOFs of the up-
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per limb during dexterous and functional movements is necessary, especially for
patients who are undergoing rehabilitation therapies for motor impairment of an
entire extremity. Our protocol included the decoding of coordinated multi-joint
movements. While the NRMSE was stable at a very low value for all the DOFs, the
lower CC values achieved for the distal DOFs might be due to the limited number
of electrodes used for the decoding of distal DOFs. Extensors and flexor muscles
of the forearm are often more difficult to target and it is usually hard to isolate
the EMG activity from each recorded muscle. This makes the discrimination and
decoding of individual finger movements more challenging. The minimum number
of electrodes on the forearm that are necessary to attain an accurate decoding
of distal DOF movements has been extensively investigated before [?, 42, 72, 105].
From the results presented in these previous studies, it can be concluded that a
minimum of 12-16 electrodes are necessary to distinguish between multiple indi-
vidual finger and wrist movements. Therefore, future studies should be performed
with additional electrodes placed over the fore-arm in order to improve the decod-
ing accuracy of distal DOFs.

2.6 Conclusion

This study addressed important aspects for the use of myoelectric control inter-
faces in clinical practice, which were: (i) the choice of a decoding algorithm with
good generalization characteristics; (ii) the training procedure to follow in order
to develop a decoder, which is robust to non-stationarities; and (iii) the decoding
of coordinated distal and proximal DOF movements during complex functional
tasks. From the results presented here, we concluded that a simple regularized
algorithm such as ridge regression has good generalization characteristics for the
EMG-based continuous decoding of multiple DOFs of the upper limb. Moreover,
we demonstrated that by introducing a daily re-calibration phase the effects of
the session-to-session non-stationarities could be significantly mitigated. Further
studies including additional electrodes over the fore-arm should be performed in
order to more accurately discriminate individual finger movements. Nevertheless,
this pilot study is an important step towards the development of a robust myo-
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electric interface for the online control of coordinated multi-joint movements in
robot-aided rehabilitation therapies.
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3. Chapter 3: Design and
effectiveness evaluation of mirror
myoelectric interfaces: a novel
method to restore movement in
hemiplegic patients

This manuscript has been published as [69].

3.1 Abstract

The motor impairment occurring after a stroke is characterized by pathological
muscle activation patterns or synergies. However, while robot-aided myoelectric
interfaces have been proposed for stroke rehabilitation, they do not address this
issue, which might result in inefficient interventions. Here, we present a novel
paradigm that relies on the correction of the pathological muscle activity as a way
to elicit rehabilitation, even in patients with complete paralysis. Previous studies
demonstrated that there are no substantial inter-limb differences in the muscle syn-
ergy organization of healthy individuals. We propose building a subject-specific
model of muscle activity from the healthy limb and mirroring it to use it as a
learning tool for the patient to reproduce the same healthy myoelectric patterns
on the paretic limb during functional task training. Here, we aim at understand-
ing how this myoelectric model, which translates muscle activity into continuous
movements of a 7-degree of freedom upper limb exoskeleton, could transfer be-
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tween sessions, arms and tasks. The experiments with 8 healthy individuals and
2 chronic stroke patients proved the feasibility and effectiveness of such myoelec-
tric interface. We anticipate the proposed method to become an efficient strategy
for the correction of maladaptive muscle activity and the rehabilitation of stroke
patients.

3.2 Introduction

There is extensive evidence that the motor system coordinates muscle activations
through a superposition of activations of different groups of muscles as single units
(i.e. superposition of muscle synergies) that are specified at the spinal or brain-
stem level [7–9, 106]. Further investigation into the nature and characteristics of
the electromyographic (EMG) activity of stroke patients has led to the discov-
ery of abnormal patterns of muscle activations or synergies that may result from
maladaptive compensatory strategies [5,6,107]. After a stroke, cortical and/or sub-
cortical damage interferes with the flow of descending signals to the spinal cord,
which yields a disrupted recruitment of muscle synergies and so, a pathological
muscle coordination [79,80]. Furthermore, it has been found that the preservation
of muscle synergies has a positive correlation with hand functionality in severely
paralyzed patients with intact sensorimotor cortex [5]. It follows that this ab-
normal movement coordination might constitute the primary source of movement
dysfunction (spasticity and muscle weakness being secondary [11]) and that the
recovery of healthy synergies may be to some extent, linked to the improvement
of the upper limb motor function.

Physical therapy is the traditionally accepted rehabilitation method for stroke
patients. However, in recent years, robot-aided training has become one of the
most widely explored rehabilitation strategies for this type of patients. It allows
repetitive, functional, meaningful, intensive and challenging training, which has
been proven to promote neuroplasticity and motor learning [24, 108, 109]. Var-
ious control signals and strategies have been used for robot-aided rehabilitation
therapies. Some devices adapt the provided assistance level based on participantś
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interaction forces [110–112]. Others allow free movements for a fixed time and
then move the hand if the participant is not able to complete the task [20–22].
Myoelectric interfaces are often proposed in rehabilitation therapies for the con-
trol of body actuators such as wearable robots or prosthesis [74,113].

A myoelectric interface is a system that decodes the intention of the patient
from the electromyographic (EMG) activity of the paretic limb and sends the cor-
responding commands to the body actuator. This allows patients to generate voli-
tional movement through their normal cortico-spinal pathways and provides them
with feedback (e.g. proprioceptive and visual feedback), establishing a closed-loop
system that promotes learning. These systems also encourage the active partici-
pation of the patient and they can improve muscle coordination and strength and
reduce spasticity after training [114]. However, this raises the question of whether
it is possible to find decodable EMG activity in hemiplegic patients of any im-
pairment level. Some studies reported a decoding accuracy between 36.7% and
96.1% with 4-20 movement classes using the EMG of the paretic upper limb in
mild to severely impaired stroke patients [32–34]. Recently, 46% of the 41 severe
chronic stroke patients enrolled in a 1-month brain-machine interface (BMI) train-
ing study regained decodable EMG activity (accuracy >65%) [35]. Interestingly,
in some cases, decodable EMG was found even in the absence of movement of
the paretic arm. These results opened up the door of EMG-based rehabilitation
therapies to severely affected stroke patients, who cannot benefit from many other
rehabilitation techniques [115], in which residual movement of the paretic limb is
necessary.

Among the existing EMG-based control strategies, a simple approach is to trig-
ger a pre-programmed assistive movement when the EMG amplitude goes over a
threshold [116]. Other controllers provide assistive forces proportional to the EMG
amplitude of the impaired limb [114, 117, 118]. More complex myoelectric control
interfaces are based on classification techniques (i.e. mapping the EMG into pre-
defined discrete movements) or on continuous trajectory-decoding strategies (i.e.
mapping the EMG into velocity of the movement). Classification techniques have
been investigated for the post-stroke rehabilitation showing encouraging but still
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limited results [32–34, 36]. On the other hand, continuous decoding strategies
offer a more intuitive and natural myoelectric control, which allows for a richer
therapy with a wider range of trained and untrained movements, and facilitates a
less effortful and fine control, thus leading to a better training and probably by
extension, to motor recovery too [37–46]. However, up to now very few studies
used such methods to this end [43–45] and they are limited to neurologically intact
subjects or allow the simultaneous control of up to 3 degrees of freedom (DoFs) of
the upper limb through a virtual reality interface [43] or a cursor on a screen [44].
Liu et al. [45], also used an upper-limb exoskeleton to record EMG activity and
kinematics and compute the offline decoding performance. However, their system
allows the simultaneous control of 3 DoFs only (angle of the shoulder, angle of the
elbow and wrist), which limits the possibility of performing a functional training
including the hand joints. Therefore, the development of a rehabilitation system
that allows a continuous (i.e. trajectory) and reliable myoelectric control of several
proximal and distal DoFs of the upper limb simultaneously still remains a challenge.

Myoelectric interfaces for rehabilitation aim at activating neuroplastic mecha-
nisms that reshape muscle activity and lead to motor learning, and eventually to
motor function restoration. However, it could be argued that using a myoelectric
decoder calibrated with paretic EMG data (i.e. an ipsilateral myoelectric decoder),
could indeed reinforce the existence and maintenance of pathological synergies (i.e.
promote “bad” neuroplasticity). Cesqui et al. [34] tackled this problem by building
a model of healthy muscle patterns from data collected on 9 healthy participants
and using it to classify the paretic EMG of stroke patients into reaching move-
ments towards 4 different positions. Although this is the only approach designed
to enhance the recovery of healthy activations, it is limited by: i) the necessity of
forming a large database of EMG activity from healthy subjects to generalize to
the specific anatomical and neurophysiological characteristics of each patient and
ii) the fact that the decoder was confined to the classification of the EMG activity
into four discrete movements, involving only proximal joints.

Here, we propose a new upper limb rehabilitation paradigm for stroke patients
that overcomes the aforementioned limitations and puts special emphasis on the re-
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covery of healthy and natural muscle activation patterns or synergies. We present
a novel myoelectric interface that decodes the patient′s EMG into the direction
and speed of a 7-DoF upper limb exoskeleton during functional tasks. Previous
evidence [79,80] indicates that there are no substantial inter-limb differences in the
synergy structure of healthy individuals. Hence, our myoelectric decoder, which
we will refer to as the mirror myoelectric decoder, is calibrated with data mirrored
from the healthy upper limb of the patient and serves as a reference model and
a learning tool for him/her to reshape his/her muscle activation patterns. We
present and evaluate the effectiveness of the proposed rehabilitation system in 8
healthy individuals and 2 chronic stroke patients.

3.3 Methods

3.3.1 Novel rehabilitation paradigm

Our novel motor rehabilitation paradigm is designed to reshape the muscle acti-
vation patterns of chronic stroke patients. It is intended to be used as part of a
closed-loop rehabilitation system. In our setup, the IS-MORE 7-DoF robotic ex-
oskeleton (Tecnalia, San Sebastian, Spain) acts as the body actuator that provides
the patient with proprioceptive and visual feedback during functional task training.

The steps to build and utilize the rehabilitation system are summarized in
Figure 3.1. First, EMG and kinematic data is acquired from the healthy upper
limb of the hemiplegic patients while they perform a series of functional tasks with
an exoskeleton. This data is utilized to build a subject-specific model of healthy
EMG-to-kinematics mirrored to be used by the paretic arm (i.e. the DoFs that
have opposite sign for left and right arms are flipped before building the model).
Then, this model would be used to provide feedback about the EMG of the paretic
upper limb. Thus, it would serve as a learning tool for the patient to reproduce the
same correct healthy muscle activation patterns that have been mirrored to the
paretic side. During the real-time operation, patients would try to perform similar
functional tasks while wearing the exoskeleton and having EMG electrodes placed
over the equivalent muscles on the impaired limb. In this phase, the myoelectric
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Table 3.1: Design of the two experiments. Differences and similarities between
them.

interface would receive the paretic EMG signals as input and would predict the cor-
responding kinematics based on the mirror model. The predicted kinematics would
determine the movement of the exoskeleton. In this way, this closed-loop system
would provide the patient with visual, haptic and proprioceptive feedback about
his/her muscle activations. For example, if the patient produces uncoordinated
activation patterns the exoskeleton would deviate from the intended trajectory
or move at a lower speed (depending on the control strategy). Hence, patients
would have to modulate their EMG activity to produce the correct patterns that
would bring the exoskeleton towards the target position. Thus, the purpose of this
novel rehabilitation paradigm is to provide patients with feedback about the ap-
propriate recruitment of their muscles, rather than only interpreting their motion
intention independently of whether the EMG shows correct activation patterns for
the intended movement or not.

3.3.2 Study design

One experiment in 8 able-bodied individuals and one proof of concept in 2 chronic
stroke patients were performed to investigate the optimal parameters and validate
the effectiveness of the system. Each of them was performed under slightly different
conditions (see Table 3.1) and served to analyze various features of the system:
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Figure 3.1: Steps to follow to build and use a mirror myoelectric decoder: 1) Cali-
bration session: EMG and kinematic data are recorded from the healthy upper limb
during different functional movements with the exoskeleton. 2) The recorded data
is used to calibrate a mirror EMG decoder (i.e. build a healthy EMG-kinematics
mirror model). 3) The EMG activity recorded from the paretic limb during the real-
time phase is fed to the mirror decoder. The latter is able to map the input EMG
signal into the corresponding kinematics based on the mirror myoelectric model of
healthy activity. The estimated kinematics are sent as control commands to the
exoskeleton, which drives the movement of the paretic upper limb of the patient,
providing him/her with visual and proprioceptive feedback.

50 Chapter 3



Novel neural interfaces for upper-limb motor rehabilitation after stroke

1) Studying the influence of the session-to-session and arm-to-arm transfers on
the decoding performance. Factors such as varying upper limb positions,
impedance changes, electrode shifts across days, and the EMG activity pat-
tern disparity across arms might dramatically alter the decoding accuracy.
We evaluated the influence of these factors on the performance of within-
and across-sessions and -arms decoders.

2) Generalization ability of the mirror decoder. As new tasks or movement with
bigger range of motion could be included during the therapy, we assessed the
decoderś ability to decode untrained movements, which were not present in
the calibration data. We compared several task-specific decoders with a sin-
gle general decoder, considering properties such as practicality and accuracy.

3) Optimal conditions for calibration data recording. Two conditions were con-
sidered to record the calibration data: i) Active: the motors of the exoskele-
ton were off and users had to overcome the friction and weight of the robot
(i.e., the robot was used as a kinematic sensing device only), ii) Compliant:
the motors of the exoskeleton on, being the exoskeleton the one driving the
fully-assistive movement. The users were explicitly asked to follow it trying
to naturally activate their muscles and to avoid counteracting or forcing the
movement of the exoskeleton.

4) Proof of concept with chronic stroke patients. This experiment was designed
to test the offline performance of the general mirror decoder in chronic stroke
patients.

3.3.3 Experimental Protocol

None of the healthy participants presented any neuromuscular disorder. All healthy
participants and patients gave written informed consent to the procedures as ap-
proved by the ethics committee of the Faculty of Medicine of the University of
Tübingen, Germany. All the experiments were performed according to the guide-
lines of the University of Tübingen and constitute a proof of concept for the
clinical trial registered on the 5th of February of 2018 with the registration ID:
DRKS00013926. Healthy participants and patients were asked to sit and perform
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a series of functional tasks while wearing an upper limb exoskeleton either on their
right or left arm (see Table 3.1). The IS-MORE exoskeleton allowed movements
in 7 DoFs, including proximal (upper- and forearm) and distal (fingers and wrist)
segments of the arm. The setup consisted of four coloured targets located on both
sides and in front of the participant, and a 70 x 50 cm mat on top of which the ex-
oskeleton was placed and the movements were executed (see Figure 3.2). Healthy
participants and patients were instructed by means of auditory cues to perform up
to four different functional tasks, which always started and ended at a predefined
rest position that kept the arm and the hand in a relaxed configuration:

T1) Reaching task. This task 1 consisted of reaching movements from the rest
position towards each of the four different targets and then back to the initial
rest position.

T2) Static grasping task. Participants were asked to keep their arm still at the
rest position while performing five different movements that involved fin-
ger and wrist joints: pinch grip, cylindrical grasp, pointing, supination and
pronation of the wrist (see Figure 3.2).

T3) Double reaching + pointing task. First, participants had to reach one target
while pointing at it, then move to another target while keeping the pointing
gesture and finally come back to the initial rest position.

T4) Double reaching + object grasping task. Participants were instructed to
reach a target, grab the object placed at that position, bring it to a differ-
ent target position in which they had to deposit it and then come back to
the initial rest position. Three objects of different sizes and shapes, which
required performing a pinch grip, a key grip or a cylindrical grasp to take
them, were presented to the participants.

Each of the four tasks was divided in 5 blocks of 40, 42, 10 and 22 trials,
respectively. For the experiment with stroke patients, sessions were notably shorter
ranging from 2-4 blocks depending on the self-reported fatigue and containing 8,
10, 6 and 6 trials each of the four tasks respectively. All participants could rest
for a few minutes between blocks and inter-trial intervals of 2-3 secs were included
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Figure 3.2: Experimental setup and tasks performed: (a) Workspace where the tasks
were performed. Pos 1-4 indicate the four colored targets and Rest the predefined
rest position in which the trials started and ended. The three objects the participants
had to interact with are also shown on top of the target shelves. (b) A model of
the IS-MORE 7-DoF exoskeleton and the degrees of freedom on which it allows the
movement: (1) and (2): translation of the forearm (2 DoFs); (3): rotation of the
forearm (1 DoF); (4): wrist pronation-supination (1 DoF); (5): extension-flexion
of the thumb (1 DoF), (6): the index (1 DoF) and (7): the group of middle-
ring-pinky fingers (1 DoF). (c) Wrist and hand movements performed during the
experiments.
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to avoid fatigue. Tasks T1-T4 were always performed in this order, completing all
the blocks of each task before moving onto the blocks of the next task type.

3.3.4 Healthy participants

Eight healthy individuals (3 females, 5 males, age: 20-28, all right-handed) under-
went three sessions (S1: right upper limb; S2: right upper limb; S3: left upper
limb) on distinct days.

The four functional tasks explained above were included in this study. Addi-
tionally, at the end of each session subjects were asked to move their upper limb
freely around the whole workspace (Free-Movement Task) during 3 minutes, with-
out any time constraint, predefined task or trial structure. These three sessions
S1-S3 were used to analyze the session-to-session and arm-to-arm influence on the
decoding performance as well as the generalization ability of task-specific and gen-
eral decoders (analyses 1 and 2).

It is important to emphasize that in these three sessions the exoskeleton was
passive (i.e. Active condition from the user perspective, exoskeleton motors were
off) and hence, subjects had to exert sufficient force to move the exoskeleton to-
wards the required target position without any type of assistance.

In order to investigate the optimal way of recording the calibration data (anal-
ysis 3), five of the eight healthy participants (3 females, 2 males, age: 21-28, all
right-handed) underwent four more sessions (S4: right upper limb; S5: left upper
limb; S6: left upper limb; S7: right upper limb) on separate days. In these extra
sessions S4-S7, the first three tasks of the set of functional tasks described above
(T1, T2 and T3) were included. In sessions S4 and S5, just as in the previous
S1-S3, no assistance was provided for the movement of the exoskeleton (i.e. Ac-
tive condition). In sessions S6 and S7 participants performed the tasks with the
exoskeleton actively moving their arm and participants following that exact move-
ment (i.e. Compliant condition).

