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Abstract

While point-dissimilarities and classifiers are the core of machine learning since its beginnings,
distribution-dissimilarities have long seemed a mere theoretical tool for statistical proofs. But both are
closely connected: training a binary classifier – more precisely, a score-function – indeed amounts to
computing a distribution-dissimilarity. The smaller the classifier’s capacity, the weaker the resulting
dissimilarity. Almost all usual dissimilarities are classifier-based. But they happen to be extremely
strong: total variation, Hellinger distance, KL-divergence, etc. Weakening them has many advantages:
they can get easier to compute and stop saturating on samples. But only up to a certain point, after
which they also stop providing enough discrimination. So, what is the right capacity?

We study this question first on maximum mean discrepancies (MMD), a class of weakened total
variation dissimilarities. We show that they stay perfectly discriminative if and only if the classifier
has enough capacity to approximate a unit ball of continuous functions. Surprisingly, in that case,
and only that case, the dissimilarity also stays strong enough to metrize the weak convergence of
probability measures. Similar results are provided for what we call targeted convergence, as opposed
to global convergence. We then provide straight-forward applications in the context of probabilistic
programming and the estimation of functions of random variables. We also show that MMDs can be
extended from probability measures to generalized measures, called Schwartz-distributions. They en-
able us to work with derivatives of probability measures, even when those measures are discrete, like
any empirical measure. This leads to new results on kernel Stein discrepancies, an MMD specifically
designed for sample-quality tests.

We then turn towards generative models. Contrary to their usual presentation, we introduce several
popular models – GANs, VAEs, etc. – as a dissimilarity minimization task. All of them, we will see,
minimize approximate f-divergences. So we complement them with another family of distribution-
dissimilarities: optimal transport metrics. Our approach leads to Wasserstein auto-encoders and unveils
new links between VAEs and GANs.

Finally, we focus on two specific deficiencies of the weak distribution-dissimilarities used in genera-
tive modeling: mode-collapse and adversarial examples. Mode-collapse is a state where the generator
produces only samples of a specific type, ignoring the overall data-diversity. We propose an AdaBoost-
like solution called AdaGAN. It trains several generators sequentially. Each new generator views an
automatically reweighted dataset that focuses only on regions not covered by the previous generator.
After training, the generators get combined into a single, diversified generative mixture.

As for adversarial examples, they are targeted, but typically imperceptible sample perturbations,
that can break even the most accurate classifiers. Because most distribution-dissimilarities used in
generative modeling are classifier-based, adversarial vulnerability shows that they are far from a
human-like dissimilarity: two almost identical samples can look completely different to them. We
explain why. Contrary to human perception, where higher resolution helps, we show, both empir-
ically and theoretically, that the adversarial vulnerability of feed-forward networks increases as the
square-root of the input-dimension, almost independently of the architecture. Our findings strongly
suggest that, to build robust classifiers and dissimilarities with human-like perception, we need to
significantly rethink our network architectures.
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Zusammenfassung

Punktdissimilaritäten und Klassifikatoren sind seit Anfang Kernbestand des maschinellen Lernens.
Verteilungsdissimilaritäten dagegen blieben lange nur ein theoretisches Werkzeug für statistische Be-
weise. Dabei sind beide eigentlich kaum trennbar: wer einen binären Klassifikator trainiert, genauer
gesagt, dessen Score-Funktion, der berechnet eigentlich eine Verteilungsdissimilarität. Je kleiner die
Kapazität des Klassifikators, desto schwächer die daraus resultierende Dissimilarität. Nahezu alle
üblichen Dissimilaritäten sind klassifikatorbasiert: Gesamtvariation, Hellingerdistanz, KL-Divergenz,
etc. Aber sie sind auch außerordentlich stark. Sie zu schwächen, hat viele Vorteile: sie werden oft ein-
facher zu berechnen und schwieriger zu sättigen. Doch schwächt man sie zu sehr, so sorgen sie nicht
mehr für genügend Diskriminierung. Was, also, ist die richtige Schwächung, die richtige Kapazität
des zugrundeliegenden Klassifikators?

Wir untersuchen diese Frage zunächst anhand von MMDs (engl. maximum mean discrepancies),
einer Klasse von geschwächten totalen Variations Dissimilaritäten. Wir beweisen, dass MMDs genau
dann perfekt diskriminierend sind, wenn der Klassifikator über genügend Kapazität verfügt, um
eine Einheitskugel kontinuierlicher Funktionen zu approximieren. Überraschenderweise bleibt auch
genau dann die Dissimilarität stark genug, um die schwache Konvergenz über Wahrscheinlichkeits-
maße zu dominieren. Ähnliche Ergebnisse liefern wir auch für das neu eingeführte Konzept der
gezielten Konvergenz (statt der üblichen, globalen Konvergenz). Anschließend werden Anwendungen
im Rahmen der probabilistischen Programmierung und Schätzung von Funktionen von Zufallsvari-
ablen geboten. Nebenbei stellen wir fest, dass MMDs sich leicht von Wahrscheinlichkeitsmessungen
auf Schwartz-Verteilungen verallgemeinern lassen. Letztere ermöglichen es, mit Ableitungen von
Wahrscheinlichkeitsmaßen zu arbeiten, und zwar auch von diskreten Maßen. Dies führt zu neuen
Ergebnissen über Kernel-Stein-Diskrepanzen, also bestimmte MMDs, die speziell zur Anpassungs-
gütetests gedacht sind.

Danach wenden wir uns generativen Modellen zu. Im Gegensatz zu ihrer üblichen Präsentation
führen wir gängige Modelle wie GANs und VAEs als Dissimilaritätminimierungsmodelle ein. Sie alle
minimieren nämlich approximative f-Divergenzen. Wir ergänzen diese Modelle mit einer weiteren
Klasse von Dissimilaritätminimierungsmodellen: solche, die optimale Transportmetriken minimieren.
Unser Ansatz führt zu Wasserstein Auto-Encodern und enthüllt neue Verbindungen zwischen VAEs
und GANs.

Schließlich konzentrieren wir uns auf zwei spezifische Defizite solcher Verteilungsdissimilaritäten,
die bei generativen Modellen verwendet werden: Modus-Kollaps (engl. mode-collapse) und gegner-
ische Beispiele (engl. adversarial examples). Modus-Kollaps ist ein Zustand, in dem der Generator
nur noch Proben eines bestimmten Typs erzeugt und dabei die gesamte Datendiversität ignoriert.
Wir schlagen eine AdaBoost-ähnliche Lösung vor: AdaGAN. Dabei werden nacheinander mehrere
Generatoren trainiert. Für jeden Generator wird der Datensatz automatisch so neu gewichtet, dass er
sich nur auf jene Bereiche konzentriert, die nicht durch die vorherigen Generatoren abgedeckt wur-
den. Nach dem Training werden die Generatoren zu einem einzigen, diversifiziertem, generativen
Modell zusammengefügt.
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Bei gegnerischen Beispielen geht es um gezielte, meist aber nicht wahrnehmbare Veränderun-
gen der Eingangsdaten, die selbst die besten neuronalen Klassifikatoren verwirren können. Da
die meisten Verteilungsdissimilaritäten generativer Modelle auf solchen Klassifikatoren beruhen, be-
weisen gegnerische Beispiele, dass solche Dissimilaritäten kaum der menschlichen Wahrnehmung
entsprechen. Wir erklären, warum. Beim Menschen hilft es, Bilder in höherer Auflösung zu se-
hen. Bei feed-forward Netzwerken dagegen zeigen wir sowohl empirisch als auch theoretisch, dass
deren gegnerische Verletzlichkeit mit der Quadratwurzel der Datendimension zunimmt, ziemlich un-
abhängig von der Netzwerkarchitektur. Unsere Ergebnisse deuten nachdrücklich darauf hin, dass auf
Netzwerk beruhende Klassifikatoren und Dissimilaritäten eine menschenähnliche Wahrnehmung nur
bekommen könnten, indem wir deren Netzwerkarchitekturen neu überdenken.
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Abbreviations & Acronyms

∫
spd integrally strictly positive definite

AAE adversarial auto-encoder
AVB adversarial variational Bayes
CelebA dataset of celebrity faces with some attributes
CIFAR-10 dataset with 10 classes from the Canadian Institute For Advanced Research
CNN convolutional neural network
cpd conditionally positive definite
GAN generative adversarial network
i.e. id est
iff if and only if
iid independent and identically distributed
ImageNet dataset with 1000 classes
IPM integral probability metric
JS Jensen-Shannon (divergence)
KL Kullback-Leibler (divergence)
KME kernel mean embedding
KPP kernel probabilistic programming
loc. cv. locally convex
ML machine learning
MLP multi-layer perceptron
MMD maximum mean discrepancy
MNIST digit dataset from the Mixed National Institute of Standards and Technology
OT optimal transport/trasnportation
R.V. random variable
resp. respectively
RGB Red-Green-Blue (for colored images)
s.t. such that
SGD stochastic gradient descent
SNR signal-to-noise ratio
spd strictly positive definite
TV total variation (metric/divergence)
TVS topological vector space
UGAN unrolled generative neural network
VAE variational auto-encoder
WAE Wasserstein auto-encoder
WGAN Wasserstein generative adversarial network
wrt with respect to
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Symbols & Notations

Points, Vectors, Sets and Vector Spaces

C Complex numbers
E Locally convex, Hausdorff, topological vector space
N Non-negative integers
p Element of Nd and/or path in a (network-) graph
R Real numbers
X, Z, Y Arbitrary sets, equipped with a Hausdorff topology and the Borel sigma-algebra. Usu-

ally: input, latent and output/label space resp.
x, y, z, ... Scalar or arbitrary points
x, y, z, ... Typically Vectors
X, Y, Z, ... Random variables

Functions and Function Spaces

1, 1S Constant function 1, and indicator function of set S resp.
f Real-valued convex function s.t. f(1) = 0, used to define an f-divergence
G Generator function (usually defined by a network, for GAN-, VAE-like algorithms)
k, kx, kz, kxy Mercer kernels, defined over an arbitrary input space, X, Z, and X× Y resp.
κ Stein kernel derived from kernel k
L Loss function
µkX, µ̂kX Kernel mean embedding of random variable X w.r.t. kernel k, and its estimator
Φk(P) Kernel mean embedding of distribution P w.r.t. kernel k
ϕ Scalar-valued test function
C , Cb Continuous (resp. and bounded) scalar-valued functions
Cm, Cmb Scalar-valued, m-times continuously differentiable functions (resp. with all their

partial-derivatives bounded up to order m)
CX All functions from X to C

F Topological vector space of scalar-valued functions.
Fdiv Set of (convex) f-divergence functions f : (0,∞)→ R s.t. f(1) = 0
G Set of attainable generator functions
H, Hk Reproducing kernel Hilbert space (RKHS) with kernel k
Lm Lebesgue-space of m-integrable functions

Distributions and Distribution Spaces

D Arbitrary (sub)set of Schwartz-distributions
Dm Schwartz-distributions of order m
Dm
L1

Integrable Schwartz-distributions of order m: dual of Cmb

xiv
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Em Schwartz-distributions of order m with compact support: dual of Cm

Γ(PX,PY) Couplings (i.e. joint probability distributions) whose marginal laws are PX and PY
Mc Signed measures with compact support
Mδ Signed measures with finite support
Mf Signed finite measures
Mr Signed regular measures
N
(
X; α, σ2

)
Random variable X following a Gaussian distribution with mean α and variance σ2

P Probability measures
P, Q Arbitrary probability distribution
p, q, pX Density of distributions P, Q & PX resp. w.r.t. the Lebesgue measure
dP, dQ Density of distributions P & Q w.r.t. an arbitrary reference measure µ
PX, PX,Y Probability (resp. joint probability) distribution of random variable X (resp. (X, Y))
PX|Y , QX|Y Conditional probability distribution of X given Y
X ∼ P Random variable X has distribution P
X ⊥⊥ Y Random variables X and Y are indendent
EP[ϕ(X)] Expectation of random variable ϕ(X) when X ∼ P

VarX Variance of random variable X
sQ KSE score function with target-density q

Norms, Distances, Dissimilarities

|x|, |p| Module of scalar x, &
∑d
i=1 pi if p = (p1, . . . ,pd) ∈Nd

‖·‖, ‖·‖p, ‖·‖k Arbitrary-, `p-, and RKHS- (with kernel k) norms
|||·||| Dual norm of ‖·‖
〈· , ·〉, 〈· , ·〉k Arbitrary and RKHS inner products
‖P‖k, 〈P , Q〉k RKHS norm and inner products of the kernel mean embeddings of P and Q
D(P‖Q) Arbitrary dissimilarity between probability distributions P and Q
MMDk(P,Q) Maximum mean discrepancy between P and Q w.r.t. kernel k, i.e. ‖P−Q‖k
KSDk,P(Q) Kernel Stein discrepancy between Q and target P, i.e. MMDκ(P,Q).
Pn →b P, Pn →σ P, Pn →w P, Pn →‖·‖k , Pn →α P

Convergence of (Pn)n to P in bounded, weak, weak-*, RKHS and Wasserstein-α
topologies resp. See Table 1.2 and Prop. 3.1.1

Miscalleneous
∂xϕ, ∂pϕ partial derivative of ϕ w.r.t. x & ∂|p|f

∂p1x1∂
p2x2···∂pdxd

, where p = (p1, . . . ,pd) ∈Nd

∂ϕ, ∂xϕ gradient & gradient w.r.t. vector x of function ϕ
domϕ Input domain of function ϕ
dp Path-degree vector of path p in a network
P(x,o) Set of all paths p from node x to node o
D(x,o) set of path-degree vectors for all paths going from node x to node o.
Fϕ Fourier transform of ϕ
spanS Linear span of set S
E1 ↪→ E2 Continuous inclusion, i.e. E1 ⊂ E2 and the canonical embedding is continuous
suppP Support of distribution P
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Four years ago, Goodfellow et al. [37] proposed a new algorithm [37] Goodfellow et al., Generative Adver-
sarial Nets, 2014that gained instant popularity: Generative Adversarial Nets

(GANs). To generate fake but realistically looking data, they pro-
posed to use two networks – a generator and a discriminator – with
opposite goals: the discriminator tries to distinguish true from fake
data, while the generator produces fake data that tries to fool the
discriminator. Both networks permanently evolve while adapting to
the strengths and weaknesses of each other until the generator starts
producing realistic data.

Remarkably, GANs do not need any predefined measure to quan-
tify what it means to “look realistic” – or so it seems. Where previous
algorithms used refined, closed-form dissimilarity measures such as
the KL-divergence or the total variation between fake and true prob-
ability distributions P and Q, GANs judge the quality of P by their
discriminator’s ability to distinguish it from Q. They optimize P to
minimize the average reward of a (logit-) discriminator ϕ trained
over a set of functions F to distinguish P from Q. It turns out that
the maximal average reward of ϕ is a distribution-dissimilarity too:
we call it a classifier-based dissimilarity. For a loss function L (the
negative reward), it can formally be written as

GANs Minimize a
Classifier-Based DissimilarityDL,F,π (P ‖Q) := sup

ϕ∈F
E
X,C

−L(ϕ(X),C) , (0.1)

where (X,C) denotes a sample X coming from P if C = 1 and from
Q if C = 0, and where π is the (prior) probability that C = 1.1 1 The dependence on π becomes clear

when noting that EX,CL(ϕ(X),C) ={
πEXL(ϕ(X),1)+

(1−π)EXL(ϕ(X),0).

Classifier-based dissimilarities are extremely general: by varying
L, F and π, one covers all integral probability metrics (IPMs) and
f-divergences. That includes the KL-, reverse KL-, Jensen-Shannon-
and squared-Hellinger divergences, the total variation-, Wasserstein-
1-, Dudley- and maximum mean discrepancy (MMD) distances, etc.
The original GAN algorithm used a logistic loss L and π = 1/2. In
that case DL,F,π happens to approximate the Jensen-Shannon diver-
gence more and more accurately with growing capacity of F. But
could we use other f-divergences or IPMs as proposed by [82]? What [82] Nowozin et al., f-GAN, 2016

would be the pros and cons? More generally:

What are the properties of such distribution-dissimilarities?
What are they good for?

This is the core question which serves as leitmotiv to the present the-
sis. Rather than trying to answer it exhaustively, we will focus on the
properties of some selected distribution-dissimilarities and present se-
lected applications, GANs being only one of them. Now, we propose
to give a brief overview of the major distribution-dissimilarities that
we will encounter throughout this thesis and then present the con-
tents of the chapters to come.
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Name Abbrev. F

Total Variation TV {ϕ ∈ C : ‖ϕ‖∞ 6 1}

Wasserstein-1 W1 {ϕ ∈ C : ‖ϕ‖L 6 1}

Bounded Lipschitz (Dudley) BL {ϕ ∈ C : ‖ϕ‖∞ + ‖ϕ‖L 6 1}

Max. Mean Discrepancy MMD {ϕ ∈ Hk : ‖ϕ‖k 6 1}

Table 0.1: IPM examples. ‖·‖∞, ‖·‖∞
and ‖·‖k denote the supremum, the
Lipschitz and an RKHS norm (of RKHS
Hk with kernel k) respectively.

0.1 Distribution Dissimilarities

Let X be the input space, typically a Polish space (separable, com-
plete and metrizable) equipped with its Borel sigma-algebra. We

Definition of
Distribution-Dissimilarity

call distribution-dissimilarity or simply dissimilarity any real function
D of two probability distributions P, Q defined on X that gets mini-
mized when P = Q. D (P ‖Q) is typically non-negative and equal
to 0 when P = Q, but not necessarily. We will encounter three
big families of distribution-dissimilarities: Integral Probability Met-
rics (IPMs), f-divergences, and Optimal Transport (OT) dissimilari-
ties. Let us present them here, and then see how they relate to the
classifier-based dissimilarity (0.1).

0.1.1 Textbook Dissimilarities

There are several ways to present IPMs, f-divergences and OT dis-
similarities. They can usually be defined using either their primal
or their dual formulation. Both are equivalent. Here, we opt for
the more unusual dual definitions, so as to make the link between
all three dissimilarity families appear more explicitly. Indeed, all of
them can be written as

IPMs, f-Divergences and OT
Dissimilarities All Verify (0.2).D (P ‖Q) = sup

(ϕ,ψ)∈(F,G)
P(ϕ) −Q(ψ) , (0.2)

where P(ϕ) is a short-hand for EX∼P ϕ(X) and (F,G) denotes a set
of measurable function pairs (ϕ,ψ) such that ϕ and ψ are P- and
Q-integrable respectively.

Integral Probability Metrics (IPM) correspond to (F,G) = {(ϕ,ϕ) :

ϕ ∈ F}, where F is some fixed (usually balanced) set of functions.

DF (P ‖Q) = sup
ϕ∈F

P(ϕ) −Q(ϕ) . (0.3)

IPMs satisfy the axioms of a metric (or distance), except that they
may take infinite values (DF (P ‖Q) = ∞) and need not be definite,
id est (i.e.) perfectly discriminative.2 Various IPM examples are given 2 Definite (or perfectly discriminative) dis-

similarity: DF (P ‖Q) = 0 ⇒ P =

Q.in Table 0.1.
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Name Abbrev. f(s) f∗(t) dom f∗

Total Variation TV |s− 1| t −1 6 t 6 1

Kullback-
Leibler

KL s log s exp(t− 1) R

Reverse-KL / − log s −1− log(−t) t < 0

Squared
Hellinger

/ (
√
s− 1)2

t

1− t
t < 1

Pearson χ2 χ2 (s− 1)2 t2/4+ t R

Jensen-
Shannon

JS −(s+ 1) log
1+ s

2
+ s log s − log(2− exp t) t < log 2

Table 0.2: Examples of f-divergences,
with f, its Fenchel conjugate f∗ and the
latter’s input domain dom f∗. Taken
from [82]

f-Divergences correspond to (F,G) = {(ϕ, f∗(ϕ))} where f :

(0,∞)→ R is any fixed convex function satisfying f(1) = 0, f∗ is
its Fenchel conjugate,3 and where ϕ spans the set of all measurable 3 Fenchel conjugate definition:

f∗(t) := sups∈dom f st− f(s)functions from X to the input domain dom f∗ of f∗. See [82] & [85].

[82] Nowozin et al., f-GAN, 2016
[85] Peyré and Cuturi, Computational
Optimal Transport, 2018, Rmk 8.1

Df (P ‖Q) = sup
ϕ :X→dom f∗

P(ϕ) −Q(f∗(ϕ)) (0.4)

f-divergences may not satisfy the triangular inequality, but they are
always non-negative and definite. Examples of f-divergences include
the Kullback-Leibler (KL), reverse-KL, Jensen-Shannon (JS), squared
Hellinger and χ2-divergences, and the TV distance. The latter cor-
responds to f∗(x) = x for −1 6 x 6 1. It is the only f-divergence
that is also an IPM. There are many connections between the differ-
ent f-divergences, and between f-divergences and statistical informa-
tion [67].

[67] Liese and Vajda, On Divergences and
Informations in Statistics and Information
Theory, 2006

Optimal transport (OT) dissimilarities correspond to (F,G) =

{(ϕ,ψ) : ∀ x,y ∈ X, ϕ(x) + ψ(y) 6 c(x,y)}, where c(x,y) is any
predefined, non-negative cost function. It is usually interpreted as
the cost of transporting a unit mass from point x to point y.

Dc (P ‖Q) = sup
(ϕ,ψ): ∀x,y∈X

ϕ(x)+ψ(y)6c(x,y)

P(ϕ) −Q(ψ)

In general, optimal transportation measures satisfy neither definite-
ness, nor the triangular inequality, but they are always non-negative
and finite if c is. When c is a distance, then Dc (and more generally
D
1/p
cp ) also satisfies the axioms of a distance, except that it may take

infinite values. It is called the c-Wasserstein-1 (resp. c-Wasserstein-
p) distance, or simply the Wasserstein-1 distance when c coincides
with the underlying metric of X. The c-Wasserstein-1 is an IPM, co-
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inciding with the total variation metric when c is the discrete dis-
tance [121]. [121] Villani, Optimal Transport: Old and

New, 2009, Chap. 6

0.1.2 Classifier-Based Dissimilarities

How do the previous three dissimilarity families relate to GANs and
classifier-based dissimilarities, as discussed in (0.1)? Let us just il-
lustrate here the main ideas of the answer on f-divergences. More
details and links are given in Chapter 4.

The trick is to see every test function ϕ in the definition (0.4) of
f-divergences as a score-function. For brevity, we may refer to ϕ as
the classifier, but it is more accurate to think of it as the logit function
of a binary classifier. It takes an input x ∈ X and tries to determine
if x was drawn from distribution P or from Q. The higher the score
ϕ(x), the more it attributes x to P. Now, define the reward for score
ϕ(x) as ϕ(x) if x comes from P, and −f∗(ϕ(x)) otherwise. Then
P(ϕ) −Q(f∗(ϕ)), i.e. EX∼P[ϕ(X)] − EX∼Q[f∗(ϕ(X))], is the average
reward of ϕ when x comes with equal probability from P or Q. And

f-Divergences are
Classifier-Based Dissimilarities

Df (P ‖Q) is the maximal average reward that we can get when ϕ
is optimized over all functions from X to dom f∗. f-divergences are
hence, by definition, classifier-based dissimilarities. They satisfy (0.1)
for the particular choices π = 1/2 (equal prior probability to come
from P or Q), F = [−1, 1]X := {ϕ : X→ dom f∗}, and

L(ϕ(x),y) =

 −ϕ(x) if y = 1 (i.e. if x comes from P)

f∗(ϕ(x)) if y = 0 (i.e. if x comes from Q).

f-divergences are particularly strong dissimilarity measures, be-
cause of their huge set of test functions F. As we will see in a mo-
ment, that often makes them too discriminative. So we may want
to deliberately reduce the set of test functions F. In a sense, we al-

They can be Weakened by
Reducing the Set of Test

Functions F

ready did so with IPMs. They are weak total variation dissimilarities,
that replace the set of all measurable functions ϕ : X→ [−1, 1] by a
smaller one. Doing the same, not just with total variation, but with
any f-divergence leads to restricted f-divergences.

Restricted (or approximate) f-divergences have the same objective
than f-divergences, but are optimized over a smaller set of test func-
tions F:

Df,F (P ‖Q) = sup
ϕ∈F

P(ϕ) −Q(f∗(ϕ)) .

IPMs and f-divergences are thus particular kinds of restricted f-
divergences: IPMs fix f and vary F, while f-divergences keep F as
big as possible and vary f. Restricted f-divergences are in particular
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classifier-based dissimilarities that restrict the capacity of their score-
function set to F. They are hence weaker than f-divergence, in the
sense that

Df,F (P ‖Q) 6 Df (P ‖Q) .

The lower bound converges to the upper limit when F grows towards
(dom f∗)X. But in practice, we may actually prefer the lower bound;
the weaker dissimilarity. Let us explain why.

0.1.3 Why Weak Distribution Dissimilarities?

Probability theory and statistics traditionally work with strong
distribution-dissimilarities; probably because they mainly deal with
continuous probability distributions and because stronger assump-
tions can considerably simplify a proof. But applied machine learn-
ing (ML) is mainly about samples, i.e. empirical measures that have
no density. We may for example want to do a two sample test, to
evaluate if two samples come from a same distribution; or a sample-
quality test, that checks if a sample could come from some prede-
fined, usually continuous reference distribution. Such tests can be
used in the context of MCMC sampling or of generative modeling,
such as in GANs. For all of them, distribution-dissimilarities seem
the right tool.

But here is the catch. Two random samples typically yield disjoint
measures; and f-divergences typically saturate on such measures: to-
tal variation for example simply takes its maximal value2; the KL-
divergence is even infinite. In a sense, that is not surprising. In
theory, the two measures are perfectly distinguishable. So the aver-
age reward Df (P ‖Q) of an optimally classifying score-function ϕ
is as high as it can get: the dissimilarity saturates. This saturation
masks a lot of relevant comparative information. Two distinct Dirac
measures δx and δy, how ever close they are, always lie at the same,
maximal TV-distance, 2. Of course, being distinct, they are theoreti-
cally perfectly distinguishable. But it would nevertheless help if the
dissimilarity converged to 0 when y → x. That is where weaker
dissimilarities come into play.

Consider the total variation again, and imagine that, instead of
choosing the test-function ϕ among all functions with output in
[−1, 1], we additionally required that it be 1-Lipschitz. DF (δx ‖δy)
gets maximized only if there exists a test-function ϕ ∈ F such that
(s.t.) ϕ(x) = 1 and ϕ(y) = −1. As illustrated in Figure 0.1, when
F = [−1, 1]X, this is the case as soon as x 6= y. But if ϕ is to be 1-
Lipschitz, |ϕ(x) −ϕ(y)| 6 |x− y|. So, not only can’t the condition be
met if |x− y| < 2, but the new dissimilarity4 D

B̃L
(δy ‖δx) converges

4 Technically, this new dissimilarity
is not exactly the bounded Lipschitz
(Dudley) one defined in Table 0.1,
which is why we denote it DB̃L rather
than DBL. But both define equivalent
norms, i.e. are “almost the same”.
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Figure 0.1: Two test functions ϕ

that (almost) achieve supϕ∈F δx(ϕ)−

δy(ϕ) = DF (δx ‖δy) when F con-
tains resp. all 1-bounded functions (left)
and when it contains only 1-bounded
1-Lipschitz functions (right). The first
dissimilarity (TV) is bigger than the sec-
ond (bounded Lipschitz).

to 0 when y→ x. We say that DB̃L metrizes a new, weaker topology:5

5 Formally, TV metrizes the strong con-
verges of probability measures, while
the bounded Lipschitz dissimilarity
metrizes the weak one.

while in total variation, δyn → δx if and only if (iff) yn = x for all
large enough n, in the new topology δyn → δx iff yn → x. This new
topology is much more informative, because, in a sense, it respects
the underlying topology of X.

Instead of simply imposing ϕ to be 1-Lipschitz, we could add
more restrictions, decreasing F even further. That might ease the
training procedure, i.e. the optimization of ϕ in F. But it may also
weaken the dissimilarity too much. Imagine for instance that we
kept only one single function in F. Then, no need to optimize ϕ
anymore. But all distributions are at equal distance: the dissimilar-
ity becomes totally uninformative. We hence have to find the right
balance between a set F that is sufficiently small to get a computable
dissimilarity measure, but sufficiently large to stay informative.

Of course, what it means to “be informative” depends on our
goals. If our only goal is to distinguish true from fake image datasets,
we may be content with a dissimilarity that sees no difference be-
tween any two different sets of fake images. But if we intend to
generate realistic images, we’d better have a dissimilarity that sees
differences even in between fake images, and can tell us which one
looks more realistic. So the real question, at the core of this thesis, is
not so much: how much functions can I take our of F? But rather:
given my goals, how should I choose F; how should I choose my
distribution-dissimilarity? Our three parts focus on three different
aspects of this question.

0.2 Thesis Outline

Our first part focuses on two questions: 1) if I want my dissimilarity
to be perfectly discriminative, how should I choose the set of test-
functions F? 2) same question, if I want my dissimilarity to metrize
a topology known as weak convergence? We study these questions
on a particular family of IPM dissimilarities called maximum mean
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discrepancies (MMDs). Those are weak total variation dissimilari-
ties where F is the unit ball of a reproducing kernel Hilbert space
(RKHS) Hk. RKHSs are function spaces that are entirely determined
by a (Mercer) kernel (function) k. That gives flexibility: by changing
the kernel, we change the RKHS. It also makes RKHSs very rigid,
which can be both good and bad. Good, because it can consider-
ably easen computations: the MMD of two samples for example can
always be expressed in closed form. Bad, because RKHS functions in-
herit many properties of the kernel, which can make them relatively
small: if k is bounded, continuous, differentiable and/or smooth,
then so are all the functions in the respective RKHS. Some RKHSs
get so small, that their MMD is far from being perfectly discrimina-
tive. Others, however, are still big enough to be dense in the set of
bounded continuous functions C b. Intuitively, that seems enough to
preserve perfect discrimination. Chapter 1 confirms this intuition: it
shows6 that the MMD of a bounded continuous kernel is perfectly 6 Theorem 1.2.2

discriminative iff Hk is dense in C b. More surprising however is
that this condition also happens to be necessary and sufficient to
metrize weak-convergence. That is the main theorem of Chapter 1,
Theorem 1.3.4, and possibly the main theorem of this thesis. Finally,
Chapter 1 also shows that MMDs can be extended from probability
measures to generalized measures called Schwartz-distributions. That
will turn out very useful later on. Chapter 2 and 3 then propose two
applications: one related to the weak-convergence metrization, and
another that makes use of Schwartz-distribution embeddings.

Our second part focuses on distribution-dissimilarities in the con-
text of generative models, such as in GANs and variational auto-
encoders (VAEs). It implicitly asks: how can I build effective
distribution-dissimilarities to learn to generate image data? To do
so, Chapter 4 first lists, compares and links the objectives of exist-
ing generative algorithms and shows that they all do approximate
f-divergence minimization. It then proposes a new, related objective,
which implements approximate OT minimization: Wasserstein auto-
encoders (WAE). Chapter 5 then remedies a deficiency of GANs and
similar generative algorithms known as mode collapse, where the gen-
erator suddenly produces only one kind of datapoints, ignoring the
true data diversity. The solution we propose – an algorithm called
AdaGAN – can be applied to any generative method that minimizes
a restricted f-divergence.

Our third and final part focuses on an appealing deficiency of
all state-of-the-art network-based image-classifiers: their adversarial
vulnerability. By adding imperceptible, but targeted perturbations to
the input images, the accuracy of almost any such classifier can be
drastically turned down. The perturbed and original sample would
hence look almost the same to humans, but entirely different to the
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classifier-based dissimilarity. Understanding the origins of adversar-
ial vulnerability therefore seems a prerequisite for building dissim-
ilarity measures that capture more human-like perception. But we
make worrying findings. For humans, higher resolutions can but
help. But for feed-forward networks, independently of their archi-
tecture, adversarial vulnerability increases as the square-root of the
input dimension. This we show both theoretically and empirically.
It strongly suggests that, despite their fantastic accuracies, we may
want to rethink our network architectures, if they are to imitate, one
day, human-like perception.

0.3 Underlying Material, Co-Workers and Contributions

This work relies on the following papers, which have all been co-
written with colleagues and friends. I would like to acknowledge
and thank them here, and briefly outline the extent of my personal
contributions.

Chapter 1
C.-J. Simon-Gabriel and B. Schölkopf. Kernel Distribution Em-
beddings: Universal Kernels, Characteristic Kernels and Kernel Met-
rics on Distributions. In: JMLR (2018). to appear

Contributions: main ideas, and major part of theory and text.

Chapter 2
C.-J. Simon-Gabriel, A. Scibior, I. O. Tolstikhin, and B.
Schölkopf. Consistent Kernel Mean Estimation for Functions of
Random Variables. In: NIPS. 2016, pp. 1732–1740

Contributions: a major part of the theory (especially the proofs
of the main Theorems 2.2.1 & 2.2.3) and a substantial part of
the text. The code for the little experiment of Figure 2.1 was
graciously provided by Krikamol Muandet. Compared with
the paper, I also shifted the focus from convergence of KME
estimators to the convergence of discrete random samples (see
Section 2.1.2).

Chapter 3
C.-J. Simon-Gabriel and L. Mackey. Targeted Convergence Char-
acteristics of Maximum Mean Discrepancies and Kernel Stein Dis-
crepancies. In: preprint (2018)

Contributions: the original idea of targeted convergence and its
application to kernel Stein discrepancies came from L. Mackey,
but I worked out most of the theory, proofs and text.

Chapter 4
O. Bousquet, S. Gelly, I. Tolstikhin, C.-J. Simon-Gabriel, and
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B. Schölkopf. From optimal transport to generative modeling: the
VEGAN cookbook. 2017. arXiv: 1705.07642

Contributions: I was mainly involved in the initial ideas and ex-
periments, and afterwards in the analysis discussions. While I
contributed only little to the original text, I significantly modi-
fied it for this thesis. The proofs however were mainly O. Bous-
quet’s work. I also included experimental results and images
of [116], which is a follow-up paper that further implements [116] Tolstikhin et al., WAE, 2018

and tests our main algorithm.

Chapter 5
I. O. Tolstikhin, S. Gelly, O. Bousquet, C.-J. Simon-Gabriel, and
B. Schölkopf. AdaGAN: Boosting Generative Models. In: NIPS.
2017, pp. 5424–5433

Contributions: I contributed to the original idea, the dis-
cussions, did a significant part of the experiments, and co-
analyzed the results. The proofs however were mainly worked
out by I. Tolstikhin and O. Bousquet. The initial idea came
from B. Schölkopf during a joint discussion.

Chapter 6
C.-J. Simon-Gabriel, Y. Ollivier, B. Schölkopf, L. Bottou, and
D. Lopez-Paz. Adversarial Vulnerability of Neural Networks In-
creases With Input Dimension. 2018. arXiv: 1802.01421

Contributions: The main ideas resulted from my work and dis-
cussions at Facebook AI Research during my internship there.
I coded all experiments, and a major part of the theorems
and proofs. The idea to generalize Theorem 6.2.1 and Corol-
lary 6.2.3 from fully-connected and standard convolutional
nets to general feed-forward nets (Theorem 6.2.2) came from
Y. Ollivier. I worked out its proof under his guidance.

