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Providing runtime dependencies for computational workflows in shared environ-
ments, like HPC clusters, requires appropriate management efforts from users
and administrators. Users of a cluster define the software stack required for a
workflow to execute successfully, while administrators maintain the mechanisms
to offer libraries and applications in different versions and combinations for the
users to have maximum flexibility. The Environment Modules system is the tool
of choice on bwForCluster BinAC for this purpose. In this paper, we present a
solution to execute a workflow which relies on a software stack not available via
Environment Modules on BinAC. The paper describes the usage of a container-
ized, user-defined software stack for this particular problem using the Singularity
and Docker container platforms. Additionally, we present a solution for the re-
producible provisioning of identical software stacks across HPC and non-HPC
environments. The approach uses a Docker image as the basis for a Singularity
container. This allows users to define arbitrary software stacks giving them the
ability to execute their workflows across different environments, from local work-
stations to HPC clusters. This approach provides identical versions of software
and libraries across all environments.

1 Introduction

The reproducibility of experimental findings and results is an essential requirement
of many scientific processes. Papers and reports presenting results and conclusions
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obtained from experiments therefore not only describe the final results, but also
the experiment methodology and environment. This holds true for computational
sciences as well (Sandve et al., 2013). Environmental influences on computational
workflows – i. e. different operating systems (OS’s) and various versions of soft-
ware libraries and applications – interfere with the reproducibility of scientific res-
ults computed within such an environment. This implies that for a computational
scientific workflow to be reproducible, the runtime environment, in which results
are computed in, must be controlled, described, and provided alongside the res-
ults (Boettiger, 2015; Bartusch et al., 2018).

A number of solutions are available for the definition and reproducible provi-
sioning of computational environments. In the industry of enterprise applications
and particularly in cloud computing environments, hardware level virtualization
is a widely adopted method for providing complete environments, called Virtual
Machines (VM’s) (Gartner Inc., 2016). The primary goals of this virtualization
mechanism are the isolation of virtualized environments from the host system, as
well as increasing the utilization of costly resources by hosting multiple VM’s on
one physical machine. Despite these objectives, VM’s are also useful for providing
environments in an automated and reproducible manner. VM images contain a pre-
defined stack of software – from the OS, software libraries, applications, to user
provided code. These images can be deployed and run on any compatible system.
Hardware level virtualization thus is an effective approach for isolating a scientific
computational workflow from external environmental influences. It might, however,
restrict direct access to accelerated hardware (e. g. GPUs), and could therefore in-
troduce significant performance regressions. Consequently, this contradicts the use
in High-Performance Computing (HPC) environments, where users want their code
to be executed as close as possible to real hardware for a maximum of performance.

Another, more recent approach to describing and providing complete software
stacks for computational workflows is containerization. Here again, images of com-
plete environments (i. e. the OS, libraries, etc.) are predefined and can be deployed
and executed in a reproducible and platform-independent manner. Processes within
a container are executed directly on the host system using lightweight virtualization
features of the host OS. This does not involve any virtualization of hardware and
is therefore more suitable for HPC use cases than hardware level virtualization.
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One of the most widely adopted solutions for OS-level virtualization is Docker (Port-
worx Inc., 2017). Its main use cases are micro-service architectures and web-based
cloud applications. In such environments, Docker containers are generally executed
inside of VM’s.

For HPC use cases, executing containerized software stacks would require running
the containers directly on the host OS. Docker, however, is not perfectly suitable
for this use case. The Docker host daemon is a root-owned process on the host
OS, which means that containers are executed with the highest privileges available
on the host system. It would therefore be theoretically possible for a user to run
arbitrary code on the host OS with root privileges, effectively rendering the system
compromised. This implies security concerns, hindering the adoption of Docker in
HPC environments (Kurtzer et al., 2017). Other container technologies, such as
Singularity, not only address these security downsides of Docker but also explicitly
focus on the use of containers for scientific workflows in HPC environments (Kurtzer
et al., 2017).