During the active condition sessions, participants could execute the movements
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at their own pace but within a given time interval (5 secs for task 1 trials, 4 secs
for task 2 trials, 8 secs for task 3 trials and 8 secs for task 4 trials). During
the compliant sessions, instead, the direction and speed of the movement was
predefined and customized for each participant according to their range of motion
and kept constant among the various trials of each task.

3.3.5 Stroke patients

Two chronic stroke patients (2 males, Patient 1 (P1): age = 47 years, time since
stroke = 5 years, moderate left hemiparesis according to [119], modified upper limb
FMA = 87/114 and combined hand and arm FMA = 29/54; Patient 2 (P2): age
= 62 years, time since stroke = 2 years, severe left hemiparesis, modified upper
limb FMA = 59/114 and combined hand and arm FMA = 7/54) participated in
this experiment consisting of two sessions (S1: healthy upper limb; S2: paretic
upper limb) on different days. In both sessions, movements were executed under
Compliant conditions. Regarding the tasks, P1 performed 4 blocks (healthy arm)
and 1 block (paretic arm) of the first two functional tasks described above (T1-T2)
while P2 carried out a training including 2 blocks (healthy and paretic arms) of
the four tasks (T1-T4).

3.3.6 Data collection and processing

In healthy participants, EMG activity was recorded at 2500 Hz (Brain Products
GmbH, Germany) from 10 standard bipolar electrodes with an inter-electrode dis-
tance of 2.2 cm (Myotronics-Noromed, USA) over: 1) the abductor pollicis longus,
2) the extensor carpi ulnaris, 3) the extensor digitorium, 4) the flexor carpi radialis,
palmaris longus and flexor carpi ulnaris, 5) the pronator teres, 6) the long head
of the biceps, 7) the external head of the triceps, 8) the anterior portion of the
deltoid, 9) the lateral portion of the deltoid and 10) the posterior portion of the
deltoid over the teres minor and infraespinatus muscles. Kinematics were recorded
at 18Hz (details in [68,103]).

EMG data was band-pass filtered at 10-500 Hz and power-line notch filtered
at 50 Hz. Seven time-domain features (Mean of absolute values, Variance, Wave-
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form Length, Root-mean-square value, Willison Amplitude (WAMP), Zero cross-
ing (ZC) and Slope sign changes (SSC)) [46, 104] were extracted from each EMG
channel in windows of 200 ms producing a set of 70 EMG features. This set of
EMG features was down-sampled to 18 Hz and synchronized with the kinematic
data, which was low-pass filtered at 1.5 Hz.

The EMG signal was normalized as in an online setup, using the mean and
standard deviation computed in a 60sec-window of past samples. The estimated
kinematics were smoothed with a weighted moving average filter (backwards win-
dow of 550 ms and linearly decreasing weights) to avoid a jerky and unstable
control of the exoskeleton.

All the EMG channels were included in the control of each DoF, independently
of them being directly, indirectly or not related at all to the movement of that
specific DoF. Since this rehabilitation approach relies on the feedback given to the
patients as a way of teaching them to recover healthy muscle activation patterns,
including all the muscles in the control of each DoF could help them to avoid
compensatory activations of non-related muscles.

For patients, EMG data was recorded at 1000 Hz. P2 used the same 10 bipolar
electrodes as healthy participants. However, for the patient P1 the 5 bipolar elec-
trodes over the extensor and flexor muscles of the forearm were substituted by two
high-density arrays (Tecnalia, Spain) including 24 (6 x 4) monopolar electrodes
each with an inter-electrode distance of 1.35 cm (horizontal) and 2 cm (vertical).
These monopolar channels were bipolarized summing up to 100 channels and no
dimensionality reduction was applied.

The three time-domain threshold-dependent features (i.e. WAMP, ZC and
SSC) were removed from the processing to avoid any inaccuracies arising from the
different EMG amplitude across arms. Instead, the logarithm of the variance was
included as the fifth component of the feature set.
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3.3.7 Decoding schemes and algorithm

We compare ipsilateral (within arm) and mirror (across arms) decoding schemes:

Ipsilateral decoding schemes :

• Within-session decoder (WS): This decoder was calibrated and tested with
data from the same session and arm, following a 5-fold cross-validation [68].

• Session-to-session decoder (SS): This decoder was calibrated with data from
one session and tested with data from a different session in which the move-
ments were performed with the same arm.

• Re-calibrated session-to-session decoder (RSS): About 10 minutes of data
collected at the beginning of the new session together with the data from
the previous session were used to calibrate a new (“re-calibrated”) session-to-
session (SS) decoder [68]. The testing was performed on the remaining data
of the new session.

Mirror decoding schemes :

• Task-specific arm-to-arm decoder (TSAA): This decoder was task specific
and was calibrated with data from a specific task during a session(s) with
one of the arms and tested during that same task from a different session
using the other arm.

• General arm-to-arm decoder (GAA): This decoder was also calibrated and
tested with data from different arms. However, this was the only decoder
that gathered all the performed tasks in one decoder and thus, was not task-
specific.

All the aforementioned ipsilateral and mirror decoders were subject-and DoF-
specific. Figure 3.3 Illustrates all the variations of the decoding schemes that were
analyzed in this study.

The ridge regression algorithm was selected to predict the output kinematics of
each DoF from the input EMG features. Although this linear algorithm has several
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a b c d

Figure 3.3: Ipsilateral and mirror decoders built with data from the two experi-
ments: (a) Ipsilateral and (b) mirror decoders from sessions S1-S3 of the exper-
iment with healthy participants. (c) Mirror decoders from sessions S4-S7 of the
experiment with healthy participants. (d) Ipsilateral and mirror decoders from the
experiment with stroke patients. For the four diagrams, the information to the left
of the red arrow refers to the calibration data and the one the arrow is pointing
to, to the testing data. The green background color indicates that the decoders are
task-specific, whereas the blue background color signifies that the decoders where
general. The tasks that were used for calibrating and testing are displayed at the
bottom left and right of the squared box of each decoder respectively. For the task-
specific decoders, Ti indicates that a separate decoder was built for each of the four
tasks Ti, i = 1-4. For the general decoders, Tk-Tj means that all the tasks from
k to j were used for calibrating and/or testing a decoder. FM stands for the free
movement task. The mirror decoder of the experiment with stroke patients specifies
the tasks employed for each of the patients P1 and P2. The “Left” and “Right” la-
bels specify which limb the participants wore the exoskeleton on during that session.
Finally, the “Active-Active”, “Active-Compliant” and “Compliant-Compliant”labels
inform about the compliance conditions under which the “calibration- testing” data
was recorded.
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limitations (e.g. various activation patterns could lead to the same kinematics), it
allows the simultaneous and proportional control over multiple DoFs, it was also
proven to outperform other methods such as the regular Kalman filter [68] and to
perform similar to non-linear regression methods online [120], and it penalizes the
co-activation of agonist-antagonist pairs, which is an important aspect for stroke
rehabilitation. The optimum value of the regularization parameter λ for the WS
schemes was found in a nested cross-validation loop using a grid search of values
in the range [10−7, 107]. However, for the rest of the decoding schemes λ was fixed
at 104, chosen experimentally [71].

3.3.8 Statistics

The EMG-decoding was computed offline in a pseudo-online manner (i.e. stream-
ing the data into the decoder as in a real-time scenario). The decoding performance
was measured by comparing the smoothed kinematics predicted from the EMG ac-
tivity and the smoothed kinematics recorded with the exoskeleton. The Pearson
correlation coefficient (CC) and the normalized root-mean-square error (NRMSE)
were used as performance metrics. The overall performance of each decoder was
computed as the average over the 7-DoFs, all the tasks and all the participants of
each experiment. The α -level for all the statistical tests was set to 0.05.

The statistical tests applied to the four analyses described above are:

1) After checking for the normality of the data distribution, all the ipsilateral
and mirror decoders utilized to study the session and arm transfer influence
(Figure 3.3a and 3.3b) were compared with a one-factor repeated measures
analysis of variance (ANOVA), being the factor the decoding scheme. Sig-
nificant results were followed by post-hoc pairwise comparisons using paired
t-tests with Bonferroni correction.

2) A paired t-test was computed to compare the generalization ability of the
mirror decoders tested only in the unrestricted free movements (FM) (i.e.
TSAA-FM vs. GAA-FM of Figure 3.3b).

3) The performance of the general decoders calibrated and tested under Active
or Compliant conditions (Figure 3.3c), were compared with a 1-factor (com-
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pliance condition) ANOVA test, followed by Bonferroni-corrected post-hoc
comparisons.

4) Finally, the general mirror decoder was tested in stroke patients (Figure 3.3d)
and its performance was reported for each patient separately.

3.4 Results

Session-to-session and arm-to-arm transfers′ influence

The session-to-session and arm-to-arm transfer influence due to factors such
as electrode shift and inter-limb variability was assessed by comparing the perfor-
mance of ipsilateral and mirror decoders (Figure 3.3a and 3.3b). The performance
for each of them is presented in Figure 3.4. The ANOVA showed significant dif-
ferences between these decoders for both the CC (p < 10−6) and NRMSE (p =
4.0 · 10−6). Subsequent Bonferroni-corrected pairwise comparisons (see Table 3.2)
showed that the within-session and recalibrated decoders (WS1, WS2 and RSS)
outperformed the other three (SS, TSAA and GAA) in terms of CC. However, no
significant difference was found between the CC values of the session-to-session
(SS) and the two mirror (TSAA and GAA) decoders. The error of the general
arm-to-arm decoder (GAA) was significantly lower than all the others except the
within-session decoder of session S2 (WS2).

Generalization ability of the mirror decoding schemes

Table 3.2 shows the lower error (p = 1.7 · 10−5) of the general mirror decoder
GAA compared to the equivalent task-specific one TSAA, when tested in tasks
T1-T4 that were included in the calibration set. Additionally, these two mirror
decoders were tested during free movements (TSAA-FM and GAA-FM) and their
comparison confirms the significantly better generalization ability of the general
decoder compared to the task-specific one (CC: p = 0.012; NRMSE: p = 0.017)
(see Figure 3.5).
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Figure 3.4: Performance values of the ipsilateral and mirror decoders from sessions
S1-S3 of the experiment with healthy participants: (a) Correlation coefficient (CC)
and (b) normalized root-mean-square error (NRMSE) mean and standard devia-
tion values of the ipsilateral decoders: within-session (WS1 and WS2), session-to-
session (SS) and recalibrated session-to-session (RSS); and the mirror decoders:
task-specific arm-to-arm (TSAA) and general arm-to-arm (GAA) decoders of the
experiment with healthy participants. The asterisks show significant (p < 0.05)
differences between decoders.

Table 3.2: Bonferroni corrected p-values of the ANOVA test comparing the cor-
relation coefficient (CC) and normalized root-mean-square error (NRMSE) of the
decoders from sessions S1-S3 of the experiment with healthy participants. In bold
all p-values < 0.05 (significance level).
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Figure 3.5: Performance values of the mirror decoders from sessions S1-S3 of the
experiment with healthy participants tested on free movements: (a) Correlation
coefficient (CC) and (b) normalized root-mean-square error (NRMSE) mean and
standard deviation values of the task-specific arm-to-arm (TSAA-FM) and general
arm-to-arm (GAA-FM) decoders tested on the three minutes of free movements of
the experiment with healthy participants. The asterisks show significant (p < 0.05)
differences between decoders.

Optimal conditions for calibration data recording

Three variants of the general mirror decoder were built (Active-Active; Active-
Compliant; Compliant-Compliant), which differed in the active or compliant con-
dition of the calibration and testing datasets (see Figure 3.3c). No significant
differences between the CC values of the three decoders were found (p = 0.089).
However, the Active-Active decoder outperformed the other two cases in terms of
NRMSE (Active-Compliant: p = 0.002; Compliant-Compliant: p = 0.005). The
error of the Compliant-Compliant case was also significantly (p = 0.049) lower
than that of the Active-Compliant decoder (See Figure 3.6).

Proof of concept with chronic stroke patients

The effectiveness of the mirror decoder was evaluated in two chronic patients
with moderate and severe paralysis. Both patients reported a good acceptance of
the system, the exoskeleton ergonomics and mobility as well as the speed and com-
plexity of the movements. Ipsilateral within-session decoders were also evaluated
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Figure 3.6: Performance values of the mirror decoders from sessions S4-S7 of
the experiment with healthy participants: (a) Correlation coefficient (CC) and (b)
normalized root-mean-square error (NRMSE) mean and standard deviation values
of the general arm-to-arm (GAA) decoder with different compliance conditions
for the calibration and testing data. The asterisks show significant (p < 0.05)
differences between decoders.

both for the healthy and paretic arms of each patient. Figure 3.7 illustrates the
performance of the ipsilateral and mirror decoders for patients P1 (left; moderate
impairment) and P2 (right; severe impairment). As expected, the within-session
decoder WS1 of the healthy arm shows the highest performance values for both
patients. We found variable and poor decoding performance for the within-session
decoders WS2 of the paretic arm, as paretic EMG patterns are highly variable and
abnormal. Moreover, it should be noticed that for P1 patient only 1 block of data
of tasks T1 and T2 was recorded and thus, the 5-fold cross validation of WS2 was
computed with little data. The values of the general arm-to-arm decoder (GAA)
reflect a performance drop compared to WS1, due to the transfer across arms and
the pathological EMG activity of stroke patients. Since the performance metrics
show how similar the kinematics decoded from the paretic EMG are to the real
kinematics determined by the assister, pathological EMG activity produces kine-
matics that deviate from the ideal trajectory and thus, lead to poor performance
values. There is also a rather variable performance across DoFs for P1 compared
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Within session 1
(WS1) - healthy arm

Within session 2 
(WS2) - paretic arm

General arm-to-arm 
 (GAA)

Figure 3.7: Performance values of the ipsilateral and mirror decoder from the ex-
periment with chronic patients: (a) Correlation coefficient (CC) and (b) normal-
ized root-mean-square error (NRMSE) mean and standard deviation values of the
within-session decoder WS1 of the healthy arm (blue), the within-session decoder
WS2 of the paretic arm (grey) and the general arm-to-arm GAA decoder (white)
for P1 (left) and P2 (right) patients.

64 Chapter 3



Novel neural interfaces for upper-limb motor rehabilitation after stroke

to P2, as reflected in the larger standard deviation values. The correlation coeffi-
cient of patient P2 reached negative values due to the severe impairment and the
existence of pathological muscle activations. However, these values are expected to
raise as the patient learns the mirror mapping and the impairment level is reduced,
as inferred from the higher CC values of patient P1 with moderate impairment.
The mean error plot shows highest error values for the WS2 of the paretic arm
and comparable values for the WS1 and GAA decoders for both patients.

3.5 Discussion

In this study, we presented a novel rehabilitative concept that turns the focus of
the existing myoelectric interfaces by enhancing the recovery of healthy muscle
activation patterns. Furthermore, we tested and validated it on 8 healthy partici-
pants and 2 chronic stroke patients.

The significant performance difference between the within-session and the session-
to-session decoders confirms that variables such as electrode position shift and
impedance changes can affect the decoding accuracy. On the other hand, the dif-
ference between the session-to-session (SS) and the mirror decoders (TSAA and
GAA) was not significant. This implies that the inter-limb variability of the EMG
patterns is not big enough to produce a significant drop in the decoding perfor-
mance, as suggested by previous studies [79, 80]. This supports the use of the
mirror decoder as a reference model for the paretic limb in the rehabilitation of
stroke hemiplegic patients. Although a recalibrated decoder with data from the
paretic arm could raise the decoding accuracy, this option was not considered since
the aim of the mirror decoding paradigm is to impose the model of healthy activity
on the paretic arm so that they can correct their pathological activity, instead of
using it to decode their motion intention as accurately as possible.

The generalization analysis shows that the general decoder outperforms the
task-specific one, especially when decoding EMG data from untrained tasks (TSAA-
FM vs. GAA-FM). Utilizing a general decoder would avoid the need of switching
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between decoders depending on the task being executed at that moment. In ad-
dition, the general decoder would be advantageous to decode new tasks included
in the course of the intervention or movements with a bigger range of motion, as
the patient recovered certain motor function. On top of that, less data would be
needed to calibrate a single general decoder than several task-specific decoders, as
demonstrated by the analysis with equally balanced calibration datasets (TSAA-
FM vs. GAA-FM). Therefore, it would be more practical and accurate to build a
general decoder than various task-specific decoders. This knowledge was applied
to further develop, optimize and test our platform in the experiment with stroke
patients.

The decoder calibrated and tested under Active conditions (i.e. Active-Active)
performed better than the other two cases. However, it should be noticed that the
Active-Active decoder was trained with data from the fourth session of training
with the dominant arm (S4) while the other decoders were trained with the first
(S5) or second session (S6) of the non-dominant arm, which might have biased the
results. Despite the higher performance of the Active-Active decoder, the possi-
bility of employing such methodology with severely paralyzed patients is doubtful,
as most of them would not be able to move the exoskeleton by themselves. Hence,
considering patients′ impairment with a weak or atrophied musculature, the op-
eration of the myoelectric interface with the paretic limb would have to be done
under compliant conditions. Moreover, the movement of the exoskeleton is in-
tended to be used as feedback for the patients to correct their paretic activity pat-
terns. Therefore, the question is whether to calibrate the system with data from
active (Active-Compliant case) or compliant movements (Compliant-Compliant
case) with the healthy upper limb. On one hand, following and adapting to the
pace and trajectory of the exoskeleton during a compliant movement may be chal-
lenging and the risk that the patients remain passive exists. That is why EMG
should be continuously tracked and participants should be repetitively reminded
that the movement had to be followed actively and as naturally as possible. The
results show a lower error achieved by the Compliant-Compliant case over the
Active-Compliant approach, indicating that if the conditions of the calibration
and testing sessions are the same (Compliant-Compliant) the activation patterns
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might be more similar to each other. Moreover, performing the tasks with the
healthy arm under compliant conditions may help the patient to get used to the
pace and velocity profiles of the exoskeleton movements before the operation phase
starts. Therefore, we propose using Compliant conditions during the calibration
phase as a novel and optimal method to collect data to train a myoelectric decoder
for rehabilitation therapies with stroke patients.