This thesis will not study the following co-authored papers:

B. Schölkopf, D. W. Hogg, D. Wang, D. Foreman-Mackey, D.
Janzing, C.-J. Simon-Gabriel, and J. Peters. Removing Systematic
Errors for Exoplanet Search via Latent Causes. In: ICML. 2015.
arXiv: 1505.03036

B. Schölkopf, D. W. Hogg, D. Wang, D. Foreman-Mackey, D.
Janzing, C.-J. Simon-Gabriel, and J. Peters. Modeling Confound-
ing by Half-Sibling Regression. In: PNAS 113.27 (2016), pp. 7391–
7398

H. Huang, G. M. Peloso, D. Howrigan, B. Rakitsch, C. J. Simon-
Gabriel, J. I. Goldstein, M. J. Daly, K. Borgwardt, and B. M.

https://arxiv.org/abs/1705.07642
https://arxiv.org/abs/1802.01421
https://arxiv.org/abs/1505.03036
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Neale. Bootstrat: Population Informed Bootstrapping for Rare Vari-
ant Tests. In: (2016). bioRxiv: 10.1101/068999

The German abstract (Zusammenfassung) was originally translated
from English with the DeepL Translator [23], and significantly modi- [23] DeepL, DeepL Translator, 2018

fied afterwards.

10.1101/068999


Part I

Maximum Mean Discrepancies
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This first part focuses on a very particular class of dissimilarity
measures: maximum mean discrepancies (MMDs). MMDs are

MMDs: A Case Study
for Dissimilarity Weakening

IPMs, where the test functions ϕ ∈ F are the unit ball of a repro-
ducing kernel Hilbert space (RKHS) Hk with kernel k. We assume
that the reader is familiar with the basics of RKHS theory. For an
introduction, see [94] or [79]. MMDs have many attractive features [94] Schölkopf and Smola, Learning with

Kernels, 2001
[79] Muandet et al., Kernel Mean Embed-
ding of Distributions, 2017

– such as being computable in closed form for any two samples –
which gave them quick popularity after their introduction in the ML
community in the early 2000s. But compared to more classical spaces
such as the continuous bounded and/or Lipschitz functions, RKHS
are relatively small, as they inherit many properties of their kernel:
if k is continuously differentiable in each variable, so are all the func-
tions of Hk; if x 7→ k(x, x) is Lp-integrable, so are the functions of Hk.
This makes the resulting MMD weaker than more classical IPMs such
as the total variation, Wasserstein-1 or Dudley distances. Chapter 1
studies how weak (or strong) MMDs actually are.

A first weakness is that MMDs may not be perfectly discrimina-
tive – meaning that D (P ‖Q) = 0 may not imply P = Q – in which
case the MMD is a semi-metric, but not a metric. Chapter 1 hence
first focuses on identifying necessary and sufficient conditions for
MMDs to be metrics. A second weakness is that the convergence

MMDs, Perfect Discrimination
& Weak Convergence

defined by an MMD is weaker even than the one defined by the
Dudley metric, which is already known as the weak (or weak-*) con-
vergence in probability theory. But MMD-convergence need not be
strictly weaker than this weak-convergence: some MMDs are known
to metrize weak-convergence. Chapter 1 establishes an iff condition
which, astonishingly, happens to coincide with the previous iff condi-
tions: a bounded continuous kernel metrizes weak-convergences iff
its MMD is a metric. Chapter 2 then develops a straight-forward ap-
plication of this result: consistent estimation of function of random
variables and kernel probabilistic programming.

To establish the iff conditions in Chapter 1, we order, redefine and
generalize different concepts that were introduced gradually and of-
ten independently in the ML literature, such as the definition of ker-
nel mean embeddings (KMEs), and of universal, characteristic and
strictly positive definite (spd) kernels. As a byproduct of this re-
organization, we will see that KMEs and MMDs can be extended
not only to signed measures (as opposed to probability measures),
but also to generalized measures called Schwartz-distributions. Chap-

MMDs, KMEs & Extensions to
Schwartz-Distributions

ter 1 therefore also investigates some properties of these extensions.
It shows in particular KME and differentiation operators commute
(essentially, because both are linear). This means that KMEs (and
MMDs) can take advantage of the greatest strength of Schwartz-
distributions (and the reason they were originally introduced): un-
like usual functions and measures, they are all indefinitely differen-
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tiable. Chapter 3 will show how these insights can be used to prove
KMEs of Schwartz-Distributions

Apply to KSDs
consistency results for a special kind of MMD called a kernel Stein
discrepancies (KSD). Remarkably, the main result, Theorem 3.2.3, is
essentially a statement on probability distributions, but its proof ex-
plicitly makes use of Schwartz-distributions. Moreover, this proof is
almost a copy-paste of a previous proof by [21], but where the in- [21] Chwialkowski et al., A Kernel Test of

Goodness of Fit, 2016troduction of Schwartz-distributions avoids strong assumptions and
significantly generalizes the theorem. Chapter 3 therefore serves as
a first illustration of the power of Schwartz-distribution combined
with KMEs and MMDs.



1Kernel Distribution Embeddings

The following chapter focuses on Maximum Mean Discrepan-
cies (MMDs). Although MMDs are IPMs, they can – and will –

also be introduced via kernel mean embeddings (KMEs), which are
defined and studied in Section 1.1. KMEs linearly map signed mea-
sures to functions in the RKHS Hk. The MMD of two measures then
coincides with the RKHS distance between their embeddings. The
advantage of this approach is that it gives access to the huge toolbox
of linear functional analysis.

Like all IPMs, MMDs are semi-metrics. Our primary goal here
is two-fold. First, determine when this semi-metric is a metric (The-
orem 1.2.2). Second, determine when it metrizes the weak conver-
gence of probability measures. Astonishingly, Theorem 1.3.4 will
show that, for bounded continuous kernels, this metrization happens
exactly when the MMD is a metric.

At the heart of these theorems are the notions of universal, char-
acteristic and spd kernels. While originally introduced in very dif-
ferent contexts and with many variants, they were soon found to be
connected in many ways as summarized by Figure 1 in [109]. But by [109] Sriperumbudur et al., Universality,

Characteristic Kernels and RKHS Embed-
ding of Measures, 2011

handling separately all the many variants of these notions, the ML
community overlooked the general duality principle that underlies
all these connections. Our second contribution here is the unifica-
tion of those many variants, which makes their link explicit, easy to
remember, and immediate to generalize.

As a byproduct, we will see that KMEs – and therefore MMDs –
naturally extend, not only to signed measures, but also to general-
ized measures called Schwartz-distributions, which Section 1.4 will
focus on. To avoid confusion, in this chapter, distribution desig- In This Chapter:

{Measures} ( {Distributions}nates any Schwartz-distribution, while measure specifically desig-
nates usual (signed) measures. For a short introduction to Schwartz-
distributions and generalized differentiation see Appendix A.1.

Section 1.4 first proves the following calculus rules:〈
f ,
∫
k(., x)dD(x)

〉
k

=

∫
〈f , k(., x)〉k dD(x) (Definition of KME)〈∫

k(.,y)dD(y) ,
∫
k(., x)dT(x)

〉
k

=

∫
k(x,y)dD(y)dT̄(x) (Fubini)∫

k(., x)d(∂pS)(x) = (−1)|p|
∫
∂(0,p)k(., x)dS(x). (Differentiation)

17
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While the first two lines extend standard KME formulae, the third
one is specific to Schwartz-distributions. It uses the distributional
derivative (‘∂’) which extends the usual derivative to measures and
distributions (see Appendix A.1). Second, Section 1.4 proves that,
for smooth and translation-invariant kernels, extending an injective
KME from probability measures to distributions preserves the injec-
tivity (Theorems 1.4.5 & 1.4.6). Thus, if the associated MMD is a
probability-metric, then it is automatically a metric over these bigger
distribution spaces.

The structure of this chapter roughly follows this exposition. After
fixing our notations, Section 1.1 introduces KMEs of measures and
distributions. In Section 1.2 we define the concepts of universal, char-
acteristic and spd kernels and prove their equivalence. Section 1.3
compares convergence in MMD with other modes of convergence
for measures and distributions. Section 1.4 focuses specifically on
KMEs of Schwartz-distributions, and Section 1.5 concludes.

Definitions and Notations

The input set X of all considered kernels and functions will be lo-
cally compact and Hausdorff. This includes any Euclidian spaces or
smooth manifolds, but no infinite-dimensional Banach-space. When-
ever referring to differentiable functions or to distributions of order
> 1, we will implicitly assume that X is an open subset of Rd for
some d > 0.

A kernel k : X×X→ C is a positive definite function, meaning
that for all n ∈ N\{0}, all λ1, . . . , λn ∈ C, and all x1, x2, . . . xn ∈
X,
∑n
i,j=1 λik(xi, xj)λj > 0. For p = (p1,p2, . . . ,pd) ∈ Nd and f :

X→ C, we define |p| :=
∑d
i=1 pi and ∂pf := ∂|p|f

∂p1x1∂
p2x2···∂pdxd

. For
m ∈ N ∪ {∞}, we say that f (resp. k) is m-times (resp. (m,m)-times)
continuously differentiable and write f ∈ Cm (resp. k ∈ C (m,m)), if
for any p with |p| = m, ∂pf (resp. ∂(p,p)k) exists and is continuous.
Cmb (resp. Cm→0, Cmc ) is the subsets of Cm for which ∂pf is bounded
(resp. converges to 0 at infinity, resp. has compact support) whenever
|p| 6 m. Whenever m = 0, we may drop the superscript m. By
default, we equip Cm∗ (∗ ∈ {∅,b, 0, c}) with their natural topologies
(see Introduction of [99] or [119]). We write k ∈ C

(m,m)
0 whenever [99] Simon-Gabriel and Schölkopf, Ker-

nel Distribution Embeddings - arXiv, 2016
[119] Treves, Topological Vector Spaces,
Distributions and Kernels, 1967

k is bounded, (m,m)-times continuously differentiable and for all
|p| 6 m and x ∈ X, ∂(p,p)k(., x) ∈ C→0.

We call space of functions and denote by F any locally convex (loc.
cv.) topological vector space (TVS) of functions (see Appendix A.2).
Loc. cv. TVSs include all Banach- or Fréchet-spaces and all function
spaces defined in this chapter.
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The dual F ′ of a space of functions F is the space of continuous lin-
ear forms over F. We denote Mδ, Em, Dm

L1
and Dm the duals of CX,

Cm, Cm→0 and Cmc respectively. By identifying each signed measure
µ with a linear functional of the form f 7→

∫
fdµ, the Riesz-Markov-

Kakutani representation theorem (see Appendix A.2) identifies D0

(resp. D0
L1

, E 0 and Mδ) with the set Mr (resp. Mf, Mc, Mδ) of signed
regular Borel measures (resp. with finite total variation, with com-
pact support, with finite support). By definition, D∞ is the set of
all Schwartz-distributions, but all duals defined above can be seen
as subsets of D∞ and are therefore sets of Schwartz-distributions.
Any element µ of Mr will be called a measure, any element of D∞
a distribution. We extend the usual notation µ(f) :=

∫
f(x)dµ(x) for

measures µ to distributions D: D(f) =:
∫
f(x)dD(x). Given a KME

Φk and two embeddable distributions D, T (see Definition 1.1.1), we
define

〈D , T〉k := 〈Φk(D) , Φk(T)〉k and ‖D‖k := ‖Φk(D)‖k .

where 〈. , .〉k is the inner product of the RKHS Hk of k. To avoid intro-
ducing a new name, we call ‖D‖k the maximum mean discrepancy
(MMD) of D, even though the term “discrepancy” usually specifi-
cally designates a distance between two distributions rather than the
norm of a single one. Given two topological sets S1, S2, we write

S1 Continuously Contained in S2
S1 ↪→ S2

and say that S1 is continuously contained in S2 if S1 ⊂ S2 and if the
topology of S1 is stronger than the topology induced by S2. For a
general introduction to topology, TVSs and distributions, we recom-
mend [119]. [119] Treves, Topological Vector Spaces,

Distributions and Kernels, 1967

1.1 Kernel Mean Embeddings of Distributions

In this section, we show how to embed general distribution spaces
into an RKHS. To do so, we redefine the integral

∫
k(., x)dµ(x) so as

to be well-defined even if µ is a distribution. It is often defined as a
Bochner-integral; here we instead use the Pettis- (or weak-) integral:

Definition 1.1.1. Let D be a linear form over a space of functions F.
Let ϕ : X→ Hk be an RKHS-valued function s.t. for any f ∈ Hk,
x 7→ 〈f , ϕ(x)〉k ∈ F. Then ϕ : X→ Hk is weakly integrable with re-
spect to (wrt) D if there exists a function in Hk, written

∫
ϕ(x)dD(x), s.t.

Pettis Integral and KME∀f ∈ Hk,
〈
f ,
∫
ϕ(x)dD(x)

〉
k

=

∫
〈f , ϕ(x)〉k dD̄(x) , (1.1)
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where the right-hand-side stands for D̄ (x 7→ 〈f , ϕ(x)〉k) and D̄ denotes
the complex-conjugate of D. If ϕ(x) = k(., x), we call

∫
k(., x)dD(x) the

kernel mean embedding (KME) of D and say that D embeds into Hk. We
denote Φϕ the map Φϕ : D 7→

∫
ϕ(x)dD(x).

This definition extends the usual Bochner-integral: ifϕ is Bochner-
integrable wrt a measure µ ∈ Mr, then ϕ is weakly integrable wrt
µ and the integrals coincide [95]. In particular, if x 7→ ‖ϕ(x)‖k is [95] Schwabik, Topics in Banach Space In-

tegration, 2005, Prop.2.3.1Lebesgue-integrable, then ϕ is Bochner integrable, thus weakly inte-
grable.

The general definition with ϕ instead of k(., x) will be useful in
Section 1.4. But for now, let us concentrate on KMEs where ϕ(x) =
k(., x). Kernels satisfy the so-called reproducing property: for any f ∈
Hk, f(x) = 〈f , k(., x)〉k. Therefore, the condition for all f ∈ Hk

x 7→ 〈f , ϕ(x)〉k ∈ F reduces to Hk ⊂ F, and Equation (1.1) reads:

Reproducing Property
and KMEs

∀f ∈ Hk,
〈
f ,
∫
k(., x)dD(x)

〉
k

= D̄(f) . (1.2)

Thus, by the Riesz representation theorem (see Appendix A.2), D
embeds into Hk iff it defines a continuous linear form over Hk. And
in that case, its KME

∫
k(., x)dD(x) is the Riesz-representer of D̄

restricted to Hk. Thus, for an embeddable space of distributions D,
the embedding Φk can be decomposed as follows:

Φk :


D −→ H ′k −→ Hk

Conjugate restriction Riesz representer

D 7−→ D̄
∣∣
Hk

7−→
∫
k(., x)dD(x)

. (1.3)

To know if D is continuous over Hk, we use the following lemma,
and its applications.

Lemma 1.1.2. If Hk ↪→ F, then F ′ embeds into Hk.

Proof. Suppose that Hk ↪→ F. Let D ∈ F ′ and let f, f1, f2, . . . ∈ Hk.
If fn → f in Hk then fn → f in F, thus D(fn) → D(f). Thus D is a
continuous linear form over Hk.

In practice we typically use one of the following two corollar-
ies (proofs in Appendices C.1.1 and C.1.2). The space (Cb)c that
they mention will be introduced in the discussions following The-
orem 1.2.2. It has the same elements as Cb, but carries a weaker
topology.

Corollary 1.1.3. Hk ⊂ C→0 (resp. Hk ⊂ Cb, resp. Hk ⊂ C ) iff the two
following conditions hold.

Embedding Conditions
for Measures(i) For all x ∈ X, k(., x) ∈ C→0 (resp. k(., x) ∈ Cb, resp. k(., x) ∈ C ).
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(ii) x 7→ k(x, x) is bounded (resp. bounded, resp. locally bounded, mean-
ing that, for each y ∈ X, there exists a (compact) neighborhood of y
on which x 7→ k(x, x) is bounded.).

If so, then Hk ↪→ C→0 (resp. Hk ↪→ Cb , thus Hk ↪→ (Cb)c , resp.
Hk ↪→ C ) and Mf (resp. Mf, resp. Mc) embeds into Hk.

Corollary 1.1.4.

Embedding Conditions
for Distributions

If k ∈ C (m,m), then Hk ↪→ Cm, thus Em embeds into Hk.
If k ∈ C

(m,m)
0 , then Hk ↪→ Cm→0, thus Dm

L1
embeds into Hk.

If k ∈ C
(m,m)
b , then Hk ↪→ Cmb , thus Hk ↪→ (Cmb )c, thus Dm

L1
embeds

into Hk.

Corollary 1.1.3 applied to Cb shows that Hk is (continuously) con-
tained in Cb iff k is bounded and separately continuous. As discov-
ered by Lehtö [63], there also exist kernels which are not continuous [63] Lehtö, Some Remarks on the Kernel

Function in Hilbert Function Space, 1952but whose RKHS Hk is contained in Cb. So the conditions in Corol-
lary 1.1.4 are sufficient, but in general not necessary. Concerning
Lemma 1.1.2, note that it not only requires Hk ⊂ F, but also that
Hk carries a stronger topology than F. Otherwise there might exist
a continuous form over F that is defined but non-continuous over
Hk. However, Corollary 1.1.3 shows that this cannot happen for C∗,
because if Hk ⊂ C∗ then Hk ↪→ C∗. Although this also holds for
m =∞ [99], we do not know whether it extends to any m > 0. [99] Simon-Gabriel and Schölkopf, Ker-

nel Distribution Embeddings - arXiv, 2016,
Prop.4 & Comments

1.2 Universal, Characteristic and SPD Kernels

The literature distinguishes various variants of universal, character-
istic and spd kernels, such as c-, cc− or c0-universal kernels, spd
and integrally strictly positive definite (

∫
spd) kernels. They are all

special cases of the following unifying definitions.

Definition 1.2.1. Let k be a kernel, F be a space of functions s.t. Hk ⊂ F,
and D be an embeddable subset of F ′ (e.g. an embeddable set of distribu-
tions). We say that k is

. universal over F if Hk is dense in F.
Universal, Characteristic, SPD. characteristic to D if the KME Φk is injective over D.

. strictly positive definite (spd) over D if, for all D ∈ D,

‖Φk(D)‖2k = 0⇒ D = 0.

A universal kernel over Cm (resp. Cm→0) will be said cm- (resp. cm0 -) uni-
versal (without the superscript when m = 0). A characteristic kernel to the
set P of probability measures will simply be called characteristic.

k is Characteristic iff its MMD
is Perfectly Discriminative on P

Importantly, note that k is characteristic to P iff the MMD of k
can perfectly discriminate two probability measures. Studying when
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k is characteristic hence amounts to determining when the associ-
ated MMD is perfectly discriminative. In general, instead of writing
‖Φk(D)‖k and 〈Φk(D) , Φk(T)〉k, we will write ‖D‖k and 〈D , T〉k.
The previous definitions encompass the usual spd definitions. Denot-
ing δx the Dirac measure concentrated on x, what is usually called

. spd corresponds to D = Mδ, i.e.

∀µ =

n∑
i=1

λiδxi ∈Mδ :


‖µ‖2k =

n∑
i,j=1

λik(xi, xj)λ̄j = 0

=⇒ λ1 = . . . = λn = 0 .

Specific SPD Instances. conditionally spd corresponds to D = M0δ where M0δ := {µ ∈
Mδ :µ(X) = 0}, i.e.:

∀µ =
∑n

i=1
λiδxi ∈Mδ s.t.

∑n

i=1
λi = 0 :

‖µ‖2k =

n∑
i,j=1

λik(xi, xj)λ̄j = 0 =⇒ λ1 = . . . = λn = 0.

.
∫

spd corresponds to D = Mf, i.e. :

∀µ ∈Mf : ‖µ‖2k =

∫∫
k(x,y)dµ(x)dµ̄(y) = 0 ⇒ µ = 0 .

Let us now state the general link between universal, characteristic
and spd kernels, which is the key that underlies Figure 1 in [109].

[109] Sriperumbudur et al., Universality,
Characteristic Kernels and RKHS Embed-
ding of Measures, 2011

Theorem 1.2.2. If Hk ↪→ F, then the following statements are equivalent.

Equivalence of Universality,
Characteristicness and SPD

(i) k is universal over F.
(ii) k is characteristic to F ′.

(iii) k is strictly positive definite (spd) over F ′.

Proof. Equivalence of (ii) & (iii): Saying that ‖Φk(D)‖k = 0 is equiv-
alent to saying Φk(D) = 0. Thus Φk is spd over F ′ iff the Ker(Φk)
(meaning the vector space that is mapped to 0 via Φk) is reduced to
{0}, which happens iff Φk is injective over F ′.

Equivalence of (i) & (ii): Φk is the conjugate restriction opera-
tor |Hk

: D 7→ D̄|Hk
composed with the Riesz representer mapping

(Diagram Eq.1.3). The Riesz representer map is injective, so Φk is
injective iff |Hk

is injective. Now, if Hk is dense in F, then, by con-
tinuity, any D ∈ F ′ is uniquely defined by its values taken on Hk.
Thus |Hk

is injective. Reciprocally, if Hk is not dense in F, then, by
the Hahn-Banach theorem [119], there exists two different elements [119] Treves, Topological Vector

Spaces, Distributions and Kernels,
1967, Thm.18.1, Cor.3

in F ′ that coincide on Hk but not on the entire space F. So |Hk
is not

injective. Thus |Hk
is injective iff Hk is dense in F.

To apply this theorem it suffices to find so-called duality pairs
(F,F ′) s.t. Hk ↪→ F. Table 1.1 lists several such pairs. It shows in
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Universal Characteristic S.P.D. Name

F F ′ F ′ /

CX Mδ Mδ spd

CX/1 M0δ M0δ conditionally spd

C Mc Mc c-universal (or cc-universal)

C→0 Mf Mf c0-universal

(Cb)c Mf Mf
∫

spd

((Cb)c)/1 P (or M0f ) M0f characteristic

Cm Em Em cm-universal

Cm→0 Dm
L1

Dm
L1

cm0 -universal

(Cmb )c Dm
L1

Dm
L1

/

Table 1.1: Equivalence between the no-
tions of universal, characteristic and
spd kernels as implied by Thm. 1.2.2 or
Prop. 1.2.3.

particular the well-known equivalence between c- (resp. c0-) univer-
sal kernels and characteristic kernels to Mc (resp. Mf) [110]. But we

[110] Sriperumbudur et al., Injective
Hilbert Space Embeddings of Probability
Measures, 2008

now discover that spd kernels over Mδ can also be characterized in
terms of universality over CX, because (CX) ′ = Mδ [26]. And we

[26] Duc-Jacquet, Approximation des
Fonctionnelles Linéaires sur les Espaces
Hilbertiens Autoreproduisants, 1973,
p.II.35

directly get the generalization to distributions and cm∗ -universality.
However, Theorem 1.2.2 leaves open the important case where k

is characteristic (to P). Of course, as P is contained in Mf, it shows
that a c0-universal kernel must be characteristic. But to really charac-
terize characteristic kernels in terms of universality, we would need
to find a predual of P, meaning a space F s.t. F ′ = P. This is hardly
possible, as P is not even a vector space. However, we will see in The-
orem 1.2.4 that k is characteristic iff k is characteristic to the vector
space M0f := {µ ∈Mf : µ(X) = 0}. So if we find a predual of M0f , then
we get an analog of Theorem 1.2.2 applied to P. Let us do so now.

Predual of P and M0f ?As M0f is the hyperplane of Mf that is given by the equation∫
1dµ = 0, our idea is to take a predual F of Mf and consider the quo-

tient F/1 of F divided by the constant function 1. Proposition 35.5
of [119] would then show that (F/1) ′ = M0f . But if we take the [119] Treves, Topological Vector Spaces,

Distributions and Kernels, 1967usual predual of Mf, F = C→0, then 1 6∈ F, so the quotient F/1

is undefined. However, preduals are not unique, so let us try with
another space F that contains 1, for example F = Cb. This time
1 ∈ F, but now the problem is that F ′ is in general strictly bigger
than Mf [28] whereas we want F ′ = Mf. The trick now is to keep [28] Fremlin et al., Bounded Measures on

Topological Spaces, 1972, Sec.2 §2Cb, but equip it with a weaker topology than the usual one, so that
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F ′ becomes smaller. Intuitively, the reason for this decrease of F ′ is
that, by weakening the topology of F, we let more sequences con-
verge in F. This makes it more difficult for a functional over F to
be continuous, because for any converging sequence in F, its images
need to converge. Thus some of the linear functionals that were con-
tinuous for the original topology of F get “kicked out” of F ′ when
F carries a weaker topology. Now the only remaining step is to find
a topology s.t. that F ′ shrinks exactly to Mf. There are at least two
such topologies: one defined by [96] and another, called the strict

[96] Schwartz, Espaces de fonctions dif-
férentiables à valeurs vectorielles, 1954,
p.100-101

topology, whose definition can be found in [28]. Denoting τc either
[28] Fremlin et al., Bounded Measures on
Topological Spaces, 1972

of these topologies, and (Cb)c the space Cb equipped with τc, we
finally get ((Cb)c)

′ = Mf, and thus:

Universal-Characteristic
Equivalence for P

Proposition 1.2.3. ((Cb)c/1)
′ = M0f . Thus, if Hk ↪→ (Cb)c, then k is

characteristic to P iff k is universal over the quotient space ((Cb)c/1).

Proof. That ((Cb)c)
′ = Mf is proven in [28] or [96]. Prop. 35.5 of [119]

[28] Fremlin et al., Bounded Measures on
Topological Spaces, 1972, Thm.1
[96] Schwartz, Espaces de fonctions dif-
férentiables à valeurs vectorielles, 1954,
p.100-101
[119] Treves, Topological Vector Spaces,
Distributions and Kernels, 1967

then implies ((Cb)c/1)
′ = M0f (because M0f is the so-called polar set

of 1; see [119]). Thm 1.2.2 implies the rest.

For our purposes, the exact definition of τc does not matter. What
matters more is that τc is weaker than the usual topology of Cb, so
that if Hk ↪→ Cb, then Hk ↪→ (Cb)c. Proposition 1.2.3 thus applies
every time that Hk ⊂ Cb (see Corollaries 1.1.3 and 1.1.4). However,
we do not know of any practical application of Proposition 1.2.3,
except that it completes our overall picture of the equivalences be-
tween universal, characteristic and spd kernels. Let us also mention
that, similarly to Proposition 1.2.3, as (CX) ′ = Mδ, we also have
(CX/1) ′ = M0δ. So conditionally spd kernels (meaning spd over M0δ)
are universal to CX/1.

We now prove what we announced and used earlier: a kernel
is characteristic to P iff it is characteristic to M0f . We add a few
other characterizations which are probably more useful in practice.
They rely on the following observation: as M0f is a hyperplane of Mf,
saying that k is characteristic to P is almost the same as saying that
it is characteristic to Mf, i.e.

∫
spd (Thm. 1.2.2): after all, there is only

one dimension needed to go from M0f to Mf. Thus there should be a
way to construct an

∫
spd kernel out of any characteristic kernel. This

is what is described here and proven in Appendix C.1.3.

Theorem 1.2.4. Let k0 be a kernel. The following is equivalent.

From Characteristic
to
∫

SPD Kernels and Back

(i) k0 is characteristic to P.
(ii) k0 is characteristic to M0f .

(iii) There exists ε ∈ R s.t. the kernel k(x,y) := k0(x,y) + ε2 is
∫

spd.
(iv) For all ε ∈ R\{0}, the kernel k(x,y) := k0(x,y) + ε2 is

∫
spd.

(v) There exists an RKHS Hk with kernel k and a measure ν0 ∈Mf\M
0
f

s.t. k is characteristic to Mf and k0(x,y) = 〈δx − ν0 , δy − ν0〉k.
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Under these conditions, k0 and k induce the same MMD semi-metric in
M0f and in P.

We will use this theorem to prove Theorem 1.3.4. Intuitively,
a characteristic kernel guarantees that two signed measures µ1,µ2
with same total mass get mapped to two different functions in the
RKHS. This is captured by (ii) which arbitrarily focuses on the spe-
cial case where the total mass is 0. When they have different total
masses however, they may get mapped to a same function f, except
if, like in (iii) and (iv), we add a positive constant to the kernel. In
that case, µ1 and µ2 get mapped to the functions f + µ1(X)1 and
f+ µ2(X)1 which are now different, because µ1(X) 6= µ2(X). Intu-
itively, by adding a positive constant to our kernel, we added one
dimension to the RKHS (carried by the function 1) that explicitly
‘checks’ if two measures have the same mass. Finally, (v) tells us that,
out of any

∫
spd kernel k, we can construct a characteristic kernel k0

that is not
∫

spd anymore and vice-versa.

1.3 Topology Induced by k

Remember that for any distribution D of a set of embeddable dis-
tributions D we defined ‖D‖k := ‖Φk(D)‖k and called ‖D‖k the
maximum mean discrepancy (MMD) of D. Doing this defines a new
topology on D, in which a net Dα converges to D iff ‖Dα −D‖k
converges to 0. (A reader unfamiliar with nets may think of them as
sequences where the index α can be continuous; see [9].) In this sec- [9] Berg et al., Harmonic Analysis on

Semigroups Theory of Positive Definite and
Related Functions, 1984

tion, we investigate how convergence in MMD compares with other
types of convergences defined on D that we now shortly present.

We defined D as a subset of a dual space F ′, so D will carry the
topology induced by F ′. Many topologies can be defined on dual
spaces, but the two most prominent ones, which we will consider
here, are the weak-∗ and the strong topology, denoted w(F ′,F) and
b(F ′,F) respectively, or simply w∗ and b. The weak-∗ topology is

Convergences on Dual Spaces:
Weak-∗ and Strong Convergence

the topology of pointwise convergence (where by ‘point’, we mean a
function in F), while the strong topology corresponds to the uniform
convergence over the bounded subsets of F (see Eq. 1.2). Bounded
sets of a TVS are defined in Appendix A.2 (Definition A.2.4). By de-
fault, we equip F ′ with the strong topology and sometimes write F ′b
to emphasize it. When F is a Banach space, the strong topology of F ′

is the topology of the operator norm ‖D‖F ′ := sup‖f‖F61 |D(f)|. In
particular, strong convergence in Mf = (C→0)

′ means convergence
in total variation (TV) norm and weak-∗ convergence in Mf means
convergence for any function f ∈ C→0. On Mf, we will also consider
the topology of pointwise convergence over Cb (instead of C→0). It
is widely used in probability theory where it is known as the weak (or
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narrow) convergence topology. We will denote it by σ. Importantly, Weak-∗ Convergence Coincides
with Weak Convergence on Pthe weak and weak-∗ topologies of Mf coincide on P (but not on Mf)

[9]. Finally, we define the weak RKHS convergence of embeddable
[9] Berg et al., Harmonic Analysis on
Semigroups Theory of Positive Definite and
Related Functions, 1984, Chap. 2, Cor. 4.3

distributions, denoted by w−k, as the pointwise convergence over
Hk. Note that Dα converges in w−k to D iff their embeddings con-
verge weakly (or equivalently weakly-∗) in Hk, in the sense that, for
any f ∈ Hk, 〈f , Φk(Dα)〉k converges to 〈f , Φk(D)〉k. The following
summarizes the different convergence types.

Dα
b−→ D := supf∈B |Dα(f) −D(f)| −→ 0 ∀ bounded B ⊂ F Dα ∈ F ′

Dα
w∗−→ D := |Dα(f) −D(f)| −→ 0 ∀f ∈ F Dα ∈ F ′

µα
σ−→ µ := |µα(f) − µ(f)| −→ 0 ∀f ∈ Cb µα ∈Mf

Dα
w−k−→ D := |Dα(f) −D(f)| −→ 0 ∀f ∈ Hk Dα embeddable

Dα
‖.‖k−→ D := ‖Dα −D‖k −→ 0 Dα embeddable

Table 1.2: Different convergence
types, summarized. Note that RKHS-
convergence (last line) is a special case
of bounded convergence (first line),
where F = Hk.

1.3.1 Embeddings of Dual Spaces are Continuous

In this section, we show that the MMD topology is often weaker
than other topologies τ defined on D, meaning that if Dα converges
to D in τ, then it also converges to D in MMD. Note that this is
equivalent to saying that the KME of Dτ (read ’D equipped with τ’)
is continuous. We start with the following pretty coarse, yet very
general result.

Relating Strong to Strong
and Weak to Weak Convergences

Proposition 1.3.1. If Hk ↪→ F, then

 Dα
b−→ D ⇒ Dα

‖.‖k−→ D

Dα
w∗−→ D ⇒ Dα

w−k−→ D
.

Proof. Proposition 1.3.1 states that the KME is continuous when both
F ′ and Hk carry their strong or their weak-∗ topology, which we now
show. From Diagram Eq.(1.3), we know that the KME is the compo-
sition of the conjugate restriction operator with the Riesz representer
map. The Riesz representer map is a topological (anti-)isomorphism
between H ′k and Hk, thus continuous (see Appendix A.2). And the
restriction map is the adjoint (or transpose) of the canonical embed-
ding map ı : Hk → F, f 7→ f, thus continuous when both F ′ and H ′k
carry their weak-∗ or strong topologies [119]. [119] Treves, Topological Vector Spaces,

Distributions and Kernels, 1967, Prop.19.5
& CorLet us briefly comment on this result. The statement Dα

w∗−→
D ⇒ Dα

w−k−→ D is actually obvious, because Hk ⊂ F. Concern-
ing strong convergence, Proposition 1.3.1 implies that, if F is a Ba-
nach space, then any net that converges for the dual norm ‖·‖F ′
converges in MMD. Applying this with F = C→0 and F ′ = Mf

shows that convergence in TV norm implies convergence in MMD,
or equivalently, that the TV norm is stronger than the MMD. Similar
reasoning can be used to show that the MMD is weaker than the so-
called Kantorovich(-Wasserstein) and the Dudley norms [99]. These [99] Simon-Gabriel and Schölkopf, Ker-

nel Distribution Embeddings - arXiv, 2016,
Ex.1
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results can also be found in [111]. However, the authors there directly [111] Sriperumbudur et al., Hilbert Space
Embeddings and Metrics on Probability
Measures, 2010

bounded the MMD semi-norm by the target norm. This has the ad-
vantage of giving concrete bounds, but is more difficult to generalize
if F is not a Banach space.

Though very general, Proposition 1.3.1 is pretty weak, as it only
compares a strong with a strong and a weak-∗ with a weak(-∗) topol-
ogy. But how does the weak-∗ topology on F ′ compare with the
strong topology of Hk: does weak-∗ convergence imply convergence
in MMD? This question is discussed in details in [99]. The short an- [99] Simon-Gabriel and Schölkopf, Ker-

nel Distribution Embeddings - arXiv, 2016,
Sec.7

swer is: not always, but sometimes; it depends on the space F ′. For
example, if k ∈ C (m,m), then weak-∗ convergence in Em implies con-
vergence in MMD; but weak-∗ convergence in Dm

L1
usually does not

imply MMD convergence when X is non-compact. For us, the only
thing we will need later is to know what happens on M+, the set
of finite positive measures. The following lemma shows that weak
convergence in M+ usually implies MMD convergence.

Relating Weak-Probability-
to Strong-Kernel Convergence

Lemma 1.3.2. A bounded kernel k is continuous iff: ∀µα,µ ∈ M+,

µα
σ−→ µ =⇒ µα

‖.‖k−→ µ.