In this paper we present an exemplary use case of a machine learning (ML) work-
flow on the bwForCluster BinAC (Krüger et al., 2017) which is executed within a
Singularity container. We argue why providing a user-defined software stack in the
form of a container is a well-suited method for this use case in particular and for
computational workflows in general. Furthermore, we present a two-layered solu-
tion with a combination of Docker and Singularity, which enables reproducible and
platform independent execution of workflows. Section 2 describes the technical re-
quirements of a specific use case leading to the solution based on a containerized
software stack. Section 3 explains how the required software stack has been imple-
mented and how it can be executed, either as a Docker or Singularity container.
Section 4 concludes how the use of containers not only solves the specific use case de-
scribed in this paper, but also helps to improve the reproducibility of computational
workflows across different HPC and non-HPC environments in general.

2 Status Quo and Problem Statement

This section describes the use case of an ML workflow, intended to run on bwFor-
Cluster BinAC. We explain how the runtime environments for workflows are usually
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provided on the cluster and why this approach is not sufficient for this exemplary
use case.

Providing software for computational jobs submitted by users on bwHPC clusters
is commonly accomplished via the Environment Modules system. By this means, it
is possible to dynamically modify the applications and software library environment
available to the user. Figure 1 visualizes the process of providing software libraries on
BinAC. It additionally shows a corresponding process in a non-HPC environment,
like a local workstation.

user session 
on BinAC 

load module x load module y load module z run workflow

Environment Modules

user session 
on local workstation 

run workflowinstall software x install software y install software z

System and Platform Package Managers

Figure 1: The process of providing software modules required for a com-
putational workflow. On BinAC these modules are loaded via the Environ-
ment Modules system. Identical modules might not be available on other HPC
clusters. On a local workstation the software modules are installed using the
system package manager or platform specific platform managers, e. g. pip for
Python libraries. It cannot be guaranteed that the exact same libraries as on
the HPC cluster are available via these package managers.

On HPC clusters like BinAC, users integrate module load operations in their job
scripts submitted to the scheduling system of the computing cluster. A command
to load Keras, TensorFlow and Python in specific versions on the BinAC cluster
would look like the following:

module load cs/keras/2.1.0-tensorflow-1.4-python-3.5

Loading another module, which would provide any of these applications in a different
version, is then prevented by the Environment Modules system. This is to prevent
conflicts with already loaded modules. Each of the available modules is described
in a so-called modulefile, which is executed upon loading and contains every step
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needed to provide an application or software library for the current user. Modules
are available system-wide, and thus loadable by all users of this shared environment.

user session 
on BinAC 

load module 'singularity'

Environment Modules

Container

run workflowpull Singularity 
image

Singularity 
image

registry

user session 
on local workstation 

pull Docker 
image

Container

run workflow

Docker 
image

registry

Figure 2: The process of providing a containerized runtime environment for a
computational workflow. For HPC environments a Singularity image is pulled
from a Singularity image registry. The Singularity system must still be provided
on the HPC cluster in any way, e. g. via Environment Modules. In a non-HPC
environment Docker might be used as a container platform. Here a Docker
image is pulled and executed as a container. The containers on both sides
provide an identical application stack, as they both are based on the same
Dockerfile.

In this paper, we assume an exemplary use case with the goal of training an Artificial
Neural Network (ANN) using the Keras library on top of the TensorFlow frame-
work, coupled with Python in their most recent versions. There is no modulefile

defined on BinAC, which provides this exact combination of the libraries required.
These libraries are also not loadable as independent single modules. Under these
conditions, we cannot execute our model training code on BinAC in its current
setup. There are several solutions to this problem. As a first option, the system
administrator could provide a new module with the required software versions. A
second solution is to rewrite the Python code for it to be compatible with the soft-
ware stack that is available now. Also, a local build of these modules in the user’s
home directory can be performed. These solutions come with manual effort, with
the particular downside of an ever-growing number of modules which need to be
maintained by an administrator or user. The approach of providing the required soft-
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ware stack via Environment Modules is therefore not well-suited for the described
use case. This is particularly true considering the high frequency of TensorFlow
releases (TensorFlow, 2018).