The presence of pathological muscle activity in chronic stroke patients is re-
flected in the poor correlation and large error values between the real recorded
kinematics and the ones predicted from the EMG activity (Figure 3.7, GAA de-
coder). As expected, the within-session decoder WS1 of the healthy arm of patients
was the most accurate one, as this represents how good the decoder could estimate
the kinematics without arm-to-arm, session-to-session or task-to-task variability.
The transfer across arms, sessions and tasks, and the existence of pathological
EMG activity resulted in a performance drop for the mirror decoder GAA. Al-
though the number of channels for patient P1 was notably larger than for P2,
the decoding performance of WS1 was lower for P1 than for P2, implying that
the lower performance of the mirror decoder GAA for P2 compared to P1 might
be mainly influenced by the severity of the impairment, measured by the clinical
scales. Therefore, the higher the paresis and the spasticity level, the lower the EMG
decoding performance values and the poorer the control. The lower performance
achieved by the patients compared to the healthy participants supports this con-
clusion too (see Figures 3.4 and 3.7). From these results, one could infer that the
modular organization of the muscle activity of the patient with moderate paralysis
(P1) may resemble more that of a healthy individual, whereas rather pathological
patterns could probably be found when looking at the EMG activity of patient
P2, with severe paralysis. We anticipate that in a longitudinal study with severe
patients, the initial performance will be poor and the real-time control unskilled.
Alternatively, those patients with poor or no decodable muscle activity could ini-
tially train with an EEG-brain-machine-interface (EEG-BMI) [49,50,59,60,83] or
a hybrid BMI [61, 66, 71] until they recovered sufficient EMG activity to benefit
from a myoelectric therapy. We foresee that as patients train with this mirror
myoelectric interface, the modular organization of the EMG activity will resem-
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ble more that of their healthy upper limb. Thus, the decoding performance and
control of the exoskeleton would become more skillful and accurate, eventually
leading to the recovery of certain degree of motor function. Nonetheless, in order
to demonstrate such hypothesis, a longitudinal study including the assessment of
the muscle synergy structure evolution and the functional impairment level along
the intervention would be needed.

Overall, the proposed rehabilitation paradigm brings in several assets. First of
all, it offers a well-founded [79,80] method to promote the reintegration of healthy
muscle activation patterns on the paretic limb of stroke patients, by utilizing the
synergy structure of their intact upper limb as reference. Furthermore, this system
is the first one that allows the simultaneous and continuous (direction and speed)
myoelectric control of 7 DoFs of the upper limb, involving proximal and distal
joints. This enables the training of functional multi-DoF movements of the upper
limb in a synergistic fashion, which facilitates the translation of the re-learned mo-
tor skills to activities of daily living [6,47]. Additionally, it includes several features
that are of paramount importance for the activation of neuroplastic mechanisms
such as, closed-loop control with online contingent visual and proprioceptive feed-
back [49, 59, 60], improved perception and constant active participation and en-
gagement of the patient in the task [121, 122]. Lastly, the majority of the stroke
population could benefit from this type of therapy, since the only requirement is
the presence of decodable EMG activity even in the complete absence of movement
of the paretic limb, which has been found even in severely impaired patients [35].
The results presented here aided in the definition of certain aspects such as the
calibration data conditions, and validated the effectiveness of the system in chronic
stroke patients. Therefore, we envisage this approach to be a potential rehabilita-
tion method to elicit the recovery of healthy muscle recruitment patterns in stroke
patients of a wide range of impairment levels. Nonetheless, further developments
such as the implementation of synergy-based algorithms that have been reported
reliable and robust [123,124] could be implemented to boost the decoding perfor-
mance and to ensure that different muscle activation patterns do not lead to the
same kinematics. In the future, a longitudinal study that includes the real-time
operation of the interface by stroke patients should be carried out in order to assess
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the rehabilitation effects of the proposed method.
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4. Chapter 4: Motor learning with
a multi-degree-of-freedom mirror
myoelectric interface during
functional task training

4.1 Abstract

After stroke, the generation of motor commands and/or their descent to the spinal
cord are often compromised. This leads to pathological muscle activation pat-
terns (pathological muscle synergies) in the limb contralateral to the brain lesion.
However, sensory input, experience and learning can induce reorganization of sen-
sorimotor circuits. Hence, motor learning mediated by motor training has been
explored for the correction of abnormal muscle synergies and functional recovery
in motor impaired patients. Myoelectric interfaces together with rehabilitation
exoskeletons allow stroke patients to train motor tasks with their paretic limb and
receive real-time feedback about their muscle activity. However, the number of
degrees of freedom that can be simultaneously controlled is still limited, which
hinders the training of functional tasks and the effectiveness of the rehabilitation
therapy. We developed a myoelectric system that allows multi-degree-of-freedom
control of an exoskeleton simultaneously involving arm, wrist and hand joints,
with an eye toward using this tool for rehabilitation. We hypothesize that control-
ling an exoskeleton with EMG signals from a stroke patient′s paretic limb, based
on such a decoder trained with EMG from the healthy arm, will foster learning
of natural EMG patterns and hence, recovery of motor function. In this study,
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we first validated the effectiveness of the myoelectric decoder; we showed that 10
healthy participants could learn to control the system trained on the contralateral
arm, within the span of a five-session experiment. We then showed evidence that
subjects modulated EMG patterns to fit the mirror model, as reflected by a sig-
nificant decrease in the time to execute trials and an increase in the percentage
of successful trials. These results are the necessary precursor to evaluate if this
system could also elicit motor learning in stroke patients and whether this process
is accompanied by rectification of pathological synergies leading to motor recovery.

4.2 Introduction

A voluntary movement is the result of complex mechanisms in which the central
nervous system recruits groups of muscles in a coordinated way (i.e., muscle syn-
ergies). These muscle synergies have different activation patterns and temporal
profiles and are encoded at the spinal or brainstem levels [7, 9, 125–134]. Local
brain damage due to stroke frequently affects the initiation of motor commands
and/or their descending flow to the spinal cord. This leads to a disrupted recruit-
ment or to an abnormal development of muscle synergies and so, to pathological
muscle coordination in the limbs opposite to the injured hemisphere. Motor re-
covery after stroke is characterized by neuroplastic changes involving a structural
and functional reorganization of the brain [135]. This implies the recruitment of
intact cortical motor structures adjacent to the injury, which generate commands
to the compromised muscles that are relevant for the intended task [13]. However,
the brain networks involved in motor learning and recovery processes and the un-
derlying neural mechanisms are not yet well understood [136–140]. Nonetheless,
there is evidence that the brain and the lower sensorimotor circuitry can change
or reorganize itself in response to sensory input, experience and learning [15, 16].
A remaining challenge, however, is how to foster the relearning of natural muscle
synergies in order to achieve effective motor recovery.

Motor leaning is a complex process that comprises motor adaptation and skill
acquisition [13, 141–143]. Motor adaptation occurs implicitly, presumably in a
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short period and as a response to the error between what the brain predicts and
the observed outcome. Motor skill acquisition is instead related to the ability
to accurately execute the movement and may need of a more extensive training
period to occur [144]. The relationship of motor skill acquisition and adaptation
to motor recovery is still unclear. Several studies have confirmed that functional
recovery mediated by motor training entails a learning process in patients with
motor impairment [13, 15, 145–149]. However, training paradigms still need to be
optimized to become truly effective [13, 146]. In recent years, technological ad-
vances and rehabilitation strategies have explored methods to elicit learning as a
means to achieve motor recovery. For instance, rehabilitation robots allow intense
task training, precise control of timing and the use of visual and proprioceptive
feedback, which enhances motor learning [24,108,109,150,151].

Electromyographic (EMG) signals have been widely explored for the control
of rehabilitation robots, as they offer a direct measurement of the motion inten-
tion of a person [46, 114, 124, 152–154]. However, several factors have hindered
the exploitation of myoelectric interfaces and held up its transfer to commercial
applications [155]. One of the main problems is the lack of systems that can
simultaneously control several degrees of freedom (DoFs) in real-time. In the
last few years, some studies have expanded from simple cursor control [156, 157]
to the simultaneous control of multi-DoF external (non-wearable) robots in real-
time [124, 158–160]. However, the control of wearable prostheses or exoskeletons
adds one more level of complexity, since human motor control mechanisms are
difficult to model and mechanical constraints and dynamics of the robot might
hinder control proficiency [161]. For these reasons, myoelectric interfaces for con-
trolling wearable robots have only been validated with up to 2 DoFs simultane-
ously [41, 162–164].

Another concern in myoelectric applications is that most systems are usually
validated in one single session, or those with longer paradigms are focused on re-
calibrating or adapting the mapping every new session as a way to optimize the
learning process. However, Ison and colleagues recently demonstrated that using
a fixed mapping between the EMG and the output control command could induce
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learning and the creation of novel muscles synergies in healthy individuals. More-
over, these synergies were retained after one week, facilitating the generalization
to new tasks and the increase in performance over time without the need of recal-
ibrating the decoder (i.e., changing the mapping) [159,165,166]. This implies that
the utilization of dynamic mappings may not be as critical as suggested in recent
research. Based on these studies, we believe that hemiplegic stroke patients could
reshape the pathological synergy structure of their paretic limb by learning a fixed
mapping or model built with EMG activity of their healthy upper limb (i.e., a mir-
ror myoelectric decoder), as suggested in [69]. The potential of this paradigm for
the continuous decoding of multi-DoF functional movements was already proved
offline [68,69,71].

In this study, we investigated the viability of using a novel EMG decoding
strategy to control an upper limb multi-joint exoskeleton in real-time during func-
tional tasks, based on a mirror model from the contralateral arm [69]. Moreover,
we evaluated if the proposed system can be used to elicit motor learning in 10
healthy participants and to adapt their muscle activity according to the imposed
mirror EMG-to-kinematics map. Additionally, with a view toward optimizing such
a system in a patient-centered approach to stroke recovery, we queried participants
in the experiments about their perceptions of different features of the system.

4.3 Methods

4.3.1 Subjects

Ten able-bodied volunteers (5 females and 5 males, age: 20-33, all right-handed)
without any known neuromuscular impairment participated in this study. All of
them gave written consent to the procedures as approved by the ethics committee
of the Faculty of Medicine of the University of Tübingen, Germany.

4.3.2 Experimental setup and protocol

The IS-MORE robotic exoskeleton (Tecnalia, San Sebastian, Spain) is a 7-DoF
robotic exoskeleton for the proximal (upper and forearm) and the distal (wrist
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and fingers) segments of the upper limb (more details in [68]). The exoskeleton
lies on a 70 x 50cm mat on top of which the user performs gravity-compensated
movements. Four shelves of different color placed around the mat define the four
targets that the participants have to reach (see Figure 4.1(b) and supplementary
video).

Volunteers were asked to sit on a chair in front of the workspace and wear the
exoskeleton on their right or left upper limb for a single decoder calibration session
and for four closed-loop control sessions, respectively (see below). For each par-
ticipant, a posture in which they could keep their arm relaxed was selected at the
beginning of the calibration session and defined as the “Rest” position. Similarly,
four target poses (i.e., the position and orientation of the arm around each target
and the angle of the wrist and the fingers) were also defined according to each
subjectś range of motion.

All the participants underwent five sessions on five consecutive days: the cali-
bration session (S1) used to train an EMG decoder with the right arm, and four
closed-loop control sessions (S2-S5) in which subjects performed targeted move-
ments controlling the robot with EMG activity of the left arm interpreted by the
mirror decoder obtained in S1.

In the calibration session (S1) participants performed 5 blocks of “compliant
movements” with the exoskeleton on their right arm, during which they had to fol-
low the movement driven by the exoskeleton in an active and natural way. They
were constantly reminded to adhere to the pace and trajectory of the exoskeleton
without counteracting the movement. These blocks of compliant movements with
the right arm were referred to as calibration blocks (CBs) (see Figure 4.1(a)). Each
block was comprised of 8 trials, each consisting of an outward (towards the target)
and an inward (towards the “Rest” position) movement. Subjects were instructed
to supinate the wrist and open their hand while approaching the target, and to
pronate the wrist and close their hand while going back to the “Rest” position. The
beginning and end of each movement were marked by auditory cues. An inter-trial
rest interval of 3 seconds was included to avoid muscle fatigue and to allow the
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participants to prepare for the next trial. The data recorded during S1 was used
to calibrate the myoelectric decoder.

In sessions S2-S5, participants performed 2 reference blocks (RBs), one at the
beginning and one at the end of the session, and 5 training blocks (TBs) with their
left arm. The RBs included compliant movements and served to help participants
to get a reference of the trajectory the exoskeleton should ideally follow, and to
assess the adaptation of their EMG activity patterns as a result of the training
within each session and along the intervention. In the TBs, the movement of the
exoskeleton was determined by the weighted sum of two components (see Equa-
tion 4.1: a component based on the EMG activity of the subject, and an assistive
component that would always redirect the exoskeleton towards the required po-
sition. From the 8 trials included in each training block, 6 were randomly set to
an assistance level of 30% (i.e. 70% of the velocity of the exoskeleton was based
on EMG activity and 30% on assistive target directed velocities). The remaining
2 were catch trials assigned to assistance levels of 10% and 60% and randomly
placed within the block of 8. The three different levels of assistance (catch trials
plus main trials) served to evaluate the influence of the amount of assistance on
the myoelectric control.

In every outward or inward movement, subjects were given 30 seconds to move
as far as they could in the required direction. If they were unable to reach the tar-
get or the “Rest” position after the timeout, they would be presented with the next
target. As a way of motivation, a piece of classical music with increasing intensity
over time was played during each movement. Since the movements of the distal
DoFs were finer and it was found that they were more difficult to control than the
proximal DoFs [68], the trials were considered to be completed when the target
position of the 3 proximal DoFs (i.e., position and orientation of the arm) was
reached, independent of the angle of the wrist and the fingers. Nonetheless, even
though the task accomplishment depended solely on the proximal DoFs′ position,
participants were not informed of this fact. Subjects could control the movement
in the 7-DoFs and received feedback in all of them. Therefore, in these training
blocks, participants received visual and proprioceptive feedback of their EMG ac-
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tivity by means of the velocity modulation of the 7 DoFs of the exoskeleton and
an auditory reward if the target was reached.

After each trial, subjects were asked to rate the difficulty of the previous move-
ment on a scale from 0-10, with 0 representing the lowest difficulty and 10 the
highest. Similarly, the opinion of the participants regarding several aspects of the
platform, such as the comfort of the setup, the difficulty of the task, the quality of
the control and the functioning of the exoskeleton, was collected with a feedback
questionnaire that they were asked to fill out at the end of each session.

Figure 4.1: Panel (a): Block structure of the calibration (S1) and closed-loop
control sessions (S2-S5). The calibration session consisted of 5 calibration blocks
(CBs) of compliant movements (γ0 = 0, control independent of EMG, 100% assis-
tance). Each of the four closed-loop control sessions comprised one initial reference
block (RB1) of compliant movements (γ0 = 0, 100% assistance), 5 training blocks
(TB1-TB5) in which the myoelectric control was on, and a final reference block
(RB2) with 100% assistance. The training blocks included 8 trials, each with a
movement towards a target and back to the initial rest position: six trials with
medium assistance level (30% assistance, γi = 0.7), one with high assistance (60%
assistance, γi = 0.4) and another one with low assistance (10% assistance, γi =
0.9). After each trial, participants were asked to rate how difficult they found it,
(indicated by the Q letter), followed by rest intervals of 2-3 seconds; Panel (b):
Experimental setup indicating the four targets and the rest position, as well as the
robotic exoskeleton.
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4.3.3 Data acquisition and processing

Two high-density arrays of 24 channels each (Tecnalia-Serbia, Belgrade, Serbia)
were placed over the extensor and flexor muscles of the forearm to record the
muscular activity with high spatial resolution. Differential signals were computed
from each closest-neighbor pair of electrodes along the diagonals and straight di-
rections, resulting in a total of 110 bipolar channels collected from the forearm
muscles. In addition, six standard bipolar electrodes (Myotronics-Noromed, USA)
were used to record the EMG activity from the Abductor Pollicis Longus, the Bi-
ceps, the Triceps, and the Frontal, Middle and Posterior Portions of the Deltoid.
The reference and ground electrodes were located over the olecranon and the clav-
icle, respectively. The location of the electrodes on the left and right upper limbs
was symmetrical, and the positions on the left arm were marked with permanent
markers to mitigate the effects of varying electrode positions across sessions.

The EMG activity was acquired at 1000Hz (Brain Products GmbH, Germany),
band-pass filtered (10-450Hz) and comb-filtered (50Hz and harmonics). Kinemat-
ics of the 7-DoFs were collected at 20Hz and low-pass filtered (1.5Hz).

4.3.4 Feature extraction and decoder calibration

Five time-domain features (mean of absolute value, variance, waveform length,
root-mean-square error and the logarithm of the variance) were extracted from
each EMG channel in windows of 200ms. The resulting matrix of features was
normalized to zero mean and unit variance using the mean and standard deviation
computed from the whole calibration data set. During the closed-loop control the
normalizing factors were continuously updated by computing the mean and stan-
dard deviation over the previous minute of EMG data.

A channel selection process was applied to the high-density EMG channels to
reduce the dimensionality of the feature input set. We followed an iterative cross-
validation process [71] to select a set of 10-50 channels. Once the channels were
selected and the features extracted, a myoelectric decoder was calibrated with
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these features and the kinematics collected during the calibration session and then
kept fixed throughout the subsequent closed-loop control sessions. The decoding
algorithm was a ridge regression, which has proven to outperform other linear algo-
rithms for myoelectric applications [68]. The regularization parameter λ was fixed
at 104, a value that was empirically found to attain a good bias-variance tradeoff.
Thanks to this regularization, the algorithm could capture the regularities present
in the calibration data set while at the same time was able to generalize well to
unseen data.

4.3.5 Myoelectric control paradigm

During the myoelectric control, the features extracted from the produced EMG
in real-time were normalized based on the previous minute of data and fed to
the myoelectric decoder, which predicted the velocity of each DoF. This output
velocity was smoothed with a recursive filter that contained the last ten outputs
and gave more relevance to the most recent ones (i.e., linearly increasing weights
from the past to the most recent outputs). This filtering step ensured a smoother
control of the exoskeleton and prevented unwanted jerky movements due to noise
or non-stationarities in the EMG signal.

We implemented a partially assisted control scheme to avoid initial frustration
due to the complexity of the task. Hence, the velocity for each DoF that was sent
to the exoskeleton and that described its movement during the trial periods was
determined by the following formula:

Vnet = (1− γ) ∗ Vassist + γ ∗ VEMG (4.1)

Where Vnet is the velocity sent to the exoskeleton; Vassist is the assistive com-
ponent that redirects the exoskeleton towards the target (computed with a Linear
Quadratic Regulator); VEMG is the velocity predicted by the mirror decoder from
the EMG activity exerted by the left arm; and γ ∈ [0, 1] is the weight deter-
mining the influence of each component on the net velocity command sent to the
exoskeleton (e.g. γ = 0.7 during the trials with 30% of assistance). Therefore,
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the closed-loop control was established by linking the movement volition detected
from the EMG signals with the actual movement of the exoskeleton attached to
their left limb. Subjects were continuously provided with information about their
EMG muscle activations in the form of velocity modulation. Hence, they had to
understand and learn the mapping between their EMG activity and the changes in
the trajectory and speed of the movement. Based on this visual and propriocep-
tive feedback, they had to produce EMG patterns similar to those encoded in the
reference model, mirrored from the opposite arm, in order to bring the exoskeleton
towards the target position as quickly and as smoothly as possible.