Proof. We assume k bounded to ensure that any probability measure
is embeddable. Now, suppose that weak convergence implies MMD
convergence and take x,y,ξ, ζ ∈ X s.t. that x → ξ and y → ζ. Then
δx

σ→ δξ and δy
σ→ δζ, so Φk(δx) → Φk(δξ) and Φk(δy) → Φk(δζ)

in Hk. And by continuity of the inner product:

k(x,y) = 〈Φk(δy) , Φk(δx)〉k → 〈Φk(δζ) , Φk(δξ)〉k = k(ξ, ζ) ,

so k is continuous. Conversely, suppose that k is continu-
ous, and let µα

σ→ µ in M+. The tensor-product mapping
M+(X)→ M+(X×X), µ 7→ µ⊗ µ is weakly continuous [9]. So by [9] Berg et al., Harmonic Analysis on

Semigroups Theory of Positive Definite and
Related Functions, 1984, Chap.2 Thm.3.3

applying µ̄α ⊗ µα to a bounded continuous kernel k, we get

‖Φk(µα) −Φk(µ)‖2k =

∫∫
k(x,y)d(µα − µ)(y)d(µ̄α − µ̄)(x)

=

 [µ̄α ⊗ µα](k) − [µ̄⊗ µα](k)
−[µ̄α ⊗ µ](k) + [µ̄⊗ µ](k)

 −→ 0.

1.3.2 When Does k Metrize the Topology of F ′?

So far we focused on the question: when does convergence in D

imply convergence in MMD? We now seek the opposite: when does
MMD-convergence imply convergence in D?

First, the kernel must be characteristic to D. Otherwise, the MMD
does not define a distance but only a semi-distance, so that the in-
duced topology would not be Hausdorff. Second, we will suppose
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that F is barreled. This is a technical, yet very general assumption
that we use in the next theorem. The definition of a barreled space
is given in Appendix A.2 for completeness, but all that the reader
should remember is that all Banach, Fréchet, Limit-Fréchet and all
function spaces encountered in this chapter are barreled 1 , except (Cmb )c.

1 CX is barreled, because it is a topolog-
ical product

∏
X C of barreled spaces.

All other mentioned spaces are either
Banach, Fréchet or Limit-Fréchet spaces,
thus barreled [119, Prop.33.2 & Cor.1-3].

Relating Weak-Kernel-
to Weak-∗ Convergence

Lemma 1.3.3. Suppose that F is barreled, k is universal over F, Hk ↪→ F

and let (Dα)α be a bounded net in F ′b. Then Dα
w−k−→ D iff Dα

w∗−→ D.

Hence Dα
‖.‖k−→ D ⇒ Dα

w∗−→ D.

Proof. Prop. 32.5 of [119] shows that the weak topologies of F ′ [119] Treves, Topological Vector Spaces,
Distributions and Kernels, 1967and of H ′k coincide on so-called equicontinuous sets of F ′, and the

Banach-Steinhaus theorem (see Appendix A.2) states that if F is bar-
reled, then the equicontinuous sets of F ′ are exactly its bounded
sets. This precisely means that if the net (Dα)α is bounded in F ′,
then Dα(f) → D(f) for all f ∈ F iff it converges for all f ∈ Hk.
Now, if ‖Dα −D‖k → 0, then, by continuity of the inner product,
Dα(f) −D(f) = 〈f , Dα −D〉k → 0 for any f ∈ Hk.

Lemma 1.3.3 says that the weak-∗ topologies of F ′ and of Hk

coincide on subsets of F ′ that are bounded in the strong topology.
By the Banach-Steinhaus theorem (see App. A.2), the net (Dα)α of
Lemma 1.3.3 is bounded iff2 supα |Dα(f)| < ∞ for all f ∈ F. It 2 Banach-Steinhaus: on barreled spaces,

strongly bounded ≡ weakly boundedis however not enough in general to show that supα ‖Dα‖k < ∞.
A bounded set in Mf is also a set whose measures have uniformly
bounded total variation. The total variation of any probability mea-
sure being 1, P is bounded. So Lemma 1.3.3 shows that for contin-
uous c0-universal kernels, convergence of probability measures in
MMD distance implies weak-∗ convergence, which on P is the same
as weak-convergence. But by Lemma 1.3.2 the reverse is true as well.
Thus, for a continuous c0-universal kernel k, probability measures con-
verge weakly iff they converge in MMD distance. Such kernels are said
to metrize the weak convergence on P.

However, the condition that k be c0-universal seems slightly too
restrictive. Indeed, it is needed in Lemma 1.3.3 to ensure that the
KME be characteristic to Mf (by Thm. 1.2.2 applied to F = C→0) so
that the MMD be a metric over Mf (not only a semi-metric). But,
to be a metric over P, it would suffice that k be characteristic to P,
which is a slightly coarser assumption than c0-universality. Is this
condition enough to guarantee the metrization of weak-convergence
in P? The following theorem shows that it is.

Bounded Characteristic Kernels
Metrize Weak Convergence

Theorem 1.3.4. A bounded kernel over a locally compact Hausdorff space
metrizes the weak convergence of probability measures iff it is continuous
and characteristic (to P).

Proof. [Theorem 1.3.4] If k metrizes the weak convergence over P,
then, by Lemma 1.3.2, k is continuous, and, for ‖.‖k to be a norm,
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k needs to be characteristic. Conversely, if k is continuous, then by
Lemma 1.3.2 weak convergence implies convergence in MMD. So it
remains to show that MMD convergence implies weak convergence.
To do so, we use Lemma C.1.2 of the appendix, which states that
for an

∫
spd kernel, MMD convergence of probability measures im-

plies their weak convergence. Now k might not be
∫

spd, but using
Theorem 1.2.4(iv), we can transform it to a kernel k1 := k+ 1 which
induces the same MMD metric over probability measures than k, but
which is

∫
spd This concludes. From Theorem 1.2.4 it follows that

k1 is
∫

spd, thus Lemma C.1.2 (Appendix C.1.4) shows that the weak
topology w(P,Hk1) induced by k1 in P, and which is weaker than
the MMD topology, coincides with the weak-∗ topology w(P, C→0).
Thus convergence of probability measures in the MMD distance of
k1 implies weak convergence. But k1 and k induce the same metric
in P (Thm. 1.2.4), which concludes.

To the best of our knowledge, this is the first characterization of
the class of kernels that metrize the weak-convergence of probability
measures. For example Gaussian, Laplace, inverse-multiquadratic or
Matérn kernels are continuous and characteristic, so they all metrize
the weak convergence over P. In general however, even if a kernel
metrizes the weak convergence over P, it usually does not metrize
weak convergence over M+ or Mf [99]. [99] Simon-Gabriel and Schölkopf, Ker-

nel Distribution Embeddings - arXiv, 2016

1.4 Kernel Mean Embeddings of Schwartz-Distributions

We extended KMEs of measures to Schwartz-distributions and
showed that they are continuous, but we hardly said anything about
what to do and how to work with distributions. We will now catch
up by focusing on distributions only. In Section 1.4.1, we discuss
and prove the Fubini and the Differentiation formulae featured in
the introduction. In Section 1.4.2 we provide sufficient conditions for
a translation-invariant kernel to be cm∗ -universal.

1.4.1 Distributional Calculus

Fubini for Distributions

Proposition 1.4.1. Let D, T be two embeddable distributions into Hk.

〈D , T〉k =

∫∫
k(x,y)dD(y)dT̄(x) =

∫∫
k(x,y)dT̄(x)dD(y) (1.4)

‖D‖2k =

∫∫
k(x,y)dD(y)dD̄(x) =

∫∫
k(x,y)dD̄(x)dD(y) ,

where
∫∫
k(x,y)dD(y)dT̄(x) is to be understood as T̄(I) with I(x) =∫

k(x,y)dD(y).
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Proof. Definition 1.1.1 of a KME, together with the property that
k(y, x) = k(x,y) leads to:

〈D , T〉k =

∫
x

〈∫
y
k(.,y)dD(y) , k(., x)

〉
k

dT̄(x)

=

∫
x

〈
k(., x) ,

∫
y
k(.,y)dD(y)

〉
k

dT̄(x)

=

∫
x

∫
y
〈k(., x) , k(.,y)〉k dD̄(y)dT̄(x)

=

∫∫
k(x,y)dD(y)dT̄(x).

To prove the right-most part of (1.4), use 〈D , T〉k = 〈T , D〉k.

These formulae are well-known when D and T are probability
measures. They show that if you know how to integrate a function
(the kernel) wrt a measure or a distribution, then you can compute
its MMD norm. However, integrating wrt a distribution that is not
a measure can be tedious. But the following proposition gives us a
way to convert an integration wrt a distribution into an integration
wrt a measure.

Embedding of Derivatives
Proposition 1.4.2. Let k ∈ C (m,m) and p ∈ Nd s.t. |p| 6 m. A distri-
bution D embeds into Hk via ∂(0,p)k iff ∂pD embeds into Hk via k. In
that case,

Φk(∂
pD) = (−1)|p|

∫
[∂(0,p)k](., x)dD(x) = (−1)|p|Φ∂(0,p)k(D) . (1.5)

If moreover k is translation-invariant, then

Φk(∂
pD) = ∂p[Φk(D)]. (1.6)

Proof. The proof holds in the following equalities. For any f ∈ Hk,〈
f ,
∫
k(., x)d[∂pD](x)

〉
k

=

∫
〈f , k(., x)〉k d[∂pD̄](x) = [∂pD̄](f)

= (−1)|p|D̄(∂pf)

= (−1)|p|D̄(
〈
f , ∂(0,p)k(., x)

〉
k
)

= (−1)|p|
∫ 〈
f , ∂(0,p)k(., x)

〉
k

dD̄(x)

=

〈
f , (−1)|p|

∫
∂(0,p)k(., x)dD(x)

〉
k

.

The first line uses the definition of KMEs (1.1), the second uses the
definition of distributional derivatives (see App. A.1), the third uses
Lemma C.1.1, the fourth line rewrites the previous line with our no-
tational convention, and the fifth one uses again the definition of a
weak integral (1.1).
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Distributional
derivative ∂
−−−−→

KME of
y measures KME of

y distributions

Usual
derivative ∂
−−−−→

Figure 1.1: Densities of more and more
peaked Gaussian probability measures
µσ (top left) with their derivatives (top
right) and their embeddings (below) us-
ing a Gaussian kernel (see Example 1).
Equation (1.6) states that the diagram is
commutative. When σ goes to 0, the
Gaussians converge (weakly) to a Dirac
mass δ0, which has no density, but
who’s embedding is the solid black line
(bottom left). The derivatives converge
(weakly) to the Schwartz-distribution
∂δ0, which is not even a signed mea-
sure, but whose embedding (bottom
right, black solid line) can easily be
computed using (1.5) or (1.6). More-
over, the embeddings of µσ and ∂µσ
converge (weakly) to the embeddings of
µ0 and ∂µ0, which illustrates Proposi-
tion 1.3.1.

Equation (1.6) describes a commutative diagram pictured in Fig-
ure 1.1: it states that with translation-invariant kernels, it is equiva-
lent to take the (distributional) derivative of a distribution and em-
bed it, or to embed it and take the (usual) derivative of the embed-
ding. See Appendix A.1 for an introduction to distributional deriva-
tives. Note that for a signed measure µ with a |p|-times differentiable
density q, the distributional derivative ∂pµ is the signed measure
with density ∂

p
uq, where ∂pu is the usual partial derivative opera-

tor. However, Proposition 1.4.2 becomes most useful when µ has no
differentiable density, for example when µ is an empirical measure.
Then there is no analytical formula for the derivative of µ, but we
can still compute its KME anlytically by using (1.5) or (1.6).

Example 1. Let us illustrate Proposition 1.4.2 on KMEs of Gaussian
probability measures µσ with density qσ(x) = 1√

2πσ2
e−x

2/σ2 using

a Gaussian kernel k(x,y) = e−(x−y)2 . When σ goes to zero, µσ gets
more and more peaked around 0 and converges weakly to the Dirac
measure µ0 := δ0. The KME of µσ is easy to compute and using (1.6)
we get

Φk(µσ)(x) =
1√

1+ 2σ2
e
− x2

1+2σ2

Φk(∂µσ)(x) = ∂[Φk(µσ)] = −
2x

(1+ 2σ2)3/2
e
− x2

1+2σ2 ,

where the formulae still hold when σ = 0. Figure 1.1 plots these
embeddings for different σ’s. Note that contrary to ∂µσ with σ >
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0, ∂µ0 is not a signed measure (but a Schwartz-distribution) but it
has a KME which, moreover, can easily be computed using (1.6).
Notice also that on Figure 1.1 both the embeddings of µσ and ∂µσ
converge (weakly) to the embeddings of µ0 and ∂µ0. This illustrates
Proposition 1.3.1.

Theoretically, (1.5) can be used to convert the KME of any distri-
bution into a sum of KMEs of measures. In other words, the integral
wrt a distribution appearing in (1.1) can be converted into a sum of
integrals wrt to signed measures. Here is how. Given a measure
µ ∈Mf = D0

L1
(R), we may differentiate µ and get a new distribution

∂µ which may or may not be itself a measure3. But in any case, what 3 Think for example of the Dirac mea-
sure: it is a measure, but not its deriva-
tive. See App. A.1.will follow shows that ∂µ is in D1

L1
(R). Thus the space of distribu-

tions that can be written as a sum µ0 + ∂µ1 of two finite measures
µ1,µ2 is a subspace of D1

L1
(R) and we may wonder how big exactly

it is. Schwartz [96] showed that it is exactly the space D1
L1
(R). More

[96] Schwartz, Espaces de fonctions dif-
férentiables à valeurs vectorielles, 1954,
around p.100

generally, he showed:

D∞
L1

: smallest vector space contai-
ning Mf and all its derivatives

Lemma 1.4.3 (Schwartz). For any m 6 ∞ and any distribution in D ∈
Dm
L1

(resp.D ∈ Em) there exists a finite family of measures µp ∈Mf (resp.
µp ∈Mc) s.t. D =

∑
|p|6m ∂

pµp.

Using (1.5), this means that the KME can be computed as∑
|p|6m

∫
∂(0,p)k(., x)dµp(x), which gives a way to numerically

compute the KME of distributions. As most distributions encoun-
tered in practice happen to be defined as measures or derivatives of
some measures, this method is highly relevant in practice.

By combining Propositions 1.4.1 and 1.4.2, we get the following
corollary.

RKHS-Norm of Derivatives

Corollary 1.4.4. Let k ∈ C (m,m), p ∈Nd with |p| 6 m, and let D, T be
two distributions s.t. ∂pD and ∂pT embed into Hk. Then:

〈∂pD , ∂pT〉k = 〈D , T〉∂(p,p)k and ‖∂pD‖k = ‖D‖∂(p,p)k .

Proof. The proof reduces to the following equations.

〈∂pD , ∂pT〉k
(a)
=

〈∫
∂(0,p)k(., x)dD(x) ,

∫
∂(0,p)k(.,y)dT(y)

〉
k

(b)
=

∫ 〈
∂(0,p)k(.,y) , ∂(0,p)k(., x)

〉
k

dD(y)dT̄(x)

(c)
=

∫
∂(p,p)k(x,y)dD(y)dT̄(x)

(d)
= 〈D , T〉∂(p,p)k ,

Equality (a) uses Proposition 1.4.2, (b) uses twice (on the left and
on the right of the inner product) the definition of a weak integral
(1.1), (c) uses Equation (C.2) proven in Appendix C.1 which states
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that
〈
∂(0,p)k(.,y) , ∂(0,p)k(., x)

〉
k
= ∂(p,p)k(x,y), and (d) uses (1.4)

applied to the kernel ∂(p,p)k.

Corollary 1.4.4 tells us that if we use ∂(p,p)k – which is a ker-
nel – to compute the MMD distance between two probability dis-
tributions D, T , then we are actually computing the MMD distance
between their derivatives ∂pD and ∂pT with the kernel k. One
could extend this corollary from (p,p) to (p,q) when |q| 6 m, yield-
ing 〈∂pD , ∂qT〉k =

∫
∂(q,p)k(x,y)dD(x)dT̄(y). But in that case,

∂(q,p)k might not be a kernel anymore.

1.4.2 cm- and cm0 -Universal Kernels

Theorem 1.2.2 shows the equivalence between cm∗ -universality and
characteristicness over Dm

L1
or Em. But neither the universality, nor

the characteristic assumption seems easy to check in general. How-
ever, for translation invariant kernels, meaning kernels that can be
written as k(x,y) = ψ(x−y) for some function ψ, we will now show
that being characteristic to P or to Dm

L1
is one and the same thing, pro-

vided that k ∈ C
(m,m)
b . Thus, any technique to prove that a kernel is

characteristic may also be used to prove that it is characteristic to the
much wider space Dm

L1
. One of these techniques consists in verifying

that the distributional Fourier transform Fψ has full support. The
reader unfamiliar with distributional Fourier transforms may think
of them as an extension of the usual Fourier transform – which is
usually only defined on L1, L2 or Mf – to wider function and distri-
bution spaces. Let us mention that Fψ is exactly the unique positive,
symmetric, finite measure appearing in Bochner’s theorem [125], and [125] Wendland, Scattered Data Approxi-

mation, 2004, Thm.6.6whose (usual) Fourier transform is ψ. We now successively present
the result for Dm

L1
and then their pendant for Em.

When Perfect Discrimination
Extends from P to Dm

L1

Theorem 1.4.5. Let k ∈ C (m,m) be a translation-invariant kernel
k(x,y) = ψ(x−y) over X = Rd, and Fψ its distributional Fourier trans-
form. Then Dm

L1
embeds into Hk and the following are equivalent.

(i) k is characteristic (to P).
(ii) k is characteristic to Dm

L1
.

(iii) Fψ has full support.

If moreover ψ ∈ Cm→0, then k is cm0 -universal iff it is c0-universal.

Perfect Discrimination
over Em

Theorem 1.4.6. Let k ∈ C (m,m) be a translation-invariant kernel
k(x,y) = ψ(x − y) with X = Rd. If the support of Fψ has Lebesgue-
measure > 0, then k is characteristic to Em.

Proof. (of Theorem 1.4.5) First, note that ∂(p,p)k(x,y) 6

∂(p,p)k(x, x)∂(p,p)k(y,y) = (∂2pψ(0))2 for any |p| 6 m (see
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Lemma C.1.1 in Appendix C.1). Hence k ∈ C
(m,m)
b , which, by Corol-

lary 1.1.4, proves that Dm
L1

embeds into Hk. Now suppose that (i)
and (ii) are equivalent, then they are also equivalent to k being char-
acteristic to Mf. Using Theorem 1.2.2, we thus proved the last sen-
tence. Now, (ii) clearly implies (i) and Theorem 9 in [111] states [111] Sriperumbudur et al., Hilbert Space

Embeddings and Metrics on Probability
Measures, 2010

that (i) and (iii) are equivalent. So it remains to show that (iii) im-
plies (ii). We now sketch its proof and relegate the details to Ap-
pendix C.1.5. Let Λ be the finite positive measure from Bochner’s
theorem, s.t. ψ = FΛ and let D ∈ Dm

L1
. Then

‖D‖2k =

∫∫ (∫
ei(x−y)ξ dΛ(ξ)

)
dD̄(x)dD(y)

(a)
=

∫ (∫∫
(ei(x−y)ξ)dD̄(x)dD(y)

)
dΛ(ξ)

(b)
=

∫
|[FD](ξ)|2 dΛ(ξ).

Λ being positive, if it has full support, then [FD](ξ) = 0 for almost
all ξ ∈ X. Thus D = 0. Thus, assuming that (a) and (b) indeed hold,
we just showed that if (iii), then ‖D‖k = 0 implies D = 0, meaning
that k is spd to Dm

L1
, which, with Theorem 1.2.2, proves (ii). We

relegate the proof of (a) and (b) to Appendix C.1.5.

Proof. (of Theorem 1.4.6) For any D ∈ Em, we can write, like before:
‖D‖2k =

∫
|[FD](ξ)|2 dΛ(ξ). But now, the Paley-Wiener-Schwartz

theorem [119] states that FD is an analytical function, so if its set of [119] Treves, Topological Vector Spaces,
Distributions and Kernels, 1967, Thm.29.2zeros has Lebesgue-measure > 0, then FD is the 0 function,soD = 0,

showing that Φk is injective over Em.

These theorems show for example that Gaussian kernels are c∞0 -
universal and that the sinc kernel, defined on X = R by k(x,y) =

sin(x − y)/(x − y) (and 1 on the diagonal), is c∞- but not c∞0 -
universal. When X = R, one can refine the conditions on the Fourier
transform in Theorem 1.4.6 so that they become necessary and suffi-
cient [99].

[99] Simon-Gabriel and Schölkopf, Ker-
nel Distribution Embeddings - arXiv, 2016,
Thm.41

1.5 Chapter Conclusion

This chapter grouped various notions of universal, characteristic and
spd kernels into three fundamental definitions – one for each – and
showed that they are essentially equivalent: they describe the same
family of kernels, but from dual perspectives. Using this duality link,
we could systematically recover most of the previously known links,
but also discovered new ones, such as the equivalence between char-
acteristicness to P and universality over (Cb)c/1; or between strict
positive definiteness (over Mδ) and universality over CX. We then
compared the convergence in MMD with other convergence types of
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distributions and measures. Importantly, we showed that a bounded
kernel metrizes the weak convergence of probability measures iff
it is continuous and characteristic. Said differently, the MMD of a
bounded continuous kernel perfectly discriminates probability mea-
sures iff it metrizes weak convergence. Incidentally, we also showed
that KMEs over signed measures can be extended to generalized mea-
sures called Schwartz-distributions. For translation-invariant kernels,
this extension preserves perfect discrimination, in the sense that a
perfectly discriminative MMD over P typically stays perfectly dis-
criminative over Dm

L1
.

Here, we always assumed X to be locally compact. Although this
assumption fits many very general spaces, unfortunately, it does not
contain any infinite-dimensional Banach space. So a main open ques-
tion of this chapter is whether our characterization of kernels that
metrize the weak convergence of probability measures also applies
to more general spaces, such as so-called Polish spaces, which are
very standard spaces in probability theory. Finally, we proved a few
results that are specific to KMEs of distributions. Proposition 1.4.2
and its Corollary 1.4.4 already show that these KMEs of distributions
naturally appear when considering KMEs wrt derivatives of kernels.
We hope that they will in future lead to more insights and applica-
tions in machine learning.

History and Related Machine Learning Literature

Universal and characteristic kernels play an essential role in kernel
methods and their theory. Universal kernels ensure consistency of
many RKHS-based estimators in the context of regression and classi-
fication [112, 113], whereas characteristic kernels are of prime interest

[112] Steinwart, On the Influence of the
Kernel on the Consistency of Support Vec-
tor Machines, 2001; [113] Steinwart and
Christmann, Support Vector Machines,
2008;

in any MMD-based algorithm, such as kernel two-sample tests [41,
42], HSIC independence tests [34, 43, 44], kernel density estimators

[42] Gretton et al., A Kernel Method for
the Two-Sample-Problem, 2007; [41] Gret-
ton et al., A Kernel Two-Sample Test, 2012;

[43] Gretton et al., A Kernel Statisti-
cal Test of Independence, 2008; [44] Gret-
ton and Györfi, Consistent Nonparamet-
ric Tests of Independence, 2010; [34] Fuku-
mizu et al., Kernel Measures of Condi-
tional Dependence, 2008;

[107] and MMD-type GANs [27, 66]. The ML community gradually

[107] Sriperumbudur, On the Optimal Es-
timation of Probability Measures in Weak
and Strong Topologies, 2016

[66] Li et al., Generative Moment Match-
ing Networks, 2015; [27] Dziugaite et al.,
Training Generative Neural Networks via
MMD Optimization, 2015;

introduced more and more variants of universal kernels [16, 17, 76,
112], but instead of also introducing variants of characteristic kernels,

[112] Steinwart, On the Influence of the
Kernel on the Consistency of Support Vec-
tor Machines, 2001; [76] Micchelli et
al., Universal Kernels, 2006; [17] Carmeli
et al., Vector Valued Reproducing Kernel
Hilbert Spaces of Integrable Functions and
Mercer Theorem, 2006; [16] Caponnetto
et al., Universal Multi-Task Kernels, 2008;

it stuck to the original definition given by [31] which considered only

[31] Fukumizu et al., Kernel Dimension-
ality Reduction for Supervised Learning,
2004

characteristicness to P. As a result, the literature started proving var-
ious links between the various variants of universal kernels and the
only notion of characteristic kernels that it had. Eventually these no-
tions were linked to

∫
spd and conditionally

∫
spd kernels [31, 32, 33,

34, 42, 108, 110, 111] and all known relations got summarized in a

[31] Fukumizu et al., Kernel Dimension-
ality Reduction for Supervised Learning,
2004; [34] Fukumizu et al., Kernel Mea-
sures of Conditional Dependence, 2008;
[33] Fukumizu et al., Characteristic Ker-
nels on Groups and Semigroups, 2009; [32]
Fukumizu et al., Kernel Choice and Clas-
sifiability for RKHS Embeddings of Proba-
bility Distributions, 2009; [42] Gretton et
al., A Kernel Method for the Two-Sample-
Problem, 2007; [110] Sriperumbudur et
al., Injective Hilbert Space Embeddings of
Probability Measures, 2008; [108] Sripe-
rumbudur et al., On the Relation between
Universality, Characteristic Kernels and
RKHS Embedding of Measures, 2010; [111]
Sriperumbudur et al., Hilbert Space Em-
beddings and Metrics on Probability Mea-
sures, 2010;

superb overview article by Sriperumbudur et al. [109]. However, by

[109] Sriperumbudur et al., Universality,
Characteristic Kernels and RKHS Embed-
ding of Measures, 2011

not introducing the notion of a characteristic kernel to something else
than P, the literature oversaw the fundamental dual link between uni-
versal, characteristic and spd kernels shown in Theorem 1.2.2, which
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easily explains all the previously reported links and unravels new
ones.

Concerning the study of kernels that metrize the weak conver-
gence of probability measures, in mathematics it dates back at least
to Guilbart [46], but it got introduced into the machine learning com- [46] Guilbart, Etude des Produits Scalaires

sur l’Espace des Mesures, 1978munity only many years later by [111]. They gave new sufficient con-
[111] Sriperumbudur et al., Hilbert Space
Embeddings and Metrics on Probability
Measures, 2010

ditions to metrize the weak convergence, which then got improved
by [107]. However, by generalizing these sufficient conditions even

[107] Sriperumbudur, On the Optimal Es-
timation of Probability Measures in Weak
and Strong Topologies, 2016, Thm.2

further, Theorem 1.3.4 is the first to provide conditions that are both
sufficient and necessary, and that holds on any locally compact Haus-
dorff space X (which is more general than in the existing literature).



2Kernel Mean Estimation

for Functions of Random Variables

The following chapter uses our previous insights on the MMD-
topology to provide theoretical foundations to a recent proba-

bilistic programming framework proposed by Schölkopf et al. [93] [93] Schölkopf et al., Computing Func-
tions of Random Variables via RKHS Rep-
resentations, 2015

called kernel probabilistic programming. Probabilistic programs are
usual programming languages with a few additional operations de-
signed to facilitate the coding of and the inference from probabilistic
models. Without going into details (for an overview, see [38, 73]), one [38] Gordon et al., Probabilistic Program-

ming, 2014; [73] McKinley, Programming
the World of Uncertain Things (Keynote),
2016

key challenge of probabilistic programs is their ability to correctly
represent the distribution of f(X), when f : X→ Z is an arbitrary
measurable function between measurable spaces X,Z of one or sev-
eral random variables X (X could be multi-dimensional). This can

Distributions of Functions of R.V.
are Difficult to Compute

sometimes be done analytically. For example, if f(x) = ax+ b is lin-
ear and X ∼ N(µ, σ) is Gaussian, then f(X) ∼ N(aµ+ b, aσ) is Gaus-
sian again. But outside these textbook cases, f(X) has typically no
standard distribution and a more general distribution-representation
is needed.

Many alternatives have been proposed. Finite integer distribu-
tions are usually encoded as lists of (xi,p(xi)) pairs. Real valued
distributions are sometimes represented using integral transforms
[106], mixtures of Gaussians [77], or Laguerre- [126] or Chebyshev- [106] Springer, The Algebra of Random

Variables, 1979
[77] Milios, Probability Distributions as
Program Variables, 2009
[126] Williamson, Probabilistic Arith-
metic, 1989

polynomial [59] approximations of their cumulative distribution

[59] Korzeń and Jaroszewicz, PaCAL,
2014

functions. Probabilistic finite automata sometimes represent string
variables. All those approaches have their merits, but they always
assume specific distributions, functions or input types.

A more general framework is Monte Carlo sampling [53], which
[53] Kalos and Whitlock, Monte Carlo
Methods, 2008

simply represents X by a weighted sample X̂ := {(xi,wi)}Ni=1 (with
wi > 0). This representation has several advantages: it works for any

Monte-Carlo Representation
are Particularly Adapted

input type, the sample size controls the time-accuracy trade-off, and
applying functions to random variables reduces to applying the func-
tions pointwise to the sample: f(X̂) := {(f(xi),wi)} represents f(X).
A key challenge however is to assess the quality of this representa-
tion to handle error propagation and allow representation optimiza-
tions at fixed sample size. To do so, [93] proposed to use MMDs, as

[93] Schölkopf et al., Computing Func-
tions of Random Variables via RKHS Rep-
resentations, 2015

they are easy to compute on samples and can be tailored to focus on
different properties of X, depending on the user’s needs and prior
assumptions. To do so, simply define the MMD between random

MMDs Provide a Distance to
Assess Representation Quality

37
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variables X,X ′ ∈ X as the MMD between their probability measures:

MMD of Random Variables
MMDk(X,X ′) := ‖PX − PX ′‖k ,

and use empirical measures PX̂ :=
∑N
i=1wiδxi for discrete sam-

ples X̂.
Here we build on this work and provide general theoretical guar-

antees for the proposed estimators. Our goal is to prove MMD-
consistency of f(X̂) given MMD-consistency of X̂. Said differently,
under appropriate assumptions, we will prove that if a sequence of
samples1 X̂n converges to X in MMD, then f(X̂n) also converges to 1 Note that each sample n has a sample

size Nn that depends on n. For con-
venience we may nevertheless write N
instead of Nn.

f(X̂). And we will sometimes be able to provide finite finite-sample
guarantees. Importantly, our results make no assumption on the
origin of X̂, and in particular no independent and identically dis-
tributed (iid) assumption. This makes them a powerful tool not only
to work with MCMC-, kernel herding- [20, 61] or other typically non- [20] Chen et al., Super-Samples from Ker-

nel Herding, 2010; [61] Lacoste-Julien et
al., Sequential Kernel Herding : Frank-
Wolfe Optimization for Particle Filtering,
2015

iid samples, but also for sample compression or privacy preservation.
We may indeed replace X̂ by any new sample X̂ ′ and still keep guar-
antees on the quality of f(X̂ ′) as long as we appropriately control the
MMD between X̂ and X̂ ′.

The next section presents a few use-cases of this proposed frame-
work, while Section 2.2 contains our main results: it proves MMD-
consistency in a general setting (Section 2.2.1), and finite sample
guarantees when Matérn kernels are used (Section 2.2.2). Section 2.3
then shows how our results apply to functions of multiple variables,
both interdependent and independent and Section 2.4 concludes.

2.1 Motivating Examples

This section first illustrates the MMD’s flexibility to focus on some
distribution-differences and ignore others. It then shows how MMDs
can be used for compression and privacy preservation, and finishes
with an example to illustrate the need and gains of compression
when dealing with functions of several variables.

2.1.1 Tailoring the MMD to Our Needs

One advantage of MMDs is that, by choosing the kernel wisely, we
can tailor the MMD to emphasize some distribution-differences more
than others. For example if on X = R we choose k(x, x ′) := x · x ′,
then one can easily show that MMDk(X,X ′) = |E[X] − E[X ′]|: the
MMD only focuses on the difference of means. If instead we prefer
the MMD to consider all first p moments, we could use the kernel
k(x, x ′) := (x · x ′ + 1)p. Or we could directly aim for a characteris-
tic kernel – Gaussian, Laplacian or Matérn f.ex. – so that the MMD
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be zero iff all moments coincide. This does not mean we cannot
change the MMD’s focus anymore. For instance, any Gaussian ker-
nel k(x, x ′) := exp(−‖x−x ′‖2/(2σ2)) with positive bandwidth σ2 > 0
is characteristic. But the larger the bandwidth σ, the more the MMD
focuses on low frequency differences. If it is too large, all samples
will essentially look the same, while being too small makes them
look all equally different. In both cases, we are back to the usual
Monte Carlo setting, equivalent to no dissimilarity measure.

2.1.2 Two Interpretations of the Statement X̂n
k→ X

What does it mean for a sequence of samples X̂n to converges to X in
MMD? We see at least two interpretations. When the weights of each
sample X̂n are non-negative and sum to one, then we may see X̂n
as a random variable whose distribution is given by PX̂n . The con-
vergence X̂n →k X can then be interpreted as a usual convergence
statement between random variables. Alternatively, we may identify
X̂n and X with the KMEs of their associated measures Φk(PX̂n) and
Φk(PX), which we will henceforth simply denote µ̂kXn and µkX:

KME of Random Variables
µ̂kX := Φk(PX̂) :=

∑N
i=1wik(·, xi)

µkX := Φk(PX) :=
∫
X k(·, x)dPX(x)

. (2.1)

The statement X̂n →k X then becomes a convergence-statement on
RKHS-functions: µ̂kXn → µkX in RKHS-norm. This second point of
view will be useful in some proofs. It also allows the weights of X̂n

Two Interpretations: Convergence
of R.V. or Convergence of KMEs

to neither sum to one, nor even be positive, which may be handy
when used in conjunction with reduced expansion set methods (see
Section 2.1.3). But if they don’t, then it becomes unclear how to
sample from X̂n. That is why, contrary to [93], we favor the first [93] Schölkopf et al., Computing Func-

tions of Random Variables via RKHS Rep-
resentations, 2015

interpretation. In both cases X̂ estimates X, but we prefer to think of
it in terms of random variables rather than RKHS functions.

2.1.3 MMD for Compression and Privacy Preservation

Compression. Using MMDs gives a principled way to reduce sam-
ple sizes, i.e. do compression. Indeed, given X̂, we could compress it
by choosing a smaller sample X̂ ′ that minimizes MMD(X̂ ′, X̂). Such
algorithms are known as reduced expansion set methods and have been
studied by the ML community [94]. Of course, the resulting sam- [94] Schölkopf and Smola, Learning with

Kernels, 2001, Chapter 18ple points (and their weights) will typically be mutually dependent.
Now, when X̂ is an iid sample of X, then f(X̂) is also an iid sample
of f(X), and as such, it is known to MMD-converge to f(X) in 1/

√
N

[105]. But this argument breaks if X̂ first gets compressed into a new, [105] Smola et al., A Hilbert Space Embed-
ding for Distributions, 2007
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non-iid sample X̂ ′. While [93] advocates the use of reduced expan- [93] Schölkopf et al., Computing Func-
tions of Random Variables via RKHS Rep-
resentations, 2015

sion set methods to save computational resources, they do not prove
that preserving the MMD-consistency when compressing X̂ also pre-
serves the MMD-consistency of f(X̂ ′). That is the goal of Section 2.2.