Another option for this problem is to let the user define the required software
stack in the form of a container and run the computational workflow within it.
This would not only reduce manual effort for the system administrators, but, as
previously explained, also improve the reproducibility of the computational results
across different environments outside the HPC cluster. The process of providing
containerized software stacks in both, HPC and non-HPC environments is displayed
in Figure 2.

The following sections describe the setup of a container environment we used
to circumvent this specific problem faced on the BinAC cluster. Additionally, we
describe how the setup allows the execution of such computational workflows not
only on HPC clusters, but also in many other container-enabled environments, in a
reproducible manner.

3 Operating Singularity Containers on BinAC

This section highlights how we provide the necessary libraries for the previously
described use case as a user-defined software stack and how to execute the resulting
container in the BinAC HPC cluster environment. We also demonstrate how the
approach of using a Docker image as a starting point, rather than Singularity,
allows to provide the software stack in non-HPC environments, such as Windows
or Mac workstations, where Singularity is not easily available. While Docker does
require a virtualization layer on such non-Linux host systems, it is arguably more
comfortable to use Docker on these systems. The virtualization layer is directly
provided by Docker for Windows and macOS host systems and does not require the
user to install any virtualization software separately.

Implementing a scientific computational workflow for HPC environments does
not only involve remote interaction with HPC cluster machines, e. g. via SSH, but
also writing code on the users local workstation. Users feel certainly more comfort-
able developing locally on their workstation, having their own editors, development
environments, and other tools of choice at hand. This is especially true for debug-
ging purposes. A user’s common process might therefore involve local development,
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debugging, and testing of a computational workflow, eventually submitting it as a
job to an HPC cluster. This scenario involves two entirely different software and
hardware environments, expected to deliver identical results upon execution. Taking
this scenario as a premise, we must extend our previous goal of providing a repro-
ducible software stack for the execution on BinAC by the requirement of serving an
identical stack for arbitrary user workstations. Singularity is, however, only avail-
able for Linux OS’s, requiring the installation of a VM hypervisor on the majority
of desktop workstations, as they mostly run on Windows or macOS. Singularity
offers the capability of automatically migrating Docker images to its own image
format. By this means, a promising solution is to provide a Docker image for work-
flow execution in non-HPC environments, as it is available for a range of operating
systems including Windows and macOS. In a subsequent step, this Docker image
can be used as the basis for a Singularity image, which can be executed on BinAC.
It is then possible to execute a computational workflow within a defined and repro-
ducible environment, having an identical software stack available across different
environments, be it HPC clusters or local workstations.

3.1 Defining and Distributing a Docker Image

As mentioned before, we use Docker images as the basis for building equivalent
Singularity images. Docker is used in version 18.03.1 and Singularity in version 2.4.1.
The contents of Docker images are described by a so-called Dockerfile. This is
a text file containing the name of the base image to start from, steps to install
additional software on top of that image, and an entry point for the container to
start upon execution. Dockerfiles can contain more information to define an image,
e. g. directories to mount from the host system or network ports to expose to the host
during execution. A comprehensive guide can be found in the online documentation
provided by the Docker project (Docker Inc., 2018).

As described in Section 2, we provide a container with certain applications and
libraries in specific versions. We start with a publicly available Docker base image,
provided by the TensorFlow project. This already includes TensorFlow and Python
in the required versions. As this image is based on an Ubuntu Linux base image, we
can use Ubuntu’s apt-get package manager to obtain additional system software.
Python libraries, like Keras, can be installed via its own package manager pip. We
use these two commands to install Keras and additional dependencies on top of the
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base image, eventually making all of the required software available in a running
container. Listing 1 shows a Dockerfile providing the software stack described
in Section 2. It can be built into an image on any machine with Docker installed
by issuing the build command. The resulting image can then be executed as a
container with the run command.

FROM tensorflow/tensorflow:1.8.0-gpu-py3

RUN pip install keras==2.1.6

ENTRYPOINT ['/usr/bin/python', 'main.py']

Listing 1: Dockerfile for the provisioning of Python 3.5, TensorFlow 1.8, and
Keras 2.1.