4.3.6 Performance metrics

The following five metrics were selected to evaluate different aspects of the EMG-
decoding and of the participants′ performance during the myoelectric control:

• Execution time (percentage): represents the percentage of the total time
allowed per movement (i.e. 30 seconds) that the participants took to reach
the target.

• Timeouts (percentage): represents the percentage of trials that were not
accomplished because the participants ran out of time before they reached
the target.

• Spectral Arc Length (SPARC): measures the smoothness of the movement in
each DoF [167]; the closer to zero, the smoother the trajectory.

• Correlation coefficient (CC): reflects the coherence of the assistive and the
EMG velocity components of the command to the exoskeleton.

• Normalized root-mean-square-error (NRMSE): measures the difference be-
tween the assistive velocity component and the EMG-based predicted veloc-
ity component.

Although SPARC, CC and NRMSE were computed for each DoF individually,
they were analyzed in three different ways, i.e. by averaging: (1) across all the DoFs
(*_all); (2) across the DoFs of the upper arm and forearm only (*_proximal); and
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(3) across the DoFs of the wrist and the hand only (*_distal). Assessing the per-
formance of the proximal and the distal DoFs separately allowed us to investigate
whether the fact that the task completion was dependent only on the proximal
DoFs influenced the learning process and the control over the different segments
of the arm, i.e. reinforcement and instrumental learning effects.

The first three metrics (i.e., Execution time, Timeouts, and SPARC) are behav-
ioral metrics and represent the ability of the participants to control the exoskeleton
with their EMG activity, while we considered the last two to be electrophysiolog-
ical metrics (i.e., CC and NRMSE) that measure the ability of the subjects to
match the movement template of the assistive control via the EMG decoder (i.e.
to modulate their EMG activity patterns to produce kinematics that are aligned
with the assistive component). Note that since the movements during the RBs
were fully-assisted and predefined (i.e., the myoelectric control was not active),
the participants did not have any influence on the execution time nor on the path
smoothness and so, the first three metrics were not computed for this type of
blocks.

4.3.7 Analyses

Using the aforementioned metrics, we performed four analyses to study the effec-
tiveness, usability and acceptability of the system:

1) Motor learning

We hypothesized that the subjects would be able to learn the EMG-to-
kinematics model and achieve a more dexterous control of the exoskeleton,
reflected in a positive evolution of the performance over time. During the
TBs, we could analyze the online muscle activity adaptation to the exoskele-
ton motor control, which would reflect sensorimotor adaptation based on
afferent information (visual, proprioceptive and haptic) about the ability
to reach the target. On the other hand, during RBs we could analyze the
generalization and retention of the newly learned EMG-to-kinematics map
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during the training, as participants were instructed to actively follow the
exoskeleton movements even if their EMG activity had no influence on the
exoskeleton kinematics during these trials. We therefore studied the motor
learning process occurring across and within sessions separately for TBs and
RBs.

For the across session analysis, the performance values achieved in the TBs
or RBs of the four closed-loop control sessions were concatenated, and a mul-
tivariate linear model was fitted with two variables: one indicating the block
number (TBs: 1-20; RBs: 1-8), and the other one the session number. The
intercept determined the initial performance and the slope defined the learn-
ing rate. Positive learning rate values indicate an increase in performance
over time for all the metrics except for the NRMSE, for which it means a
decrease.

Similarly, we investigated the occurrence of a motor learning process within
sessions. We averaged the performance of each TB or RB across the closed-
loop control sessions (i.e., averaging all the first blocks of the four sessions, all
the second blocks, etc.). The evolution of the performance during the TBs
was modeled with a first order univariate polynomial, where the variable
represented the block number (1-5). The mean performance of the two RBs
within session were compared with a Wilcoxon non-parametric test.

2) Perception

In this analysis, we studied the correlation between the ratings of the subjects
about the difficulty of each trial and their ability to control the exoskeleton
during that trial (i.e., with the first three performance metrics: Execution
Time, Timeouts and SPARC). Thus, for each subject, we computed the three
performance metrics on a trial-by-trial basis and looked for a correlation with
the corresponding ratings (Kendall tau correlation). Finally, after checking
for normality, we applied a one-way repeated measures analysis of variance
(ANOVA) to compare the correlation values across all the performance met-
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rics and hence, evaluated which metric was perceived as a better indicator
of performance by the participants.

In addition, we investigated whether the participants perceived the different
assistance levels, despite the fact that they were not informed about their
existence. We computed the mean rating of all the trials with the same
assistance level (low = 10%, medium = 30% or high = 60%) for each ses-
sion and compared these values with a two-way repeated measures ANOVA
(Factors: assistance level (low, medium and high) and session (S2-S5)). We
performed post-hoc pairwise comparisons between the significant sub-factors
and controlled for multiple comparisons using the Bonferroni correction.

3) Assistance level - performance relationship

We evaluated the variability of the performance as a function of the assis-
tance level. We expected that a higher level of assistance would facilitate the
control of the exoskeleton, which would be reflected in a shorter execution
time and a smoother trajectory. We used the first three metrics (i.e., Execu-
tion time, Timeouts, and SPARC) to measure the ability of the subject to
control the exoskeleton during each closed-loop control session (S2-S5) and
for each assistance level (i.e., low = 10%, medium = 30% and high assis-
tance = 60%). We compared these values with a two-way repeated measures
ANOVA (Factors: assistance level (low, medium and high) and session (S2-
S5)). We performed post-hoc pairwise comparisons and corrected them using
the Bonferroni method.

4) Feedback questionnaire

The responses to the feedback questionnaire were numeric, on a range from
0 (most negative value) to 10 (most positive value). In order to simplify the
analysis, the questions were classified into the following groups:

A) Exoskeleton functioning : evaluated whether the exoskeleton moved smoothly
and at a comfortable speed.
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B) Exoskeleton hardware: comprised questions about how comfortable it
was to wear and operate the exoskeleton.

C) Ease of controlling the exoskeleton (subdivided into proximal and distal
DoFs): participants were asked to rate how difficult it was for them to
control the movement of the exoskeleton over the proximal and distal
DoFs with their EMG activity.

D) Feedback accuracy : evaluated the perception of the participants about
the feedback provided (i.e., whether they felt that the exoskeleton as-
sisted the movement or instead, it moved against their will).

E) Protocol design, pauses and rest periods : looked for the opinion of the
participants regarding how tired they were after the training, whether
the pauses were long enough, etc.

The average of the responses of all the participants was calculated for each
closed-loop control session (S2-S5) to study their general perception about
the listed features of the system and the experimental protocol.

4.4 Results

All participants could control the 7-DoFs of the exoskeleton in real-time with the
muscle activity of their left arm (see video in supplementary material), with an
average of 92,2% of movements accomplished within the 30-second time limit. Ad-
ditionally, we analyzed the existence of a motor learning process, as this system
aims not only at overcoming the challenge of achieving multi-DoF myoelectric con-
trol but also at eliciting motor learning and rehabilitation in stroke patients.

1) Motor learning

We investigated the occurrence of a motor learning process both across and
within sessions. These two analyses were applied separately to the TBs and
the RBs.
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Figure 4.2: Performance measured by Execution time (a), Timeouts (b), Corre-
lation Coefficient ((c) and (d)) and the Normalized Root-Mean-Square-Error ((e)
and (f)) metrics for the 20 training blocks from the closed-loop control session
(TB1-TB5 of S2-S5), for all the participants. Correlation coefficient and normal-
ized root-mean-square-error values are averaged across the proximal DoFs ((c) and
(e)) and the distal DoFs ((d) and (f)). The polynomial model fitted to the outcome
values (in blue) represents the learning trend.
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The results of the analysis of the TBs across sessions are illustrated in Figure
4.2. The linear model fitted to those values exhibits a significant negative
slope for Execution time (p = 0.041, Figure 4.2(a)) and Timeouts (p = 3.35
·10−4, Figure 4.2(b)). These negative correlations demonstrate the occur-
rence of a learning process characterized by shorter time periods needed to
reach the target as well as fewer failures to reach the target over the course
of the experiment. On the other hand, the CC and NRMSE values in Figure
4.2(c)-(f) show that the control of the distal DoFs was poorer towards the
end, as reflected by the significant (p = 0.032) positive slope of NRMSE
values. However, this did not happen for the proximal DoFs, noted that the
ability of the participants to adapt the EMG activity was significantly (pCC

= 0.0098; pNRMSE = 0.002) higher for the proximal DoFs than for the distal
DoFs during the closed-loop myoelectric control (mean CCproximal = 0.355
± 0.175; mean CCdistal = 0.141 ± 0.254; mean NRMSEproximal = 0.164 ±
0.020; mean NRMSEdistal = 0.199 ± 0.028). Some participants produced
progressively smoother paths over sessions (see Supplementary Figure 4.7),
although the tendency was not significant when looking at all the subjects
together (see supplementary Figure 4.6). In the within-session analysis, there
were no learning trends or significant performance improvements for any of
the metrics.

Albeit non-significant (pCC−proximal = 0.139; pNRMSE−proximal = 0.240), a
trend towards higher performance (higher CC and lower NRMSE values)
over the proximal DoFs can be discerned in the RBs across sessions (see
Supplementary Figure 4.8). The negative slope of the regression lines for
the distal DoFs indicates a non-significant (pCC−distal = 0.192; pNRMSE−distal

= 0.345) trend towards a lower performance (lower CC and higher NRMSE
values). No significant trends in the within session analysis of the RBs were
found.

2) Perception
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The correlation between the performance and the ratings given by the par-
ticipants lay within the [0.1-0.7] range, as can be observed in Figure 4.3(a).
The ANOVA shows a significant (p < 10−6) difference between the correla-
tion values of the metrics. Execution time happened to be the most intuitive
metric for the participants to rate the difficulty of the trial, reflected in sig-
nificantly higher mean correlation values (Execution time vs. Timeouts: p
= 0.024; vs. SPARC-all: p = 1 ·10−6; vs. SPARC-proximal: p = 4 ·10−6; vs,
SPARC-distal: p = 1 ·10−6) while Timeouts was the metric with the lowest
correlation values (Timeouts vs. Execution time: p = 0.024; vs. SPARC-all:
p = 3 ·10−6; vs. SPARC-proximal: p = 6 ·10−6; vs. SPARC-distal: p = 3
·10−6).

Figure 4.3: Perception. Panel (a): Kendall tau correlations (including standard
deviation and median) between the difficulty ratings given by the participants after
each trial and the performance measured by the Execution time, Timeouts and
SPARC metrics. Asterisks show significant differences (p < 0.05). Panel (b):
Mean and standard error of the difficulty ratings given by all the participants after
each trial for each closed-loop control session (S2-S5) and computed separately for
each assistance level (high: light green and squares; medium: medium green and
triangles; low: dark green and crosses). The higher the rating, the more difficult
was for the participants to control the exoskeleton. Corrected pairwise comparisons
show significant differences between the ratings given to the three assistance level
trials.

The mean ratings of the low, medium and high assistance level trials across
all the participants for each session are presented in Figure 4.3(b). The two-
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way ANOVA applied to these values confirms that the participants could
perceive the different assistance levels, as reflected by the significantly dif-
ferent ratings given to the low, medium and high assistance trials (corrected
pairwise comparisons: low vs. high: p = 2.2 ·10−5; low vs. medium: p = 1.2
·10−4; medium vs. high: p = 3.5 ·10−5). Interestingly, the two-way ANOVA
showed a significant (p = 0.002) session effect and significant pairwise dif-
ferences between the ratings of sessions S2 and S5 (p = 0.008) and S3 and
S5 (p = 0.019), meaning that participants found the various assistance level
trials less difficult over sessions.

3) Assistance level - performance relationship

Figure 4.4: Mean and standard error of the performance measured by the Execution
time (a), Timeouts (b) and SPARC (c) for the different assistance levels (high:
light green and squares; medium: medium green and triangles; low: dark green and
crosses). The performance values for all the participants were averaged for each
closed-loop control session (S2-S5).

As can be seen in Figure 4.4, higher assistance values led to higher perfor-
mance. Indeed, Assistance level had a significant effect on all the metrics, as
reflected by the two-way ANOVA (Execution time: p = 1.1 ·10−5; Timeouts:
p = 4.9 ·10−5; SPARC: p < 10−6). The post-hoc comparisons show signif-
icant differences between the three assistance levels, except for the low vs.
medium levels of Execution time and the medium vs. high level of Timeouts.
A decrease of the timeouts over sessions for all the three assistance levels can
also be noticed and was reflected by a significant (p = 0.015) effect of the
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session factor in the two-way ANOVA, although post-hoc comparisons did
not show any pairwise differences after Bonferroni correction.

4) Feedback questionnaire

Figure 4.5: Mean and standard deviation of the responses given by the partici-
pants to the feedback questionnaire after each closed-loop control session (S2-S5).
The questions were grouped into five different categories: Exoskeleton function-
ing, Exoskeleton Hardware, Control of the exoskeleton (proximal and distal DoFs),
Feedback accuracy and Protocol design. Higher values mean more positive feedback.

Figure 4.5 illustrates the average responses of the participants to the ques-
tionnaires filled out at the end of each closed-loop control session. It shows
satisfactory response values (in the range [6.3, 8.0]) that remained stable
across sessions for the questions related to the exoskeleton functioning and
hardware as well as the protocol design. Additionally, participants reported
an increasing ease in controlling the exoskeleton over the sessions. From
these values, a noticeable difference between the proximal and distal DoFs
can be detected too, with the control over the proximal DoFs being appar-
ently more intuitive than the distal DoFs. However, the responses about the
control over the distal DoFs show that participants also found the control

88 Chapter 4



Novel neural interfaces for upper-limb motor rehabilitation after stroke

of those DoFs easier towards the later sessions. The reason for this might
be that participants were not told that the trial accomplishment depended
only on the position of the proximal DoFs. Thus, they probably associated
the reduction in execution time and number of timeouts over sessions with
a better control of both proximal and distal DoFs. Finally, the ratings for
the feedback accuracy were slightly more positive over sessions with mean
values ranging from 6.1 to 6.9.

4.5 Discussion

In this study, we presented and validated a myoelectric interface intended for the
upper limb rehabilitation of stroke patients. The system includes a ridge regres-
sion algorithm, a subject-specific myoelectric mirror model, fixed within and across
sessions, and high-resolution EMG recordings. Our preliminary validation with
healthy participants demonstrates that it is possible to achieve real-time, skillful
and simultaneous control of a rehabilitation exoskeleton with multiple degrees of
freedom using EMG activity and an EMG decoder trained on data from the con-
tralateral arm. Furthermore, this myoelectric interface elicited motor learning in
healthy individuals across five-sessions conducted over a 5-day period.

This is the first myoelectric system that has been successfully used to simul-
taneously control a 7-DoF exoskeleton in real-time, including proximal and distal
joints. It has previously been demonstrated that training functional tasks, involv-
ing coordinated proximal and distal joint movements of the arm, might facilitate
the activation of more affected distal muscles in patients with motor impairment,
and ease the transfer of the acquired skills to activities of daily living [6,47]. How-
ever, the existing non-invasive myoelectric systems do not offer the possibility of
training coordinated multi-joint tasks, since they are restricted to the real-time
simultaneous and proportional control of up to 4 DoFs (proximal or distal) of an
external robot [124, 158–160], 2 DoFs of a prosthesis [41, 162] or 1-DoF (elbow or
hand) of an upper-limb exoskeleton [163, 164]. The difficulty of continuously and
accurately predicting users′ motion intention from EMG signals and of simulta-
neously controlling the velocity of several DoFs of an exoskeleton in real-time has
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limited its clinical and commercial use. Our mirror myoelectric system goes a step
further, as it allows safe, smooth and continuous multi-DoF control in real-time.
Even more relevant for rehabilitation applications is that it can elicit motor learn-
ing in healthy subjects.

The results of the analysis across sessions demonstrate that the participants
learned the mirror mapping and operated the myoelectric interface in a progres-
sively more efficient way over the training period (see Figure 4.2). The kinematics
predicted from the EMG activity defined a more direct and accurate movement
towards the aimed position, reflected in higher speeds and in turn, lower time
periods needed to reach a target. This was confirmed by the progressively more
positive responses in subjects′ responses to the feedback questionnaire regarding
feedback accuracy and ease in controlling the exoskeleton (see Figure 4.5) and the
lower difficulty ratings over sessions (see Figure 4.3(b)). The performance also
varied according to the assistance level. As expected, the higher the assistance,
the shorter the execution time, the smaller the percentage of timeouts and the
smoother the path. This difference could also be perceived by the participants, as
revealed by the significantly different ratings given for the trials of each assistance
level. More importantly, it was demonstrated that even during the trials with only
10% assistance, participants could successfully control the speed and direction of
a 7-DoF exoskeleton with their EMG during a complex functional task. Indeed,
they produced significantly (p = 0.015) fewer timeouts during the trials of any of
the three assistance levels over the course of the experiment (see Figure 4.4(b)),
and reported progressively less difficulty (p = 0.002) to perform the trials with any
assistance level (see Figure 4.3(b)). Furthermore, the participants rated satisfac-
torily the usability and comfortability of the system and provided us with useful
information to adapt and optimize the system for future experiments. Therefore,
the results are encouraging and have relevant implications for its future application
to a rehabilitation scenario with stroke patients.

There is a trend towards a degrading control (i.e., smaller CC and larger
NRMSE values) of the distal DoFs over the course of the intervention (see Figure
4.2). Conversely, performance of the proximal DoFs improved over time. This
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difference goes in line with the results found in previous offline studies in healthy
and stroke patients [68, 71]. One reason for the difference between the proximal
and distal DoFs performance could be that the movements of the distal DoFs were
finer and more difficult to control than the proximal DoFs, as reported by the
participants in the feedback questionnaire and by the significantly (pCC = 0.0098;
pNRMSE = 0.002) lower mean performance of the distal DoFs compared to the
proximal ones. In addition, the fact that the task completion condition was based
only on the proximal DoF position could have influenced the performance. Despite
the fact that participants could control and receive feedback on the distal DoFs,
they were never informed whether the target position was successfully reached on
those DoFs or not. This lack of information might have impeded the occurrence
of a learning process (based on reinforcement learning, i.e. on reward), reflected
in a more accurate control over the distal DoFs. This supports the importance of
receiving contingent sensory feedback and reward (i.e., beep indicating task com-
pletion) of the DoFs being controlled for motor control [49, 81, 82]. Furthermore,
there is a significant increase in variability in CC and NRMSE values in the distal
DoFs during RBs (See Supplementary Figure 4.8(b) and (d)), which suggests im-
plicit motor exploration or different motor control strategies.