Privacy preservation. Another potentially significant application is
privacy preservation. Imagine that one has a large database of user
data. If we transform the original data into new, synthetic expansion
points using a reduced expansion set method, then we can pass on
these (weighted) synthetic expansion points to a third party without
revealing the original data. Using our results (Sections 2.2&2.3), the
third party can nevertheless perform arbitrary continuous functional
operations on the synthetic data in a consistent manner. In a follow-
up work, Balog et al. [6] even show that this protocol is differentially [6] Balog et al., Differentially Private

Database Release via KMEs, 2018private.
The next subsection shows how useful compression can become

when working with functions of several variables.

2.1.4 Functions of Two Variables and Compression

Suppose that we want to construct a sample-representation of f(X, Y)
given iid samples X̂ = {xi, 1/N}Ni=1 and Ŷ = {yj, 1/N}Nj=1 from two
independent random variables X ∈ X and Y ∈ Y respectively. Let Q
be the distribution of Z = f(X, Y).

A first option is to consider what we call the diagonal representa-
tion ∆̂ := {f(xi,yi), 1/N}Ni=1. Since ∆̂ is an iid sample of f(X, Y), it
is 1/

√
N-consistent [105]. Another option is the U-statistic represen- [105] Smola et al., A Hilbert Space Embed-

ding for Distributions, 2007tation Û := {f(xi,yj), 1/N2}Ni,j=1, which is also 1/
√
N-consistent. Ex-

periments show that Û is more accurate and has lower variance than
∆̂ (see Figure 2.1), but it needs O(n2) memory instead of O(n). For
this reason [93] proposes to use a reduced expansion set method [93] Schölkopf et al., Computing Func-

tions of Random Variables via RKHS Rep-
resentations, 2015

both on X̂ and Ŷ to get new, smaller samples X̂ ′ := {x ′i,wi}
n
i=1 and

Ŷ ′ := {yj, vj}nj=1 of size n � N, and then represent f(X, Y) using the
compressed U-statistic Û ′ := {f(x ′i,y

′
j),wivj}

n
i,j=1.

Use MMDs to Reduce the
Sample-Size of U-Statistics

We ran experiments on synthetic data to show how accurately ∆̂, Û
and Û ′ approximate f(X, Y) with growing sample size N. We consid-
ered three basic arithmetic operations: multiplication X · Y, division
X/Y, and exponentiation XY , with X ∼ N(3, 0.5) and Y ∼ N(4, 0.5). As
the MMD distance to the true f(X, Y) is unknown, we approximated
it by the MMD distance to the U-statistic estimator computed on a
large sample (125 points). For Û ′, we used the simplest possible re-
duced expansion set method: we randomly sampled subsets of size
n = 0.01 ·N of the xi, and optimized the weights wi and vi to best
approximate X̂ and Ŷ. The results are summarized in Figure 2.1 and
corroborate our expectations: (i) all estimators converge, (ii) Û con-
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Figure 2.1: MMD-assessed quality of
three sample-based estimators of basic
arithmetic functions of two variables,
X · Y, X/Y and XY , as a function of
sample size N. The U-statistic estima-
tor Û works best, closely followed by
the proposed estimator Û ′, which out-
performs the diagonal estimator ∆̂.

verges fastest and has the lowest variance, and (iii) Û ′ is worse than
Û, but much better than the diagonal estimator ∆̂. Note that unlike
the U-statistic estimator Û, the reduced set based estimator Û ′ can be
used with a fixed storage budget even if we perform a sequence of
function applications – a situation naturally appearing in the context
of probabilistic programming.

Schölkopf et al. [93] prove the consistency of Û only for a rather [93] Schölkopf et al., Computing Func-
tions of Random Variables via RKHS Rep-
resentations, 2015

limited case, when the reduced samples {x ′i}
n
i=1 and {y ′i}

n
i=1 are iid

copies of X and Y and the weights {(wi, vj)}ni,j=1 are constant. Using
our new results we will prove in Section 2.3 the consistency of Û ′

under fairly general conditions, even when expansion points and
weights are interdependent random variables.

2.2 Consistency and Finite-Sample Guarantees

This section contains our main results regarding consistency and fi-
nite sample guarantees for the estimator f(X̂) of f(X).

2.2.1 Consistency

If kx is c0-universal (see Section 1.2), consistency of µ̂
f(X) can be

shown in a rather general setting.

Theorem 2.2.1. Let X and Z be locally compact Hausdorff spaces equipped
with their Borel σ-algebras, f : X→ Z a continuous function, kx,kz
bounded continuous kernels on X,Z respectively. Assume kx is c0- When Consistency of X̂

Implies Consistency of f(X̂)universal. If (i) X and Z are compact and there exists C such that∑
i |wi| 6 C independently of n; or if (ii) all wi > 0 and

∑
iwi = 1

for all n, then

if X̂
kx→ X then f(X̂)

kz→ f(X) as n→∞.
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Proof. Idea: X̂ kx→ X
(a)⇒ X̂

σ→ X
(b)⇒ f(X̂)

σ→ f(X)
(c)⇒ f(X̂)

kz→ f(X).
Proof of (b):2 if for any ϕ ∈ Cb, Eϕ(X̂) → Eϕ(X) then, f being 2 When the weights of X̂ are non-

negative and sum to one (i.e. when X̂ is
a random variable), then property (b)

is known as the continuous mapping
theorem.

continuous, ϕ ◦ f ∈ Cb, hence Eϕ ◦ f(X̂) → Eϕ ◦ f(X). For points
(a)&(c) we now treat assumptions (i) & (ii) separately.

Under assumption (i). Proof of (a): First, the constraint
∑
i|wi| 6 C

(independently of n) means that the measures associated to X̂ are uni-
formly bounded in total variation: by definition, they hence lie in a
bounded subset of Mf. Now, X being compact, Cb = C , hence σ- and
w∗-convergence are the same and Mf = (C ) ′. Hence Lemma 1.3.3
applies and proves (a). Proof of (c): apply Theorem 44 (i)&(iii) of
[99] which shows that for a bounded continuous kernel (kz) and on [99] Simon-Gabriel and Schölkopf, Ker-

nel Distribution Embeddings - arXiv, 2016compact spaces (here f(X)), a bounded sequence of signed finite mea-
sures (f(X̂)) converges in the weak-∗ (i.e. σ-) sense iff it converges in
the MMD sense.footnoteThis theorem extends Lemma 1.3.2 from M+

to Mf when the input space is compact.

Under assumption (ii). In that case, the measures associated to
X̂ are probability measures. Theorem 1.3.4 (equivalence between
MMD- and σ-convergence for bounded continuous characteristic
kernels) hence proves (a). And Lemma 1.3.2 (for bounded contin-
uous kernels, σ-convergence of unsigned measures implies MMD-
convergence) proves (c).

The continuity assumption is rather nonrestrictive. All kernels
and functions defined on a discrete space are continuous with respect
to the discrete topology, so the theorem applies in this case. For X =

Rd, many kernels used in practice are continuous, including Gaus-
sian, Laplacian, Matérn and other radial kernels. The slightly limit-
ing factor of this theorem is that kx must be c0-universal, which often
can be tricky to verify. However, most standard kernels—including
all radial, non-constant kernels—are c0-universal (see Sec. 1.4.2 and
[109]). The assumption that the input domain is compact is satisfied [109] Sriperumbudur et al., Universality,

Characteristic Kernels and RKHS Embed-
ding of Measures, 2011

in most applications, since any measurements coming from physical
sensors are contained in a bounded range. Finally, the assumption
that

∑
i |wi| 6 C can be enforced, for instance, by applying a suit-

able regularization in reduced expansion set methods. However, if
we end up with some negative weights, or weights that do not sum
to 1, then, despite X̂ being close to X in the MMD sense, we won’t
know how to sample from X̂. That is why we prefer the second condi-
tion, (ii), which imposes that X̂ corresponds to a probability measure.
Of course, this requires to use reduced expansion set methods that
incorporate the constraints on the weights of X̂.
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2.2.2 Finite sample guarantees

Theorem 2.2.1 guarantees that the estimator f(X̂) converges to f(X)
when X̂ converges to X. However, it says nothing about the speed
of convergence. In this section we provide a convergence rate when
working with Matérn kernels, which are of the form

Matérn Kernelksx(x, x ′) =
21−s

Γ(s)

∥∥x− x ′∥∥s−d/2
2

Bs−d/2
(∥∥x− x ′∥∥

2

)
, (2.2)

where Bα is a modified Bessel function of the third kind of order α
[125], Γ is the Gamma function and s > d

2 is a smoothness param- [125] Wendland, Scattered Data Approxi-
mation, 2004, Definition 5.10eter. The RKHS induced by ksx is the Sobolev space Ws

2 (R
d) [125]

[125] Wendland, Scattered Data Approxi-
mation, 2004, Theorem 6.13 & Chap.10containing s-times differentiable functions. The finite-sample bound

of Theorem 2.2.3 is based on the analysis of [54], which requires the [54] Kanagawa et al., Convergence Guar-
antees for Kernel-Based Quadrature Rules
in Misspecified Settings, 2016

following assumptions:

Assumptions 2.2.2. Let X be a random variable over X = Rd with dis-
tribution P and let X̂ = {(xi,wi)}ni=1 be random variables over Xn ×Rn

with joint distribution S. There exists a probability distribution Q with full
support on Rd and a bounded density, satisfying the following properties:

(i) P has a bounded density function w.r.t. Q;
(ii) there is a constant A > 0 independent of n, such that

E
S

[
1

n

n∑
i=1

g2(xi)

]
6 A ‖g‖2L2(Q) , ∀g ∈ L2(Q) .

These assumptions were shown to be fairly general and we refer
to [54] for various examples where they are met. Next we state the [54] Kanagawa et al., Convergence Guar-

antees for Kernel-Based Quadrature Rules
in Misspecified Settings, 2016, Section 4.1

main result of this section.

Theorem 2.2.3. Let X = Rd, Z = Rd
′
, and f : X→ Z be an α-times

differentiable function (α ∈N+). Take s > d/2 and t > d ′ such that
s, t/2 ∈ N+. Let ksx and ktz be Matérn kernels over X and Z respectively
as defined in (2.2). Assume X ∼ P and X̂ = {(xi,wi)}ni=1 ∼ S satisfy 2.2.2.
Moreover, assume that P and the marginals of x1, . . . xn have a common
compact support. Suppose that, for some constants b > 0 and 0 < c 6 1/2:

(i) ES

[
MMD2ksx(X̂,X)

]
= O(n−2b) ;

(ii)
∑n
i=1w

2
i = O(n−2c) (with probability 1) . Propagating Finite Sample

Guarantees from X̂ to f(X̂)Let θ = min( t2s , αs , 1) and assume θb− (1/2− c)(1− θ) > 0. Then

E
S

[
MMD2ktz(f(X̂), f(X))

]
= O

(
(logn)d

′
n−2 (θb−(1/2−c)(1−θ))

)
.

Before we provide a short sketch of the proof, let us briefly
comment on this result. As a benchmark, remember that when
x1, . . . xn are iid observations from X and X̂ = {(xi, 1/N)}Ni=1, we
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get |MMD(f(X̂), f(X))|2 = OP(1/n), which was recently shown mini-
max optimal [118]. How do we compare to this benchmark? In this [118] Tolstikhin et al., Minimax Estima-

tion of Kernel Mean Embeddings, 2017case we have b = c = 1/2 and our rate is defined by θ. If f is smooth
enough, say α > d/2+ 1, and by setting t > 2s = 2α, we recover the
O(1/n) rate up to an extra (logn)d

′
factor.

However, Theorem 2.2.3 applies to much more general settings.
Importantly, it makes no iid assumptions on the data points and
weights, allowing for complex interdependence. Instead, it asks the
MMD-convergence of the estimator X̂ to X to be sufficiently fast. On
the downside, the upper bound is affected by the smoothness of f,
even in the iid setting: if α < d/2 the rate will become slower, as
θ = α/s. Also, the rate depends both on d and d ′. Whether these are
artifacts of our proof remains an open question.

Proof. Here we sketch the main ideas of the proof and develop the
details in Appendix C.2.1. Throughout the proof, C will designate
a constant that depends neither on the sample size n nor on the
variable R (to be introduced). C may however change from line to
line. It will be convenient to reason on KME rather than on MMDs.
To do so, we will reason on the KMEs µkxX and µ̂kxX of X and X̂ (see

Eq. 2.1). Hence remember that: MMDkx(X̂,X) =
∥∥∥µ̂kxX − µkxX

∥∥∥
kx

. We

start by showing that:

E
S

[∥∥∥µ̂kzf(X)
− µkz

f(X)

∥∥∥2
kz

]
= (2π)

d ′
2

∫
Z

E
S

[(
[µ̂hf(X) − µ

h
f(X)](z)

)2]
dz,

(2.3)

where h is Matérn kernel over Z with smoothness parameter t/2. Sec-
ond, we upper bound the integrand by roughly imitating the proof
idea of Theorem 1 in [54]. This eventually yields: [54] Kanagawa et al., Convergence Guar-

antees for Kernel-Based Quadrature Rules
in Misspecified Settings, 2016

E
S

[(
[µ̂hf(X) − µ

h
f(X)](z)

)2]
6 Cn−2ν , (2.4)

where ν := θb− (1/2− c)(1− θ). Unfortunately, this upper bound
does not depend on z and can not be integrated over the whole Z in
(2.3). Denoting BR the ball of radius R, centered on the origin of Z,
we thus decompose the integral in (2.3) as:∫

Z
E

[(
[µ̂hf(X) − µ

h
f(X)](z)

)2]
dz =

∫
BR

E

[(
[µ̂hf(X) − µ

h
f(X)](z)

)2]
dz

+

∫
Z\BR

E

[(
[µ̂hf(X) − µ

h
f(X)](z)

)2]
dz.

On BR we upper bound the integral by (2.4) times the ball’s volume
(which grows like Rd):∫

BR

E

[(
[µ̂hf(X) − µ

h
f(X)](z)

)2]
dz 6 CRdn−2ν . (2.5)
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On X\BR, we upper bound the integral by a value that decreases
with R, which is of the form:∫

Z\BR

E

[(
[µ̂hf(X) − µ

h
f(X)](z)

)2]
dz 6 Cn1−2c(R−C ′)t−2e−2(R−C

′)

(2.6)

with C ′ > 0 being a constant smaller than R. In essence, this upper
bound decreases with R because [µ̂h

f(X) − µ
h
f(X)](z) decays with the

same speed as h when ‖z‖ grows indefinitely. We are now left with
two rates, (2.5) and (2.6), which respectively increase and decrease
with growing R. We complete the proof by balancing these two terms,
which results in setting R ≈ (logn)1/2.

2.3 Functions of Multiple Arguments

The previous section applies to functions f of one single but possibly
multi-dimensional variable X. We now concentrate on the specific
case where X is multi-dimensional, i.e. when f is a function of several
scalar random variables. For ease of notations, we concentrate on the
case of two input variables from spaces X and Y respectively, but the
results also apply to more inputs. To be precise, our input space
changes from X to X× Y, input random variable from X to (X, Y),
and the kernel on the input space from kx to kxy.

To apply our results from Section 2.2, all we need is an MMD-
consistent estimator (̂X, Y) of the joint distribution (X, Y). There are

Constructing a Consistent
Estimator of the Joint (X, Y)

different ways to get such an estimator. One way is to sample (xi,yi)
iid from the joint distribution of (X, Y) and construct the usual empir-
ical estimator, or approximate it using reduced expansion set meth-
ods. Alternatively, we may want to construct (̂X, Y) based on sep-
arately consistent estimators of X and Y, like we did with the U-
statistics Û and Û ′ in Section 2.1.4. Below we show that this can
indeed be done consistently, provided that X and Y be independent.

Given two sample estimators X̂ and Ŷ, we denote X̂⊗ Ŷ their as-
sociated U-statistic estimator (see Section 2.1.4). Similarly, given ker-
nels kx and ky on X and Y respectively, we denote kxy their (tensor-
) product kernel: kxy

(
(x,y), (x ′,y ′)

)
:= kx ⊗ ky((x,y), (x ′,y ′)) :=

kx(x, x ′)ky(y,y ′). Note that the KME of any random variables (X, Y)
then becomes the tensor product of the KME of their marginals:
µ(X,Y) = µX ⊗ µY .

Lemma 2.3.1. Let (sn)n be any positive sequence converging to zero. Then

From Separate to Joint
Consistency of IID Variables

MMDkx(X̂,X) = O(sn)

MMDky(Ŷ, Y) = O(sn)

}
=⇒ MMDkxy(X̂⊗ Ŷ,X⊗ Y) = O(sn) .
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Proof. For a detailed expansion of the first inequality see App. C.2.2.

MMDkxy(X̂⊗ Ŷ,X⊗Y) 6 ‖µX‖kx ‖µ̂Y − µY‖ky +‖µY‖ky ‖µ̂X − µX‖kx
+‖µ̂X − µX‖kx ‖µ̂Y − µY‖ky = O(sn)+O(sn)+O(s

2
n) = O(sn).

Corollary 2.3.2. If X̂ kx→ X and Ŷ
ky→ Y, then X̂⊗ Ŷ kxy−−→ X⊗ Y.

Noting that when X and Y are independent, by definition, (X, Y) =
X ⊗ Y, we can combine Corollary 2.3.2 with the MMD-consistency
Theorem 2.2.1 and get

Propagating Separate Consistency
of IID Variables X, Y to f(X, Y)

Corollary 2.3.3. If X, Y are independent random variables and if X̂, Ŷ sat-
isfy either both condition (i) or both condition (ii) of Theorem 2.2.1, then

X̂
kx→ X

Ŷ
ky→ Y

 =⇒ f(X̂, Ŷ)
kxy−−→ f(X, Y).

Unfortunately, we cannot apply Theorem 2.2.3 to get the speed of
convergence, because a product of Matérn kernels is not a Matérn
kernel anymore. Another downside of this overall approach is that
the number of expansion points used for the estimation of the joint
increases exponentially with the number of arguments of f. This
can lead to prohibitively large computational costs, especially if the
result of such an operation is used as an input to another function of
multiple arguments. That is why we may use the reduced expansion
set methods mentioned earlier, either before or after applying f.

To conclude this section, let us summarize the implications of our
results for two practical scenarios that should be distinguished. First
scenario: if we have separate samples from two random variables X
and Y, then our results justify how to provide an estimate of the mean
embedding of f(X, Y) provided that X and Y are independent. The sam-

Sec 2.2: any (X, Y) but joint conv.
Sec 2.3: separate conv., but X ⊥⊥ Y.

ples themselves need not be iid– we can also work with weighted
samples computed, for instance, by a reduced expansion set method.
Second scenario: How about dependent random variables? For in-
stance, imagine that Y = −X, and f(X, Y) = X+ Y. Clearly, in this
case the distribution of f(X, Y) is a delta measure on 0, and there is
no way to predict this from separate samples of X and Y. However,
it should be stressed that our results (consistency and finite sample
bound) apply even to the case where X and Y are dependent. In
that case, however, they require a consistent estimator of the joint
embedding µ(X,Y).

2.4 Chapter Conclusion

This chapter provides convergence guarantees when representing
random variables by finite samples and taking arbitrary continuous
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functions of them. When working with bounded, continuous and
characteristic kernels, we show that any MMD-consistent estimator
of X leads to an MMD-consistent estimator of f(X) provided that f
be continuous. For Matérn kernels and smooth enough functions
f, we corroborate these results with convergence rate bounds. Im-
portantly, our results make no iid assumption on the sample-points
and therefore also apply to estimators with interdependent expan-
sion points and weights, such as MCMC, compressed or privatized
samples. One interesting future direction is to improve the finite-
sample bounds and extend them to general radial and/or translation-
invariant kernels.

Our work is motivated by the field of probabilistic programming.
Using our theoretical results, kernel mean embeddings can be used
to generalize functional operations (which lie at the core of all pro-
gramming languages) to distributions over data types in a principled
manner, by applying the operations to the points or approximate
kernel expansions. This is in principle feasible for any data type pro-
vided a suitable kernel function can be defined. We believe that the
approach holds significant potential for future probabilistic program-
ming systems.





3Kernel Stein Discrepancies

Our two previous chapters established sufficient conditions for
a kernel k to metrize weak convergence. Those kernels guaran-

tee that, whatever probability measure P we choose, a sequence (Pn)n

converges weakly to P iff they converge in MMD metric. But in the
context of sample quality measurement and goodness-of-fit testing,
we only care about convergence to a known and fixed target mea-
sure P. We may then accept a kernel k that is not characteristic to all

From Global To Targeted
Characteristicness & Convergence

probability measures P, as long as its MMD can at least distinguish
P from all other probability measures and ensure that if Pn →k P,
then Pn →σ P. Said differently, we may be content with a kernel
satisfying (B) but not (A), where

(A) target-indep. metr.: ∀P ∈ P, ∀Pn ∈ P: Pn
k−→ P iff Pn

σ−→ P;
(B) targeted metrization: P ∈ P, ∀Pn ∈ P, Pn

k−→ P iff Pn
σ−→ P.

Of course (A) implies (B), so why not choose any usual charac-
teristic kernel? One reason is that, typically, the MMD between a
discrete measure Pn (the sample) and an arbitrary target P is analyt-
ically untractable, because it involves integrating k wrt P:

MMDs with Arbitrary Targets are
Typically UntractableMMD2k(Pn,P) = ‖Φk(Pn)‖2k + ‖Φk(P)‖2k +

〈
Φk(P̂) , Φk(P)

〉
k︸ ︷︷ ︸

analytically untractable

Most usual kernels are thus inappropriate for goodness-of-fit tests.
Given a target P, Liu et al. [68] and Chwialkowski et al. [21] however [68] Liu et al., A Kernelized Stein Discrep-

ancy for Goodness-of-fit Tests, 2016
[21] Chwialkowski et al., A Kernel Test of
Goodness of Fit, 2016

proposed an elegant trick to transform any given kernel k into a new
kernel κ called the Stein kernel of k, such that the KME of P wrt κ
be the null function: Φκ(P) = 0. The resulting MMDκ – called the
Kernel Stein Discrepancy KSDk wrt k – is easily computable on any
sample, since for a sample Pn = 1/N

∑N
i=1 δxi it reduces to

KSD: Easy to Compute, but not
Globally CharacteristicKSDk,P(Pn) := MMDκ(Pn,P) = ‖Pn‖ =

1

N2

N∑
i,j=1

κ(xi, xj) .

It is hence very-well suited for sample quality assessment and
goodness-of-fit tests. But, despite the freedom to choose k, the result-
ing Stein kernel κ will typically be unbounded, yielding an MMD
that is not even defined on all P, let alone characteristic to P. That

But Targeted Properties Sufficeis why we will here both focus on targeted metrization and on re-
placing the kernel’s boundedness assumption by an assumption on

49
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its moments of order α. This will lead us to consider not only usual
weak, but also Wasserstein-α convergence results, which, as we will
see, is essentially weak convergence plus a moment convergence con-
dition.

Contributions & outline. Theorem 3.1.3 & 3.1.4 first establish suf-
ficient conditions for a kernel k to ensure targeted metrization (B).
We then apply those results to KSDs and substantially generalize all
existing results. Incidentally, these results and their proofs will nat-
urally lead to use Schwartz-distributions, yielding a first application
of the Schwartz-distribution specific results of Chapter 1. Contrary to
most of the existing literature, our results also apply to unbounded
kernels.

3.1 From Global to Targeted Weak Convergence

After a few preliminaries on Wasserstein convergence and uniform
integrability, this section proves necessary and sufficient conditions
for a kernel k to metrize targeted weak convergence of tight se-
quences and targeted Wasserstein-convergence of uniformly inte-
grable sequences.

3.1.1 Preliminaries

X is now a Polish SpaceInput and function spaces. Contrary to Chapter 1 & 2, letter X now
designates a Polish space (separable, metric and complete) and |x|

denotes the distance of x ∈ X to an arbitrary reference point x0 ∈ X.
Starting from Section 3.2, we will take X = Rd and |x| will be any
norm on Rd. For a non-negative real α > 0, we say that a real-

α-Growthvalued function f on X has α-growth and write f(x) = O(|x|α) if there
exists constants A,B such that |f(x)| 6 A + B|x|α. The sets C , Cα,
C→0 respectively designate the continuous functions, the continuous
functions with α-growth and the continuous functions that vanish
at infinity. In addition to Cm, Cm→0, C (m,m), C

(m,m)
→0 defined in

Chapter 1, we now also introduce the set Cα of continuous functions
with α-growth. On X = Rd, the functions with 0-growth are exactly
the continuous bounded ones, yielding C0 = Cb.

α-MomentsProbability spaces and weak- and α-convergence. Pα denotes the
set of probability measures with bounded α-moments, i.e.

Pα := {P ∈ P :

∫
|x|α dP(x) <∞} .

A sequence Pn ∈ P is tight iff for any ε > 0 there exists a compact K ⊂
X such that supn Pn(X\K) 6 ε. It has uniformly integrable α-moments

Tightness
& Uniform Integration
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iff for any ε > 0 there exists r > 0 such that supn
∫
|x|>r |x|

α dPn(x) 6
ε. Note that a tight sequence has uniformly integrable 0-moments;
and vice-versa if X = Rd.

By definition, for Pn,P ∈ P, the sequence (Pn)n converges weakly
to P, denoted Pn →σ P, if for any f ∈ Cb, Pn(f) → P(f). For Pn,P ∈
Pα, we say that Pn α-converges to P and write Pn →α P, if for any
f ∈ Cα, Pn(f) → P(f). While α-convergence is stronger than weak
convergence, the following proposition, taken from [121] shows that [121] Villani, Optimal Transport: Old and

New, 2009, Def 6.8 & Thm 6.9
α-convergence is essentially the same as weak convergence plus a
constraint on the convergence of the moments (which incidentally
ensures that the target P be in Pα).

Proposition 3.1.1. For any α > 0, Pn,P ∈ Pα, the following are equiva-
lent:

α-conv⇔

 weak-convergence

moment condition(i) Pn
α−→ P

(ii) Pn
σ−→ P and (Pn)n has uniformly integrable α-moments

(iii) Pn
σ−→ P and

∫
X |x|α dPn(x)→

∫
X |x|α dP(x)

(iv) Pn converges to P in Wasserstein-α distance.

As mentioned in previous chapters, weak convergence can be
metrized by the Dudley metric. Similarly, point (iv) states that α-
convergence is metrized by the so-called Wasserstein-α distance (see
Section 0.1 and [121]). Finally, note that, similarly to Corollary 1.1.3,

[121] Villani, Optimal Transport: Old and
New, 2009, Def 6.1

if k ∈ C2α, i.e. if k(x, x) = O(|x|2α), then Pα embeds into Hk.1

1 Use Bochner’s integration cri-
terion:

∫
‖k(·,x)‖k dP(x) =∫√

k(x,x)dP(x) <∞.

3.1.2 Targeted Metrization of Weak and α-Convergence

In this section we establish sufficient conditions on k to metrize tar-
geted weak convergence. For target-independent metrization, The-
orem 1.3.4 showed that a bounded continuous kernel metrize weak
convergence iff it is characteristic to P. Up to an additional tightness
assumption, it will be the same for targeted metrization, but with
targeted characteristicness instead of characteristicness.

Targeted Characteristicness
Definition 3.1.2. Given a kernel k, let D be any set of embeddable distri-
butions. We say that a kernel k is characteristic to P in D (or P ∈ D) iff
for any Q ∈ D, MMDk(Q,P) = 0 ⇒ Q = P.

If k is characteristic to all measures P in P, then we recover Defini-
tion 1.2.1: k is characteristic to P. With targeted characteristicness, it
is crucial to specify the target P and the surrounding set D, because
k could be characteristic to P ∈ Pα without being characteristic to
P ∈ P. Now, if k is not characteristic to P ∈ P, then MMDk obviously
cannot metrize weak convergence to P. The next theorem shows that
conversely, up to a tightness assumption, this condition is actually
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sufficient to metrize weak convergence to P. Theorem 3.1.4 then gen-
eralizes this to α-convergence, which also applies for unbounded ker-
nels. The proofs – very different in flavor from those for untargeted
metrization – are in Appendix C.3.

Targeted Metrization
of Weak Convergence

Theorem 3.1.3. Let k be a bounded continuous kernel. Then k is charac-
teristic to P ∈ P iff, for a sequence of probability measures Pn

Pn
σ−→ P ⇐⇒

 (a) Pn
k−→ P

(b) (Pn)n is tight.

Targeted Metrization
of α-Convergence

Theorem 3.1.4. Let k be a continuous kernel such that k(x, x) = O(|x|2α).
Then k is characteristic to P ∈ Pα iff, for any sequence Pn ∈ Pα

Pn
α−→ P ⇐⇒


(a) Pn

k−→ P

(b) (Pn)n is tight

(c) (Pn)n has uniformly integrable α-moments.

Theorem 3.1.3 is itself a particular case of Theorem 3.1.4 with
α = 0. Indeed, P0 = P, and a tight sequence automatically has uni-
formly integrable 0-moments. Now, some comments on conditions
(a)-(c). First, when X is Rd equipped with any norm, the tightness
assumption (b) in Theorem 3.1.4 is already implied by the uniform in-
tegrability (c) and can therefore be dropped. Second, note how well
Theorem 3.1.4 reflects the equivalence between points (i) and (ii) of
Theorem 3.1.1: (a) and (b) ensure that Pn →σ P as in Theorem 3.1.3,
while (c) “promotes” the weak-convergence to α-convergence. In-
tuitively, this uniform integrability property (c) guarantees that the
α-moments of (Pn)n all stay localized in space X, so that the mea-
sures Pn and P stay confined in Pα. As for the tightness assumption

Tightness Prevents
Mass-Escape to∞(b), it ensures that no mass can “escape to infinity”, so that if Pn has a

weak limit (in the set of finite measures), than this limit is in P. An ex-
ample of mass escaping to infinity is the following. Take X = R and
Pn := 1

n

∑n
i=1 δi. Then Pn weakly converges to the null measure,

which is outside of P. This can only happen because (Pn)n is not
tight [2]. Similar phenomena may happen with MMDs. For example, [2] Ambrosio et al., Gradient Flows, 2005,

Prokhorov’s Thm 5.1.3for any bounded continuous kernel, weak convergence of finite non-
negative measures implies MMD-convergence (Lemma 1.3.2. Hence
if Pn weakly converges to the null measure, then MMDk(Pn, 0)→ 0.

As a short detour, let us now “aggregate” the results of Theo-
rems 3.1.3 (and of Theorem 3.1.4 respectively (resp.)) over different
targets P, to get a new corollary on target-independent metrization.
To do so let us say that k enforces tightness (resp. and uniform α-
integrability) over P (resp. over Pα) if, for any Pn,P ∈ P (resp. ∈ Pα),
if MMDk(Pn,P) → 0 then (Pn)n is tight (resp. and has uniformly
integrable α-moments).
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Targeted Convergence Everywhere
Implies Untargeted Convergence

Corollary 3.1.5. A bounded kernel k metrizes weak convergence over P iff
it is continuous, characteristic to P and enforces tightness in P.

A kernel such that k(x, x) = O(|x|2α) enforces α-convergence over Pα

iff it is continuous, characteristic to Pα and enforces tightness and uniform
α-integrability over Pα.

This corollary is very similar to our main theorem on untargeted
weak-convergence metrization in Chapter 1, Theorem 1.3.4. There
are notable differences though. On the one hand, Corollary 3.1.5 also
handles unbounded kernels and Wasserstein convergence. More im-
portantly perhaps, it holds on Polish spaces rather than locally com-
pact ones, which makes it more relevant to abstract modern proba-
bility theory, which is now mainly based on Polish spaces. On the
other hand however, Theorem 1.3.4 makes no tightness assumption,
which not only shows that the present corollary adds a superfluous
assumption (at least on locally compact spaces), but is also of great
advantage in practice. It guarantees that the kernel automatically
enforces tightness: a property that many common kernel Stein dis-
crepancies lack [39]. [39] Gorham and Mackey, Measuring

Sample Quality with Kernels, 2017, Thm 6

Proof. (of Corollary 3.1.5) Let k be bounded. Suppose that kmetrizes
weak convergence. Then k is characteristic to P (otherwise MMDk
is not even a proper metric), and it enforces tightness, because
any weakly converging sequence is tight by Prokhorov’s theorem
[2]. We now show that k is continuous. Let xn,yn, x,y ∈ X such [2] Ambrosio et al., Gradient Flows, 2005,

Prokhorov’s Thm 5.1.3that xn → x and yn → y. Then the Dirac masses δxn weakly
converge to δx and similarly with y. But Dirac masses are em-
beddable into Hk. Hence their embeddings converge and give:
k(xn,yn) = 〈Φk(δxn) , Φk(δyn)〉k → 〈Φk(δx) , Φk(δy)〉k = k(x,y).
Thus k is continuous. Conversely, suppose that k is continuous, char-
acteristic to P and enforces tightness in P. Then by Theorem 3.1.3, k
metrizes weak convergence to any target P ∈ P, thus metrizes weak
convergence over P. The proof for the α-convergence case goes al-
most exactly the same way. Only add point (ii) of Proposition 3.1.1
to show that metrizing α-convergence implies enforcing uniform α-
integrability.

3.2 When are Stein Kernels Characteristic?

This section applies the previous results to kernel Stein discrepancies.
We will determine when the KSD is characteristic to a target P ∈ P,
thereby metrizing weak-convergence to P. Doing so, we generalize to
any measure Q ∈ P a result by Chwialkowski et al. [21] which holds [21] Chwialkowski et al., A Kernel Test of

Goodness of Fit, 2016, Thm. 2.2only for measures with a continuously differentiable density q. The
trick will be to mimic their proof, which uses the gradient ∂xq of q,
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but replace usual differentiation with Schwartz-differentiation. We
now first formally introduce KSDs in Section 3.2.1 and then proceed
with the desired results in Section 3.2.2. In this section we take X =

Rd. For relevant work on compact domains, see [83]. [83] Oates et al., Convergence Rates for
a Class of Estimators Based on Stein’s
Method, 2018

3.2.1 Introduction to Kernel Stein Discrepancies

As mentioned earlier, MMD(Q,P) is easy to compute when P and
Q are two sample measures. But when either one is non-discrete,
the MMD usually becomes analytically intractable. The KSD is an
MMD that circumvents this intractability when the target P has a
continuously differentiable and fully supported density p, known up
to a normalizing constant, which we will always assume from now
on. Indeed, out of any given base kernel k, we can construct a new
kernel κ – which depends on both k and P – that maps P to the null
function of the RKHS Hκ of κ. The new MMD, i.e. the KSD, thus
ends up being the RKHS distance between the embedding of Q and
the null function. More formally:

Proposition & Definition 3.2.1. Let k be a kernel in C (1,1) and P be
a probability measure with a continuously differentiable, fully-supported
density p. Let siP(x) := ∂xi logp(x) denote the i-th coordinate of the score
function sP of p. Define a new kernel κ that depends both on P and k as

Stein Kernel κ of k
κ(x,y) :=

∑d
i=1κ

i(x,y) where

κi(x,y) :=

 siP(x)s
i
P(y)k(x,y) + siP(x)∂yik(x,y)

+siP(y)∂xik(x,y) + ∂xi∂yik(x,y) .

Then P embeds into Hκ and its embedding is the null function of Hκ. There-
fore, dκ(Q,P) = ‖Φκ(Q)‖κ , and we define the kernel Stein discrepancy
(KSD) between Q and P with kernel k as

KSD DefinitionKSD2k,P(Q) := MMD2κ(Q,P) =
∫
X×X

κ(x,y)dQ(x)Q(y) .