After building the Docker image, we are able to run the computational workflow
within the container on a local workstation, under the only premise of having Docker
installed. To distribute the image, i. e., making it available to other users, it is
necessary to publish it to a container registry. This can either be the official public
registry, Docker Hub, or any privately hosted instance. Pre-built images can then
be pulled and executed as containers from any remote machine with access to the
repository. Listing 2 provides an example of how a Dockerfile can be built and
executed. To push an image to a registry, it is necessary to authenticate to that
registry, i. e. Docker Hub or any privately hosted registry.

docker build . -t tensorflow -keras-py3:latest-gpu

docker push schanzel/tensorflow -keras-py3:latest-gpu

docker run schanzel/tensorflow -keras-py3:latest-gpu

Listing 2: Shell commands to build and publish a docker image, finally execut-
ing the image as a container. The publishing push command can be omitted
if the image is only needed locally. The period in the build command denotes
for Docker to search for a Dockerfile in the current working directory.

3.2 Building a Singularity Image for HPC Environments

In a following step, we want to run the same container on BinAC, where Docker
is not available, but Singularity is. Therefore, it is necessary to build a Singularity
image with the identical software stack. Singularity has, as mentioned earlier in
this section, the ability to migrate Docker images into its own image format. This
conversion is usually done by providing the location and name of a Docker image

180



Unified Container Environments for Scientific Cluster Scenarios

to Singularity’s build command. Building an image yields a .img file, representing
the executable Singularity image in its own format. This file can then be distrib-
uted by copying it to a desired location on the file system of the target machine
(i. e. a shared file system on BinAC in our case), or by pushing it to a Singularity
repository, making it more accessible to other users. Comprehensive documentation
about the usage of the Singularity container platform is available in the original
publications (Kurtzer et al., 2017; V. V. Sochat et al., 2017; V. Sochat, 2017) as
well as in the online user guide (Sylabs Inc., 2018b). Listing 3 provides an example
of how to build a Singularity image from the previously published Docker image
and executes the resulting image directly from the local file system.

singularity build tensorflow -keras-py3.img \

docker://schanzel/tensorflow -keras-py3:latest-gpu

singularity run --nv tensorflow -keras-py3.img

Listing 3: Shell commands to build and run a Singularity container based
on the previously built Docker image. The docker:// prefix on the Docker
image URL denotes for Singularity to pull the Docker image from Docker Hub.
By invoking the run command with the --nv flag, Singularity’s NVIDIA GPU
support is enabled, which is required to leverage the accelerated hardware of
BinAC.

Running this container on BinAC requires the Singularity executable to be avail-
able on the cluster machines. This is the only prerequisite, and since Singularity is
tailored for HPC environments, can be regarded as a given. On the BinAC cluster,
Singularity is provided as a loadable module via the Environment Modules system.
After the execution of module load devel/singularity/2.4.1 BinAC is able to
pull and run Singularity containers.

It is then possible execute the ML use case, as described in Section 2, in a user-
defined software stack on any HPC cluster where Singularity is available. Addi-
tionally, this setup ensures that a workflow is executed in an identical software
stack, independently from the host environment. This ultimately minimizes envir-
onmental influences on the computational results and allows for a better reprodu-
cibility as containers are easily distributable via registries or even in a textual form
as a Dockerfile. It should be noted here, that while Singularity is currently able
to directly pull and run Docker containers, this practice should be avoided in this
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case, due to unpredictable changes on upstream Dockers images, as stated by the
Singularity documentation (Sylabs Inc., 2018a).

3.3 A Continuous Delivery Pipeline

To not only improve the reproducibility of computational workflows by the use of
containers, we would also like to maintain the reproducible provisioning of contain-
ers themselves. The reproducibility of build and deployment steps of containers, as
for any other software, can be improved by maximizing the degree of automation
in this process and hereby minimizing undocumented manual steps. The use of a
Continuous Integration and Continuous Delivery (CI\CD) pipeline is used to auto-
mate such build and deploy processes (Humble et al., 2010). This is an aspect which
often receives very little attention during research work (Volpert et al., 2018). This
section describes how we automate the process of building and providing Docker
and Singularity images with such a pipeline.