The concepts of skill acquisition and motor adaptation and their relationship
with motor recovery is still unclear [144]. Dipietro and colleagues suggested that
an internal map of the trained task is built by the brain during motor recovery,
following a process more similar to motor skill acquisition than motor adapta-
tion [147]. Others have stated that repeated adaptation can lead to learning a
new and more permanent motor skill that can cause long-lasting changes in the
motor cortex and the cerebellum [168]. The results of our study demonstrate that
four training sessions sufficed for healthy individuals to learn the imposed map-
ping and achieve proficient myoelectric control. However, from these results we
cannot conclude whether the observed learning was the result of an adaptation
or a skill acquisition process. The metrics assessing the myoelectric control (i.e.,
CC and NRMSE) during the RBs partially reflect the observed significant behav-
ioral changes, indicating an intrinsically effective generalization and retention of
the imposed mirror EMG-to-kinematics map. This is of great importance as this
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might open a new door to efficient re-learning of correct EMG activation patterns.
However, our results were not significant and in the distal DoFs, which were not
rewarded during the training, the effects were mixed and inconclusive. A larger
number of participants or sessions might be needed to find significant effects dur-
ing the training. It should also be noticed that some of the participants may have
partially or completely relied on strategies such as the reduction of interaction
forces to accomplish the trials in a shorter time over blocks. The absence of sen-
sors to measure such parameters is a limitation of the study that will be addressed
in future experiments. It would also be necessary to assess the generalization of
the gains to untrained tasks and the long-term effects of the training in order to
determine which specific process occurred during the intervention. Nevertheless,
the observed learning process and positive feedback from the healthy population
encourage the transfer of this rehabilitation system to the clinical stage.

This mirror decoder has been designed for the rehabilitation of stroke patients,
as they typically keep the motor abilities of one of their limbs intact or mostly
intact. The system takes advantage of this characteristic by using the muscle
activation patterns or synergies of their intact limb as a reference mapping for
patients to learn to move their paretic limb through the recruitment of healthy
synergies. Previous evidence suggests that the learning of a new neuromotor map-
ping is associated with the emergence of new muscle synergies. Moreover, these
effects can persist after a week facilitating the generalization to new tasks while
keeping the same mapping [159]. Other studies have also emphasized the impor-
tance of error strategies, guidance and feedback for muscle activation modulation
and motor learning [169–174]. They demonstrated that guidance and feedback
improves motor task learning and that errors should not be reduced or eliminated
to induce learning, but instead they should be shown and in some cases, even
amplified [173,174]. Therefore, based on the results, we believe that training with
this closed-loop system that provides the necessary assistance and the appropri-
ate response stimuli (i.e., contingent feedback about the paretic EMG activity),
patients will be able to learn the fixed mapping of healthy activity imposed by
the mirror decoder. Whether this learning process leads to the formation of new
and healthy muscle synergies in the paretic arm remains to be investigated in the
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stroke population.

Many patients classified by standard scales as having completely paralyzed
joints (i.e. no visually perceived movement) nevertheless retain significant residual
muscle activity, which could be decoded and used to control external devices [35].
One of the limitations of the system presented here is that patients with no resid-
ual muscle activity could not benefit from it. However, patients without decodable
muscle activity could initially train with brain-machine-interfaces (BMIs) until
they recovered enough EMG activity [49,175] to profit from myoelectric interfaces
or from hybrid-BMIs, with a shared brain and muscle control [71]. Despite its lim-
itations, our approach opens the doors of rehabilitation to many stroke patients
who retain minimal EMG activity but cannot benefit from other therapies such as
constraint induced movement therapy and bilateral arm training [176] that require
residual movement of the paretic limb.

4.6 Acknowledgements

This study was funded by the Fortüne-Program of the University of Tübingen
(2422-0-1), the Bundes Ministerium für Bildung und Forschung BMBF MOTOR-
BIC (FKZ 13GW0053) and AMORSA (FKZ 16SV7754) and the Ministry of Sci-
ence of the Basque Country (Elkartek: EXOTEK).

4.7 Supplementary material

Chapter 4 93



Andrea Sarasola Sanz

Figure 4.6: Performance measured by the spectral arc length (SPARC) for the 20
training blocks from the closed-loop control session (TB1-TB5 of S2-S5), for all
the participants. SPARC values are averaged across the proximal DoFs (a) and
the distal DoFs (b). The polynomial model fit to the outcome values (in blue)
represents the learning trend.

Figure 4.7: Trajectories in x and y axes towards the four targets around the
workspace, performed by one of the subjects during the closed-loop control ses-
sion 2 (a), session 3 (b), session 4 (c) and session 5 (d). Values in x and y axes
are in cm.
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Figure 4.8: Correlation coefficient ((a) and (b)) and normalized root-mean-square-
error ((c) and (d)) metrics for each reference block (RB1-RB2) and closed-loop
control session (S2-S5), for all the participants. Values are averaged across the
proximal DoFs ((a) and (c)) and the distal DoFs ((b) and (d))). The polynomial
model fit to the outcome values (in blue) represents the learning trend.
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5. Chapter 5: An EEG-based
brain-machine interface to control a
7-degrees of freedom exoskeleton for
stroke rehabilitation

This manuscript has been published as [70].

5.1 Abstract

Brain machine interfaces (BMIs) have previously been utilized to control rehabili-
tation robots with promising results. The design and development of more dexter-
ous and user-friendly rehabilitation platforms is the next challenge to be tackled.
We built a novel platform that uses an encephalograpy-based BMI to control a
multi-degree of freedom exoskeleton in a rehabilitation framework. Its applica-
bility to a clinical scenario is validated with six healthy subjects and a chronic
stroke patient using motor imagery and attempt. Therefore, this study presents a
potential system to carry out fully-featured motor rehabilitation therapies.

5.2 Introduction

Encephalographic (EEG)-brain machine interfaces (BMIs) have previously been
used to control an external robot or exoskeleton in assistive and rehabilitation
frameworks [177], [60], [49]. Several decoding methods and training protocols have
been tested to find an efficient rehabilitation therapy that could increase cortical
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plasticity and elicit motor recovery. Despite the limitations of EEG technology
and the moderated decoding performance of the employed EEG-decoding meth-
ods, the aforementioned studies demonstrated the potentiality of EEG-based BMIs
as a tool for post-stroke rehabilitation. The focus has lately turned towards the
development of BMI-based rehabilitation platforms that allow a more natural and
dexterous control of multiple degrees of freedom(DOFs), and boost motor recovery.

In this study we present an EEG-based BMI platform for the control of a multi-
DOF exoskeleton (Tecnalia, Spain) in a rehabilitation framework. The platform
combines EEG-decoding methods proven to induce significant motor recovery [49]
with a control platform and a rehabilitation exoskeleton that allows the training
of complex functional tasks, involving several DOFs of the arm, wrist and hand.
The rehabilitation platform is validated with 6 healthy subjects and a chronic
stroke patient, who followed a motor imagery and a motor attempt based protocol,
respectively.

5.3 Methods

5.3.1 Experimental protocol

Six healthy subjects (3 female, age 24-30, all right handed) and a chronic stroke
patient suffering from a right hemiparesis (male, 67 years old, 3 years from stroke)
participated in the study. All of them were naive to motor imagery/attempt and
gave written consent to the procedures as approved by the ethics committee of the
Faculty of Medicine of the University of Tübingen, Germany.

They underwent a single session that consisted of two parts: a screening phase
and a real-time BMI operation phase. The data collected during the initial phase
was employed to select the electrodes and frequency bands that would constitute
the input to the BMI. During the second part, the participants controlled a 7-DOF
exoskeleton using an EEG-based BMI in real-time. The exoskeleton was placed
over a mat and allowed the movement in 7-DOFs (details in [68]).

During the screening phase, the healthy subjects (the stroke patient) were asked
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upon auditory and visual cues to either imagine their right hand opening (try to
open and close his paretic hand) and closing or to relax for 5 seconds. Healthy
subjects and the patient completed 5 and 3 blocks amounting to 55 and 33 trials of
each condition, respectively. During the real-time phase, participants performed
functional movements towards four different positions around the worskpace (see
Fig. 5.1), while sitting and wearing the exoskeleton on their right upper limb.
More precisely, they were instructed, by means of imperative auditory cues, to
imagine/to attempt to reach a target while opening their hand and pronating
their wrist and then back to a predefined rest position. Trials always started with
a rest period of 3-5 seconds, followed by an auditory cue, a 2 second-long prepa-
ration time and a movement period. A timeout time of 7 seconds defined the
maximum possible length of the movement period. If the target position was not
reached within this time, the same target position was kept for the next trials until
reaching it in all the DOFs. Otherwise, the trial ended as soon as the target was
reached and subjects were instructed to head to the next position.

5.3.2 Data collection and processing

EEG data from 32 channels: FP1, FP2, F7, F3, Fz, F4, F8, FC5, FC1, FC2, FC6,
T7, C3, Cz, C4, T8, TP9, CP5, CP1, CP2, CP6, TP10, P7, P3, Pz, P4, P8, PO9,
PO10, O1, Oz, O2 and two EOG signals were collected at 1kHz (Brain Products
GmbH, Germany). EEG signals were bandpass filtered (5-80Hz), notch-filtered at
50Hz and spatially filtered with a short-Laplacian filter. An autoregressive model
of order 20 and its power was computed on the filtered signal, using 0.5sec-long
windows and a step window of 50ms. Finally, the mean power on the chosen fre-
quency bands and electrodes were used as input features for the classifier.

Kinematic activity of the above mentioned DOFs was recorded at 20Hz with
an optical symbol recognition system and motor encoders.
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Figure 5.1: A hemiparetic stroke patient controlling the 7-DOF exoskeleton with
the EEG-BMI. The patient’s arm is at the initial rest position and the colored
cylinders define the four target positions around the workspace.

5.3.3 Real-time decoding and operation of the exoskeleton

The most discriminant electrodes and frequency bands were selected based on r-
squared coefficients. Features were computed on those electrodes and bands, as
described in Section 5.3.2) and fed to the classifier in real-time. Linear discrim-
inant analysis was used to classify the input features as “Movement” or “Rest”.
The classifier was trained once using the screening data and then, retrained online
at the end of each trial using the last two minutes of data from each condition.
The outputs of the classifier were ignored during the rest and preparation periods,
in which the exoskeleton remained still. However, during the movement period,
the outputs classified as “Movement” triggered the autonomous movement of the
exoskeleton towards the target position. On the other hand, outputs classified as
“Rest” prevented the exoskeleton from moving. To achieve a more stable control
and avoid flickering movements due to EEG signal noise, the current condition (i.e.
exoskeleton in motion or in rest) was held as long as the decoder didn’t classify 5
consecutive outputs of the other condition, following [49].

Chapter 5 99



Andrea Sarasola Sanz

To measure the performance, we analyzed the percentage of time the robot
was moving during the movement period, in which participants received feedback.
Additionally, we compared this true positive rate (TPR) and the false positive
rate (FPR: percentage of outputs classified as “Movement” during the rest period)
offline.

5.4 Results

The mean percentage of time the robot was moving during the movement pe-
riod for all the healthy subjects was 62.8% ±10.4% and for the stroke patient
was 54.9%. The difference between the TPR and FPR (healthy subjects: mean
= 39.8% ±7.3%; patient: 43.6%) was significant (p = 0.018). In addition, all
the healthy subjects and the stroke patient could successfully operate the 7-DOF
exoskeleton in real-time using the EEG-BMI and accomplished 40 and 24 trials,
respectively.

5.5 Discussion and conclusions

This study presents and validates a novel control platform based on an EEG-BMI
that links brain activity with the movement of a 7-DOF rehabilitation exoskele-
ton in real-time. Even if it is not possible to test it statistically, the results show
that the TPR and FPR values of the healthy subjects were not noticeably dif-
ferent from ones of the stroke patient. Besides this, the number of times the
decoder classified an output as “Movement” was significantly higher during the
movement period than during the rest period. Although the performance of the
decoder was not high, it should be taken into account that all the subjects were
naive to motor imagery and a higher performance and more skillful control could
be expected after several training sessions. Nevertheless, it is still not clear how
strong the correlation between decoding performance and level of recovery is. In
fact, Ramos-Murguialday et al. [49] demonstrated that this algorithm, albeit not
the most accurate one, could serve to elicit certain degree of motor recovery, in
combination with a dedicated BMI-based rehabilitation therapy. To the best of
our knowledge, this is the only double-blinded study that showed an EEG-BMI
based therapy that induced motor recovery in chronic stroke patients. Therefore,
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although several algorithms could be used to decode EEG signals as part of a BMI
system, we relied on this.

We have demonstrated that the participants were able to control the movement
of the exoskeleton in real-time. Therefore, this whole system constitutes a poten-
tial rehabilitation platform for various reasons: i) it establishes a contingent link
between the movement intention decoded from the brain activity and the actual
movement of the paralyzed limb; ii) it provides a rehabilitation scenario in which
functional movements towards various targets as well as the interaction with ob-
jects are considered; iii) it allows for the joint rehabilitation of distal and proximal
joints, which has been proven to be beneficial [47]; iv) even patients with no resid-
ual movement at all could benefit from it; v) it can integrate other biosignals [68]
and establish a hybrid control.
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6. Chapter 6: Classification of
different reaching movements from
the same limb using EEG

This manuscript has been published as [53].

6.1 Abstract

Objective:
Brain-Computer-Interfaces (BCIs) have been proposed not only as assistive tech-
nologies but also as rehabilitation tools for lost functions. However, due to the
stochastic nature, poor spatial resolution and signal to noise ratio from electroen-
cephalography (EEG), multidimensional decoding has been the main obstacle to
implement non-invasive BCIs in real-live rehabilitation scenarios. This study ex-
plores the classification of several functional reaching movements from the same
limb using EEG oscillations in order to create a more versatile BCI for rehabilita-
tion.
Methods:
Nine healthy participants performed four three-dimensional center-out reaching
tasks in 4 different sessions while wearing a passive robotic exoskeleton at their
right upper limb. Kinematics data were acquired from the robotic exoskeleton.
Multiclass extensions of Filter Bank Common Spatial Patterns (FBCSP) and a
linear discriminant analysis (LDA) classifier were used to classify the EEG activ-
ity into 4 forward reaching movements (from a starting position towards 4 target
positions), a backward movement (from any of the targets to the starting position
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and rest). Recalibrating the classifier using data from previous or the same session
was also investigated and compared.
Results:
Average EEG decoding accuracy were significantly above chance with 67%, 62.75%,
and 50.3% when decoding 3, 4 and 6 tasks from the same limb, respectively. Fur-
thermore, classification accuracy could be increased when using data from the
beginning of each session as training data to recalibrate the classifier.
Conclusion:
Our results demonstrate that classification from several functional movements per-
formed by the same limb is possible with acceptable accuracy using EEG oscilla-
tions, especially if data from the same session are used to recalibrate the classifier.
Therefore, an ecologically valid decoding could be used to control assistive or reha-
bilitation mutli-Degrees of Freedom (DoF) robotic devices using EEG data. These
results have important implications towards assistive and rehabilitative neuropros-
theses control in paralyzed patients.

6.2 Introduction

Brain-computer interface (BCI) systems can be used to decode brain activity into
commands to control external devices [97, 178]. A recent double-blind controlled
study has demonstrated for the first time that BCI control of a rehabilitation robot
can promote motor recovery of severely paralyzed chronic stroke patients [49], be-
ing these results reproduced and confirmed [50, 60, 179]. BCIs can also function
as an assistive device to restore a lost function, such as motor control. It is obvi-
ous that the number of DoFs that can be volitionally controlled is very relevant
for assistive technologies and prosthetics. This has also been suggested to be of
paramount importance in rehabilitation robotic therapies [180, 181]. Initial EEG-
based BCI studies controlling several DoFs were achieved using motor imagery
paradigms involving different limbs (e.g. 3D cursor control using hand vs feet vs
tongue motor imagery) [182, 183]. This control strategy, albeit successful, is not
based on “natural” or ecologically valid environments (i.e. based on EEG oscil-
lations produced rapidly and without conscious effort when performing the task)
and an extensive learning process is necessary to achieve acceptable control perfor-
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mance. Recently, new strategies have been used to control multi-DoF robots based
on EEG error potentials [184], steady state visual evoked potentials (SSVEPs) [185]
and P300 potentials, even in ALS patients [186–188]. These strategies require at-
tention but ignore motor descending corticospinal volleys, which seems to be key
aspect in motor rehabilitation BCIs aiming at restoring natural corticomuscular
connections [49]. Involvement on descending motor commands was suggested as
key mechanism in motor rehabilitation because motor execution/attempt brain ac-
tivity only was correlated with significant motor improvement compared to motor
imagery related brain activity during a proprioceptive BCI rehabilitative interven-
tion [49]. Other strategies like trajectory decoding [189] might offer a promising
solution, albeit methodological challenges [190].

Neuronal population signals have been used to decode, with acceptable decod-
ing performance, directional movement executions using non-invasive magnetoen-
cephalographic (MEG) [86] and intracranial activity [84] from the motor cortex.
Furthermore, intracortical activity has been succesfully used to control several de-
grees of freedom of robotic devices in primates [191, 192] and in humans [57, 193]
decoding and/or encoding neural signals. Recently, control over functional elec-
trical stimulation (FES) [194] in humans has been also achieved. Furthermore,
intracranial EEG has also been used to continuously decode two-dimensional (2D)
hand position [195], wrist movement trajectory [196] and seven different hand
movement intentions in severely paralyzed chronic stroke patients [85]. However,
invasive and MEG (nowadays too bulky and expensive to be considered as a prac-
tical option) data decoding are out of the scope of this paper.