For the proof of this proposition, see Theorem 2.1 in [21] and pre-
[21] Chwialkowski et al., A Kernel Test of
Goodness of Fit, 2016

ceding discussions therein. Now two remarks on this definition.
First, let us once again emphasize that contrary to usual MMDs,
where the kernel does not specifically target P, computing the KSD
needs no explicit integration with respect to P. Hence, when Q is
the empirical measure associated to a sample S of size n, the KSD
simply reduces to KSD2k,P(Q) = 1

n2

∑
x,y∈S κ(x,y). That makes it an

easily computable sample quality measure. Second, the new kernel κ
is independent of the normalization constant of P, which means that
the KSD can be computed even without knowing this constant. Both
these properties – computability and normalization-independence –
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make the KSD typically very-well adapted to evaluate the quality of
MCMC-samples and construct powerful stopping-criteria.

Finally, let us mention that the KSD can also be seen as the IPM
distance betweenQ and P (see Eq. 0.3), where the set of test-functions
F = T(Hk) is Hk mapped through a so-called Langevin Stein oper-
ator T, which has the property that, for any f ∈ T(Hk), P(f) = 0.
Hence KSDk,P(Q) = supf∈T(Hk)

|Q(f) − P(f)| = supf∈T(Hk)
|Q(f)|.

While we will not need T, this point of view nevertheless leads to
another way to compute the KSD which we will use later, and there-
fore reproduce here. Again, see Theorem 2.1 in [21] and preceding [21] Chwialkowski et al., A Kernel Test of

Goodness of Fit, 2016discussions therein for a proof.

Proposition 3.2.2. Given k and P as in Def. 3.2.1, define for any x,y∈Rd

ξP(x,y) :=
∑d
i=1ξ

i
P(x,y) where ξiP(x,y) :=

s
i
P(x)k(x,y)

+∂xik(x,y)
.

Then for any probability distribution Q, Q is embeddable into Hκ iff for KSD as the Integral
of a Function in Hkevery coordinate i, ξiP is Pettis-integrable by Q , in which case:

KSD2k,P(Q) =

d∑
i=1

∥∥∥∥ E
x∼Q

[
ξiP(x, ·)

]∥∥∥∥2
k

.

3.2.2 Metrizing Targeted Weak Convergence with KSDs

The goal of this section is to characterize the metrization of weak
convergence by KSD metrics. Such a property is important for devel-
oping effective sample quality measures and constructing powerful
goodness-of-fitness tests, as it ensures that the KSDk,P(Q) is small
iff Q is close to P in a traditional, trustworthy sense. Chwialkowski
et al. [21] and Liu et al. [68] previously established targeted charac- [21] Chwialkowski et al., A Kernel Test of

Goodness of Fit, 2016, Thm 2.2
[68] Liu et al., A Kernelized Stein Dis-
crepancy for Goodness-of-fit Tests, 2016,
Prop 3.3

teristicness of KSDs under strong assumptions on the approximating
distributionsQ and base kernel k, while [39] established tight conver-

[39] Gorham and Mackey, Measuring
Sample Quality with Kernels, 2017, Thm 7

gence control for KSDs under strong assumptions on the target P and
base kernel k. Our first contribution generalizes all of these results,
requiring weaker assumptions on the approximating distributions,
target, and kernels. Interestingly, the proof (in Appendix C.3.4) is
almost literally the same as in [21], but with usual differentiation [21] Chwialkowski et al., A Kernel Test of

Goodness of Fit, 2016replaced by Schwartz-differentiation. This swap makes Schwartz-
distribution appear naturally and is thereby the first application of
kernel Schwartz-distribution embeddings.

Theorem 3.2.3. Let k be a kernel in C
(1,1)
b , and κ be the Stein kernel

constructed from k and a target P. Let Pκ be the set of probability measures
that embed into Hκ. Then the following statements are equivalent.
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KSD is perfectly discriminative iff
k charact. to some Schwartz-distr.

(i) κ is characteristic to P in Pκ.
(ii) For any Q ∈ Pκ: KSDk,P(Q) = 0 ⇒ Q = P.

(iii) k is characteristic to the null measure in the set

D := {siPQ− ∂xiQ : Q ∈ Pκ, 1 6 i 6 d}.

If those conditions are satisfied and if Pα ⊂ Pκ for some α > 0, then, for
any sequence (Pn)n in Pα:

KSD-Metrization of
Targeted Convergence

Pn →α P ⇐⇒

 (a) KSDk,P(Pn)→ 0

(c) (Pn)n has uniformly integrable α-moments.

Theorem 3.2.3 gives necessary and sufficient conditions for the
KSD to metrize α-convergence to P of κ-embeddable, uniformly inte-
grable sequences. Two remarks are in order. First, the case α = 0 cor-
responds to the usual weak convergence. Second, Theorem 3.2.3 has
no equivalent of the tightness condition (b) in Theorem 3.1.4 because
in X = Rd, uniform integrability implies tightness. The following
corollary now replaces conditions (i)-(ii) by stronger ones, but which
are often easier to check in practice. The idea is simple: First notice
that the set D is a subset of D1

L1
, the set of integrable distributions

(defined in Chapter 1), because, by Lemma 1.4.3:

D1
L1

= {µ+ ∂xiν : µ,ν ∈Mf} . (3.1)

Hence, if k is characteristic to D1
L1

– for example, if k is c10-universal –,
it is a fortiori characteristic to D.

k characteristic to D1
L1
⇒

KSDk characteristic to P ∈ P

Corollary 3.2.4. Let k be a kernel in C
(1,1)
b and suppose that k is charac-

teristic to D1
L1

(see Eq. 3.1), for example c10-universal. Let Q ∈ P be such
that Ex,y∼Q[κ(x,y)] <∞. Then KSDk,P(Q) = 0 iff Q = P.

Proof. (of Corollary 3.2.4) First, Theorem 1.2.2 and Table 1.1 show
that a c10-universal kernel is characteristic over D1

L1
, which explains

the "for example" part. Next, Ex,y∼Q[κ(x,y)] < ∞ shows that
Q ∈ Pκ. Now apply Theorem 3.2.3 and notice that condition (iii) is
satisfied, because k is characteristic to D1

L1
and D ⊂ D1

L1
. Conclude

with (ii).

Corollary 3.2.4 can be viewed as a direct generalization of [21] [21] Chwialkowski et al., A Kernel Test of
Goodness of Fit, 2016, Thm 2.2and [68] that does not restrict Q to have a continuously differen-
[68] Liu et al., A Kernelized Stein Dis-
crepancy for Goodness-of-fit Tests, 2016,
Prop 3.3

tiable Lebesgue density; this makes it especially suitable for applica-
tions with discrete sample-based approximationsQ. Moreover, Theo-
rem 1.4.5 shows that many common and not-so-common kernels are
characteristic to D1

L1
: smooth translation-invariant kernels only need

to be characteristic to P or c0-universal.. This covers all of the most
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common KSD base kernels including the Gaussian, Matérn, and in-
verse multiquadric radial kernels. In addition, [19] recently proved [19] Chen et al., Stein Points, 2018,

Thm 6that composition kernels of the form kb(x,y) = k(b(x),b(y)) inherit
universality properties from the base kernel k under appropriate as-
sumptions on the invertible transformation b : Rd → Rd. Our next
proposition, proven in Appendix C.3.3 is a mild adaptation to c10-
universality of this result.

c10-Universal Composition Kernels

Proposition 3.2.5. Suppose k is a c10-universal kernel and b : Rd →
Rd is an invertible, Lipschitz, norm-coercive (i.e., |b(x)|2 → ∞ whenever
|x|2 → ∞) mapping with det(∂xb(x)) never zero. Then the composition
kernel kb(x,y) = k(b(x),b(y)) is c10-universal.

Finally, the following corollary of Corollary 3.2.4 provides a proto-
typical application of these results to determining weak convergence
in the context of sample quality measurement.

k smooth, trans.-inv., charact.
⇒ KSDk characteristic to P ∈ P

Corollary 3.2.6. Let k(x, x ′) = ψ(x− x ′) be a translation-invariant ker-
nel, with ψ ∈ C 2b . Let P ∈ P and let (Pn)n be a sequence of empirical
probability measures, i.e. convex sums of Dirac measures. If k is character-
istic to P, then Pn →σ P iff (Pn)n is tight and KSDk,P(Pn)→ 0.

Proof. (of Corollary 3.2.6) Being characteristic to P and translation-
invariant, Theorem 1.4.5 shows that k is characteristic to D1

L1
. As Pn

is an empirical measure, it embeds into Hκ. Applying Corollary 3.2.4
proves point (ii) of Theorem 3.2.3 which in turn proves the desired
result.

3.3 Chapter Conclusion

We have established necessary and sufficient conditions for an MMD
to metrize tight weak convergence and uniformly integrable Wasser-
stein convergence to a fixed target of interest. Our conditions par-
allel those for target-independent metrization but are less stringent
and, importantly, are derived for both bounded and unbounded ker-
nels. These results are particularly well-suited for characterizing the
convergence properties of kernel Stein discrepancies (KSDs), target-
specific MMDs that are popular in sample quality measurement and
goodness-of-fit testing and that often involve unbounded kernels.
By drawing upon the theory of Schwartz-distributions, we obtain
a variety of necessary and sufficient conditions for a KSD to metrize
Wasserstein and weak convergence under uniform integrability. This
enables us to establish the characteristicness of Stein kernels κ for
new combinations of targets P, base kernels k, and approximating
distributions Q.

There are many interesting avenues for future work. First, it
is of great practical interest to establish weak conditions (e.g., on
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a base kernel k and a target P) under which a Stein kernel κ en-
forces tightness. Second, we suspect that, when k(x, x) = O(|x|2α),
the conditions of Theorem 3.1.4 can be further weakened to grant
Wasserstein-α ′ convergence for α ′ < α under α ′-uniform integra-
bility and a (non-uniform) embeddability assumption for each Pn.
But for now, let us widen again the focus from MMDs to general
distribution-dissimilarities and see, in Part II, how they are being
used in generative models.



Part II

Neural Network Based Restricted

f-Divergences
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So far, we mainly focused on MMDs, a specific type of classifier-
based distribution-dissimilarity. We analyzed how the classi-

fier’s capacity – the set of test functions F – influences the strength
of the MMD dissimilarities, and discussed some applications. The
following part now widens the scope to general classifier-based
distribution-dissimilarities and analyzes their properties in the con-
text of sample generation. Given a sample from a target random vari-
able X ∼ PX, the goal there is to generate new sample points Y ∼ PY

that look like samples from X. Here, to “look like” means that PY
should be close to PX for some chosen distribution-dissimilarity D.
To generate Y, we typically start by sampling a latent variable Z from

Sample Generation
In a Nutshell

a standard distribution PZ (such as a multivariate Gaussian). We
then squeeze Z through a parametric function G (usually a neural
network) to yield a variable Y = G(Z) whose distribution PY is the
push-forward distribution of PZ through G. To ensure that samples
from Y look like samples from X, we then optimize the parameters
of G to minimize D (PX ‖PY). We hence (approximately) solve

inf
G∈G

D (PX ‖PY)

where G is the set of functions attainable by G. If we replace
D (PX ‖PY) by the classifier-based dissimilarity (0.1), the minimiza-
tion problem actually becomes a minimax problem1

1 Recall that (X,C) denotes a sample
coming from PX if C = 1 and PY if
C = 0, and −L(ϕ(X),C) is the re-
ward for classifying (or scoring) it as
ϕ(X).

Classifier-Based Dissimilarity
Minimization: Minimax Problem

inf
g∈G

sup
ϕ∈F

E
X,C

[−L(ϕ(X),C)]. (3.2)

There are many questions to ask about these objectives, such as

Choice of F and G? Should we use an RKHS ball, as with MMDs,
where the supremum can be computed analytically on samples,
as with GANs? Or should ϕ simply be a parametrized neural
network optimized with SGD?

Choice of the training procedure? The sup and inf typically get op-
timized alternatively. But should we, each time, optimize until

General Questions with (GAN-
like) Minimax Optimization

convergence, or only a few gradient steps.

Choice of L? When L is the cross-entropy loss, we essentially get
a restricted Jensen-Shannon divergence [37]. More generally, by [37] Goodfellow et al., Generative Adver-

sarial Nets, 2014varying L and F, we can get any restricted f-divergence (see
Section 0.1). But are there some better than others?

Choice of the prior probability π? The minimax problem (3.2) implic-
itly depends on the prior probability π that X be sampled from
PX.2 Most algorithms choose π = .5, but why? 2 See marginnote 1 on p.3

Those questions are obviously deeply intertwined. It is easy to
see for example that changing π amounts to changing the loss L.
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But there are many more fascinating links between π and the choice
of f-divergence, as discussed in [67]. Our goal here is not to an- [67] Liese and Vajda, On Divergences and

Informations in Statistics and Information
Theory, 2006

swer all these questions. They were given only for context and il-
lustrative purposes. Our approach here is rather simply to review
the main generative algorithms, see how they fit into the previous
dissimilarity-minimization framework, and try to fix some empiri-
cally noticed deficiencies.

More precisely, Chapter 4 first shows that many standard gener-
ative algorithms – GANs, VAEs, and variations – exactly fit in this
framework of dissimilarity-minimization. Most of these algorithms,
we will see, use restricted f-divergence dissimilarities to compare PX
and PY . As an alternative, we propose to use optimal transportation

GAN, VAE & WAE as Dissi-
milarity Minimization Algos

(OT) based measures. They lead to new generative models called
Wasserstein Auto-Encoders (WAEs) and give new insights on the re-
lation between GAN- and VAE-like algorithms. Chapter 4 hence fo-
cuses on training objectives, and leaves aside the problem of actual
training. Now, the training of GANs turns out to be especially unsta-
ble. Among other issues, it is indeed not rare that, after some train-
ing, the generator suddenly focuses on one image-type only, which it
mimics quite accurately, but it completely fails to capture the overall
diversity of images contained in PX. This problem, known as mode
collapse, will be the focus of Chapter 5. We will not try to under-
stand the origin of the problem, but rather remedy it by combining
several GANs (or other generative models), focusing each on differ-
ent distribution modes in PX. This leads to an algorithm similar in

AdaGAN to Fix
Mode-Collapse

spirit to AdaBoost, which is why we called it AdaGAN. Overall, this
second part really focuses on the generative procedure as a whole,
rather than specifically on the dissimilarities used. The next and last
part, Part III will then focus again on distribution-dissimilarities only,
and specifically on those typically used in generative algorithms:
network-based dissimilarities.



4Generative Models

& Dissimilarity Minimization

Contrary to the previous chapters which focused on MMDs
only, we now get back to distribution-dissimilarities in general,

and concentrate on their currently most trendy application: gener-
ative models. Traditionally, those models are not introduced via
distribution-dissimilarities: GAN papers usually highlight the adver-
sarial game perspective, while VAEs generally insist more on the
empirical likelihood and variational inference aspects. But viewing
GANs as a minimization problem of a distribution-dissimilarity re-
cently lead to powerful new algorithms, such as Wasserstein- and f-
GANs [4, 82]. Following this path, Section 4.1 describes a set of pop- [4] Arjovsky et al., Wasserstein GAN,

2017; [82] Nowozin et al., f-GAN, 2016ular, recent generative models and how they relate to distribution-
dissimilarity minimization, and in particular to f-divergence mini-
mization. Section 4.2 then proposes to minimize optimal transport
(OT) distances, which will lead to a new algorithm now known as
Wasserstein Auto-Encoders (WAEs). The accompanying analysis un-
veils further links between the previous generative algorithms, which
are discussed in Section 4.3. In particular, for the squared Euclidian
transportation cost c, WAE is a so-called Adversarial Auto-Encoders
(AAE), an algorithm proposed by [71] without strong theoretical jus- [71] Makhzani et al., Adversarial Autoen-

coders, 2016tification. Section 4.4 concludes with possible future work and re-
lated literature.

4.1 Generative Models and Dissimilarity Minimization

The goal of generative modeling is to sample points Y from a model
with distribution PY that look like samples from a target random
variable X ∼ PX, where X, Y ∈ X. Almost all such generative mod-
els rely on latent variable models, which means that Y is generated
in two steps: first we sample a latent variable or latent code Z ∈ Z

Latent Generative Modelsfrom a known, arbitrary distribution PZ (usually a multidimensional
Gaussian); then we squeeze it through a (possibly random) function
G : Z→ X to get Y, i.e. Y = G(Z). Thus, if Y has a density pY , it can
be decomposed as:

pY(y) :=

∫
Z

pY(y|z)dPZ(z), ∀y ∈ X . (4.1)

63
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(a) VAE and AVB (b) WAE and AAE

Figure 4.1: Both VAE and WAE con-
sist of an encoder QZ|X and a decoder
GX|Z which map inputs X ∈ X to la-
tent codes Z ∈ Z and vice-versa. Both
minimize two terms: the reconstruction
cost, and a regularizer penalizing dif-
ferences between encoded distributions
and a predefined latent distribution PZ.
But while VAE forces each conditional
distribution QZ|X=x (the red balls) to
match the same distribution PZ for all
x, WAE only constrains the marginal
QZ =

∫
QZ|X=x dPX(x) (the green

distribution) to match PZ. Contrary to
WAE, VAE hence promotes overlap of
different conditionals QZ|X, which can
lead to blurry reconstructions.

Those models have two major advantages: they are easy to sample
from and PY can be optimized using SGD as soon as G can be dif-
ferentiated analytically wrt its parameters. The field of generative
modeling is growing rapidly. Here we introduce and compare sev-
eral new algorithms – essentially GAN and VAE variations –, and
show how they fit in the distribution-dissimilarity minimization pro-
cedure described in the introduction of Part II.

Generative adversarial nets (GAN). The original GAN approach
[37] minimizes

[37] Goodfellow et al., Generative Adver-
sarial Nets, 2014

DGAN (PX ‖PY) =
sup
T∈F

E
X∼PX

[log T(X)] + E
Z∼PZ

[
log
(
1− T(G(Z))

)]
(4.2)

wrt a deterministic generator G : Z → X, where F is a predefined
class of test functions. Each function T ∈ F is usually seen as a dis-
criminator which discriminates between true points X ∼ PX and fake
points G(Z) ∼ PY . The original GAN authors already showed that
DGAN (PX ‖PY) 6 2 ·DJS (PX ‖PY) − log(4) with an equality in the
nonparametric limit, i.e. when the class F becomes rich enough to rep-
resent all functions mapping X to (0, 1). Hence GANs minimize a
restricted JS-divergence, a lower bound on the JS-divergence. In prac-
tice however, both generator G and discriminator T are trained with
alternating SGD steps on finite samples from PX and PZ. Stopping
criteria as well as adequate evaluation of the trained GAN models
remain open questions.

f-GANs. Instead of using a restricted JS-divergence, Nowozin et al.
[82] showed that one can use any restricted f-divergence simply by [82] Nowozin et al., f-GAN, 2016

replacing (4.2) by a new objective:

Df,GAN (PX ‖PY) = sup
T∈F

E
X∼PX

[T(X)] + E
Z∼PZ

[f∗(G(Z)] ,
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where f∗ is the Fenchel conjugate of f (see Section 0.1). They showed
that the original GAN simply corresponds to a specific function f.

Wasserstein GAN (WGAN). A year later, Arjovsky et al. [4] advo- [4] Arjovsky et al., Wasserstein GAN,
2017cated to focus on the 1-Wasserstein distance, meaning a “restricted

Total Variation” where all test functions W are constrained to be 1-
Lipschitz (see Section 0.1):

{∅, f, W, MMD}-GANs:
Generator-Discrim. Architecture

Minimize Restr. f-Divergence

DWGAN (PX ‖PY) = sup
T∈W

E
X∼PX

[T(X)] − E
Z∼PZ

[T(G(Z))] .

The 1-Lipschitz constraint bounds the gradients wrt G, which greatly
stabilizes the training.

MMD-GANs and moment matching networks. Instead of opti-
mizing a network-based discriminator T to compute a restricted f-
divergence, [27, 66] independently proposed to use an MMD. That [66] Li et al., Generative Moment Match-

ing Networks, 2015; [27] Dziugaite et al.,
Training Generative Neural Networks via
MMD Optimization, 2015

way, computingDMMD (PX ‖PY) = MMDk(PX,PY) on samples needs
no optimization. Except of course if the kernel k itself has parame-
ters which need optimization. The kernel k then spans a family K

typically given by k(x,y) = k0(h(x),h(y)) where k0 is some fixed
predefined kernel and h is a parametrized neural network. And the
dissimilarity becomes a supremum over a family of MMDs (see [11,
64] and references therein): [64] Li et al., MMD GAN, 2017; [11]

Bińkowski et al., Demystifying MMD
GANs, 2018

DMMDs (PX ‖PY) = sup
k∈K

MMDk(PX,PY).

Variational auto-encoder (VAE). Kingma and Welling [56] intro- [56] Kingma and Welling, Auto-
Encoding Variational Bayes, 2014duced VAEs as a generative model trained by minimizing the nega-

tive log-likelihood EPX [logpY(X)]. This being equivalent to KL min-
imization, VAEs are indeed approximate f-divergence minimization
algorithms, too. But their main distinctive feature is to decompose
this negative log-likelihood into two parts, yielding the objective

DVAE (PX ‖PY) =

inf
Q(Z|X)∈Q

E
PX

[
DKL (Q(Z|X) ‖PZ) − E

Q(Z|X)
[logpY(X|Z)]

]
. (4.3)

If we think of Z as being a latent code for X, thenQ(Z|X) and pY(X|Z)

VAE, AVB:
Encoder-Decoder Architecture

Minimize Neg. Log-Lik., i.e. KLcan be seen respectively as a random encoder and decoder (rather than
generator) of X. PY(X|Z) is usually a function G of Z parametrized by
a deep net, but with some randomness “added on top”. A typical
choice is to use Gaussians PY(X|Z) = N

(
X; G(Z), σ2 · I

)
. Now, if Q is

the set of all conditional probability distributions Q(Z|X), this VAE
objective indeed coincides with the negative marginal log-likelihood
−EPX [logPY(X)]. However, in order to make the DKL term of (4.3)
tractable in closed form, the original implementation of VAE uses



66 | generative models and dissimilarity minimization

a standard normal PZ and restricts Q to a class of Gaussian distri-
butions Q(Z|X) = N(Z; µ(X), Σ(X)) with mean µ and diagonal co-
variance Σ parametrized by deep nets. VAE hence minimizes an
upper bound on the negative log-likelihood or, equivalently, on the
KL-divergence DKL (PX ‖PY).

Adversarial variational Bayes (AVB). Mescheder et al. [74] also [74] Mescheder et al., Adversarial Varia-
tional Bayes, 2017start from (4.3). But they avoid the restriction of Q to Gaussians,

which loosens the bound between (4.3) and the actual negative log-
likelihood. Instead, they notice that samples from Q(Z|X = x) can be
written as samples from a random variable e(x, ε) where ε follows
a standard normal and e : X×R→ Z is some appropriate function.
They then parametrize e by a neural network, replace the intractable
term DKL (Qe(Z|X) ‖PZ) in (4.3) by the adversarial approximation
Df,GAN corresponding to the KL-divergence, and essentially mini-
mize

DAVB (PX ‖PY) = inf
Qe(Z|X)∈Q

E
X∼PX

 Df,GAN (Qe(Z|X) ‖PZ)
−EZ∼Qe(Z|X)[logpY(X|Z)]

. (4.4)

Adversarial auto-encoders (AAE). The DKL term in (4.3) can be
viewed as a mere regularizer: when dropped, VAE actually reduces
to the classical (unregularized) auto-encoder. This regularizer hap-
pens to be crucial for sample generation [7]. But weirdly enough, [7] Bengio et al., Representation Learning:

A Review and New Perspectives, 2013it pushes each encoded variable to follow the same distribution PZ,
whatever the original X value was. Instead, Makhzani et al. [71] re- [71] Makhzani et al., Adversarial Autoen-

coders, 2016place the DKL term in (4.3) by a regularizer that enforces a constraint
on the marginal – rather than the conditional – distribution of the
X-encodings:

DAAE (PX ‖PY) =
inf

Q(Z|X)∈Q
DGAN (QZ ‖PZ) − E

PX
E

Q(Z|X)
[logpY(X|Z)]. (4.5)

QZ is called the aggregated posterior. It is the marginal distribution of
AAE: Encoder-Decoder Arch.

Justification of DAAE?
Z when X is sampled from PX and then Z is sampled from Q(Z|X).
Similarly to AVB, there is no clear link to log-likelihood. The authors
report an equally good performance for different types of conditional
distributions Q(Z|X), including Gaussians as in VAEs, implicit mod-
els Qe as in AVB, and deterministic encoder mappings.

Summarizing the progress so far, we interpreted GANs, f-GANs,
MMD-GANs, VAEs and AVB as approximate f-divergence minimiza-
tions, but not AAE. Indeed, we derived AAE from VAE, but gave no
interpretation in terms of dissimilarity minimization. To do so, we
now take a step back and show how to use OT based dissimilari-
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ties instead of f-divergences. They yield an algorithm that we call
Wasserstein Auto-Encoders (WAEs), of which AAE is a special case.

4.2 From Optimal Transport to WAE

Our introduction, Section 0.1, introduced OT dissimilarities from the
dual perspective. The original, primal perspective defines the OT dis-
similarity Dc between measures PX and PY as

Dc (PX ‖PY) := inf
γ∈Γ(PX,PY)

E
(X,Y)∼γ

[c(X, Y)], (4.6)

where Γ(PX,PY) denotes the set of couplings between PX and PY , i.e.
the set of joint distributions whose marginals are PX and PY . The

OT: Primal, Dual & Mass
Redistribution at Minimal Cost

non-negative number c(x,y) is usually understood as the cost for
transporting a (Dirac) unit mass from x to y. Then D (PX ‖PY) is
the minimal cost to redistribute a unit mass with distribution PX to
a distribution PY . Kantorovich proved the equivalence between the
primal and dual perspectives. When c = dα where d is a distance on
X and 1 6 α <∞, then D1/αc is the (d-based) α-Wasserstein distance
(see Section 3.1.1). WGANs rely on the dual formulation when c =

d. Instead, we now show how to approximately solve the primal
formulation (for a general cost c). To do so, we first reparametrize
the space of couplings Γ (Section 4.2.1) and then relax the constraints
on the coupling’s margins (Section 4.2.2).

4.2.1 Reparametrization of the Couplings

Remember that Y is obtained via a latent generative model from Z to
Y = X. Our goal here is to make this model appear in the OT equa-

Deterministic Case: Y = G(Z)tion (4.6). To do so, let us for now assume that this model is deter-
ministic, i.e. that Y = G(Z) for some function G. We will relax this as-
sumption in Section 4.2.3. Then E(X,Y)[c(X, Y)] = E(X,Z)[c(X,G(Z))],
which shows that:

From OT btw. PX & PY

to OT btw. PX & PZ
inf

PX,Y∈Γ(PX,PY)
E
PX,Y

[c(X, Y)] = inf
PX,Z∈Γ(PX,PZ)

E
PX,Z

[c(X,G(Z))] (4.7)

Said differently, we just transformed the OT problem between PX

and PY with cost c into an OT problem between PX and PZ with cost
cG(x, z) := c(x,G(z)): Dc (PX ‖PY) = DcG (PX ‖PZ). Next, notice
that EPX,Z [c(X,G(Z))] = EPX EPZ|X [c(X,G(Z))]. PX being a fixed dis-
tribution, the optimization over couplings PX,Y can thus be turned
into an optimization over the set of conditional distributions QZ|X
whose marginal distribution of Z is PZ. More formally:
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Theorem 4.2.1. If Y = G(Z) for some function G : Z→ X, then

Dc (PX ‖PY) = inf
PX,Z∈Γ(PX,PZ)

E
PX,Z

[
c
(
X,G(Z)

)]
(4.8)

= inf
QZ|X : QZ=PZ

E
PX

E
QZ|X

[
c
(
X,G(Z)

)]
, (4.9)

where QZ is the marginal distribution of Z when X ∼ PX and Z ∼ QZ|X.

From Optimal Couplings
to Optimal Conditionals

4.2.2 Relaxing the Constraints on the Coupling’s Margins

If we think of QZ|X as being a random encoder of X, then (4.9) says
that we can compute the OT cost from PX to PY by optimizing over
the set of encoders whose aggregated posterior QZ is PZ. But the

Hard Constraint on QZ|X:
QZ = PZ

optimization under the latter constraint may seem even more com-
plicated than an optimization over couplings (as in Eq. 4.8). That
is why, we propose to relax this hard constraint using the following
classical regularization technique. Namely, choose λ > 0 and a con-
vex penalty F : P→ R+ such that F(Q) = 0 if and only if Q = PZ, and
replace the constrained optimization ofDc (PX ‖PY) by the following
relaxed version:

Dλc (PX ‖PY) := inf
QZ|X

E
PX

E
QZ|X

[
c
(
X,G(Z)

)]
+ λF(QZ), (4.10)

It is well known [13] that under mild conditions adding a penalty as [13] Borwein and Lewis, Convex Analy-
sis and Nonlinear Optimization, 2006in (4.10) is equivalent to adding a constraint of the form F(Q) 6 µλ

for some µλ > 0. As λ increases, the corresponding µλ decreases,
and as λ→∞, the solutions of (4.10) reach the feasible region where
PZ = QZ. Hence Dλc (PX ‖PY) 6 Dc (PX ‖PY) for all λ > 0 and the
gap reduces with increasing λ.

Soft Constraint on QZ|X:
D (QZ ‖PZ) 6 Cst

We may now be tempted to choose a KL-, JS- or any other f-
divergence as a regularizer F(QZ) = Df (QZ ‖PZ). But this would re-
sult in an intractable penalty F. Instead, we propose two alternatives:
either use an adversarial approximation F(QZ) = Df,GAN (QZ ‖PZ);
or, following [116], use the MMD of a characteristic kernel k, i.e. [116] Tolstikhin et al., WAE, 2018

F(QZ) = MMDk(QZ,PZ). We hence end up with the following objec-
tive, which we originally called the penalized optimal transport or POT
objective, and was later re-baptized as the Wasserstein Auto-Encoder
(WAE) objective:

WAE-GAN: D = DGAN

WAE-MMD: D = MMD
DWAE (PX ‖PY) := inf

QZ|X∈Q
E
PX

E
QZ|X

[
c
(
X,G(Z)

)]
+ λD (QZ ‖PZ)

(4.11)

whereD isDGAN or MMDk, and Q a set of conditionals parametrized
by an (encoder) network. When the cost function c is differentiable,
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Algorithm 4.1: Wasserstein Auto-Encoder with GAN-
based penalty (WAE-GAN).

Require: Regularization coefficient λ > 0.

Initialize the parameters of the encoder Qφ,

decoder Gθ, and latent discriminator Dγ.

while (φ, θ) not converged do

Sample {x1, . . . , xn} from the training set

Sample {z1, . . . , zn} from the prior PZ
Sample z̃i from Qφ(Z|xi) for i = 1, . . . ,n

Update Dγ by ascending:

λ

n

n∑
i=1

logDγ(zi) + log
(
1−Dγ(z̃i)

)
Update Qφ and Gθ by descending:

1

n

n∑
i=1

c
(
xi,Gθ(z̃i)

)
− λ · logDγ(z̃i)

end while

Algorithm 4.2: Wasserstein Auto-Encoder with
MMD-based penalty (WAE-MMD).

Require: Regularization coefficient λ > 0, characteristic

positive-definite kernel k.

Initialize the parameters of the encoder Qφ,

decoder Gθ, and latent discriminator Dγ.

while (φ, θ) not converged do

Sample {x1, . . . , xn} from the training set

Sample {z1, . . . , zn} from the prior PZ

Sample z̃i from Qφ(Z|xi) for i = 1, . . . ,n

Update Qφ and Gθ by descending:

1

n

n∑
i=1

c
(
xi,Gθ(z̃i)

)
+

λ

n(n− 1)

∑
` 6=j

k(z`, zj)

+
λ

n(n− 1)

∑
` 6=j

k(z̃`, z̃j) −
2λ

n2

∑
`,j

k(z`, z̃j)

end while

this objective can be trained with SGD using Algorithm 1 or 2 (bor-
rowed from [116]) for the f-GAN and MMD alternatives respectively. [116] Tolstikhin et al., WAE, 2018

4.2.3 Random Generators PY|Z

What happens when Y is not given by a deterministic, but a random
generator? I.e. not by a function Y = G(Z), but a set of conditional
distributions (PY|Z=z)z∈Z, such as in VAE where Y ∼ N

(
G(Z), σ2

)
?

Then Equation (4.8) does not hold anymore in general [15]. But if [15] Bousquet et al., From optimal trans-
port to generative modeling, 2017, Prop 2instead of optimizing over all Γ(PX,PY), we optimized only over the

couplings that verify (Y ⊥⊥ X) |Z, then we can recover a theorem
much like Theorem 4.2.1. More formally:

Random Decoders:
OT-Cost from PX to PY 6

OT-Cost from PX to PY “via PZ”

Theorem 4.2.2. Let

D†c (PX ‖PY) := inf
PX,Y∈Γ †(PX,PY)

E
PX,Y

[c(X, Y)] where

Γ†(PX,PY) := {PX,Y ∈ Γ(PX,PY) : (Y ⊥⊥ X) |Z}. Then

Dc (PX ‖PY) 6 D†c (PX ‖PY) = inf
QZ|X : QZ=PZ

E
PX

E
QZ|X

E
PY|Z

[
c
(
X, Y

)]
.

Proof. The inequality stems from the inclusion Γ†(PX,PY) ⊂
Γ(PX,PY). The equality immediately follows from the tower rule.
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Intuitively, Γ†(PX,PY) is exactly the set of couplings that can be
obtained with an encoder-decoder structure with latent space vari-
able Z. We are now ready to compare the OT and WAE objectives
with the algorithms presented in Section 4.1.

4.3 WAE and VAE-style Algorithms Compared

This section compares the OT and WAE objectives with the GAN and
VAE style algorithms described earlier, first in theory (Section 4.3.1),
then in practice (Section 4.3.2).

4.3.1 Theoretical Comparison

WAE and WGAN. Although GANs and WAE end up having two
conceptually quite different structures – a generator-discriminator
as opposed to an encoder-decoder –, both algorithms are obviously
linked via WGANs. Indeed, WGANs approximate the Wasserstein-

WAE Relies on Primal
WGAN Relies on Dual

1 distance W1(PX,PY) as does WAE when choosing a non-squared
transportation (i.e. reconstruction) cost c(x,y) = ‖x− y‖2. However,
WAE uses the primal OT formulation, while WGAN uses the dual
one. The latter formulation happens to be especially handy with
this non-squared `2-cost. It is not clear how to generalize this dual
approach (WGAN) for other costs, whereas WAE does not assume
any particular cost function. Other differences between WGAN and
WAE are discussed in [15]. [15] Bousquet et al., From optimal trans-

port to generative modeling, 2017

Gaussian decoder and relation to VAE and AVB. Following the
examples of VAE, AVB and AAE, let us focus on Gaussian decoders
Y ∼ N((, G)(Z),σ2 · Id), whose distribution we denote PσY , with a
quadratic reconstruction cost c(x,y) = ‖x− y‖22 on X = Rd. ThenDc
is the squared Wasserstein-2 distance, Dc = W22 , and Theorem 4.2.2
shows that

Argmin of R.H.S.
⊥⊥ Decoder-Noise σ

W22(PX,PσY ) 6

D†c (PX ‖PσY ) = d · σ2 + inf
QZ|X :QZ=PZ

E
PX

E
QZ|X

[
‖X−G(Z)‖22

]
= d · σ2 +D†c

(
PX

∥∥∥P0Y) = d · σ2 +W22(PX,P0Y),

where the last equality stems from Theorem 4.2.1. Hence, the min-
imization of the upper-bound D†c

(
PX
∥∥PσY) wrt the decoder G is in-

dependent of the decoder’s noise-level1 σ, and coincides with the 1 contrary to the minimization of
W2
2(PX,PσY), which usually depends

on σ. See [15, Prop 2].noiseless minimization of W2. This is good news, because in prac-
tice we always generate new samples Y as Y = G(Z), i.e. without
adding Gaussian noise. Having the optimization of D†c

(
PX
∥∥PσY) be

independent of σ thus avoids having a mismatch between inference
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and training. This contrasts with the VAE and AVB losses, where σ
acts as a balancing factor between the reconstruction error and the
latent KL-divergence, and which get ill-defined when we are most
interested in: when σ = 0.