To continuously build and publish container images, we define a common process
which executes every step needed for this purpose. As common in CI\CD, this
process is automatically triggered when a relevant change is detected by the pipeline
system. This could be a change to a Dockerfile being pushed to a version control
system (VCS), e. g. Git.

There are two possible starting points for the process as we either want to

(i) build an own Docker image based on a Dockerfile or

(ii) use an existing Docker image already provided in a registry.

Case (i) involves building a Docker image from a Dockerfile and publishing it
to a Docker registry first. In case (ii) there is a Docker image already provided
in a registry. Here the process would just use an existing image, e. g. from Docker
Hub, and convert this to a Singularity image, omitting the Docker-related build
and publish steps. Either case involves building and publishing a Singularity image.
The use case described previously matches with case (i) of the process. Case (ii) is
suitable for applications that do not need additional libraries on top of an existing
Docker base image.
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The triggers for this process to be executed continuously also differ between the
two cases. In case (i) there is a Dockerfile managed by a VCS which can easily
trigger the CI\CD process upon change detection. For case (ii), things are slightly
more difficult as it requires the detection of changes on an image in a Docker re-
pository which might be owned by some other entity. Docker Hub allows to send
push notifications, so-called Webhooks, to arbitrary HTTP endpoints after a new
image version was published. This mechanism could be used to trigger the process
of building and publishing a Singularity image based on the Docker image that
has just received the update. However, such a Webhook must be configured by the
owner of the Docker Hub repository. An alternative approach, not relying on the
source repositories owner, is to poll the Docker repository for changes on a regular
basis. Figure 3 illustrates this process with the described differences between the
identified cases.

Having such a pipeline in place, it is possible to automatically and reprodu-
cibly build and publish containers for both Docker and Singularity. This further
improves the interoperable provisioning of software stacks for computational work-
flows. A continuous delivery pipeline not only manages containers for both, HPC
and non-HPC environments, but also makes sure that the two images are always
published in the same version.

4 Conclusions and Future Work

In this paper, we have shown several approaches of deploying containers on local
environments as well as clusters for an exemplary machine learning use case. Our
approach is easily transferable or extendable and requires little to no knowledge
about the underlying software. This solves the problem of running arbitrary soft-
ware on clusters without administrator privileges, with Singularity being the sole
prerequisite provided by the cluster administration.

The proposed solution does not take into account performance implications of
containers, yet. Currently, the exact performance drop introduced by the use of
containers is being further investigated but initial results indicate low impact for the
tested single node jobs (Sweeney et al., 2018). Additionally, the intercommunication
of containers with each other was not considered in this paper. A more visible
performance impact is expected in this case. ML frameworks like TensorFlow offer

183



Benjamin Schanzel et al.

CI/CD Pipeline

Building 
Docker Image 

Push Building 
Singularity Image 

Testing 
Docker Container 

Testing 
Singularity
Container 

Success

Publish

Publish

CI/CD Pipeline

Building 
Singularity Image
from Docker Hub 

Testing 
Docker Container 

Testing 
Singularity
Container 

Publish (optional)

Publish

Success

Scenario (i)

Scenario (II)

Foreign Repository

Figure 3: The proposed CI\CD architecture to automate the provisioning of
both, Docker and Singularity images. Scenario (i) considers building an own
Docker image, while in Scenario (ii) an existing image is pulled from Docker
Hub. In either scenario, the Docker image is converted to a Singularity image
and published to a registry. Since the image is already being pulled from Docker
Hub, the Docker image can be optionally pushed to a private repository.

the possibility of distributed learning. Hereby, a coordinator node subdivides the
data onto several nodes, decreasing the required training time. However, there is no
clear indication whether the communication overhead introduced by such a setup
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can be efficiently supported by container solutions. For multi-node jobs, additional
tests are needed.
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