Upper limb and especially hand movement decoding from electroencephalog-
raphy (EEG) signals is still challenging mainly due to poor signal to noise ratio
and spatial resolution [89]. Existing motor rehabilitation oriented BCI systems (i.e.
decoding “natural” movement related EEG oscillations) decode two classes only us-
ing simple binary classification between rest and movement [49,177,179,197–199].
These BCI systems only allow a user to control 1 DoF (e.g. orthosis for opening
or closing the hand, a predefined functional electrical stimulation (FES) or visual
feedback).
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Recent studies have achieved classification of the same limb with acceptable
performance using EEG data although many of these studies classify only two
movements [87,89,200]. Liao et al. investigated the binary classification of ten dif-
ferent pairs of executed finger movements using 128-channel EEG signals achieving
a promising average decoding performance of 77.1% [88]. In another study, six dif-
ferent wrist movement pairs (e.g. flexion vs extension or pronation vs supination)
were decoded with average accuracy ranging from 60 to 80% [201]. A few other
groups have reported some preliminary work on multi-class decoding using motor
imagery and execution of movements from the same upper limb [68,87,202]. Yong
et al. (2015) have shown a 3-class BCI system that discriminates EEG signals
corresponding to rest, imaginary grasp, and elbow movement [87]. Furthermore,
classification of hand movement directions from the same limb using EEG has not
been sufficiently explored in the literature. Our previous work reported five class
EEG decoding reported during multiclass classification of four movements direc-
tions and rest from the same limb [200].

We believe, discriminating different movements within the same limb would
allow more intuitive control of neuroprostheses (e.g., brain controlled exoskele-
ton) without considering any artificial association between actual movement and
neuroprosthetic movement. Therefore, in the here presented work, we aimed at
discriminating 6 different functional movements from the same limb with accept-
able accuracy levels using EEG data towards a more intuitive and natural control
of rehabilitative devices like robotic exoskeletons and FES. Furthermore, we eval-
uated the impact of different recalibration strategies on the decoding to optimize
system stability.

We hypothesize decoding accuracy levels allowing robotic control of rehabilita-
tive devices of up to 6 functional movements from the same limb, could be achieved
using EEG activity only.
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6.3 Materials and Methods

6.3.1 Participants

Study participants included nine healthy right-handed subjects (6 male, age: 24±4
years) with no history of neurologic disease. Participants underwent four recording
sessions (4 non-consecutive days) within eight days (average time between each
session was 2 days). The experimental procedure was explained to the subjects
and they were asked to sign a written consent form. Ethically permission was
given by the ethical committee of the Faculty of Medicine, University of Tübingen,
Germany.

6.3.2 Experimental Setup

Participants were seated in a comfortable chair in front of a desk (See Fig. A) espe-
cially designed for the experiment. Participants were asked to perform 4 different
center-out functional reaching movements and move back to the initial starting
position (see Fig. 6.1A) with their right upper limb attached to an IS-MORE
7-DoF robotic exoskeleton (Tecnalia, San Sebastian, Spain) upon imperative au-
ditory cues (see Fig. 6.1A). All the participants were instructed to perform the
outreaching movements in the same way, and rhythmic auditory cues were used to
facilitate movements′ timing. The directional colored targets were named as Blue,
Red, Green, and Brown. Participants were asked to reach a colored target and
return to the rest position at a comfortable pace.

6.3.3 IS-MORE Robotic Exoskeleton

We decided to use an exoskeleton to record the kinematic data to simulate a real-
istic scenario condition in which a patient could brain-control the exoskeleton to
produce functional movements like reach and grasp. For an optimal stroke reha-
bilitation paradigm, a realistic environment with different functional movements
trained at the same time is very important. Training of reaching movements is
key in stroke recovery, as it involves elbow-shoulder coordination [203]. The Ex-
oskeleton was friction-free and motors were disengaged, although produced some
mechanical restrictions (e.g. no vertical, or writs movement). Furthermore, the
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haptics related to the use of the exoskeleton will be present during the real sce-
nario and could also produce some brain activity from afferent origin, which could
influence brain oscillatory signature of each motor task.

The exoskeleton can be moved in 7 DoFs including displacement and rotation
of the forearm in a 2D horizontal plane (3 proximal DoFs: position in X, position
in Y, and forearm orientation angle), pronation and supination of the wrist (1
distal DoF: wrist angle), flexion and extension of the thumb, index and the group
of middle, ring and pinky fingers (3 distal DoFs: thumb angle; index angle; three
fingers angle).

Kinematic data (position in X, position in Y, and forearm orientation angle) of
the midpoint of the fore-arm was calculated and recorded via a camera attached
to the bottom of the base of the device. The exoskeleton rolls on top of a map
with micro optical symbols printed on it, which are used to calculate the instanta-
neous position (more details can be found in [68,103]). The rest of the DoFs were
recorded using motor encoders and potentiometers. Kinematic data was recorded
at 18Hz. Participants also performed 4 hand grasping movements (pinch grip,
key and cylindrical grasp and pointing with the index finger) and reach-and-grasp
movements to the 4 targets described in the manuscript combining the different
grasping movements using especially designed objects for that purpose. Although
we have analyzed the data, we have not included neither the experimental pro-
cedure nor the classification results in this manuscript because we did not obtain
“above chance level” classification results for the grasping movements.

6.3.4 Experimental Paradigm

Each experimental session was divided in 5 runs, each consisting of 40 trials (10
trials for each target). The experimental timing diagram for each trial is shown
in Figure 6.1B. Each trial consisted of three phases separated by auditory cues:
1) resting interval (random length between 2-3 seconds); 2) an instructional cue
regarding the target to be reached (2 sec); 3) “Go” cue to initiate reaching move-
ments towards the indicated targets and come back to the starting position at a
comfortable pace but always executed in less than 4 sec. In order to reduce ar-
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tifacts, we asked subjects to keep the jaw and face muscles relaxed avoiding eye
blinks or swallowing during data recording. Therefore, to increase participants′

awareness regarding artifacts, we performed a brief instruction task before the
first session instructing subjects to perform face, neck, contralateral arm and eye
movements, while raw data was shown to them.

6.3.5 Data acquisition

EEG was recorded according to the international 10-20 system from 32 active
electrodes as FP1, FP2, F7, F3, Fz, F4, F8, FC5, FC1, FC2, FC6, T7, C3, Cz,
C4, T8, TP9, CP5, CP1, CP2, CP6, TP10, P7, P3, Pz, P4, P8, PO9, O1, Oz, O2,
and PO10 (ActiCap, Brain Products GmbH, Germany) and the cap was fixed by
a chinstrap to avoid electrode shifts. EOG was recorded with passive electrodes.
AFz and FCz were used as the ground and reference electrodes, respectively. The
impedance of electrodes was kept below 5 kΩ. EEG data were sampled (BrainAmp,
Brain Products GmbH, Germany) at a frequency of 2500Hz. BCI2000 software was
used to record EEG data from the acquisition system and to present the auditory
cues [204].

6.3.6 Data Analysis

Preprocessing

After offline visual inspection peripheral channels (Fp1, Fp2, T7, T8, TP9,
TP10, P7, P8, O1, Oz, O2, PO9, and PO10) were removed from prospective
data analysis due to excessive noise and/or artefacts. Blind Source Separation
(BSS) algorithm [205] from the Automatic Artifact Removal (AAR) toolbox as an
EEGLAB plug-in [206] was used to remove artifacts caused by eye-blinks and eye
movements, and muscle activity from face, neck and shoulder movements. Live
video streaming with a frontal view from the participants allowed the experimenter
to control for systematic or random artifacts, which were reported to the partic-
ipant if persistent and the correspondent experimental run was disregarded from
the analysis. Data was downsampled to 250 Hz, band-pass filtered (0.1-70 Hz),
and the power line noise was removed using a 50 Hz notch filter. An open-source
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Figure 6.1: A: Experimental situation. Participant performing a reaching move-
ment from the starting rest position towards the green target. Reaching movements
were executed towards the 4 different targets represented by rectangles coloured in
blue, red, green and brown. B: Timing. To begin, an auditory “Rest” cue was
presented indicating a random resting period between 2 to 3 sec. immediately after
this period an instructional auditory cue indicated to which target the participant
was asked to move (Blue, Red, Green, Brown). Two seconds afterwards a “GO”
cue indicated the moment to start the active movement towards the targets at a
comfortable pace, having a 4 seconds time out to perform the reaching movement
and come back to the starting position. C: Movement onsets were identified for
forward and backward movements into 1 second epoch for each trial by kinematics
data. Rest class was also segmented into 1 second epoch from the beginning of each
rest interval.
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MATLAB toolbox, BCILAB, was used to process the EEG data [207].

Time-Frequency Analysis

Time-frequency analysis for the investigation of spectral changes at distinct
time points was performed using wavelet transforms even at the lowest frequency
(1 Hz corresponding to 3 cycles during 1 s) as event-related spectral perturbations
(ERSPs) [183]. The time window analyzed included 3 s before and 7 s after the
auditory “Go” cue and the time course was obtained by averaging the power change
of the frequency bands across all trials during the movement. The time window
from -3 to -2 s before the “Go” cue was used as baseline (See Figure 6.2B).

Feature extraction and classification

The kinematics data (position in X, position in Y, and forearm orientation
angle) of the base of the IS-MORE exoskeleton were only analyzed (up-sampled
to 250Hz and synchronized with EEG data), and used to identify sub-movements
within a task (forward and backward phases during reaching movements) and
hence, to label EEG data. Every EEG trial for movements phase was segmented
into two 1 second epochs (Fig 6.1C): a) starting from movement onset identified
by kinematics data to forward movement towards the target); and b) starting
movement after target was reached (backward movement towards the starting po-
sition). Rest class was also segmented into 1 second epochs from the beginning
of each rest interval. Data from all trials for each class were appended and used
to extract spatio-frequency features using Filter-Bank Common Spatial Patterns
(FBCSP) [208], which is an extension of the standard Common Spatial Pattern
(CSP) algorithm [209]. We applied FBCSP as feature extraction method because
it uses frequency filtering into multiple frequency bands, which could benefit the
decoding of different motor tasks as demonstrated previously [87]. Furthermore,
CSP algorithm has been proven its efficacy calculating optimal spatial filters for
motor related BCIs [87, 88, 195]. Spatial filters were created for three frequency
windows: 7-15 Hz, 15-25 Hz, and 25-30 Hz. The log-variance of the filtered signal
was used as feature for classification.
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We set three as the number of spatial filters to use for the CSP algorithm in
accordance to prior studies with CSP [87,208] resulting in 6 features per frequency
band and 18 features per channel. The spatial patterns used in feature extraction
representing the areas involved in each movement EEG activity were obtained with
the help of FCSP patterns (Figure 6.2A). We obtained the topographical distri-
bution of the difference in EEG activity during 2 different movement conditions
(e.g. reaching towards Blue vs Rest) in specific frequency bands. As depicted with
data from a representative participant in Figure 6.2A, the EEG activity difference
is prominent when comparing each movement direction and Rest. However, the
difference is not obvious when comparing EEG activity produced during reaching
movements towards 2 different targets (e.g. Blue vs Red). Therefore, FCSP pat-
terns of ERD of the mu and beta rhythms were needed to extract distinct features
for the different execution movements.

The resulting feature vector was then fed to the Linear Discriminant Analysis
(LDA) classifier as multi class classifier. Taking into account the similar perfor-
mance of LDA and SVM for multiclass classification [87], we chose LDA as our
preferred method. It is basically a two-class classifier extended to more classes
by one-vs-one voting. For the one-vs-one voting scheme, the classifier was trained
for a K(K-1)/2 binary classifiers in a K-way multiclass problem [210]. Validation
performance was estimated using five-fold blockwise cross-validation with 5 trials
safety margin. Thus, each session was split up into five folds, with each fold being
used for testing and used the remaining four folds to train the classifier. Decoding
accuracy was estimated according to the average over all folds for each session.

To evaluate the statistical significance thresholds for decoding accuracy, we
used the chance levels (p<0.05) for an infinite number of trials and classes using
the binomial cumulative distribution [211]. From now on, we will refer to this
significance level when reporting classification accuracy results.

The collected EEG data contained nine different states: REST, and 8 actual di-
rectional movements: 4 forward (F) (towards BLUE, RED, GREEN, and BROWN
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Table 6.1: Decoding schemes: different sessions were used for training and test-
ing to investigate re-calibration effects on classification performance. If the same
session was used for training and testing (in scheme 1 and 2 indicated by *), it
was evaluated using a 5-fold cross-validation to ensure that training and test set
do not overlap. Scheme 3 trained with previous ìcalibrationî sessions and tested on
current session.

targets) and 4 backward (B) (coming back from each target to the starting po-
sition) that we combined in one movement only (coming back to the starting
position from any target (BACKWARD)) to reduce the number of classes. In
this manuscript, we described the classification of three different complexity cases,
decoding 3, 4 and 6 movement classes:

1) 3 class (RED, BLUE, REST)

2) 4 class (RED, BLUE, BACKWARD, REST)

3) 6 class (RED, BLUE, GREEN, BROWN, BACKWARD, REST)

Recalibration

In order to investigate how the recalibration could affect the classification re-
sults, we first divided each session in 5 data blocks that were used later as folds for
the cross-validation of the classification and tested three decoding schemes using
data from the different four sessions (see Table 6.1):

Scheme 1 (within session): We used each session for both training and testing
with five-fold cross-validation. The within session decoding accuracy was averaged
over all folds.
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Scheme 2 (recalibrated between-sessions): Previous and current session data
(four folds) were used for training, and only one fold of current session (S2* or S3*
or S4*) was used for testing. The recalibrated between sessions decoding accuracy
was averaged over all folds.

Scheme 3 (between sessions): All previous session data were used for training
and current session was used for testing in between sessions.

Statistical analysis

We performed two separate statistical analyses to evaluate: (i) changes in
performance over sessions, and (ii), if any factor (scheme, class, and session) had
a significant effect in performance.

• To check for learning effects over sessions, we compared classification ac-
curacy differences between the different sessions using a repeated measures
ANOVA separately for the 3-class, 4-class, and 6-class problems. The time
(four sessions for scheme 1, and three sessions for schemes 2 and 3; see Ta-
ble1) was considered the independent variable and the classification accuracy
the dependent variable.

• A three-way ANOVA was performed to study the influence of the three fac-
tors (Scheme, Class, Session) in classification accuracy (dependent variable).
Factor scheme consisted of 3 levels (Scheme 1, Scheme 2, Scheme 3); fac-
tor classification problem included 3 levels (3-, 4-, and 6-classes); and factor
session had also 3 levels (S2, S3, S4). Notice that session S1 was removed
from this analysis to facilitate comparisons, as it was only tested in Scheme
1 (within session). When these factors or their interactions reached signif-
icance (p < 0.05), subsequent post-hoc t-tests were performed, applying a
Bonferroni correction for multiple comparisons. These post-hoc comparisons
were considered significant if the p-value was below 0.05 after correction.
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Figure 6.2: Filter Bank Common Spatial Pattern (FBCSP) and Time-Frequency
analysis: EEG data from a representative participant transformed into spatio-
frequency topographical maps and into one selected channel time-frequency domain.
A: Highest-ranking common spatial patterns for each pair of movements within the
specific frequency band (Black dots represent the 19 channels used for classifica-
tion). BLUE and RED stand for reaching movement towards the blue and red
target respectively. B: Channel C3 time-frequency event-related spectral pertur-
bation (ERSP) during reaching towards the blue target. The vertical dashed line
shows the time when the Go cue was presented to the participant.
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Table 6.2: Within session classification results for 3-class (left), 4-class (middle),
and 6-class (right) classification accuracy for all participants and sessions. For
each participant, average and SD is shown in the last column of the table. In the
lower cell of the table significance level of the decoding is shown. Five-fold cross-
validation was used to estimate the accuracy. “P” indicates participant and “S” for
the session.

Figure 6.3: Within session classification results. Confusion matrices showing the
mean classification accuracy (%) of all participants for different combination of
movements (BLUE, RED, GREEN, BROWN, backward, and Rest).

6.4 Results

Regardless of the number of movements to be classified and the calibration strat-
egy, the classification results were above significance level in all participants. For
clarity, the results section was categorized into three sections according to differ-
ent decoding schemes (calibration strategy) and complexity of the classification
(number of movements to be classified).

Scheme 1 (within session classification): Each session was used for train-
ing and testing with five-fold cross-validation.
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3-Movements Classification
We obtained an average accuracy of 67±7.33% (significance level 40%) for

classifying 3-classes (Blue vs Red vs Rest) as can be seen in detail from Table
2. The maximum classification accuracy over all sessions was observed in Partic-
ipant1 (75.25±10) and the minimum for Participant 6 (53.25±3). The maximum
and minimum classification accuracy for one session was observed in Participant1
(Session 2; 86%) and Participant6 (Session 3; 49%) respectively. The mean average
accuracy across participants increased from the first session (64%) to the fourth
session (69%) being this difference non-significant (p=0.61). The confusion matrix
demonstrated that the 3 classes were similarly classified with no clear confusion
between classes.

4-Movements Classification
Table 6.2 (in the middle) shows a mean classification accuracy of 62.75±6.89%

(significance level 30%) for all participants when classifying 4-classes (Blue, Red,
Backward, and Rest). Maximum classification accuracy over all sessions was ob-
served in Participant2 (73.75±2.7) and the minimum in Participant6 (48±2.1).
Same as for the 3-class classification, the maximum and minimum classification in
one session was achieved by Participant1 (Session 3; 77%) and Participant6 (Ses-
sion 3; 46%) respectively. The Average accuracy increased from the first session
for 60.6% compared to the fourth-session for 63.6% (See Table 6.2 in the middle),
being this difference non-significant (p=0.76).

6-Movements Classification
Table 2 (in the right) shows an average accuracy of 50.3±8.76% (significance

level 20.33%) for all participants when classifying 5 movements towards different
targets (Blue, Red, Green, Brown, and Backward) and Rest. Maximum classifi-
cation accuracy over all sessions was observed in Participant2 (64±7.7) and the
minimum in Participant6 (33.5±4.4). The maximum and minimum classification
in one session was observed in Participant2 (Session 3; 70%) and Participant6
(Session 3; 28%) respectively. In the Confusion matrix (Fig 3. in the right) can
be seen that in contrast to the targets more separated from each other (Blue and
Red), neighbor targets are confused by the classifier. Average accuracy did not
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change significantly between sessions (p=0.77).

Scheme 2 (recalibrated between-sessions classification): In this scheme,
previous and current sessions were used for training and only the current session
was used for testing with five-fold cross-validation.