Relation to AAE. Substituting logpY(x|z) by its analytical form in
(4.5), we see that DAAE coincides with the GAN-version of DWAE – up
to additive terms independent of the encoderQ(Z|X) and decoderG –
when the regularization coefficient λ is set to 2σ2. For 0 < σ2 < ∞
this means that AAE is minimizing the penalized relaxation DWAE of the
constrained optimization problem corresponding toD†c

(
PX
∥∥PσY). The gap

between DWAE and D†c depends on the choice of λ, i.e. on σ2. When
λ = 2σ2 → 0, the upper bound D

†
c converges to the OT cost Dc,

but its relaxation DWAE gets looser. AAE then approaches the clas-
AAE = WAE-GAN with

c(x,y) = ‖x− y‖22, λ = 2σ2,
Y ∼ N

(
G(Z), σ2 · Id

)
sical unregularized auto-encoder, and has less and less connection
to OT. When λ = 2σ2 → ∞, the solution of DWAE gets closer and
closer to the hard-constrained objective (4.9). Hence the solution of
AAE then converges more and more to the solution of D†x

(
PX
∥∥PσY),

which, we know, is also the solution of Dc
(
PX
∥∥P0Y). Said differ-

ently, at the limit where σ2 → ∞, AAE minimizes the Wasserstein-2
distance between PX and G(Z). Interestingly, the authors of [74] [74] Mescheder et al., Adversarial Varia-

tional Bayes, 2017only connected AAE to log-likelihood maximization (VAE and AVB).
They argued that AAE is “a crude approximation” to AVB. Our re-
sults instead suggest that AAE is actually attempting to minimize
the 2-Wasserstein distance between PX and PσY , which may explain
its good empirical performance reported in [71]. [71] Makhzani et al., Adversarial Autoen-

coders, 2016

Blurriness of VAE and AVB. Compared to GANs, VAE are much
easier to train, but their samples are known to be blurrier. We think
this blurriness has two origins. The first one comes from the fact
that the “logpY(Y|X)” part of VAE tries to minimize the `2 distance
between an image X and its reconstruction Y. From `2-regression,
we know that the solution should thus be a (conditional) average
over different images Y, and hence blurry. The second origin of this

VAE Blurry, because:
`2-Reconstruction = Cond. Avg.

& Overlap of Conditionals {Z|x}x

blurriness comes from the KL-divergence term, which enforces the
conditional distribution of Z|X to match a distribution which is in-
dependent of Z. See Figure 4.1. If Q(Z|X) could be anything (the
non-parametric limit), the encoder could still ensure that the distri-
butions Q(Z|X = x) do not overlap for different values of x. But VAE
specifically restricts Q(Z|X) to be Gaussians. Hence all of them over-
lap, meaning that different values x1 and x2 of X can be mapped to
a same code Z. To minimize the reconstruction error, the decoder
G(Z) will hence yield some average between x1, x2 and the other
possible values of X: G(Z) will be blurry. This contrasts with AAE
and WAE, which, by imposing a constraint on the margin QZ rather
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than the conditional Q(Z|X), do not promote any overlap between
the conditionals. See Figure 4.1 for an illustration.

4.3.2 Experimental Comparison

Figure 4.2: VAE (left column), WAE-
MMD (middle column), and WAE-
GAN (right column) trained on MNIST
dataset. In “test reconstructions” odd
rows correspond to the real test points.

In a follow-up work, Tolstikhin et al. [116] compared VAE with

[116] Tolstikhin et al., WAE, 2018

the WAE-MMD and WAE-GAN algorithms on two well-known
datasets: MNIST [62] and CelebA [69], containing respectively a set

[62] LeCun et al., Gradient-Based Learn-
ing Applied to Document Recognition,
1998
[69] Liu et al., Deep Learning Face At-
tributes in the Wild, 2015

of handwritten-digits and celebrity faces. They used a determinis-
tic encoder-decoder (Q-G) pair with DCGAN-like architectures [86].

[86] Radford et al., Unsupervised Rep-
resentation Learning with Deep Convolu-
tional GANs, 2016

Their results are plotted in Figures 4.2 and 4.3. They feature images
G(Z) for linear interpolations values of Z between two encoded im-
ages; test reconstructions G(Q(X)); and random samples G(Z) with
Z sampled from the latent target PZ = N((, 0),σ · IdZ

), where dZ = 8
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Figure 4.3: VAE (left column), WAE-
MMD (middle column), and WAE-
GAN (right column) trained on CelebA
dataset. In “test reconstructions” odd
rows correspond to the real test points.

for MNIST and dZ = 64 for CelebA. As expected, the WAE-GAN
turned out more unstable to train than WAE-MMD, because of the
unstable GAN training. But interestingly, they observed that in WAE-
MMD, Gaussian kernels failed to adequately penalize encoded out-
liers in the latent space Z. The authors incriminate the Gaussian’s
quick decay, and therefore resorted to multi-quadratic kernels, which
are characteristic and have very heavy tails. For further details, see
the original paper.

4.4 Chapter Conclusion

This chapter presented several recent generative algorithms and
showed that they all approximately do f-divergence minimization.
As an alternative, we proposed WAE, an algorithm that approxi-
mately minimizes an optimal transport problem. It relies on an
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encoder-decoder approach similar to VAE-style algorithms, with a
reconstruction (or transportation) cost c(x,y), and a constraint on
the encoded distribution, which we enforce using a GAN- or MMD-
based dissimilarity. When taking c(x,y) = ‖x− y‖2, WAE approx-
imates the same objective than WGAN, but from the primal rather
than dual perspective; when c(x,y) = ‖x− y‖22, WAE essentially co-
incides with AAE, which was originally derived as a VAE-variation.
WAE hence links the VAE and GAN approaches to sample genera-
tion. So far however, we barely mentioned the problems one may
encounter during actual training. Let us discuss an ominous one
now: mode-collapse.



5AdaGAN:

Boosting Generative Models

Imagine we have a large corpus, containing unlabeled pictures of
animals, and our task is to build a generative probabilistic model

of the data. We run a recently proposed algorithm and end up with
a model which produces impressive pictures of cats and dogs, but
not a single giraffe. A natural way to fix this is to manually remove
all cats and dogs from the training set and run the algorithm on the
updated corpus. The algorithm has no choice but to produce new an-
imals. By iterating this process until there’s only giraffes left in the
training set, we hence end up with a model generating giraffes (as-
suming sufficient sample size). At the end, we aggregate the models
obtained by building a mixture model. Unfortunately, the described
meta-algorithm requires manual work for removing certain pictures
from the unlabeled training set at every iteration.

Let us turn this into an automatic approach. Rather than includ-
ing or excluding a picture, we continuously weight their appearance
probability. To do so, we train a binary classifier to separate “true”
pictures of the original corpus from the set of “synthetic” pictures
generated by the mixture of all the models trained so far. The clas-
sifier should then make confident predictions for the true pictures
of animals missed by the model (giraffes), because there are no syn-
thetic pictures nearby to be confused by. By a similar argument, the
classifier should make less confident predictions for the true pictures
containing animals already generated by one of the trained models
(cats and dogs). For each picture in the corpus, we can thus use the
classifier’s confidence to re-weight the picture’s probability to appear
in next iteration’s dataset.

The present chapter provides a principled way to perform this
re-weighting, with theoretical guarantees showing that the resulting
mixture models indeed approach the true data distribution.1 Our 1 Note that the term “mixture” should

not be interpreted to imply that each
component models only one mode: the
models to be combined into a mixture
can themselves cover multiple modes.

algorithm, called AdaGAN, for Adaptive GAN, originally aimed to
solve a well-known GAN-training issue known as mode-collapse or
missing-mode, where the generator suddenly converges to only one or
a few data modes – our cats and dogs – and ignores the overall data
diversity of the training set – the remaining giraffes. But AdaGAN
can actually be used with any generative model: Gaussian mixture
models, VAEs, WGANs, or even unrolled [75] or mode-regularized [75] Metz et al., Unrolled GANs, 2017

75
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Figure 5.1: A 2D toy illustration of our
meta-algorithm: AdaGAN. The top left
shows a sample from a 2D target distri-
bution (red dots) together with a sam-
ple produced by a single GAN (blue
dots): the GAN obviously covers only
one out of four modes. We thus (au-
tomatically) reweight the target sam-
ple (top right), train a new GAN on a
sample of this re-weighted dataset, and
build a mixture model out of the new
and old GANs, which now covers two
modes (bottom right). We can iterate
this process, until all modes are cov-
ered.

Algorithm 5.1: AdaGAN, a meta-
algorithm to construct a “strong” mix-
ture of T individual generative models
(f.ex. GANs), trained sequentially.

AdaGAN Meta-Algorithm

Input: Training sample SN := {X1, . . . ,XN}.
Output: Mixture generative model G = GT .

Train vanilla GAN G1 = GAN(SN,W1) with a uniform weight W1 =

(1/N, . . . , 1/N) over the training points
for t = 2, . . . , T do

#Choose the overall weight of the next mixture component
βt = ChooseMixtureWeight(t)
#Update the weight of each training example
Wt = UpdateTrainingWeights(Gt−1,SN,βt)
#Train t-th “weak” component generator Gct
Gct = GAN(SN,Wt)
#Update the overall generative model:
#Form a mixture of Gt−1 and Gct .
Gt = (1−βt)Gt−1 +βtG

c
t

end for

GANs [18], which already try to avoid mode-collapse. Thus, we do [18] Che et al., Mode Regularized GANs,
2017not aim at improving the original GAN or any other generative algo-

rithm. We rather propose and analyze a meta-algorithm that can be
used on top. This meta-algorithm is similar in spirit to AdaBoost in
the sense that each iteration corresponds to learning a “weak” gener-
ative model (e.g., GAN) with respect to a re-weighted data distribu-
tion. The weights change over time to focus on the “hard” examples,
i.e. those that the mixture has not been able to properly generate so
far. The main steps of the AdaGAN algorithm are described in Algo-
rithm 5 and its two first iterations are illustrated on a toy example in
Figure 5.1.

The chapter is organized as follows. Section 5.1 presents our
main theoretical results when iteratively building mixture models
that minimize an arbitrary f-divergence. Section 5.1.3 shows that
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if the optimization at each step is perfect, the process converges to
the true data distribution at an exponential rate (or even in a finite
number of steps, for which we provide a necessary and sufficient con-
dition). Section 5.1.4 then shows that imperfect solutions still lead to
the exponential convergence-rate under certain “weak learnability”
conditions. These results naturally lead to a new boosting-style itera-
tive procedure for constructing generative models. When used with
GANs, it results in our AdaGAN algorithm, detailed in Section 5.2.
Finally, we report initial empirical results in Section 5.3, where
we compare AdaGAN with several benchmarks, including original
GAN and uniform mixture of multiple independently trained GANs.
Proofs are to be found in Appendix C.4.

Notations and reminders. In this chapter, all densities are assumed
to exist with respect to some dominating positive finite measure
µ. For a probability measure P, we denote this density dP. f-
divergences were already introduced in introduction (Section 0.1
from the dual perspective. They can also be (and usually are) in-
troduced from an equivalent, primal perspective, in which case they
are defined as

Primal Definition of
f-DivergencesDf (Q ‖P) :=

∫
f

(
dQ
dP

(x)

)
dP(x)

The reader may want to keep this primal definition in mind for some
proofs. In this chapter, we always assume that f is convex, defined on
(0,∞) and satisfies f(1) = 0. Fdiv designates the set of such functions.
Finally, several commonly used symmetric f-divergences are Hilber-
tian [30, 49]: the Jensen-Shannon divergence, Hellinger distance and

[30] Fuglede and Topsoe, Jensen-
Shannon Divergence and Hilbert Space
Embedding, 2004; [49] Hein and Bous-
quet, Hilbertian Metrics and Positive
Definite Kernels on Probability Measures,
2005

the total variation among others. This implies in particular that their
square-root satisfies the triangular inequality:

Hilbertian f-Divergences√
Df (P ‖Q) 6

√
Df (P ‖R) +

√
Df (R ‖Q).

5.1 Minimizing f-divergence with Mixtures

5.1.1 Incremental Mixture Building

Our goal is to construct a generative model PY of a fixed target dis-
tribution PX. To do so, assume that we are given a set of “weak”
generative models Q ∈ G – for example GANs – for which we can
approximately solve

arg min
Q∈G

Df (Q ‖R) . (5.1)
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for any given distribution R. We could of course just pick the best
weak model that minimizes (5.1) when R = PX. But we prefer to
build a stronger model PTY that combines T weak models Qt into a
mixture model

Mixture of T Generators QtPTY =

T∑
t=1

αTtQt, where αTt > 0,
∑
t

αTt = 1. (5.2)

However, imagine we cannot directly minimize (5.1) over the com-
plete mixture. Then we may instead train each Qt one after another
so as to maximize its “added-value” to the current mixture model
Pt−1Y . More precisely, each new component Qt ∈ G with weight
βt ∈ [0, 1] should minimize

Optimizing the New Componentarg min
Q∈G

Df ((1−β)PY +βQ ‖PX) , (5.3)

where we dropped the dependence on t for readability. In practice,
we do not expect to find the optimal Q that minimizes (5.3) at each
step. But our algorithm will still converge even if Q only slightly
improves our current approximation of PX, i.e. if for some c < 1,
each new Q satisfies

Weak Mixture-Improvement
by New ComponentDf ((1−β)PY +βQ ‖PX) 6 c ·Df (PY ‖PX) . (5.4)

To build Q we may be tempted to minimize (5.3) directly. But this
approach has a significant drawback in practice. As we build up the
mixture, we need to make β decrease: after all, if PtY approximates
PX better and better, the correction at each step should get smaller
and smaller. But since we approximate (5.3) using samples only, the
sample from the mixture will contain only a fraction β of examples
from Q. So, as t increases, getting meaningful information from a

Train Q on Reweighted Data R
Optimize Df (Q ‖R), not (5.3)

sample so as to tune Q becomes harder and harder (the information
is “diluted”). To solve this issue, we propose to upper bound (5.3)
by a problem of the form (5.4) where the distribution R can be com-
puted as a re-weighting of the original data distribution PX. This
procedure is reminiscent of the AdaBoost algorithm [29], which com- [29] Freund and Schapire, A Decision-

Theoretic Generalization of On-Line Learn-
ing and an Application to Boosting, 1997

bines multiple weak predictors into one strong composition. On each
step AdaBoost adds new predictor to the current composition, which
is trained to minimize the binary loss on the re-weighted training set.
The weights are constantly updated to bias the next weak learner
towards “hard” examples, which were incorrectly classified during
previous stages.

In the following we will analyze the properties of (5.3) and derive
upper bounds that provide practical optimization criteria to build the
mixture. We will also show that under certain assumptions, the min-
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imization of the upper bound leads to the optimum of the original
criterion.

5.1.2 Upper Bounds

We provide two upper bounds on the divergence of the mixture in
terms of the divergence of the additive component Q with respect to
some reference distribution R.

Lemma 5.1.1. Let PX,PY ,Q,R be four probability distributions, β ∈ [0, 1],
f ∈ Fdiv. If the f-divergence Df is Hilbertian, then√

Df ((1−β)PY +βQ ‖PX) 6√
βDf (Q ‖R) +

√
Df ((1−β)PY +βR ‖PX) . (5.5)

More generally, for any f-divergence Df s.t. f ∈ Fdiv, if βdR 6 dPX, then

Df ((1−β)PY +βQ ‖PX) 6

βDf (Q ‖R) + (1−β)Df

(
PY

∥∥∥∥ PX −βR

1−β

)
. (5.6)

We can thus exploit those bounds by introducing some well-
chosen distribution R and then minimizing them with respect to Q.
A natural choice for R is a distribution that minimizes the last term of
the upper bound (which does not depend on Q). The next theorem,
this chapter’s main result, indicates the shape of the distributions
minimizing the right-most terms in those bounds.

Theorem 5.1.2. For any differentiable f-divergence function f ∈ Fdiv, any
fixed probability distributions PX,PY , and any β ∈ (0, 1], the problem

arg min
R∈P

Df ((1−β)PY +βR ‖PX)

is minimized by a distribution R∗β with density

Optimal Reweighting R∗β

dR∗β(x) =
1

β
(λ∗dPX(x) − (1−β)dPY(x))+

=
dPX
β

(
λ∗ − (1−β)

dPY
dPX

)
+

.
(5.7)

for the unique λ∗ ∈ [β, 1] that satisfies
∫

dR∗β = 1. Also, λ∗ = 1 iff
PX((1−β)dPY > dPX) = 0, i.e. iff βdR∗β = dPX − (1−β)dPY .

Theorem 5.1.3. Let PX,PY ∈ P, β ∈ (0, 1], and f be defined over (0,∞).
Assume that PX (dPY = 0) < β. Then

arg min
R:βdR6dPX

Df

(
PY

∥∥∥∥ PX −βR

1−β

)
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has a solution with density dR†β(x) = 1
β

(
dPX(x) − λ

†(1−β)dPY(x)
)
+

Optimal Reweighting R†β
for the unique λ† > 1 that satisfies

∫
dR†β = 1.

Surprisingly, in both Theorems 5.1.2 and 5.1.3, the solutions do
not depend on the choice of the function f, which means that the
solution is the same for any f-divergence2. Note that λ∗ is implicitly 2 In particular, by replacing f with

f◦(x) := xf(1/x), we get the same
solution for the criterion written in the
other direction. Hence the order in
which we write the divergence does not
matter and the optimal solution is opti-
mal for both orders.

defined by a fixed-point equation. In Section 5.2 we will show how
it can be computed efficiently in the case of empirical distributions.

5.1.3 Convergence Analysis for Optimal Updates

In the previous section we derived the analytical expressions of the
distributions R that minimize the last term of (5.5) and (5.6) re-
spectively. Assuming for now that Q can perfectly match R, i.e.
Df (Q ‖R) = 0, we are now interested in the convergence of the mix-
ture (5.2) to the true data distribution PX when Q = R∗β or Q = R

†
β.

We start with simple results showing that adding R∗β or R†β to the
current mixture yields a strict improvement of the divergence, as tar-
geted by (5.4).

Lemma 5.1.4. Under the conditions of Theorem 5.1.2, we have

Df

(
(1−β)PY +βR∗β

∥∥∥PX) 6 Df ((1−β)PY +βPX ‖PX)

6 (1−β)Df (PY ‖PX) .

Under the conditions of Theorem 5.1.3, we have

Property 5.4
Optimal Reweightings R∗β & R

†
β

Improve Mixture Exponentially

Df

(
PY

∥∥∥∥∥ PX −βR†β
1−β

)
6 Df (PY ‖PX) and

Df

(
(1−β)PY +βR†β

∥∥∥PX) 6 (1−β)Df (PY ‖PX) .

Imagine repeatedly adding T new components to the current mix-
ture PY , where on every step we use the same weight β and choose
the components described in Theorem 5.1.2. Then Lemma 5.1.4 guar-
antees that the original objective value Df (PY ‖PX) gets reduced at
least to (1−β)TDf (PY ‖PX). This exponential convergence rate may
look surprisingly good. But it relies on the optimal component tar-
get R∗β, which depends on PX, which we actually only know via a
sample.

Lemma 5.1.4 also suggests setting β as large as possible since we
assume that we can compute the optimal mixture component (which
for β = 1 is PX). However, in practice we may prefer to keep β rel-
atively small to preserve what we learned so far through PY : for in-
stance, when PY already covered a few modes of PX, we only need Q
to cover the remaining ones. Section 5.2 provides further discussions
on how to choose β. Additionally, Corollary 1 in [117] establishes [117] Tolstikhin et al., AdaGAN - arXiv,

2017
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necessary and sufficient conditions for the mixture to converge, not
just exponentially, but even in a finite number of steps.

5.1.4 Suboptimal Updates: Weak to Strong Learnability

In practice the componentQ that we add to the mixture is not exactly
R∗β or R†β, but rather an approximation. In this section we show that if
this approximation is good enough, then we retain the property (5.4)
(exponential improvements).

Looking again at Lemma 5.1.1, we notice that the first upper
bound is less tight than the second one. Indeed, take the optimal
distributions provided by Theorems 5.1.2 and 5.1.3 and plug them
back as R into the upper bounds of Lemma 5.1.1. Assume that Q can
match R exactly, i.e. Df (Q ‖R) = 0. In this case both sides of (5.5) are

equal to Df
(
(1−β)PY +βR∗β

∥∥∥PX), which is the optimal value for
the original objective (5.3). On the other hand, (5.6) does not become
an equality and the r.h.s. is not the optimal one for (5.3). Never-
theless, Corollaries 5.1.5 and 5.1.6 will show that our more modest
goal (5.4) – which guarantees exponential improvements – may still
be reached. They provide sufficient conditions for strict improve-
ments when we use the upper bounds (5.6) and (5.5) respectively.

Corollary 5.1.5. Let PX,PY ∈ P, β ∈ (0, 1] and assume that
PX

(
dPY
dPX

= 0
)
< β. Let R†β be as defined in Theorem 5.1.3. If Q satis-

fies

Df

(
Q
∥∥∥R†β) 6 γDf (PY ‖PX) (5.8)

for some γ ∈ [0, 1], then

Df ((1−β)PY +βQ ‖PX) 6 (1−β(1− γ))Df (PY ‖PX) .
Imperfect Reweightings May Lead

to Exponential ImprovementCorollary 5.1.6. Let Df be a Hilbertian f-divergence. Take any β ∈ (0, 1],
PX, PY , and let R∗β be as defined in Theorem 5.1.2. If Q satisfies

Df

(
Q
∥∥∥R∗β) 6 γDf (PY ‖PX) (5.9)

for some γ ∈ [0, 1], then Df ((1−β)PY +βQ ‖PX) 6 Cγ,β ·
Df (PY ‖PX) , where Cγ,β =

(√
γβ+

√
1−β

)2 is strictly smaller than 1
as soon as γ < β/4 (and β > 0).

(5.8) & (5.9) = Weak Learnability

Conditions (5.8) and (5.9) may be compared to the “weak learn-
ability” condition of AdaBoost. As long as our weak learner is able
to solve the surrogate problem (5.1) of matching respectively R†β or
R∗β accurately enough, the original objective (5.3) is guaranteed to
decrease as well. Note however that when γ < β/4, Condition (5.9)
might be too strong to be called “weak”. Indeed, as already men-
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tioned, the weight β usually decreases as the number of mixture
components T increases, which makes it harder and harder to meet
Condition (5.9). This obstacle may be partially resolved by the fact
that we will use a GAN to fit Q, which corresponds to a relatively
rich3 class of models G in (5.1). In other words, our weak learner 3 How hard it is to meet Condition (5.9)

of course depends on the class of mod-
els G used to fit Q in (5.1). We leave
this analysis for future research.

is not so weak. As to Condition (5.8), it is milder. No matter what
γ ∈ [0, 1] and β ∈ (0, 1] are, the new component Q is guaranteed to
strictly improve our objective. This comes at the price of the addi-
tional condition PX(dPY/dPX = 0) < β, which asserts that β should
be larger than the mass of true data PX missed by the current model
PY . This is a rather reasonable condition: if PY still missed many
modes of PX we would prefer to assign a relatively large weight β to
the new component Q. However both Conditions (5.8) and (5.9) are
difficult to check in practice.

5.2 AdaGAN

We now describe the functions ChooseMixtureWeight and UpdateTrain-
ingWeights of Algorithm 5. The complete AdaGAN meta-algorithm
with the details of UpdateTrainingWeight and ChooseMixtureWeight, is
summarized in Algorithm B.2 of Appendix B.2.1.

UpdateTrainingWeights. At each iteration we add a new compo-
nent Q with weight β to the current mixture PY which yields a new
mixture (1−β)PY +βQ. Q should approach the “optimal target” R∗β

Reweighting Data Using R∗β
Requires dPY/dPX

provided by (5.7) in Theorem 5.1.2. But R∗β depends on the density
ratio dPY/dPX, which is not directly accessible. We can however
estimate this ratio using adversarial training as follows. We train a
separate mixture discriminator DM to approximately minimize the f-
divergence between PX and the current mixture PY (using samples
only):

arg min
DM

E
X∼PX

[DM(X)] − E
Y∼PY

[f∗(Y)]

But from Nowozin et al. [82], we know that to each f-divergence [82] Nowozin et al., f-GAN, 2016

corresponds a function h such that the values of the optimal discrim-
inator DM are related to the density ratio by

Approximate dPY/dPX With
a PX-PY-Discriminator

dPY
dPX

(x) = h
(
DM(x)

)
. (5.10)

We can replace dPY(x)/dPX(x) in (5.7) with h
(
DM(x)

)
. For the

Jensen-Shannon divergence, used by the original GAN algorithm,
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h(z) = 1−z
z . In practice, when we compute dR∗β on the training

sample SN = (X1, . . . ,XN), each example Xi receives weight

wi =
1

βN

(
λ∗ − (1−β)h(di)

)
+

, where di = DM(Xi) . (5.11)

The only remaining task is to determine λ∗. As the weights wi
in (5.11) must sum to 1, we get:

Determining the λ∗ in R∗λ∗ =
β∑

i∈I(λ∗) pi

1+ (1−β)

β

∑
i∈I(λ∗)

pih(di)

 (5.12)

where I(λ) := {i : λ > (1− β)h(di)}. To find I(λ∗), we sort h(di) in
increasing order: h(d1) 6 . . . 6 h(dN). Then I(λ∗) is a set consisting
of the first k indices. We then successively test all k-s until the λ given
by (5.12) verifies (1−β)h(dk) < λ 6 (1−β)h(dk+1) . This procedure
is guaranteed to converge by Theorem 5.1.2. It is summarized in
Algorithm B.1 of Appendix B.2.1.

ChooseMixtureWeight. For every β there is an optimal re-
weighting scheme with weights given by (5.11). If the GAN could
perfectly approximate its target R∗β, then choosing β = 1 would be
optimal, because R∗1 = PX. But in practice, GANs cannot do that. So
we propose to choose β heuristically by imposing that each genera-
tor of the final mixture model has same weight. This yields βt = 1/t,

β Heuristic: βt = 1/t

where t is the iteration index. Other heuristics are proposed in Ap-
pendix B.2.2, but did not lead to any significant difference.

The optimal discriminator. In practice it is of course hard to find
the optimal discriminator DM achieving the global maximum of the
variational representation for the f-divergence and verifying (5.10).
For the JS-divergence this would mean that DM is the classifier
achieving minimal expected cross-entropy loss in the binary clas-
sification between PY and PX. In practice, we observed that the

Restrict the Power of the
PX-PY-Discriminator

reweighting (5.11) leads to the desired property of emphasizing at
least some of the missing modes as long as DM distinguishes reason-
ably between data points already covered by the current model PY
and those which are still missing. We found an early stopping (while
training DM) sufficient to achieve this. In the worst case, when DM
overfits and returns 1 for all true data points, the reweighting simply
leads to the uniform distribution over the training set.

5.3 Experiments

We ran AdaGAN4 on toy datasets, for which we can interpret the 4 Code available online at https://
github.com/tolstikhin/adaganmissing modes in a clear and reproducible way, and on MNIST,

which is a high-dimensional dataset. The goal of these experiments

https://github.com/tolstikhin/adagan
https://github.com/tolstikhin/adagan
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Figure 5.2: Coverage C of the true data
by the model distribution PTY , as a func-
tion of iterations T . Experiments cor-
respond to the data distribution with
5 modes. Each blue point is the me-
dian over 35 runs. Green intervals are
defined by the 5% and 95% percentiles
(see Section 5.3). Iteration 0 is equiva-
lent to one vanilla GAN. The left plot
corresponds to taking the best genera-
tor out of T runs. The middle plot
is an “ensemble” GAN, simply taking
a uniform mixture of T independently
trained GAN generators. The right plot
corresponds to our boosting approach
(AdaGAN), with βt = 1/t.

was not to evaluate the visual quality of individual sample points, but
to demonstrate that the re-weighting scheme of AdaGAN promotes
diversity and effectively covers the missing modes.

5.3.1 Toy Datasets

Our target distribution is a mixture of isotropic Gaussians over R2, as
in Figure 5.1. The distances between the means are large enough to
roughly avoid overlaps between different Gaussian components. We
vary the number of modes to test how well each algorithm performs
when there are fewer or more expected modes. We compare the
baseline GAN algorithm with AdaGAN variations, and with other
meta-algorithms that all use the same underlying GAN procedure.
For details on these algorithms and on the architectures of the under-
lying generator and discriminator, see Appendix B.2.2.

To evaluate how well the generated distribution matches the target
distribution, we use a coverage metric C. We compute the probability
mass of the true data “covered” by the model PY . More precisely, we
compute C := PX(dPY > t) with t such that PY(dPY > t) = 0.95. This
metric is more interpretable than the likelihood, making it easier to
assess the difference in performance of the algorithms. To approx-

Recovering 2D Mixture
of 5 Gaussians

imate the density of PY we use a kernel density estimation, where
the bandwidth is chosen by cross validation. We repeat the run 35
times with the same parameters (but different random seeds). For
each run, the learning rate is optimized using a grid search on a val-
idation set. We report the median over those multiple runs, and the
interval corresponding to the 5% and 95% percentiles.

Figure 5.2 summarizes the performance of algorithms as a func-
tion of the number of iterations T . Both the ensemble and the boost-
ing approaches significantly outperform the vanilla GAN and the
“best of T” algorithm. Interestingly, the improvements are significant
even after just one or two additional iterations (T = 2 or 3). Our
boosting approach converges much faster. In addition, its variance
is much lower, improving the likelihood that a given run gives good
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Figure 5.3: Digits from the MNIST
dataset corresponding to the smallest
(left) and largest (right) weights, ob-
tained by the AdaGAN procedure (see
Section 5.2) in one of the runs. Bold dig-
its (left) are already covered and next
GAN will concentrate on thin (right)
digits.

results. On this setup, the vanilla GAN approach has a significant
number of catastrophic failures (visible in the lower bounds of the
intervals). Further empirical results are available in Appendix B.2.2,
where we compared AdaGAN variations to several other baseline
meta-algorithms in more details (Table B.1) and combined AdaGAN
with the unrolled GANs (UGAN) [75] (Figure B.1). Interestingly,

[75] Metz et al., Unrolled GANs, 2017Figure B.1 shows that AdaGAN ran with UGAN outperforms the
vanilla UGAN on the toy datasets, demonstrating the advantage of
using AdaGAN as a way to further improve the mode coverage of
any existing GAN implementations.

5.3.2 MNIST and MNIST3

We ran experiments both on the original MNIST and on the 3-digit
MNIST (MNIST3) [18, 75] dataset, obtained by concatenating 3 ran- [18] Che et al., Mode Regularized GANs,

2017; [75] Metz et al., Unrolled GANs,
2017;

domly chosen MNIST images to form a 3-digit number between 0
and 999. According to [18, 75], MNIST contains 10 modes, while [18] Che et al., Mode Regularized GANs,

2017; [75] Metz et al., Unrolled GANs,
2017;

MNIST3 contains 1000 modes, and these modes can be detected us-
ing the pre-trained MNIST classifier. We combined AdaGAN both
with simple MLP GANs and DCGANs [86]. We used T ∈ {5, 10}, [86] Radford et al., Unsupervised Rep-

resentation Learning with Deep Convolu-
tional GANs, 2016

tried models of various sizes and performed a reasonable amount of
hyperparameter search.

Similarly to [75] we failed to reproduce the missing modes prob- [75] Metz et al., Unrolled GANs, 2017,
Sec 3.3.1lem for MNIST3 reported in [18] and found that simple GAN archi- [18] Che et al., Mode Regularized GANs,
2017tectures are capable of generating all 1000 numbers. The authors

of [75] proposed to artificially introduce the missing modes again by [75] Metz et al., Unrolled GANs, 2017

limiting the generators’ flexibility. In our experiments, GANs trained
with the architectures reported in [75] were often generating poorly [75] Metz et al., Unrolled GANs, 2017
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looking digits. As a result, the pre-trained MNIST classifier was out-
putting random labels, which again led to full coverage of the 1000
numbers. We tried to threshold the confidence of the pre-trained
classifier, but decided that this metric was too ad-hoc.

For MNIST we noticed that the re-weighted distribution was of-
ten concentrating its mass on digits having very specific strokes: on

Reweighted Data Emphasizes
Specific Strokes

different rounds it could highlight thick, thin, vertical, or diagonal
digits, indicating that these traits were underrepresented in the gen-
erated samples (see Figure 5.3). This suggests that AdaGAN does a
reasonable job at picking up different modes of the dataset, but also
that there are more than 10 modes in MNIST (and more than 1000
in MNIST3). It is not clear how to evaluate the quality of generative
models in this context.

We also tried to use the “inversion” metric discussed in [75]. For [75] Metz et al., Unrolled GANs, 2017,
Sec 3.4.1MNIST3 we noticed that a single GAN was capable of reconstruct-

ing most of the training points very accurately both visually and in
the `2-reconstruction sense. The “inversion” metric tests whether
the trained model can generate certain examples or not, but unfortu-
nately it does not take into account the probabilities of doing so.

5.4 Chapter Conclusion

We studied the problem of minimizing general f-divergences with
additive mixtures of distributions. Our detailed theoretical analy-
sis naturally leads to a greedy iterative procedure. On every itera-
tion the mixture is updated with a new component trained on a re-
weighted target distribution. We provided conditions under which
this procedure is guaranteed to converge to the target distribution
at an exponential rate. While our results can be combined with any
generative modeling techniques, we focused on GANs and provided
a boosting-style algorithm AdaGAN. Preliminary experiments show
that AdaGAN successfully produces a mixture which iteratively re-
covers the missing modes.

This closes our second part, which concentrated on distribution-
dissimilarities in the context of generative algorithms. Almost all
those algorithms relied on classifier-based dissimilarities with a neu-
ral network as a classifier. We now turn specifically towards those
“network-based dissimilarities”, and one of their striking deficiencies:
adversarial vulnerability.