Table 6.3 shows the mean decoding performance of multiclass combinations of
3-class, 4-class, and 6-class during 3 different recalibration using different combi-
nations of sessions: a) two sessions were used for training (S1, S2) and tested on
unseen data of S2; b) three sessions were used for training (S1, S2, S3) and tested
on unseen data of S3; and c) four sessions (S1, S2, S3, S4) were used for training
and tested on unseen data of S4. In each recalibration of sessions (Table 3.) the
previous and the current session were used as the training sets, and the current
session was used as the testing set.

As shown in Table 6.3, mean classification accuracies for the first recalibration
of sessions (S1 and S2 for training; S2* for testing) were 67.2±11.4%, 61.5±13%,
and 47.5±11.54% for 3-class, 4-class, and 6-class respectively. The maximum clas-
sification accuracy in the 3-, 4- and 6-class paradigm was 80% (Participant9),
74.4% (Participant9) and 65.2% (Participant2) respectively. The minimum clas-
sification accuracy in the 3-, 4- and 6-class paradigm was obtained always for
Participant6 and was 49.3%, 35.6%, and 27%, respectively.

During the second recalibration of sessions in Table 6.3, mean classification ac-
curacies (S1, S2, S3 for training; S3* for testing) were 69.2±12.13%, 62.7±15.27%,
and 47.15±11.38%. The maximum average accuracy in the 3-, 4- and 6-class
paradigm was 87.5% (Participant9), 86.1% (Participant2) and 63.1% (Partici-
pant9), respectively. The minimum classification accuracy in the 3-, 4- and 6-class
paradigm was obtained for Participant6 and was 48.6%, 42.7%, and 28.7%, respec-
tively.

During the third recalibration of sessions, mean classification accuracies (S1, S2,
S3, S4 for training; S4* for testing) were 67.1±15.86, 59.7±18.9, and 46.8±13.23.
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Table 6.3: Mean classification accuracy (%) for the offline analysis of multiclass
combination during different session calibration and current session with testing on
current session. If the same session was used for training and testing (in scheme
1 and 2 indicated by *), it was evaluated using a 5-fold cross-validation to ensure
that training and test set do not overlap. First recalibration: two sessions were
used for training (S1, S2) and tested on unseen data of S2*. Second recalibration:
three sessions were used for training (S1, S2, S3) and tested on unseen data of
S3*. Third recalibration: four sessions (S1, S2, S3, S4) were used for training and
tested on unseen data of S4*. “P” indicates participant.

The maximum classification accuracy was also observed for 3-, 4- and 6-class 91%
(Participant9), 87% (Participant9), and 67.1% (Participant2), respectively. The
minimum classification accuracy for 3-, 4- and 6-class was obtained for 45.4%
(Participant6), 33.6% (Participant 1), and 25.7% (Participant6), respectively. For
all combinations the significance level is shown in Table 6.3. Furthermore, we
also analyzed the difference in performance for scheme 2 depending on how many
sessionsí data were included in the recalibration of the classifier (See Table 6.3).
Although there was an overall increase in classification accuracy, our ANOVA
analysis resulted in not significant results, (3-class p-value= 0.93; 4-class p-value=
0.92; 6-class p-value= 0.98).

Scheme 3 (between-sessions classification): In this scheme, previous ses-
sions were used for training and only current session was used for testing.

Table 4 shows the mean classification accuracy of multiclass combination for
3-class, 4-class, and 6-class for three different combinations (see Table 6.1). We
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analyzed 3 different recalibration of sessions using the previous session as training
set and the current session as test set. a) one session was used for training (S1)
and tested on session S2; b) two sessions were used for training (S1, S2) and tested
on session S3; c) three sessions (S1, S2, S3) were used for training and tested on
session S4.

For the first recalibration in Table 6.4, the mean classification accuracies (S1
for training; S2 for testing) were 52.1±8.34%, 54±9.98%, and 42.5±9.88% for 3-
class, 4-class, and 6-class, respectively (Table 6.4). The maximum classification
accuracy was observed for 3-, 4-, and 6-class 68.4% (Participant9), 72.4% (Par-
ticipant2), and 55.9% (Participant2). The minimum classification accuracy in 3-,
4- and 6-class paradigm was obtained 41.4% (Participant6), 37.5% (Participant6),
and 29% (Participant9), respectively.

In the second recalibration in Table 6.4, mean classification accuracies (S1 and
S2 for training; S3 for testing) were 58.3±13.93%, 57.7±13.86%, and 44.4±11.79%.
The maximum average accuracy was observed for 3-, 4-, and 6-class 77% (Partic-
ipant8), 81.6% (Participant9), and 63.2% (Participant9), respectively. The min-
imum classification accuracy in the 3-, 4- and 6-class was obtained for 38.8%
(Participant7), 41.4% (Participant3), and 27% (Participant6), respectively. In
the third recalibration in Table 4, mean classification accuracies (S1, S2, S3 for
training; S4 for testing) were 58.5±12.2, 55.7±16.03, and 44.2±13.5, respectively.
The maximum classification accuracy was observed for 3-, 4- and 6-class 71.7%
(Participant7), 75.7% (Participant9), and 68.4% (Participant2). The minimum
classification accuracy in the 3-, 4- and 6-class was obtained for 41.4% (Partici-
pant1), 32.2% (Participant1), and 25.7% (Participant6). ANOVA analysis to test
session effect resulted in not significant results for scheme 3 (See Table 6.4) in the
recalibration of the classifier (3-class p-value= 0.43; 4-class p-value= 0.83; 6-class
p-value= 0.93).

Comparison of recalibration schemes:
A 3-way ANOVA was used to assess the influence of the three calibration

schemes (within session, recalibrated between sessions, and between sessions),
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Table 6.4: Mean classification accuracy (%) of the offline analysis of multiclass
combination during session calibration and testing on current session. First recal-
ibration: one session was used for training (S1) and tested on session S2. Second
recalibration: two sessions were used for training (S1, S2) and tested on session
S3. Third recalibration: three sessions (S1, S2, S3) were used for training and
tested on session S4. “P” indicates participant.

classification problems (3-, 4-, and 6-classes), testing sessions, and the interac-
tion between factors (see Table 6.5). As can be seen in Table 6.5, the factors
scheme and class had a significant effect on the classification accuracy (Scheme,
F=11.71; p<0.0001 and class, F=43.71; p<0.0001). The factor sessions, as well
as all the interactions between factors were not significant. All the post-hoc com-
parisons can be seen in Table 6.6. For the factor scheme, significant differences
were found between Schemes 1 and 3 (i.e., calibration within session vs between
sessions, p<0.0001), and between Schemes 2 and 3 (i.e., recalibrated between ses-
sions vs between sessions, p=0.001). For the factor classification problem, signifi-
cant differences were found between the 3-class and 6-class problems (p<0.0001),
and between the 4-class and 6-class problems (p<0.0001). Figure 6.4 shows the
interaction plot between the two significant factors and the dependent variable
(classification accuracy).

6.5 Discussion

In this study, multiple decoding schemes and algorithms for the continuous map-
ping of EMG signals into upper limb kinematics were tested. The analysis included
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Table 6.5: Results of 3-way Anova between the three recalibration schemes. Sig-
nificant difference was tested for the main factors with recalibration scheme (3
levels: Scheme1, Scheme2, Scheme3), classification problem (3 levels: 3-, 4- and
6-classes), test sessions (3 levels: S2, S3, S4) and interaction factor. * P < .05.

Table 6.6: Results of the multiple comparisons for scheme and class. Significant
difference was tested for the calibration schemes pair-wise (Scheme1 vs Scheme2,
Scheme1 vs Scheme3, and Scheme2 vs Scheme3) and classification problem pair-
wise (3-class vs 4-class, 3-class vs 6-class, 4-class vs 6-classes). * P < .05, Bon-
ferroni corrected.
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Figure 6.4: Classification accuracy of three class combination between three
schemes. The graph shows the mean classification accuracy for three classifica-
tion problem (3-, 4- and 6-classes) between three recalibration schemes (Scheme1:
within session classification, Scheme2: recalibrated between sessions, and Scheme3:
between-sessions classification).
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the decoding of distal and proximal DOFs during complex functional movements
involving coordinated upper-arm and fore-arm muscle activity. Kalman filter and
ridge regression techniques were compared across different decoding scenarios in
order to test their ability to overcome the EMG non-stationarity as well as the
variability in the performed movements. All these aspects are of great importance
and have a direct impact on the clinical applications of EMG decoding.

The Kalman filter model has been extensively used before for myoelectric con-
trol applications. However, simple algorithms like ridge regression are often un-
derestimated and therefore excluded from EMG decoding studies. Regularization
methods impose a constraint to the model coefficients (i.e. control how large the
coefficients are). This introduces the advantage of preventing overfitting and thus,
of having a model with good generalization characteristics. This is highly desir-
able, especially in situations in which the decoder should be able to generalize to
movements from which sufficient training data is not available. The results of the
work presented here confirm our hypothesis that ridge regression generalizes to new
EMG data better than the Kalman filter. Therefore, ridge regression constitutes
a desirable algorithm for the continuous EMG decoding of upper limb kinematics.

Factors such as external interference, electrode shift and lift, electrode impedance
changes, muscle fatigue, sweat and varying upper-limb positions alter the EMG
signal distribution. Sources of variation like external interference can be mostly
suppressed by filtering or electromagnetic shielding techniques. However, the re-
maining sources constitute a persistent issue in clinical practice and severely affect
the performance of myoelectric decoders. In fact, we believe that in this particu-
lar study, one of the main factors affecting the performance stability could have
been the variable positioning of the EMG electrodes from session-to-session since
they were just placed within the general vicinity. A daily re-calibration phase was
proposed as a solution to alleviate the effects of such non-stationarities. The addi-
tional time of re-calibrating the decoder and the cost of recording new data at the
beginning of each session could be a concern for certain applications. Neverthe-
less, the performance comparisons between the three developed decoding schemes
showed that there was a significant improvement in performance (a 14% increase

Chapter 6 123



Andrea Sarasola Sanz

in CC and a 8% reduction in NRMSE with respect to SS) when a re-calibration
of the decoder was carried out. Moreover, the NRMSE values of the re-calibrated
decoder were not significantly different from those achieved when training and test-
ing the decoder with data from the same session (WS2 decoder). This implies that
a re-calibration phase could reduce the error to the extent that the values would
be just as low as if the decoder was trained using a larger amount of data only
from the current session. It should also be mentioned that the calibration data
length was 5 min, 1.5 min and 3 min for each task respectively and that it took
a negligible amount of time to build the decoding model and choose the optimal
regularization parameter, as opposed to other more complex algorithms. There-
fore, the proposed approach was not very time and computationally demanding
and served to significantly raise the performance. Nonetheless, the benefits and
disadvantages of including a daily re-calibration phase should be carefully consid-
ered in order to choose the most suitable approach for each particular scenario.

The majority of recent studies in the field of myoelectric control interfaces are
constrained to the decoding of a few distal or proximal DOFs. These devices could
be employed for those cases in which impaired function of a few specific DOFs
is present. However, the ability for interfaces to control multiple DOFs of the
upper limb during dexterous and functional movements is necessary, especially for
patients who are undergoing rehabilitation therapies for motor impairment of an
entire extremity. Our protocol included the decoding of coordinated multi-joint
movements. While the NRMSE was stable at a very low value for all the DOFs, the
lower CC values achieved for the distal DOFs might be due to the limited number of
electrodes used for the decoding of distal DOFs. Extensors and flexor muscles of the
forearm are often more difficult to target and it is usually hard to isolate the EMG
activity from each recorded muscle. This makes the discrimination and decoding of
individual finger movements more challenging. The minimum number of electrodes
on the forearm that are necessary to attain an accurate decoding of distal DOF
movements has been extensively investigated before [42, 72, 105, 212]. From the
results presented in these previous studies, it can be concluded that a minimum of
12-16 electrodes are necessary to distinguish between multiple individual finger and
wrist movements. Therefore, future studies should be performed with additional
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electrodes placed over the fore-arm in order to improve the decoding accuracy of
distal DOFs.

6.6 Conclusion

This study addressed important aspects for the use of myoelectric control inter-
faces in clinical practice, which were: (i) the choice of a decoding algorithm with
good generalization characteristics; (ii) the training procedure to follow in order
to develop a decoder, which is robust to non-stationarities; and (iii) the decoding
of coordinated distal and proximal DOF movements during complex functional
tasks. From the results presented here, we concluded that a simple regularized
algorithm such as ridge regression has good generalization characteristics for the
EMG-based continuous decoding of multiple DOFs of the upper limb. Moreover,
we demonstrated that by introducing a daily re-calibration phase the effects of
the session-to-session non-stationarities could be significantly mitigated. Further
studies including additional electrodes over the fore-arm should be performed in
order to more accurately discriminate individual finger movements. Nevertheless,
this pilot study is an important step towards the development of a robust myo-
electric interface for the online control of coordinated multi-joint movements in
robot-aided rehabilitation therapies.
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7. Chapter 7: A Hybrid
Brain-Machine Interface based on
EEG and EMG activity for the
Motor Rehabilitation of Stroke
Patients

This manuscript has been published as [71].

7.1 Abstract

Including supplementary information from the brain or other body parts in the
control of brain-machine interfaces (BMIs) has been recently proposed and inves-
tigated. Such enriched interfaces are referred to as hybrid BMIs (hBMIs) and have
been proven to be more robust and accurate than regular BMIs for assistive and
rehabilitative applications. Electromyographic (EMG) activity is one of the most
widely utilized biosignals in hBMIs, as it provides a quite direct measurement of
the motion intention of the user. Whereas most of the existing non-invasive EEG-
EMG-hBMIs have only been subjected to offline testings or are limited to one
degree of freedom (DoF), we present an EEG-EMG-hBMI that allows the simul-
taneous control of 7-DoFs of the upper limb with a robotic exoskeleton. Moreover,
it establishes a biologically-inspired hierarchical control flow, requiring the active
participation of central and peripheral structures of the nervous system. Contin-
gent visual and proprioceptive feedback about the user’s EEG and EMG activity
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is provided in the form of velocity modulation during functional task training.
We believe that training with this closed-loop system may facilitate functional
neuroplastic processes and eventually elicit a joint brain and muscle motor re-
habilitation. Its usability is validated during a real-time operation session in a
healthy participant and a chronic stroke patient, showing encouraging results for
its application to a clinical rehabilitation scenario.

7.2 Introduction

Hybrid brain machine interfaces (hBMI), understood as systems that directly de-
code the user’s intention from brain and possibly other type of signals (electromyo-
gram (EMG), electrooculogram (EOG), kinematics, force, etc) to control an actu-
ator, are recently getting more attention in the field of assistive and rehabilitative
technologies for motor-disabled people.

Despite conventional non-invasive BMI therapies have shown noteworthy re-
sults in rehabilitative [49, 50, 59, 60, 199] applications, they have limitations such
as low reliability and accuracy when it comes to complex functional task train-
ing. Although the inclusion of additional non-physiological information such as
kinematics, may improve BMI performance, it is not a direct link to the nervous
system and might be less efficient producing functional neuroplasticity in a reha-
bilitative solution. On the other hand, EMG has been widely employed to control
prostheses, rehabilitation exoskeletons or functional electrical stimulation systems,
as it provides a more direct and robust measurement of the user’s motion intention
than brain signals. However, issues such as the absence of sufficient residual EMG
activity or muscle fatigue may hinder the exploitation of myoelectric interfaces.
Thus, hBMIs have emerged as systems that build on the advantages and alleviate
the restraints of each of the single signal-based approaches, resulting in a more
robust system.

A few studies have already demonstrated that introducing supplementary in-
put information coming from the muscles can lead to a higher decoding accu-
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racy [61–66] or the inclusion of more degrees of freedom (DoFs) [67], reflected in a
richer and smoother control of assistive or rehabilitation devices. Nonetheless, the
way in which the control is shared between the input signals is not trivial and varies
among applications. Although numerous input processing methods (sequential or
simultaneous) and fusion algorithms (e.g. outputs of the EMG- and EEG-classifiers
are fused with equally balanced weights or using a Bayesian approach [61]) have
been proposed, it still remains a challenge to find a fusion strategy that takes into
account all the variables playing a role on the control.

We present a hBMI system that consists of an EEG-based binary classifier and
an EMG-based continuous decoder of trajectories. To the best of our knowledge,
the only study that carried out a real-time testing of a similar hBMI is [213], in
which 4 able-bodied subjects and a spinal cord injury patient operated a hBMI to
control the elbow joint angle (1 DoF) during a functional task with an exoskeleton.
Our approach goes a step further and allows the real-time control of 7 DoFs of
the upper limb. Moreover, it follows a biologically-inspired hierarchical control
flow involving both central and peripheral structures of the nervous system. Addi-
tionally, it puts emphasis on the correction of pathological muscle activity, which
is of paramount importance to ensure an effective transfer to activities of daily
living and hence, a proper motor rehabilitation [34]. The usability of the hBMI is
evaluated in a real-time operation session with a healthy individual and a chronic
stroke patient.

7.3 Methods

7.3.1 Experimental design

One healthy subject (male, age: 26) and a chronic stroke patient (male, age: 62, 2
years from stroke, severe left hemiparesia, modified upper limb Fugl-Meyer Assess-
ment (mFMA) = 59/114 and combined hand and arm FMA = 7/54) volunteered
to participate in the study. Both of them were naive to the operation of BMIs
and gave written consent to the procedures as approved by the Ethics Committee
of the Faculty of Medicine of the University of Tübingen, Germany. The partici-
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pants underwent a calibration session and a real-time hBMI operation session on
separate days. Notice that since the protocol that we designed includes the use
of both upper limbs, for simplicity we will refer to the non-dominant side of the
healthy participant as the paretic side and to the dominant one as the healthy side.

The actuator of the hBMI was the IS-MORE exoskeleton (Tecnalia-San Sebas-
tian, Spain). It is a 7-DoF upper limb robotic exoskeleton (see Fig. 7.1), which
allowed the displacement and rotation of the forearm on a 2D horizontal plane
parallel to the mat’s plane (3 proximal DoFs : (i) px position; (ii) py position;
(iii) θxy angle), the pronation and supination of the wrist (1 distal DoF: (iv) φwrist

angle) and the flexion and extension of the thumb, the index and the group of mid-
dle, ring and pinky fingers measured as the angle of rotation with respect to the
metacarpophalangeal joints (3 distal DoFs: (v) δthumb; (vi) ψindex; (vii) α3fingers.
The exoskeleton was placed over a 70 x 50cm mat surrounded by three shelves
marked with different colors, which constituted the three targets the participants
had to reach during the experiments (see Fig. 7.1).

Participants started the real-time operation task with their paretic arm and
hand relaxed in a comfortable rest position. Then participants were asked, upon
auditory cues, to reach one of the three targets around the workspace (see Fig.
7.1), while supinating the wrist and opening their hand. They were given 7 seconds
to reach the final configuration. If the target was not reached, the trial was con-
sidered unaccomplished and an inter-trial interval of 3-5 seconds started, followed
by a 2 second-preparation time. After this, a new trial from the current position
towards the same target began. Once the target was reached, participants were
instructed to go back to the initial rest position following the same procedure.
In each block, participants had to reach each target twice. The healthy subject
completed 5 blocks while the patient was able to operate the hBMI during 3 blocks.

The calibration session was divided into an EEG screening and an EMG cal-
ibration. The reason for this was that the EMG calibration was performed with
the healthy upper limb. This implied that no EEG activity that reflected the
movement volition of the paretic upper limb was available in order to select the
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Figure 7.1: (Left): workspace where the experiments were performed, showing the
three targets the participants had to reach and the initial “Rest” position. (Right):
hBMI hierarchical control flow employed during the hBMI operation session.

electrodes on the ipsilesional hemisphere that would control the hBMI.

In the EEG screening, participants were presented with two auditory and vi-
sual cues indicating to relax or to (try to) open and close their paretic hand for 5
seconds. Participants completed 4 blocks of 8 repetitions of each condition.

In the EMG calibration, the participants performed the same task explained
above but in this case, with their healthy arm. Both participants completed 5
blocks during this calibration phase.

During both phases, the motors of the exoskeleton were on, which means that
the subjects had to actively follow the movement driven by the robot. Although
this condition avoided that factors such as weight and friction had an impact on
the EMG activity, the risk that the patients remained passive existed too. That’s
why participants were repetitively reminded that the movement had to be followed
actively and as naturally as possible. Finally, whereas the speed and direction of
the calibration movements were predefined and fully-assisted, during the real-time
operation, the movement was partially influenced by their paretic EMG activity.
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It is important to clarify that even if the exoskeleton allowed the movement
in 7 DoFs and the healthy participant controlled all of them during the hBMI
operation, he had to reach the target position only in the 3 proximal DoFs in
order to accomplish the trial and move on to the next target. In the case of the
stroke patient, instead, the control of the exoskeleton was done only in the three
proximal DoFs because the motors of the exoskeleton didn’t have enough torque
to overcome the high spasticity in the distal DoFs, being the movements of these
joints unreliable. Therefore, for both participants, only the performance of the
control of the 3 proximal DoFs is reported in this paper.

7.3.2 Data acquisition and processing

A set of 32 EEG channels with a high density of electrodes over the motor cortex
(FP1, FP2, F7, F3, Fz, F4, F8, FC3, FC1, FC2, FC4, C5, C3, C1, Cz, C2, C4,
C6, CP5, CP3, CP1, CPz, CP2, CP4, CP6, P7, P3, Pz, P4, P8, O1, O2) and two
EOG channels were collected at 1KHz (Brain Products GmbH, Germany). Addi-
tionally, EMG data from several upper and forearm muscles were acquired with
the same system and sampling frequency. Six bipolar electrodes (Myotronics-
Noromed, USA) were placed over the Abductor Pollicis Longus, the Biceps, the
Triceps and the Frontal, Middle and Back portions of the Deltoid while two high-
density arrays of 24 channels each (Tecnalia-Serbia, Serbia) were utilized to record
the activity from the extensor and flexor muscles of the forearm. The reference and
ground electrodes were located over the olecranon and the clavicle, respectively.
Kinematic data of the 7-DOFs was recorded at 20Hz with a camera attached to
the bottom of the exoskeleton and motor encoders (more details in [68]).

EEG signals were bandpass filtered (4th order Butterworth filter at 5-48Hz),
down-sampled to 100Hz and spatially filtered with a short-Laplacian filter. The
resulting signals were modelled as an autoregressive process of order 20 using
0.5sec-long windows and a step window of 50ms and then the mean power spec-
tral density was computed. The most discriminative perilesional channels and
frequency bands were identified offline and used as input features to the decoder.
EEG features were normalized using the last 4 minutes of data during the real-time
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operation.

EMG data was filtered using a 4th order Butterworth bandpass filter (10-500Hz)
and a 50Hz comb filter. Five time-domain features (Mean of absolute value, Vari-
ance, Waveform Length, Root-mean-square error and the Logarithm of the Vari-
ance) were extracted from each of the selected EMG channels during the calibration
process. Features were normalized to zero mean and unit variance using the mean
and standard deviation computed on the last minute of EMG data during the
online operation phase.

Kinematic data was low-pass filtered with a 4th order Butterworth filter (1.5Hz).

7.3.3 hBMI calibration

As explained in Section 7.3.1, the calibration session consisted of the following two
parts:

i) An EEG screening phase, in which participants either relax or (try to) open
and close their paretic hand. R-squared values comparing the EEG activity dur-
ing the movement execution (attempt) and the relax conditions were computed
offline. The frequency band and the two electrodes on the ipsilesional motor area
with highest r-squared values were selected. Features were extracted on those
electrodes and bands, as explained in Section 7.3.2, and used as input to the EEG-
decoder to control the hBMI. The collected data and a linear discriminant analysis
were employed to build a binary classifier that would classify the EEG activity ei-
ther as “Movement” or “Rest”.

ii) An EMG calibration phase, during which the participants wore the exoskele-
ton on their healthy arm and performed the same functional task that would be
trained during the hBMI operation session. For each participant, the channels
with highest amount of information were selected offline from the high-density
arrays as follows: First, channels were bipolarized along the straight direction
and both diagonals. The decoding performance (measured by the correlation co-
efficient (CC)) was computed iteratively, starting with all the possible channels
and getting rid of the channel with the lowest regression coefficient in each loop.
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Finally, the minimum amount of channels, up to a maximum of 50, that would
suffice to achieve a CC = max(CC) - 5% * (max(CC) - min(CC)) were selected.
After this dimensionality reduction process, an EMG decoder was trained using
all the bipolar electrode channels and the selected subset of the high-density array
channels. In order to have a decoder based on non-compensatory EMG activity
only, it was trained with data from the healthy arm and then used to decode the
activity from the paretic arm. A ridge regression algorithm with a regularization
parameter λ = 104 chosen experimentally was used to build such a decoder and
thereby, to continuously map the input EMG signals into the predicted kinematics
in real-time during the hBMI operation.

7.3.4 hBMI operation

The control strategy of our hBMI followed a top-down approach by establishing
an “EEG-gated EMG control” type. Both decoders worked continuously and si-
multaneously and a hierarchical control based on the natural motor command flow
was implemented (see Fig. 7.1). First of all, to ensure the active participation of
the patient, the movement volition detection from the EEG signal was required to
initiate the movement. Thus, the output of the EEG decoder would determine at
all times whether the control of the hBMI was handed over to the muscles or not.
For example, outputs of the EEG decoder classified as “Rest” during a trial period
would prevent the exoskeleton from moving, independently of the EMG decoder
output. However, if during the trial time the subject was desynchronizing the
sensorimotor rhythms (i.e. output classified as “Movement”), the movement of the
exoskeleton would be triggered. In this case, the final direction and speed of the ex-
oskeleton would be partially determined by the kinematics predicted by the EMG
decoder (50% for the case of the healthy participant and 40% for the patient, cho-
sen experimentally) and by an assistive component, which would always redirect
the exoskeleton towards the target position. Written mathematically, the fusion
formula of the assistive and the predicted components into the final kinematic
command sent to the exoskeleton in each DoF i = 1:7 would be the following:

Vfinali = γ ∗ VEMGi
+ (1− γ) ∗ Vassistivei (1)
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where for each DoF i, Vfinali is the final velocity sent to the exoskeleton, VEMGi

the velocity predicted from the EMG activity, Vassistivei the assistive component
computed using a linear-quadratic regulator (LQR) and γ ε [0,1] the weight deter-
mining the amount of influence of the EMG activity in the control of the direction
and the speed of the movement.

Additional filtering measures were applied to the output of the EEG and EMG
decoders in order to achieve a smoother and more stable real-time control: First of
all, the movement of the exoskeleton was not triggered (or stopped) until the EEG-
decoder output was classified five consecutive times as “Movement” (or “Rest”),
following the procedure in [49]. On top of that, a weighted moving average filter
with a backwards window of 180ms and linearly decaying weights starting from the
most recent value was applied to the kinematics predicted by the EMG decoder.
The outputs of the decoders were ignored for the control during the rest and the
preparation periods, in which the movement of the exoskeleton was blocked.

An adaptive strategy was followed for the EEG decoder, which was retrained at
the end of each trial with the last two minutes of data collected from each condition
period (“Rest” and “Movement”). A supervised approach was followed by utilizing
the ground-truth labels marked by the experimental design. However, regardless of
the performance drop due to the session-to-session and arm-to-arm transfers, the
EMG decoder was kept fixed during the whole intervention since the aim was to
provide the participants with feedback about how correct and natural their muscle
activation patterns were, based on the EMG recorded from the healthy arm during
the calibration.

7.3.5 Performance evaluation

We utilized several metrics to evaluate the performance of the subjects when op-
erating the hBMI in real-time. Five metrics previously reported in [49] were com-
puted to assess the ability of the participants to modulate their SMR rhythms to
control the hBMI:

• Percentage of time the exoskeleton was moving during a trial. This perfor-
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mance metric reflects the ability of the subject to decrease the SMR power
during a trial.

• Percentage of maximum consecutive time the exoskeleton moved during a
trial. This metric reflects the longest time period the participant was able
to maintain a SMR desynchronization within a trial.

• Number of movement onsets or transitions from the “Rest” to the “Movement”
condition. This measures how many times the participant lost control over
the SMR modulation.

• Latency to the first movement onset. This represents the reaction time of
the participant in producing the necessary SMR modulation to trigger the
movement for the first time at the beginning of a trial.

• True positive rate (TPR) and false positive rate (FPR), being the TPR the
percentage of outputs classified as “Movement” during a trial and the FPR
the percentage of outputs classified as “Movement” during a resting period.

Regarding the evaluation of the control based on the EMG activity modulation,
the performance metrics that we used for such analysis are the following:

• Number of trials needed to reach a target, which reflects the number of unac-
complished trials that the participant performed before reaching the target.

• Spectral Arc Length (SPARC), which is a measurement of how smooth the
movement of the exoskeleton was in each DoF. It was presented in [167] and
the closer to zero the values, the smoother the trajectory was.

• Correlation coefficient (CC) between the assistive velocity component and
the EMG-based predicted velocity during the periods in which the exoskele-
ton was in motion.

• Normalized root-mean-squared-error (NRMSE) computed by comparing the
assistive velocity component and the EMG-based predicted velocity compo-
nent during the intervals in which the exoskeleton was moving.
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Despite the SPARC, CC and NRMSE were computed for each of the DoFs
individually, the mean across the proximal DoFs are reported in the results.

The values of all the aforementioned metrics were computed for each of the
participants and blocks of the hBMI operation session. Finally, a Wilcoxon test
was applied to each metric to compare the performance of the two participants in
each category.

7.4 Results

Due to the low number of blocks performed by the participants, motor skill learning
was not expected to happen. Nevertheless, both participants were able to modulate
their brain and muscle activity to successfully operate the hBMI and hence, reach
the presented targets.

The EEG-based control performances of the healthy participant (black) and the
stroke patient (white) are presented in Figs. 7.2 and 7.3. Fig.7.2 shows the first
four metrics evaluating the EEG performance. Despite the stroke, the patient’s
performance was non-significantly different from the one of the healthy partici-
pant (Percentage of mov-time: p = 0.213; Percentage of max-consec-mov-time: p
= 0.957; Number of onsets: p = 0.173; Latency: p = 0.327). The mean values for
each of the metrics across all the blocks are: 1) percentage of movement time per
trial = 68.09% (healthy) and 61.20% (patient); 2) percentage of maximum consec-
utive movement time/trial = 45.57% (healthy) and 45.59% (patient); 3) Number
of onsets = 2.731 (healthy) and 2.350 (patient); 4) Latency to first movement onset
= 0.614sec (healthy) and 0.836sec (patient). During the first block, the patient
needed more time to start the brain control and produce the first movement of
the exoskeleton than the healthy participant. However, this latency difference was
reduced in later blocks, in which the patient ended up needing a lower number
of onsets to achieve a percentage of time moving the exoskeleton similar to the
healthy participant as well as a larger consecutive time moving the exoskeleton
per trial.

Fig.7.3 represents the mean of the instantaneous output (blue) from the EEG-
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Figure 7.2: Mean and standard deviation of the EEG-based control performance
values achieved by the healthy participant (black) and the stroke patient (white),
measured by the percentage of time the exoskeleton was moving during a trial (top
left), the percentage of maximum consecutive time the exoskeleton was moving
within a trial (top right), the number of movement onsets per trial (bottom left)
and the latency to the first movement onset (bottom right).

decoder across all the trials and blocks as well as that same output mean after
applying the smoothing measure (red). Therefore, the TPR and FPR can be de-
rived from the values achieved during the “Trial” and “Rest” periods, respectively,
which resulted in a TPR = 0.725 and a FPR = 0.307 in the case of the healthy
participant, and a TPR = 0.642 and a FPR = 0.201 for the patient. The healthy
participant presented a steadier control of the SMR desynchronization resulting
in a larger percentage of time in motion per trial. Instead, the patient presented
more difficulties to trigger the initial movement of the exoskeleton and to keep the
concentration to desynchronize his SMR during the whole trial, as reflected in the
late performance raise at the beginning of the trial and the clear drops around
seconds 4 and 6.
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Figure 7.3: Mean and standard error of the instantaneous output (blue) and the
smoothed output (red) from the EEG decoder during the “Rest”, “Preparation” and
“Trial” periods across all the trials and blocks performed by the healthy participant
(top) and the stroke patient (bottom).

Finally, the results from the EMG performance evaluation are presented in
Fig.7.4. The mean number of trials needed to reach a target was 3.455 for the
healthy participant and 3.833 for the patient. The mean SPARC values across
blocks were -2.637 (healthy) and -2.778 (patient), while the mean CC values
were 0.308 (healthy) and -0.107 (patient) and the mean NRMSE resulted in 0.109
(healthy) and 0.159 (patient). In spite of the significantly lower (CC: p = 0.0001;
NRMSE: p = 0.014) decoding accuracy achieved by the stroke patient due to the
pathological EMG activity, the higher assistance level given to the patient during
the hBMI operation helped him to achieve scores for the SPARC and number of
trials per target metrics similar to the healthy participant.
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Figure 7.4: Mean and standard deviation of the EMG-based control performance
values achieved by the healthy participant (black) and the stroke patient (white),
measured by the number of trials needed to reach a target (top left), the mean
SPARC (top right), CC (bottom left) and NRMSE (bottom right) across the three
proximal DoFs.

7.5 Discussion

This study presents and validates the usability of a novel hBMI system that follows
a top-down approach. The hierarchical control strategy was inspired by the bio-
logically natural motor command flow. In a healthy individual, motor commands
are initiated at the brain level and then they travel through the spinal cord to
reach the peripheral nerves and finally the muscles, whose fibers are activated by
the motor units to produce the desired movement. Therefore, it seems natural to
think that an effective hBMI control strategy should constantly require an initial
command from the brain to later on transfer the control to the muscles. In this
way, the active participation of the brain is necessary at all times for the movement
to occur, which prevents the patient from remaining passive (i.e. no desynchro-
nization happening in the brain) while the exoskeleton assists the movement of
his/her limb. Moreover, by including the muscles in the control of the hBMI, var-
ious problems generally present in stroke patients such as muscle weakness and
the existence of abnormal muscle synergies are tackled. Therefore, thanks to the
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supplementary information coming from the muscles, the proposed hBMI not only
offers the possibility of achieving a higher decoding accuracy and a more dexterous
and smoother control of the actuator, but it also envisages the possibility of a joint
brain and muscle rehabilitation.

The same EEG decoder algorithm as the presented here was utilized before in
a double blind sham-controlled clinical trial in 32 chronic stroke patients [49] and
it was proven to be a valid algorithm to induce motor recovery. Although initially
the stroke patient had some trouble to trigger the movement of the exoskeleton
at the beginning of the trial, he rapidly learned and got better, eventually achiev-
ing a performance equal to or even better than that of the healthy participant.
Therefore, in this preliminary study, both participants could control the onset of
the movement with notable ease and the results confirm a high EEG modulation
performance, which is encouraging for its use in future clinical trials.

The employed EMG decoder enabled the continuous and real-time control of
the speed and direction of the movement in 7 DoFs concurrently, which constitutes
an advance over previous classification or decoding approaches of a few DoFs. The
lower EMG decoding performance achieved by the stroke patient can be explained
by the existence of pathological EMG activity in the paretic limb. Thus, the kine-
matics predicted by the EMG decoder trained with healthy activity didn’t correlate
with the assistive component, which constantly redirected the movement towards
the target. However, since the weight of the assistive component on the control
of the exoskeleton was set at a higher value for the stroke patient (60%) than
for the healthy participant (50%), the former could successfully reach the targets
and achieve scores of path smoothness and number of trials per target compara-
ble to the healthy individual. Hence, in spite of the modest performance values
of the EMG-based control, both participants were able to bring the exoskeleton
to the desired final position. Continuously controlling a 7-DoF myoelectric inter-
face during functional tasks might not be intuitive even for healthy subjects and
especially at the beginning. A longer training period is necessary for the partic-
ipants to adapt to the EMG model and achieve a skillful control of the exoskeleton.
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Finally, it should be mentioned that in these experiments, all the DoFs were
controlled following the same control strategy. However, in case a patient didn’t
have any residual EMG at all in some or all the involved muscles, the control could
start being based solely on EEG activity and would progressively shift towards a
hybrid control, as the muscles recovered certain degree of activity as a result of
the training. Alternative strategies that would take factors such as muscle fatigue
into account could be developed too.

7.6 Conclusion

A new hBMI rehabilitation system was presented and its usability was validated
with one healthy participant and a chronic stroke patient in a real-time opera-
tion session. This hBMI rehabilitation system establishes a hierarchical EEG- and
EMG-based control strategy with the goal of evoking a joint brain and muscle
rehabilitation in stroke patients. Therefore, by being built upon neurophysiolog-
ical principles and by constantly requiring the active participation of central and
peripheral structures of the nervous system, this hBMI constitutes a potential tool
to boost the recovery of lost motor function at proximal and distal segments of the
upper limb. Nevertheless, further experiments with a large population of stroke
patients are necessary to assess the effectiveness of the presented hBMI in eliciting
motor rehabilitation.
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