Related Literature

Several authors [45, 120, 124] proposed to use boosting techniques [124] Welling et al., Self Supervised Boost-
ing, 2002; [120] Tu, Learning Genera-
tive Models via Discriminative Approaches,
2007; [45] Grover and Ermon, Boosted
Generative Models, 2018;

in the context of density estimation by incrementally adding com-
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ponents in the log domain. This idea was even applied to GANs
in [45]. A major downside of these approaches is that the resulting [45] Grover and Ermon, Boosted Genera-

tive Models, 2018mixture is a product of components. Sampling from such models
is nontrivial (at least when applied to GANs where the model den-
sity is not expressed analytically) and requires techniques such as
Annealed Importance Sampling [81] for the normalization. [81] Neal, Annealed Importance Sampling,

2001When the log likelihood can be computed, [90] proposed to use [90] Rosset and Segal, Boosting Density
Estimation, 2002an additive mixture model. They derived the update rule by comput-

ing the steepest descent direction when adding a component with
infinitesimal weight. However, their results do not apply once the
weight β becomes non-infinitesimal. In contrast, for any fixed weight
of the new component our approach gives the overall optimal up-
date (rather than just the best direction) for a specified f-divergence.
In both theories, improvements of the mixture are guaranteed only
if the new “weak” learner is still good enough (see Conditions 5.8
& 5.9)

Similarly, [65] studied the construction of mixtures minimizing [65] Li and Barron, Mixture Density Esti-
mation, 1997the KL divergence and proposed a greedy procedure to do so. They

also proved that under certain conditions, finite mixtures can ap-
proximate arbitrary mixtures at a rate 1/k where k is the number
of components in the mixture when the weight of each newly added
component is 1/k. These KL-specific results are consistent with our
more general results.

An additive procedure similar to ours was proposed in [123] but [123] Wang et al., Ensembles of GANs,
2016with a different re-weighting scheme, which is not motivated by a

theoretical analysis of optimality conditions. On every new iteration
the authors run a GAN on the k training examples with maximal
values of the discriminator from the last iteration.

Finally, many papers address mode-collapse issues by directly
modifying the training objective of an individual GAN. For instance,
[18] adds an auto-encoding cost to the training objective of GAN, [18] Che et al., Mode Regularized GANs,

2017while [75] allows the generator to “look a few steps ahead” when [75] Metz et al., Unrolled GANs, 2017
making a gradient step.
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Almost all generative models encountered in the previous part
appear to minimize a classifier-based, and more precisely a net-

work-based distribution-dissimilarity. They compute approximate f-
divergences (or optimal transportation costs) by optimizing a neural-
network classifier, either in form of a GAN-like discriminator, or of
a VAE-like encoder.1 The properties of these classifiers largely deter- 1 Both share very similar architectures.

mine those of the distribution-dissimilarities. Our introduction and
From Classifier Properties

to Dissimilarity Properties
first part for example stress the importance of the classifier’s capacity.
Too high capacity yields too strong dissimilarities, like f-divergences
that routinely saturate on empirical measures. But if the capacity
gets too low, the dissimilarity may miss essential differences. For
MMDs (and more generally IPMs), if we want guaranteed perfect
discrimination, then the classifier, we saw, needs enough capacity to
approximate any bounded continuous function.2 2 cf. Thm 1.2.2

However, perfect discrimination just means that the dissimilarity
between P and Q is minimized only if P = Q. It does not say any-
thing about other equi-dissimilarity curves. Two distributions may
look much more alike to humans than what the computed dissimi-
larity value may suggest, despite being perfectly discriminative; and
vice-versa. Especially for image generation, where we want to get
realistically looking images, it seems natural to seek distribution-
dissimilarities with “human-like perception”. What we mean is that

Perfect Discrimination Ignores
Other Important Properties

their scores should reflect the human perception of dissimilarity: the
lower their score, the more the scored distributions should look alike
to us. At a pinch, if two samples look so much alike that we, as hu-
mans, are unable to tell if their images came from one or the other
sample, then we may as well let the distribution-dissimilarity give
them the best possible score, even though their empirical measures
may actually not be equal. So it seems that we may want to stop wor-
rying so much about perfect discrimination and start focusing more
on the general shape and properties of the equi-dissimilarity curves,
i.e. the general scoring patterns of the dissimilarity and not just at
the minimal score.

That is what neural network based dissimilarities seem so good
at. Neural network’s startling curve-fitting abilities ensure enough
capacity for (almost) perfect discrimination. But more importantly,
the network’s architecture gives much freedom to emphasize some
distributional differences over others. Convolutional layers for exam-
ple ensure local translation and morphing invariances [72], so that [72] Mallat, Understanding Deep Convolu-

tional Networks, 2016the dissimilarity be naturally inclined to attribute low scores to sam-
ples that differ only by small image-shifts and -morphings. For high-

Network Architecture Can Favor
Some Dissimilarity Invariances

dimensional images, GANs heavily rely on such layers; and their
ability to generate sometimes impressively good artificial images sug-
gests that their discriminator may indeed reflect human perception.
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Another way to test the discriminator’s ability to capture human
perception is to train it on a usual binary or multi-class classification
task and compare its decisions with human ones. Now, state-of-the-
art convolutional neural nets (CNNs) can achieve almost human-like
performance. So everything would seem fine, if it weren’t for the
recent discovery of adversarial examples. Indeed, Goodfellow et al.
[36] noticed that invisible but targeted perturbations of input images [36] Goodfellow et al., Explaining and

Harnessing Adversarial Examples, 2015can lead to drastically different predictions. Two indistinguishable
samples may hence look radically different to the classifier, or equiv-
alently, to the associated distribution-dissimilarity. That shows that
their similarity perception is actually radically different from human
perception. In this last, short part, we try to understand why. We

Adversarial Vulnerability Reveals
Discrepancy btw. Human and

Machine Perception/Dissimilarity

show in particular that the adversarial vulnerability of almost all cur-
rent feedforward architectures increases with the input-dimension. This
explains why even state-of-the-art nets are so sensitive to adversar-
ial input perturbations, and shows that our networks are vulnerable
by construction. It also reveals an essential difference with humans.
For humans, the higher the input resolution, the better. At some
point, we even stop noticing any difference. For our current neu-
ral networks, it is all the contrary: the higher the input resolution,
the more adversarially vulnerable they become. That suggests that
neural networks rely much more than humans on high-frequency
patterns for their decisions; something that needs to change, if our
network-based distribution-dissimilarities are too capture, one day,
human perception.



6Adversarial Vulnerability

of Network Dissimilarities

Following the work of Goodfellow et al. [36], Convolutional [36] Goodfellow et al., Explaining and
Harnessing Adversarial Examples, 2015Neural Networks (CNNs) have been found vulnerable to adver-

sarial examples: an adversary can drive the performance of state-
of-the art CNNs down to chance level with imperceptible changes
of the inputs. A number of studies have tried to address this issue,
but only few have stressed that, because adversarial examples are
essentially small input changes that create large output variations,
they are inherently caused by large gradients of the neural network
with respect to its inputs. Of course, this view, which we will fo-
cus on here, assumes that the network and loss are differentiable.
It has the advantage to yield a large body of specific mathematical
tools, but might not be easily extendable to masked gradients, non-
smooth models or the 0-1-loss. Nevertheless, our conclusions might
even hold for non-smooth models, given that the latter can often be
viewed as smooth at a coarser level.

More specifically, we provide theoretical and empirical arguments
supporting the existence of a monotonic relationship between the
gradient norm of the training objective (of a differentiable classifier)
and its adversarial vulnerability. Evaluating this norm based on the
weight statistics at initialization, we show that CNNs and most feed-
forward networks, by design, exhibit increasingly large gradients with
input dimension d, almost independently of their architecture. That
leaves them increasingly vulnerable to adversarial noise. We corrobo-
rate our theoretical results by extensive experiments. Although some
of those experiments involve adversarial regularization schemes, our
goal is not to advocate a new adversarial defense (these schemes
are already known), but to show how their effect can be explained
by our first order analysis. We do not claim to explain all aspects
of adversarial vulnerability, but we claim that our first order argu-
ment suffices to explain a significant part of the empirical findings
on adversarial vulnerability. This calls for researching the design of
neural network architectures with inherently smaller gradients and
provides useful guidelines to practitioners and network designers.

93
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6.1 From Adversarial Examples to Large Gradients

Suppose that a given classifier ϕ classifies an image x as being in cat-
egory ϕ(x). An adversarial image is a small modification of x, barely
noticeable to the human eye, that suffices to fool the classifier into
predicting a class different from ϕ(x). It is a small perturbation of
the inputs, that creates a large variation of outputs. Adversarial exam-
ples thus seem inherently related to large gradients of the network.
A connection, that we will now clarify. Note that visible adversar-
ial examples sometimes appear in the literature, but we deliberately
focus on imperceptible ones.

Adversarial vulnerability and adversarial damage. In practice, an
adversarial image is constructed by adding a perturbation δ to the
original image x such that ‖δ‖ 6 ε for some (small) number ε and
a given norm ‖·‖ over the input space. We call the perturbed input
x + δ an ε-sized ‖·‖-attack and say that the attack was successful
when ϕ(x+ δ) 6= ϕ(x). This motivates

Definition 6.1.1. Given a distribution P over the input-space, we call ad-
versarial vulnerability of a classifier ϕ to an ε-sized ‖·‖-attack the proba-
bility that there exists a perturbation δ of x such that

Adversarial Vulnerability
> Adversarial Damage‖δ‖ 6 ε and ϕ(x) 6= ϕ(x+ δ) . (6.1)

We call the average increase-after-attack Ex∼P[∆L] of a loss L the (L-)
adversarial damage (of the classifier ϕ to an ε-sized ‖·‖-attack).

When L is the 0-1-loss L0/1, adversarial damage is the accuracy-
drop after attack. The 0-1-loss damage is always smaller than ad-
versarial vulnerability, because vulnerability counts all class-changes
of ϕ(x), whereas some of them may be neutral to adversarial dam-
age (e.g. a change between two wrong classes). The L0/1-adversarial
damage thus lower bounds adversarial vulnerability. Both are even
equal when the classifier is perfect (before attack), because then every
change of label introduces an error. It is hence tempting to evaluate
adversarial vulnerability with L0/1-adversarial damage.

From the 0-1-Loss
to a Smoother Loss

From ∆L0/1 to ∆L and to ∂xL. In practice however, we do not
train our classifiers with the non-differentiable 0-1-loss but use a
smoother loss L, such as the cross-entropy loss. For similar reasons,
we will now investigate the adversarial damage Ex[∆L(x, c)] with
loss L rather than L0/1. Like for [36, 70, 104] and many others, a [36] Goodfellow et al., Explaining and

Harnessing Adversarial Examples, 2015;
[70] Lyu et al., A Unified Gradient Regu-
larization Family for Adversarial Examples,
2015; [104] Sinha et al., Certifiable Distri-
butional Robustness with Principled Adver-
sarial Training, 2018

classifier ϕ will hence be robust if, on average over x, a small adver-
sarial perturbation δ of x creates only a small variation δL of the loss.
Now, But if ‖δ‖ 6 ε, then a first order Taylor expansion in ε shows
that
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δL = max
δ :‖δ‖6ε

|L(x+ δ, c) −L(x, c)| ≈ max
δ :‖δ‖6ε

|∂xL · δ| = ε |||∂xL|||, (6.2)

where ∂xL denotes the gradient of L with respect to x, and where
the last equality stems from the definition of the dual norm |||·||| of
‖·‖. Now two remarks. First: the dual norm only kicks in because
we let the input noise δ optimally adjust to the coordinates of ∂xL
within its ε-constraint. This is the brand mark of adversarial noise:
the different coordinates add up, instead of statistically canceling
each other out as they would with random noise. For example, if
we impose that ‖δ‖2 6 ε, then δ will strictly align with ∂xL. If in-
stead ‖δ‖∞ 6 ε, then δ will align with the sign of the coordinates
of ∂xL. Second remark: while the Taylor expansion in (6.2) becomes
exact for infinitesimal perturbations, for finite ones it may actually be
dominated by higher-order terms. Our experiments (Figure 6.1) how-
ever strongly suggest that in practice the first order term dominates
the others. Now, remembering that the dual norm of an `p-norm is
the corresponding `q-norm, and summarizing, we have proven

Adversarial Damage
∝ Loss-Gradient-Norm

Lemma 6.1.2. At first order approximation in ε, an ε-sized adversarial
attack generated with norm ‖·‖ increases the loss L at point x by ε |||∂xL|||,
where |||·||| is the dual norm of ‖·‖. In particular, an ε-sized `p-attack in-
creases the loss by ε ‖∂xL‖q where 1 6 p 6∞ and 1

p + 1
q = 1.

Consequently, the adversarial damage of a classifier to ε-sized at-
tacks generated with norm ‖·‖ is approximately εEx |||∂xL|||. Since
adversarial damage is always smaller than adversarial vulnerability,
this also estimates a lower-bound of the latter. This is valid only
at first order, but it proves that at least this kind of first-order vul-
nerability is present. We will see that the first-order predictions
closely match the experiments, and that this insight helps protect
even against iterative (non-first-order) attack methods (Figure 6.1).

Calibrating the threshold ε to the attack-norm ‖·‖. Going back to
Lemma 6.1.2, we see that adversarial vulnerability depends on three
main factors: (i) ‖·‖ , the norm chosen for the attack (ii) ε , the size
of the attack, and (iii) Ex |||∂xL||| , the expected dual norm of ∂xL. We
could see Point (i) as a measure of our sensibility to image pertur-
bations, (ii) as our sensibility threshold, and (iii) as the classifier’s
expected marginal sensibility to a unit perturbation. Ex |||∂xL||| hence
intuitively captures the discrepancy between our perception (as mod-
eled by ‖·‖) and the classifier’s perception for an input-perturbation
of small size ε. Of course, this viewpoint supposes that we actually

Threshold ε Should
Depend on Norm ‖·‖

found a norm ‖·‖ (or more generally a metric) that faithfully reflects
human perception – a project in its own right, far beyond the scope of
this chapter. However, it is clear that the threshold ε that we choose
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should depend on the norm ‖·‖ and hence on the input-dimension d.
In particular, for a given pixel-wise order of magnitude of the pertur-
bations δ, the `p-norm of the perturbation will scale like d1/p. This
suggests to write the threshold εp used with `p-attacks as:

Constant Perception Thresholdεp = ε∞ d1/p , (6.3)

where ε∞ denotes a dimension-independent constant. In Ap-
pendix B.3.3 we show that this scaling also preserves the aver-
age signal-to-noise ratio ‖x‖2 / ‖δ‖2, both across norms and dimen-
sions, so that εp could correspond to a constant human perception-
threshold. With this in mind, the impatient reader may already jump
to Section 6.2, which contains our main contributions: the estimation
of E x‖∂xL‖q for standard feed-forward nets. Meanwhile, the rest of
this section shortly discusses two straightforward defenses that we
will use later and that further illustrate the role of gradients.

A new old regularizer. Lemma 6.1.2 shows that the loss of the net-
work after an ε/2-sized ‖·‖-attack is

Linearized Loss-After-AttackLε,|||·|||(x, c) := L(x, c) +
ε

2
|||∂xL||| . (6.4)

It is thus natural to take this loss-after-attack as a new training objec-
tive. Here we introduced a factor 2 for reasons that will become clear
in a moment. Incidentally, for ‖·‖ = ‖·‖2, this new loss reduces to

‖·‖2 Yields Double-Backpropan old regularization-scheme proposed by Drucker and LeCun [25]
[25] Drucker and LeCun, Double Back-
propagation Increasing Generalization Per-
formance, 1991

called double-backpropagation. At the time, the authors argued that
slightly decreasing a function’s or a classifier’s sensitivity to input
perturbations should improve generalization. In a sense, this is ex-
actly our motivation when defending against adversarial examples.
It is thus not surprising to end up with the same regularization term.
Note that our reasoning only shows that training with one specific
norm |||·||| in (6.4) helps to protect against adversarial examples gener-
ated from ‖·‖. A priori, we do not know what will happen for attacks
generated with other norms; but our experiments suggest that train-
ing with one norm also protects against other attacks (see Figure 6.2
and Section 6.3.1).

Link to adversarially-augmented training. In (6.1), ε designates an
attack-size threshold, while in (6.4), it is a regularization-strength.
Rather than a notation conflict, this reflects an intrinsic duality be-
tween two complementary interpretations of ε, which we now inves-
tigate further. Suppose that, instead of using the loss-after-attack, we
augment our training set with ε-sized ‖·‖-attacks x + δ, where for
each training point x, the perturbation δ is generated on the fly to
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locally maximize the loss-increase. Then we are effectively training
with

Adversarially Augmented LossL̃ε,‖·‖(x, c) :=
1

2
(L(x, c) +L(x+ εδ, c)) , (6.5)

where by construction δ satisfies (6.2). We will refer to this technique
as adversarially augmented training. It was first introduced in [36] with [36] Goodfellow et al., Explaining and

Harnessing Adversarial Examples, 2015‖·‖ = ‖·‖∞ under the name of FGSM1-augmented training. Using the 1 FGSM = Fast Gradient Sign Method
first order Taylor expansion in ε of (6.2), this ‘old-plus-post-attack’
loss of (6.5) simply reduces to our loss-after-attack, which proves

Adversarially Augmented Loss
≈ Linearized Loss-After-Attack

Proposition 6.1.3. Up to first-order approximations in ε, L̃ε,‖·‖ = Lε,|||·||| .
Said differently, for small enough ε, adversarially-augmented training with
ε-sized ‖·‖-attacks amounts to penalizing the dual norm |||·||| of ∂xL with
weight ε/2. In particular, double-backpropagation corresponds to train-
ing with `2-attacks, while FGSM-augmented training corresponds to an
`1-penalty on ∂xL.

Tikhonov Regu. ≈ Random Noise
Gradient Regu. ≈ Advers. Noise

This correspondence between training with perturbations and
using a regularizer can be compared to Tikhonov regularization:
Tikhonov regularization amounts to training with random noise [12],

[12] Bishop, Training with noise is equiva-
lent to Tikhonov regularization, 1995

while training with adversarial noise amounts to penalizing ∂xL. Sec-
tion 6.3.1 verifies the correspondence between adversarial augmen-
tation and gradient regularization empirically, which also strongly
suggests the empirical validity of the first-order Taylor expansion
in (6.2).

6.2 Gradient and Adversarial Vulnerability Estimation

In this section, we evaluate the size of ‖∂xL‖q for standard neural
network architectures. We start with fully-connected networks, and
finish with a much more general theorem that, not only encompasses
CNNs (with or without strided convolutions), but also shows that
the gradient-norms are essentially independent of the network topol-
ogy. We start our analysis by showing how changing q affects the
size of ‖∂xL‖q. Suppose for a moment that the coordinates of ∂xL
have typical magnitude |∂xL|. Then ‖∂xL‖q scales like d1/q|∂xL|.
Consequently

Adv. Damage ∝ Input-Dim d

& Avg. Gradient-Coord. Sizeεp ‖∂xL‖q ∝ εp d
1/q |∂xL| ∝ d |∂xL| . (6.6)

This equation carries two important messages. First, we see how
‖∂xL‖q depends on d and q. The dependence seems highest for
q = 1. But once we account for the varying perceptibility threshold
εp ∝ d1/p, we see that adversarial vulnerability scales like d · |∂xL|,
whatever `p-norm we use. Second, (6.6) shows that to be robust
against any type of `p-attack at any input-dimension d, the average
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absolute value of the coefficients of ∂xL must grow slower than 1/d.
Now, here is the catch, which brings us to our core insight.

6.2.1 Core Idea: One Neuron with Many Inputs

In order to preserve the activation variance of the neurons from layer
to layer, the neural weights are usually initialized with a variance
that is inversely proportional to the number of inputs per neuron.
Imagine for a moment that the network consisted only of one output
neuron o linearly connected to all input pixels. For the purpose
of this example, we assimilate o and L. Because we initialize the

For Linear Nets, Average
Gradient-Coord. Size ∝ 1/√d

weights with a variance of 1/d, their average absolute value |∂xo| ≡
|∂xL| grows like 1/

√
d, rather than the required 1/d. By (6.6), the

adversarial vulnerability ε ‖∂xo‖q ≡ ε ‖∂xL‖q therefore increases
like d/

√
d =
√
d.

This toy example shows that the standard initialization scheme, which
preserves the variance from layer to layer, causes the average coordinate-
size |∂xL| to grow like 1/

√
d instead of 1/d. When an `∞-attack tweaks

its ε-sized input-perturbations to align with the coordinate-signs of ∂xL,
all coordinates of ∂xL add up in absolute value, resulting in an output-
perturbation that scales like ε

√
d and leaves the network increasingly vul-

nerable with growing input-dimension.

6.2.2 Generalization to Deep Networks

Our next theorems generalize the previous toy example to a very
wide class of feedforward nets with ReLU activation functions. For
illustration purposes, we start with fully connected nets and only
then proceed to the broader class, which includes any succession of
(possibly strided) convolutional layers. In essence, the proofs iterate
our insight on one layer over a sequence of layers. They all rely on
the following set (H) of hypotheses:

Assumptions on Network’s
Weight-Distribution

H1 Non-input neurons are followed by a ReLU killing half of its
inputs, independently of the weights.

H2 Neurons are partitioned into layers, meaning groups that each
path traverses at most once.

H3 All weights have 0 expectation and variance 2/(in-degree) (‘He-
initialization’).

H4 The weights from different layers are independent.
H5 Distinct weights w,w ′ from a same node satisfy E[ww ′] = 0.

If we follow common practice and initialize our nets as proposed
by He et al. [47], then H3-H5 are satisfied at initialization by de- [47] He et al., Delving Deep into Rectifiers,

2015sign, while H1 is usually a very good approximation [5]. Note that [5] Balduzzi et al., Neural Taylor Approx-
imations, 2017
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such i.i.d. weight assumptions have been widely used to analyze neu-
ral nets and are at the heart of very influential and successful prior
work (e.g., equivalence between neural nets and Gaussian processes
as pioneered by [80]). Nevertheless, they do not hold after training. [80] Neal, Bayesian Learning for Neural

Networks, 1996That is why all our statements in this section are to be understood
as orders of magnitudes that are very well satisfied at initialization in
theory and in practice, and that we will confirm experimentally after
training in Section 6.3. Said differently, while our theorems rely on
the statistics of neural nets at initialization, our experiments confirm
their conclusions after training.

Vulnerability of
Fully Connected Nets

Theorem 6.2.1. Consider a succession of fully connected layers with ReLU
activations which takes inputs x of dimension d, satisfies assumptions (H),
and outputs logits fk(x) that get fed to a final cross-entropy-loss layer L.
Then the coordinates of ∂xfk grow like 1/

√
d, and

‖∂xL‖q ∝ d
1
q−

1
2 and εp ‖∂xL‖q ∝

√
d . (6.7)

These networks are thus increasingly vulnerable to `p-attacks with growing
input-dimension.

Theorem 6.2.1 is a special case of the next theorem, which will
show that the previous conclusions are essentially independent of
the network-topology. We will use the following symmetry assump-
tion on the neural connections. For a given path p, let the path-degree
dp be the multiset of encountered in-degrees along path p. For a
fully connected network, this is the unordered sequence of layer-
sizes preceding the last path-node, including the input-layer. Now
consider the multiset {dp}p∈P(x,o) of all path-degrees when p varies
among all paths from input x to output o. The symmetry assumption
(relatively to o) is

General Symmetry
Assumption

(S) All input nodes x have the same multiset {dp}p∈P(x,o) of path-
degrees from x to o.

Intuitively, this means that the statistics of degrees encountered along
paths to the output are the same for all input nodes. This symmetry
assumption is exactly satisfied by fully connected nets, almost satis-
fied by CNNs (up to boundary effects, which can be alleviated via
periodic or mirror padding) and exactly satisfied by strided layers, if
the layer size is a multiple of the stride.

Vulnerability of
General Feedforward Nets

Theorem 6.2.2. Consider any feed-forward network with linear connec-
tions and ReLU activation functions. Assume the net satisfies assumptions
(H) and outputs logits fk(x) that get fed to the cross-entropy-loss L. Then
‖∂xfk‖2 is independent of the input dimension d and ε2 ‖∂xL‖2 ∝

√
d.

Moreover, if the net satisfies the symmetry assumption (S), then |∂xfk| ∝
1/
√
d and (6.7) still holds: ‖∂xL‖q ∝ d

1
q−

1
2 and εp ‖∂xL‖q ∝

√
d.
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Theorems 6.2.1 and 6.2.2 are proven in Appendix C.5. The
main proof idea is that in the gradient norm computation, the He-
initialization exactly compensates the combinatorics of the number
of paths in the network, so that this norm becomes independent of
the network topology. In particular, we get

Vulnerability of CNNs

Corollary 6.2.3. In any succession of convolution and dense layers, strided
or not, with ReLU activations, that satisfies assumptions (H) and outputs
logits that get fed to the cross-entropy-loss L, the gradient of the logit-
coordinates scale like 1/

√
d and (6.7) is satisfied. In particular, it is in-

creasingly vulnerable with growing input-resolution to attacks generated
with any `p-norm.

Appendix B.3.1 shows that the network gradient are dampened
when replacing strided layers by average poolings, essentially be-
cause average-pooling weights do not follow the He-init assump-
tion H3.

6.3 Empirical Results

In Section 6.3.1, we empirically verify the validity of the first-order
Taylor approximation made in (6.2) (Fig.6.1) and check the corre-
spondence between loss-gradient regularization and adversarially-
augmented training (Fig.6.2). Section 6.3.2 then empirically verifies
that both the average `1-norm of ∂xL and the adversarial vulnerabil-
ity grow like

√
d as predicted by Corollary 6.2.3. For all experiments,

we approximate adversarial vulnerability using various attacks of
the Foolbox-package [87]. We use an `∞ attack-threshold of size [87] Rauber et al., Foolbox v0.8.0, 2017

ε∞ = 0.005 which, for pixel-values ranging from 0 to 1, is completely
imperceptible, but suffices to fool the classifiers on a significant pro-
portion of examples. This ε∞-threshold should not be confused with
the regularization-strengths ε appearing in (6.4) and (6.5), which will
be varied in some experiments.

6.3.1 First-Order Approximation, Gradient Penalty and Ad-
versarial Augmentation

We train several CNNs with same architecture to classify CIFAR-10
images [60]. For each net, we use a specific training method with [60] Krizhevsky, Learning Multiple Lay-

ers of Features from Tiny Images, 2009a specific regularization value ε. The training methods used were
`1- and `2-penalization of ∂xL (Eq. 6.4), adversarial augmentation
with `∞- and `2- attacks (Eq. 6.5) and the cross-Lipschitz regularizer
(Eq. B.4 in Appendix B.3.2). All networks have 6 ‘strided convolution

Training Same Networks with
Different Adversarial Regularizers

→ batchnorm→ ReLU’ layers with strides [1, 2, 2, 2, 2, 2] respectively
and 64 output-channels each, followed by a final fully-connected lin-
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Figure 6.1: Adversarial vulnerability ap-
proximated by different attack-types for
10 trained networks as a function of (a)
the `1 gradient regularization-strength
ε used to train the nets and (b) the av-
erage gradient-norm. These curves con-
firm that the first-order expansion term
in (6.2) is a crucial component of adver-
sarial vulnerability.

ear layer. Results are summarized in Figures 6.1 and 6.2. Figure 6.1
fixes the training method – gradient `1-regularization – and plots the
obtained adversarial vulnerabilities for various attacks types. Fig-
ure 6.2 fixes the attack type – iterative `1-attack – but plots the curves
obtained for various training methods. Note that our goal here is not
to advocate one defense over another, but rather to check the validity
of the Taylor expansion, and empirically verify that first order terms
(i.e., gradients) suffice to explain much of the observed adversarial
vulnerability. Similarly, our goal in testing several attacks (Figure 6.1)
is not to present a specifically strong one, but rather to verify that for
all attacks, the trends are the same: the vulnerability grows with
increasing gradients.

Validity of first order expansion. The efficiency of the first-order de-
fense against iterative (non-firs-order) attacks (Fig.6.1a) strongly sug-
gest that the first-order Taylor expansion in (6.2) is indeed a crucial
component of adversarial vulnerability. This is further confirmed by
the functional-like dependence between any approximation of adver-
sarial vulnerability and Ex ‖∂xL‖1 (Fig.6.1b), and its independence
on the training method (Fig.6.2d). Said differently, adversarial exam-
ples seem indeed to be primarily caused by large gradients of the
classifier as captured via the induced loss. 2 2 On Figure 6.1, the two `∞-attacks

seem more efficient than the others,
because we chose an `∞ perturbation
threshold (ε∞). With an `2-threshold
it is the opposite (see Figure B.4, Ap-
pendix B.3.4).

Illustration of Proposition 6.1.3. The upper row of Figure 6.2 plots
Ex ‖∂xL1‖, adversarial vulnerability and accuracy as a function of
εd1/p. The excellent match between the adversarial augmentation
curve with p = ∞ (p = 2) and its gradient-regularization dual coun-
terpart with q = 1 (resp. q = 2) illustrates the duality between ε
as a threshold for adversarially-augmented training and as a regu-
larization constant in the regularized loss (Proposition 6.1.3). It also
supports the validity of the first-order Taylor expansion in (6.2).

Confirmation of (6.3). Still on the upper row, the curves for p =∞,q = 1 have no reason to match those for p = 2,q = 2when plotted
against ε, because ε is a threshold that is relative to a specific attack-
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Figure 6.2: Average norm Ex ‖∂xL‖
of the loss-gradients, adversarial vul-
nerability and accuracy (before attack)
of various networks trained with differ-
ent adversarial regularization methods
and regularization strengths ε. Each
point represents a trained network, and
each curve a training-method. Up-
per row: A priori, the regularization-
strengths ε have different meanings for
each method. The near superposition
of all upper-row curves illustrates (i)

the duality between adversarial aug-
mentation and gradient-regularization
(Prop. 6.1.3) and (ii) confirms the
rescaling of ε proposed in (6.3). (d):
near functional relation between adver-
sarial vulnerability and average loss-
gradient norms. (e): the near-perfect
linear relation between the E‖∂xL‖1
and E‖∂xL‖2 suggests that protect-
ing against a given attack-norm also
protects against others. (f): Merg-
ing 6.2band 6.2c shows that all ad-
versarial augmentation and gradient-
regularization methods achieve similar
accuracy-vulnerability trade-offs.

norm. However, (6.3) suggested that the rescaled thresholds εd1/p

may approximately correspond to a same ‘threshold-unit’ across `p-
norms and across dimension. This is well confirmed by the upper
row plots: by rescaling the x-axis, the p = q = 2 and q = 1 ,p = ∞
curves get almost super-imposed.

Accuracy-vs-vulnerability trade-off. Merging Figures 6.2b and 6.2c
by taking out ε, Figure 6.2f shows that all gradient regularization and
adversarial training methods yield equivalent accuracy-vulnerability
trade-offs. For higher penalization values, these trade-offs are much
better than those given by cross Lipschitz regularization.

The penalty-norm does not matter. We were surprised to see that
on Figures 6.2d and 6.2f, the Lε,q curves are almost identical for
q = 1 and 2. This indicates that both norms can be used inter-
changeably in (6.4) (modulo proper rescaling of ε via (6.3)), and
suggests that protecting against a specific attack-norm also protects
against others. (6.6) may provide an explanation: if the coordi-
nates of ∂xL behave like centered, uncorrelated variables with equal
variance –which follows from assumptions (H) –, then the `1- and
`2-norms of ∂xL are simply proportional. Plotting Ex ‖∂xL(x)‖2
against Ex ‖∂xL(x)‖1 in Figure 6.2e confirms this explanation. The
slope is independent of the training method. Therefore, penaliz-
ing ‖∂xL(x)‖1 during training will not only decrease Ex ‖∂xL‖1
(as shown in Figure 6.2a), but also drive down Ex ‖∂xL‖2 and vice-
versa.
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Figure 6.3: Both adversarial vulnera-
bility (left) and Ex ‖∂xL‖1 (right) in-
crease linearly with the square-root of
the image-resolution d, as predicted by
Corollary 6.2.3. Adversarial vulnera-
bility gets slightly dampened at higher
dimension, probably because the first-
order approximation made in (6.2) be-
comes less and less valid.

6.3.2 Vulnerability Grows with Input Resolution

Theorems 6.2.1-6.2.2 and Corollary 6.2.3 predict a linear growth of
the average `1-norm of ∂xL with the square root of the input dimen-
sion d, and therefore also of adversarial vulnerability (Lemma 6.1.2).
To test these predictions, we created a 12-class dataset of approxi-
mately 80, 000 256 × 256 × 3-sized RGB-images by merging similar
ImageNet-classes [24], resizing the smallest image-edge to 256 pixels [24] Deng et al., ImageNet: A Large-Scale

Hierarchical Image Database, 2009and center-cropping the result. We then downsized the images to

Training Similar Nets but
with Different Input Sizes

32, 64, 128 and 256 pixels per edge, and trained 10 CNNs on each of
these downsized datasets. We then computed adversarial vulnerabil-
ity (with iterative `∞-attacks) and average ‖∂xL‖1 for each network
on a same held-out test-dataset. Figure 6.3 summarizes the results.
The dashed-line follows the median of each group of 10 networks;

Gradients Indeed
Increase as

√
d

the errorbars show the 10th and 90th quantiles. As predicted by our
theorems, both ‖∂xL‖1 and adversarial vulnerability grow approxi-
mately linearly with

√
d. As the gradients get much larger at higher

dimensions, the first order approximation in (6.2) becomes less and
less valid, which may explain the little inflection of the adversarial
vulnerability curve. For smaller ε-thresholds, we verified that the
inflection disappears.

All networks had exactly the same amount of parameters and very
similar structure across the various input-resolutions. The CNNs
were a succession of 8 ‘convolution → batchnorm → ReLU’ layers
with 64 output channels, followed by a final full-connection to the 12
logit-outputs. We used 2× 2-max-poolings after layers 2,4 and 6, and
a final max-pooling after layer 8 that fed only 1 neuron per channel
to the fully-connected layer. To ensure that the convolution-kernels
cover similar ranges of the images across each of the 32, 64, 128
and 256 input-resolutions, we respectively dilated all convolutions
(‘à trous’) by a factor 1, 2, 4 and 8.
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6.4 Chapter Conclusion

For differentiable classifiers and losses, we showed that adversarial
vulnerability increases with the gradients ∂xL of the loss, which is
confirmed by the near-perfect functional relationship between gra-
dient norms and vulnerability (Figures 6.1&6.2d). We then evalu-
ated the size of ‖∂xL‖q and showed that usual feed-forward nets
(convolutional or fully connected) are increasingly vulnerable to `p-
attacks with growing input dimension d (the image-size), almost in-
dependently of their architecture. Our theorems rely on the statis-
tical weight distribution at initialization, but our experiments con-
firm the conclusions also for the tested networks after training. Our
results rely on a first order analysis that assumes a differentiable
loss and architecture: they may not cover every aspect of adversarial
vulnerability nor easily extend to non-differentiable structures (even
though such structures are often smooth at a coarser scale). Never-
theless, they show that at least this type of first-order vulnerability
is present, common, and firmly rooted in our current network archi-
tectures. They hence suggest to tackle adversarial vulnerability by
designing new architectures (or new architectural building blocks)
rather than by new regularization techniques.

These findings also question the quality of the network-based dis-
similarity measures used in GAN- and VAE-style algorithms. Those
algorithms indeed all rely on a network-based classifier (either in the
form of a GAN discriminator or of a VAE encoder). GANs for ex-
ample use this classifier to compute a dissimilarity measure between
true and fake samples. This measure should quantify how realistic
the generated samples looks like. But if even real samples can be

Adv. Vulnerability: Mismatch btw.
Human & Machine Perception

altered by invisible perturbations that fool the classifier into being
certain that they are fake, one may seriously question the reliabil-
ity of these network-based distribution-dissimilarities. This chapter
shows that if we want to overcome these pitfalls and get network-
dissimilarities with human-like perception, we must at least seriously
rethink our architectures.

Related Literature

Goodfellow et al. [36] already stressed that adversarial vulnerabil- [36] Goodfellow et al., Explaining and
Harnessing Adversarial Examples, 2015ity increases with growing dimension d. Their argument relies on

a ‘one-output-to-many-inputs’-model with dimension-independent
weights. They therefore conclude on a linear growth of adversarial
vulnerability with d and accuse our networks of being “too linear-
like”. Although this linear dependence becomes

√
d when adjusting

for a dimension-dependent weight-initialization, our theory and ex-
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periments nevertheless confirm this point of view, in the sense that
a first-order Taylor expansion is indeed sufficient to explain the ad-
versarial vulnerability of neural networks. As suggested by the one-
output-to-many-inputs model, the culprit is that growing dimension-
ality gives the adversary more and more room to ‘wriggle around’
with the noise and adjust to the gradient of the output neuron. This
wriggling, we show, is still possible when the output is connected to
all inputs only indirectly, even when no neuron is directly connected
to all inputs, like in CNNs. This explanation of adversarial vulner-
ability is independent of the intrinsic dimensionality or geometry of
the data (compare to [3, 35]). [3] Amsaleg et al., The Vulnerability

of Learning to Adversarial Perturbation
Increases with Intrinsic Dimensionality,
2017; [35] Gilmer et al., Adversarial
Spheres, 2018

Incidentally, Goodfellow et al. [36] also already relate adversarial

[36] Goodfellow et al., Explaining and
Harnessing Adversarial Examples, 2015

vulnerability to large gradients of the loss L, an insight at the very
heart of their FGSM-algorithm. They however do not propose any
explicit penalizer on the gradient of L other than indirectly through
adversarially-augmented training. Conversely, [89] propose the old [89] Ross and Doshi-Velez, Improv-

ing the Adversarial Robustness and Inter-
pretability of Deep Neural Networks by
Regularizing Their Input Gradients, 2018

double-backpropagation to robustify networks but make no connec-
tion to FGSM and adversarial augmentation. Lyu et al. [70] discuss

[70] Lyu et al., A Unified Gradient Regu-
larization Family for Adversarial Examples,
2015

and use the connection between gradient-penalties and adversarial
augmentation, but never actually compare both in experiments. This
comparison however is essential to test the validity of the first-order
Taylor expansion in (6.2), as confirmed by the similarity between the
gradient-regularization and adversarial-augmentation curves in Fig-
ure 6.2.Hein and Andriushchenko [48] derived yet another gradient- [48] Hein and Andriushchenko, Formal

Guarantees on the Robustness of a Classifier
against Adversarial Manipulation, 2017

based penalty –the cross-Lipschitz-penalty– by considering (and prov-
ing) formal guarantees on adversarial vulnerability itself, rather than
adversarial damage. While both penalties are similar in spirit, fo-
cusing on the adversarial damage rather than vulnerability has two
main advantages. First, it achieves better accuracy-to-vulnerability
ratios, both in theory and practice, because it ignores class-switches
between misclassified examples and penalizes only those that reduce
the accuracy. Second, it allows to deal with one number only, ∆L0/1
or ∆L, whereas the cross-Lipschitz regularizer [48] and theoretical [48] Hein and Andriushchenko, Formal

Guarantees on the Robustness of a Classifier
against Adversarial Manipulation, 2017

guarantees explicitly involve all K logit-functions (and their gradi-
ents). See Appendix B.3.2. Penalizing network-gradients is also at
the heart of contractive auto-encoders as proposed in [88], where it [88] Rifai et al., Contractive Auto-

Encoders, 2011is used to regularize the encoder-features. Seeing adversarial train-
ing as a generalization method, let us also mention Hochreiter and
Schmidhuber [50], who propose to enhance generalization by search- [50] Hochreiter and Schmidhuber, Sim-

plifying Neural Nets by Discovering Flat
Minima, 1995

ing for parameters in a “flat minimum region” of the loss. This leads
to a penalty involving the gradient of the loss, but taken with respect
to the weights, rather than the inputs. In the same vein, a gradient-
regularization of the loss of generative models also appears in Propo-
sition 6 of [84], where it stems from a code-length bound on the data [84] Ollivier, Auto-Encoders: Reconstruc-

tion versus Compression, 2014(minimum description length). More generally, the gradient regu-
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larized objective (6.4) is essentially the first-order approximation of
the robust training objective max‖δ‖6ε L(x+ δ, c) which has a long
history in math [122], machine learning [127] and now adversarial
vulnerability [104]. Finally, [22] proposes new network-architectures [22] Cisse et al., Parseval Networks, 2017

that have small gradients by design, rather than by special training:
an approach that makes all the more sense, considering the conclu-
sion of Theorems 6.2.1 and 6.2.2. For further details and references
on adversarial attacks and defenses, we refer to [128]. [128] Yuan et al., Adversarial Examples,

2017
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Statistics traditionally use strong dissimilarities. They are handy
for proofs, but not for applied work on samples. Practitioners there-
fore usually resort to unjustified tricks, such as smoothing the sam-
ples by adding Gaussian white noise. Instead, they could systemati-
cally use the “f-GAN-trick”, that is, move from an f-divergence to a
restricted f-divergence; from an unconstrained set of test function to
a constrained one; from a strong dissimilarity to a weaker one.

Weakening Dissimilarities Only
Helps Up to A Certain Point

This weakening often helps: bounding the Lipschitz norm of the
test functions transforms the total variation metric into the bounded-
Lipschitz one, which saturates no more on samples. But reducing the
set of test functions too much can also make the dissimilarity blind
to relevant changes. At the limit, if we keep only one single test
function, all distributions would look the same. Hence the question:
how much weakening is actually good?

Of course, it depends on our goals: there is no universal answer.
However, we may set some prerequisites or constraints. We may for
example want our dissimilarity to be perfectly discriminative, in the
sense that it minimizes the distance between two distributions only
if both are equal. We may also formulate these requirements as con-
straints on the topology generated by our dissimilarity, by asking that
it be no weaker than some other weak topology. These are precisely
the kind of prerequisites that we considered in our first chapter, on
a particular kind of “weak total variation” dissimilarities: maximum
mean discrepancies (MMD). Recall that both TV and MMDs can be
written as

DF (P ‖Q) = sup
ϕ∈F

|P(ϕ) −Q(ϕ)|. (7.1)

Only TV uses F = B(Cb), the unit ball of Cb, while MMDs
Perfectly Discriminative MMD

Requires Big Enough RKHS
use a smaller set F = B(Hk), thereby weakening the distribution-
dissimilarity. Now, the results we got in Chapter 1 clearly illustrate
the idea that weakening a strong dissimilarity helps, but only up to
a certain point. By reducing the set of test functions to an RKHS unit
ball, we move from a dissimilarity that almost systematically satu-
rates on samples, to one that is always well defined, easy to compute
and never saturates there. But to stay perfectly discriminative and/or
strong enough to metrize weak-convergence, we must ensure that
our RKHS still be large enough to approximate any bounded, contin-
uous function: that is the content of Theorem 1.2.2 on the equivalence
of characteristic, universal and spd kernels, and of Theorem 1.3.4 on
the metrization of weak convergence.

Choosing a characteristic kernel, i.e. a perfectly discriminative
MMD, can be handy: Chapter 2 shows for example how charac-
teristic kernels ensure the consistency of kernel mean estimators
of functions of random variables, with applications to probabilistic
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programming or privacy aware data releases. But requiring perfect
discrimination between any two measures can also be an overkill.
Goodness-of-fit tests and sample quality measures for example need
to assess the dissimilarity only between some samples and a fixed,
known target measure. There is no need to discriminate between all

Perfect Discrimination
Can Be Too Much

pairs of measures, because one of them, the target, is always fixed
anyway. This led us to introduce the notion of targeted characteristic
kernels and targeted convergence, which we then applied to kernel
Stein discrepancies (KSD), a special kind of MMD. As a side remark,
let us note that this application also gave us the first opportunity to
illustrate the power of the KMEs of generalized measures, Schwartz-
distribution: they can treat and embed the derivative of any measure,
even discrete and empirical ones, which was key to our main theo-
rem on the discriminative power of KSDs, Theorem 3.2.3.

Those insights in MMDs and KSDs were possible mostly because
RKHSs have a very rigid structure that makes them easy to analyze:
they are Hilbert spaces, meaning that they enjoy many properties
of Euclidian spaces; they are completely defined by a single kernel
function, meaning that many properties of the space and the MMD
can be cast into properties of the kernel; their reproducing property RKHS Rigidity Eased

MMD & KSD Analysissimplifies many computations, in particular the MMD between two
samples; and yet, despite all this rigidness, RKHSs are large enough
to approximate any continuous function, which is key to a perfectly
discriminative MMD. RKHSs hence offered a perfect opportunity to
shape our intuitions and gain insights into weakened f-divergences,
and weak total variations in particular.

In practice MMDs are still state-of-the-art for various settings and
data types, such as independence or sample-quality tests or on some
genomic, biological and discrete datasets. However, when Gaus-
sian MMDs are used to train an image generator, as in Genera-
tive Moment Matching Networks [27, 66], they perform significantly [66] Li et al., Generative Moment Match-

ing Networks, 2015; [27] Dziugaite et al.,
Training Generative Neural Networks via
MMD Optimization, 2015

worse than GANs. In both cases, a generator network minimizes
a distribution-dissimilarity similar to (7.1). But instead of using an
RKHS ball, GANs define the test functions F to be all functions at-
tainable by a discriminative network. And on image date, GANs

Network-Based Dissimilarities
Perform Better on Image-Data

work better, even though Gaussian MMDs ensure both perfect dis-
crimination and weak convergence, while GAN divergences don’t.
Understanding why could certainly make a whole thesis. However, it
strongly suggests that perfect discrimination and weak convergence
metrization, as theoretically pleasing as they may sound, are not so
relevant for good empiric results. More relevant seems to be the ar-
chitecture of those discriminators. That is not surprising, because
this architecture profoundly shapes the properties of F. Architec-

Network Architecture Encodes
Dissimilarity-Invariances

tures that strongly rely on convolutional layers (CNNs) for instance
ensure local translation and morphing invariances [72] that directly [72] Mallat, Understanding Deep Convolu-

tional Networks, 2016
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propagate toDF. In a sense, those invariances are the opposite of per-
fect discrimination, the “holy grail” of our first part: they actively en-
sure imperfect discrimination between distributions that only differ by
certain transformations. This imperfection does not harm GANs. Ac-

Dissimilarity Invariances Better
Than Perfect Discrimination

tually it helps: GANs with fully connected networks perform much
worse than CNN-based GANs on image data. Once again, we are
back to our original claim: weakening the distribution-dissimilarity
can help. But now we see that this is even true when the dissimilarity
is weakened beyond perfect discrimination.

The way we like to think of GANs is that F or DF represents our
eye that tries to evaluate how similar the generated samples are to
the original samples. If we do not want the generated samples to be a
one-to-one copy of the original samples, we need to let the generator
incorporate any change that we consider irrelevant. That is the role
of the network invariances: they make our artificial eye, the dissim-
ilarity DF, blind to those changes. Of course, all the art is to target
specifically those irrelevant changes, without loosing discrimination
power on other features; to reduce F, but not too much; to weaken
DF, but not too much. Once again, we are back to our central trade-
off. That is what neural networks seem to be so good at: they can
incorporate invariances and still keep a very expressive set of test
functions.

But contrary to RKHSs, these sets of network-based test functions
are much more complicated to analyze. While we may get some
guarantees on the local invariances that we explicitly incorporate,
it seems much more difficult to get theoretical guarantees on the
global expressivity or capacity of F. And as effective as it might be,

Network-Dissimilarity Issues:
Mode-Collapse & Adv. Vuln.

switching to network-based test functions brings its own bunch of
new problems. One of them is mode collapse, which we addressed
with our algorithm AdaGAN in Chapter 5. Another is adversarial
vulnerability, which illustrates how difficult it is in practice to incor-
porate all relevant invariances. Indeed, one reasonable requirement
seems that if we want to produce realistically looking images, the
dissimilarity DF should be similar to our own, human perception
dissimilarity. It should see differences when we do, and ignore those
we don’t. But adversarial vulnerability shows that this is far from
being the case: two samples can look absolutely the same to us, and
get two completely different classifications. We may be tempted to
think that this vulnerability occurs only for a few particularly ill-
chosen network architectures. But one of our startling conclusions in

Adversarial Vulnerability
Not Architecture Specific

Chapter 6 is that this vulnerability is not specific to one or the other
network architecture: it concerns almost all our usual feed-forward
architectures. To design an accurate and robust classifier it hence
won’t suffice to slightly fiddle existing architectures: if such robust
networks are to be found, we will likely need to incorporate at least
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Figure 7.1: Turtles and Cultured Tur-
tles: two optical illusions by [58]. The
straight lines are parallel. But tilted
edges suffice to make them appear
curved. Human adversarial examples?

one truly new building block. Of course, one major open question
is whether humans themselves are adversarially robust. So far, ad-
versarial examples that fool our neural networks do not fool humans.
That shows that these classifiers do not use the same features than
us and that the associated dissimilarities do not yet capture human
perception accurately. But it does not prove that no small perturba-
tions can fool humans. On the contrary, recent research by Kitaoka

Humans Too Are
Adversarially Vulnerable

on optical illusions [57] actually hints that humans are also prone to [57] Kitaoka, Tilt Illusions after Oyama
(1960): A Review, 2007adversarial perturbations. See in particular the startling optical illu-

sions of Figure 7.1, taken from [58]. Therefore, if we do not find both [58] Kitaoka, Akiyoshi’s Illusion Page: Il-
lusion of Frindged Edges, 2018accurate and adversarially robust classifiers soon, we may want in

future to turn to the question: is it actually possible to robustly clas-
sify the kind of data that we have? Future work might tell us. And

Adversarial Vulnerability
Unavoidable?

even if it turned out to be impossible, it would not hinder us from
trying to build a classifier that has a human-like perception; with its
weaknesses and with its strengths.
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ABackground Material

A.1 Schwartz-Distributions

To introduce Schwartz-distributions, the first step is to notice that
any continuous function f is uniquely characterized by the values
taken by f(ϕ) :=

∫
ϕ(x)f(x)dx when ϕ goes through Cc. Rather

than seeing f as a function that acts on points x in X, we could thus
equivalently see f as a linear functional that acts on other functions
ϕ in Cc and takes its values in C. Such functionals are called lin-
ear forms. We could do the same for measures: a signed measure µ is
also characterized by the values of µ(ϕ) :=

∫
ϕ(x)dµ(x). So we could

also see it as a linear functional that acts on functions ϕ in Cc. Doing
so effectively identifies f with the signed measure µf that has den-
sity f, because both define the same linear form ϕ 7→

∫
ϕ(x)f(x)dx.

So from this perspective, a function f becomes a particular kind of
measure, and a measure µ a sort of ‘generalized function’. Moreover,
seen as linear forms over Cc, f and µ are continuous in the sense
that if ϕα converges to ϕ, then µ(ϕα) converges to µ(ϕ). Thus, by
definition, we just identified f and µ with elements of the dual of Cc.

We may now ask whether there are other continuous linear forms
over Cc. The answer is negative and is given by the Riesz-Markov-
Kakutani representer theorem (see Appendix A.2). It states that the
dual of Cc is exactly the set of signed regular Borel measures Mr,
meaning that any continuous linear form over Cc can be written as
ϕ 7→

∫
ϕdµ(x) for some µ ∈ Mr, and can thus be identified with

a measure µ. So it seems that our generalization of functions to
measures using continuous linear forms is as general as it can get.
But this is forgetting the following detail. To distinguish a measure
µ from all the others in Mr, we do not need to know the values µ(ϕ)
for all functions ϕ of Cc. Actually, it suffices to know them for all
ϕ in C∞c . This is because C∞c is a dense subset of Cc. Thus for
any ϕ ∈ Cc, even if ϕ 6∈ C∞c , we can reconstruct the value µ(ϕ)
by taking a sequence ϕα in C∞c that converges to ϕ and noticing
that, by continuity, µ(ϕ) is the limit of µ(ϕα). So instead of seeing a
function or a measure as an element of (Cc) ′, we could also see it as
an element of (C∞c ) ′.

But do we gain anything from it? Yes indeed, because now, we
can define linear functionals over C∞c that we could not define over
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Cc. For example, suppose that X = R and consider the linear form
dx that, to each function ϕ associates its derivative ∂ϕ(x) evaluated
at x. This is a valid (continuous) linear form over C∞c – called a
dipole in x – but it cannot be defined over Cc, because not all contin-
uous functions are differentiable. This example shows that, although
each measure in (Cc)

′ can be seen as an element of (C∞c ) ′, the latter
space contains many more linear forms which do not correspond to
a signed measure. This bigger set of linear forms, which we denote
D∞, is called the set of Schwartz-distributions.

Now, why are distributions useful? First of all, because they can
all be seen as limits of functions [97][Thm XV, Chap III]. As an exam- [97] Schwartz, Théorie des Distributions,

1978ple, consider the sequence of functions

fσ : x 7−→ 1
σg(

x+σ
σ ) − 1

σg(
x−σ
σ ) ,

where g is a Gaussian. fσ is the difference of two Gaussians that
get closer and closer and more and more peaked with decreasing σ.
Now, applying fσ to a function ϕ ∈ C∞c , it is not difficult to see that
fσ(ϕ) converges to ∂ϕ(0) = d0(ϕ) when σ → 0. The dipole d0 can
thus be seen as a weak limit of the functions fσ, although it is itself
neither a function nor even a signed measure. See Figure A.1 for
plots of fσ and its KMEs.
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2.0 Figure A.1: Left: the difference fσ of
two Gaussians that get closer and closer
and more and more peaked with de-
creasing σ. Right: the KMEs of fσ.
Note the difference in the y-axis scale.
fσ converges to a dipole, which is not
a measure, but a Schwartz-distribution.
It cannot be represented as a function,
but its KME can (black solid line). Note
that the KMEs of fσ seem to converge
to the KME of the dipole.

Another reason to use distributions is that many common linear
operations can be extended to them (or to big subsets of them), such
as differentiation, Fourier transformation and convolution. Let us
show for example how to extend differentiation. If we want the dis-
tributional derivative ∂ to be an extension of the usual derivative,
then of course we should require that ∂µf = µf ′ whenever f is a con-
tinuously differentiable function over X = R. Now, by integration by
part, we get, for any ϕ ∈ C∞c :

µf ′(ϕ) =

∫
f ′ϕ = −

∫
fϕ ′ = −µf(ϕ

′) .

This suggests to define the derivative of any D ∈ D∞ as ∂pD(ϕ) :=

(−1)|p|D(∂pϕ) for any ϕ ∈ C∞c . Doing so, we just defined a notion
of differentiation that is compatible with the usual differentiation
and makes any distribution infinitely many times differentiable. In
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particular, any function and any measure is infinitely differentiable
in this distributional sense. Moreover, if a sequence of differentiable
functions fn converges to a distribution D (in the sense that fn(ϕ)
converges to D(ϕ) for any ϕ), then f ′n converges to ∂D (where we
used ′ to denote the usual differentiation). All this makes distribu-
tions of prime interest for solving linear differential equations and
more generally for physicists. Note that, by construction, if Q is a
probability measure with smooth density q, then ∂pQ is the signed
measure with density ∂pq.
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A.2 Topological Vector Spaces

Let us start with the definition of a barreled set. In a normed space
(E, ‖.‖), the sets T := {f ∈ E | ‖f‖ 6 C} where C > 0 are the closed
balls centered on the origin of E. A normed space is a particular case
of a topological vector space (TVS). In a general locally convex (loc.
cv.) TVS E, the topology might not be given by a single norm, but
by a family of semi-norms (‖.‖α)α∈I (where the index set I can be
uncountable). A so-called barrel of E is then any closed ball centered
on the origin and associated to a norm ‖.‖α, α ∈ I. More abstractly,
a barrel can be defined as follows.

Definition A.2.1 (Barrel). A subset T of a TVS E is called a barrel if it is

(i) absorbing: for any f ∈ E, there exists cf > 0 such that f ∈ cfT ;
(ii) balanced: for any f ∈ E, if f ∈ T then λf ∈ T for any λ ∈ C with

|λ| 6 1 ;
(iii) convex ;
(iv) closed.

In any loc. cv. space, there exists a basis of neighborhoods of the
origin consisting only of barrels. However, in general, there may be
barrels that are not a neighborhood of 0. This leads to

Definition A.2.2 (Barrelled spaces). A TVS is barreled if any barrel is
a neighborhood of the origin.

Although many authors include local convexity in the definition,
in general, a barreled space need not be loc. cv. Barreled spaces were
introduced by Bourbaki, because they were well-suited for the fol-
lowing generalization of the celebrated Banach-Steinhaus theorem.

Theorem A.2.3 (Banach-Steinhaus). Let E be a barreled TVS, F be a loc.
cv. TVS, and let L(E,F) be the set of continuous linear maps form E to F.
For any H ⊂ L(E,F) the following properties are equivalent:

(i) H is equicontinuous.
(ii) H is bounded for the topology of pointwise convergence.

(iii) H is bounded for the topology of bounded convergence.

When E is a normed space and F = C, then L(E,F) is by definition
E ′. With ‖.‖E ′ being the dual norm in E ′, the equivalence of (ii) and
(iii) states that

∀f ∈ E, sup
h∈H

|h(f)| <∞ =⇒ sup
h∈H

‖h‖E ′ <∞ .

Obviously, to understand the content of the Banach-Steinhaus the-
orem, one needs the definition of a bounded set. Let us define them
now.
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When E is a normed space, then a subset B of E is called bounded
if supf∈B ‖f‖E <∞. In a more general loc. cv. TVS E, where the
topology is given by a family of semi-norms (‖.‖α)α∈I, a subset B of
E is called bounded if, for any α ∈ I, supf∈B ‖f‖α <∞. This can be
shown equivalent to the following, more usual definition.

Definition A.2.4 (Bounded Sets in a TVS). A subset B of a TVS E is
bounded, if, for any neighborhood U ⊂ E of the origin, there exists a real
cB > 0 such that B ⊂ cBU.

Note that the notion of boundedness depends on the underlying
topology. By default, a bounded set of some dual space E = F ′ des-
ignates a set that is bounded for the strong dual topology. We now
move on to an unrelated topic: the Riesz Representation theorem for
Hilbert spaces. Most of Chapter 1 relies on this one theorem.

Theorem A.2.5 (Riesz Representation Theorem for Hilbert Spaces).
A Hilbert space H and its topological dual H ′ are isometrically (anti-) iso-
morphic via the Riesz representer map

ı : H −→ H ′

f 7−→ Df :=

 H −→ C

g 7−→ 〈g , f〉

.

In particular, for any continuous linear form D ∈ H ′, there exists a unique
element f ∈ H, called the Riesz representer of D, such that

∀g ∈ H, D(g) = 〈g , f〉 .

Note that “anti” in “anti-isomorphic” simply means that, instead
of being linear, ı is anti-linear: for any λ ∈ C and f ∈ H, ı(λf) = λ̄ ı(f).
Often, we prefer to say that H is isometrically isomorphic to H

′,
where H

′ denotes the conjugate of H, where the scalar multiplication
is replaced by (λ, f) 7→ λ̄f. H ′k and Hk

′ are obviously isomorphic via
the complex conjugation map D 7→ D̄.

The Riesz representation theorem for Hilbert spaces is not to be
confounded with the following theorem, also known as the Riesz —
or Riesz-Markov-Kakutani— representation theorem. In Chapter 1,
we always refer to the latter as the Riesz-Markov-Kakutani represen-
tation theorem. This theorem has numerous variants, depending on
which dual pair (E,E ′) one uses. Here we state it for E = C→0.
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Theorem A.2.6 (Riesz-Markov-Kakutani). Let X be a locally compact
Hausdorff space. The spaces Mf(X) and (C→0(X))

′ are isomorphic, both
algebraically and topologically via the map

ı : Mf(X) −→ (C→0(X))
′

µ 7−→ Dµ :=

 C→0 −→ C

ϕ 7−→
∫
ϕdµ

.

In other words, for any continuous linear form D over C→0(X),
there exists a unique finite Borel measure µ ∈ Mf such that,
for any test function ϕ ∈ C→0(X), D(ϕ) =

∫
ϕdµ. Moreover,

sup‖ϕ‖∞61D(ϕ) = |µ|(X), or in short: ‖D‖(C→0) ′ = ‖µ‖TV , where
‖µ‖TV denotes the total variation norm of µ. This is why, in Chap-
ter 1, we identify Mf —a space of σ-additive set functions— with Mf

—a space of linear functionals.
In Chapter 1, to embed a space of measures into an RKHS Hk

we successively apply both Riesz representation theorems: If Hk

embeds continuously into C→0, then (C→0)
′ embeds continuously

into Hk
′, via the embedding map Φk. But (C→0)

′ = Mf (Riesz-
Markov-Kakutani Representation) and Hk

′
= Hk (Riesz Representa-

tion). Thus Φk may also be seen as an embedding of Mf into Hk.



BDetails and Chapter Complements

B.1 Chapter 3

B.1.1 Statement and Proof of Theorem 2.2 of [21] [21] Chwialkowski et al., A Kernel Test of
Goodness of Fit, 2016

Theorem B.1.1 (Chwialkowski et al. [21]). Let k be a c0-universal kernel
and let P,Q be two measures with differentiable densities p,q, such that
Ex,x ′∼Q[κ(x, x ′)] < ∞ and EQ

[
∂x log p(x)

q(x)

]
< ∞. Then KSDk,P(P) is

well-defined and KSDk,P(P) = 0 if and only if P = Q.

Proof. The authors introduce the functional: ξP(x) := sP(x)k(x, .) +
∂xk(x, ·), and show that the Stein discrepancy KSDk,P(Q) =∥∥EQ[ξP]

∥∥
Hd . Decomposing logp into logq+ logp− logq, they then

write

E
Q
[ξP] =

∫ (
k(x, ·)sP(x) + ∂xk(x, ·)

)
dQ(x)

=

∫ (
k(x, ·)sQ(x) + ∂xk(x, ·)

)
dQ(x)

+

∫
k(x, ·)

(
sP(x) − sQ(x)

)
Q(x)dx

= E
Q

[
ξQ
]
+

∫
k(x, ·)∂x

(
log

p(x)

q(x)

)
dx .

They then show that EQ
[
ξQ
]
= 0 and note that the second term is

the embedding of the function g(x) := ∂x log p(x)
q(x) . And because they

assume that the kernel k is c0-universal, KSDk,P(Q) = 0 if and only
if each component of g(x) is 0, which implies Q = P.
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B.2 Chapter 5

B.2.1 Algorithms

Algorithm B.1: Determining λ∗
Sort the values h(di) in increasing order

Initialize λ← β
p1

(
1+ 1−β

β p1h(d1)
)

and k← 1

while (1−β)h(dk) > λ do

k← k+ 1

λ← β∑k
i=1 pi

(
1+

(1−β)
β

∑k
i=1 pih(di)

)
end while Algorithm B.2: AdaGAN, a meta-

algorithm to construct a “strong” mix-
ture of T individual GANs, trained se-
quentially. The mixture weight sched-
ule ChooseMixtureWeight should be
provided by the user (see Sec 5.2). This
is an instance of the high level Algo-
rithm 5, instantiating UpdateTraining-
Weights.

Input: Training sample SN := {X1, . . . ,XN}.

Output: Mixture generative model G = GT .

Train vanilla GAN: G1 = GAN(SN)

for t = 2, . . . , T do
#Choose a mixture weight for the next component
βt = ChooseMixtureWeight(t)

#Compute the new weights of the training examples (UpdateTraining-
Weights)
#Compute the discriminator between the original (unweighted) data
and the current mixture Gt−1
D← DGAN(SN,Gt−1)

#Compute λ∗ using Algorithm B.1
λ∗ ← λ(βt,D)

#Compute the new weight for each example
for i = 1, . . . ,N do
Wit =

1
Nβt

(λ∗ − (1−βt)h(D(Xi)))+

end for
#Train t-th “weak” component generator Gct
Gct = GAN(SN,Wt)

#Update the overall generative model
#Notation below means forming a mixture of Gt−1 and Gct .
Gt = (1−βt)Gt−1 +βtG

c
t

end for

B.2.2 Details on the Toy Experiments

GAN architectures. In all our experiments, the GAN’s generator
uses the latent space Z = R5, and two ReLU hidden layers, of size 10
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Modes : 1 Modes : 2 Modes : 3 Modes : 5 Modes : 10

Vanilla 0.97 (0.9;1.0) 0.88 (0.4;1.0) 0.63 (0.5;1.0) 0.72 (0.5;0.8) 0.59 (0.2;0.7)

Best of T (T=3) 0.99 (1.0;1.0) 0.96 (0.9;1.0) 0.91 (0.7;1.0) 0.80 (0.7;0.9) 0.70 (0.6;0.8)

Best of T (T=10) 0.99 (1.0;1.0) 0.99 (1.0;1.0) 0.98 (0.8;1.0) 0.80 (0.8;0.9) 0.71 (0.7;0.8)

Ensemble (T=3) 0.99 (1.0;1.0) 0.98 (0.9;1.0) 0.93 (0.8;1.0) 0.78 (0.6;1.0) 0.80 (0.6;1.0)

Ensemble (T=10) 1.00 (1.0;1.0) 0.99 (1.0;1.0) 1.00 (1.0;1.0) 0.91 (0.8;1.0) 0.89 (0.7;1.0)

TopKLast0.5 (T=3) 0.98 (0.9;1.0) 0.98 (0.9;1.0) 0.95 (0.9;1.0) 0.95 (0.8;1.0) 0.86 (0.6;0.9)

TopKLast0.5 (T=10) 0.99 (1.0;1.0) 0.98 (0.9;1.0) 0.98 (1.0;1.0) 0.99 (0.8;1.0) 1.00 (0.8;1.0)

Boosted (T=3) 0.99 (1.0;1.0) 0.99 (0.9;1.0) 0.98 (0.9;1.0) 0.91 (0.8;1.0) 0.86 (0.7;1.0)

Boosted (T=10) 1.00 (1.0;1.0) 1.00 (1.0;1.0) 1.00 (1.0;1.0) 1.00 (1.0;1.0) 1.00 (1.0;1.0)

Table B.1: Performance of the different
algorithms on varying number of mix-
tures of Gaussians. The reported score
is the coverage C, probability mass of
PX covered by the 5th percentile of
PY defined in Section 5.3. The reported
scores are the median and interval de-
fined by the 5% and 95% percentile (in
parenthesis) (see Section 5.3), over 35
runs for each setting. Both the ensem-
ble and the boosting approaches sig-
nificantly outperform the vanilla GAN
even with just three iterations (i.e. just
two additional components). The boost-
ing approach converges faster to the op-
timal coverage and with smaller vari-
ance.

and 5 respectively. The corresponding discriminator has two ReLU
hidden layers of size 20 and 10 respectively. We use 64k training
examples, and 15 epochs, which is enough compared to the small
scale of the problem. The optimizer is a simple SGD: Adam was
also tried but gave slightly less stable results. All networks converge
properly and overfitting is never an issue.

Details on the tested algorithms and more tests. In our experi-
ments, we compared the following algorithms:

. The baseline GAN algorithm, called Vanilla GAN in the re-
sults.

(a) The best model out of T runs of GAN, that is: run T GAN in-
stances independently, then take the run that performs best on
a validation set. This gives an additional baseline with similar
computational complexity as the ensemble approaches. Note
that the selection of the best run is done on the reported tar-
get metric (see below), rather than on the internal metric. As a
result this baseline is slightly overestimated. This procedure is
called Best of T in the results.

(b) A mixture of T GAN generators, trained independently, and
combined with equal weights (the “bagging” approach). This
procedure is called Ensemble in the results.

. A mixture of GAN generators, trained sequentially with differ-
ent choices of data re-weighting:

(c) The AdaGAN algorithm (Algorithm 5), with β = 1/t.
Thus each component will have the same weight in the re-
sulting mixture (see Section 5.2). This procedure is called
Boosted in the results.
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. The AdaGAN algorithm (Algorithm 5), but with a con-
stant β, exploring several values. This procedure is called
for example Beta0.3 for β = 0.3 in the results. Note that
in this setting, not all components of the mixture have the
same weight.

. Reweighting similar to “Cascade GAN” from [123], i.e. [123] Wang et al., Ensembles of GANs,
2016keeping the top r fraction of examples, based on the dis-

criminator corresponding to the previous generator. This
procedure is called for example TopKLast0.3 for r = 0.3.

. Keep the top r fraction of examples, based on the discrim-
inator corresponding to the mixture of all previous genera-
tors. This procedure is called for example TopK0.3 for
r = 0.3.

The left, middle, and right panels in Figure 5.2 of Section 5.3 respec-
tively correspond to the settings (a), (b) and (c).

Experiments with unrolled GAN. To illustrate the ’meta-algorithm
aspect’ of AdaGAN, we also performed experiments with an un-
rolled GAN (UGAN) [75] instead of a GAN as the base generator. [75] Metz et al., Unrolled GANs, 2017

We trained the GANs both with the Jensen-Shannon objective (4.2),
and with its modified version proposed in [37] (and often consid- [37] Goodfellow et al., Generative Adver-

sarial Nets, 2014ered as the baseline GAN), where log(1−D(G(Z))) is replaced by
− log(D(G(Z))). We use the same network architecture as in the
other toy experiments. Figure B.1 illustrates our results. We find
that AdaGAN works with all UGAN algorithms. Note that, where
the usual GAN updates the generator and the discriminator once, an
UGAN with 5 unrolling steps updates the generator once and the
discriminator 1 + 5, i.e. 6 times (and then rolls back 5 steps). Thus,
in terms of computation time, training 1 single UGAN roughly corre-
sponds to doing 3 steps of AdaGAN with a usual GAN. In that sense,
Figure B.1 shows that AdaGAN (with a usual GAN) significantly out-
performs a single unrolled GAN (T = 1 on bottom pictures). Also
note that AdaGAN ran with UGAN outperforms a single UGAN
and keeps improving its performance as we increase the number of
iterations. Additionally, we note that using the Jensen-Shannon ob-
jective (rather than the modified version) seems to have some mode-
regularizing effect.

B.2.3 Details for AdaGAN on MNIST

GAN architecture. We ran AdaGAN on MNIST (28x28 pixel im-
ages) using (de)convolutional networks with batch normalizations
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Figure B.1: Comparison of AdaGAN
ran with a GAN (top row) and with an
unrolled GAN with 5 unrolling steps
[75] (bottom). Coverage C of the true
data by the model distribution PTmodel,
as a function of iterations T . Ex-
periments are similar to those of Fig-
ure 5.2, but with 10 modes. Left figures
used the Jensen-Shannon objective (4.2),
while right figures used the modified
objective originally proposed by [37]. In
terms of computation time, one step
of AdaGAN with unrolled GAN corre-
sponds to roughly 3 steps of AdaGAN
with a usual GAN.

and leaky ReLUs. The latent space has dimension 100. We used the
following architectures:

Generator:100 x 1 x 1 –> FC –> 7 x 7 x 16 –> deconv –>

14 x 14 x 8 –> deconv–> 28 x 28 x 4 –> deconv –> 28 x 28 x 1

Discriminator:28 x 28 x 1 –> conv –> 14 x 14 x 16 –> conv –>

7 x 7 x 32–> FC –> 1

where each arrow consists of a leaky ReLU (with 0.3 leak) followed
by a batch normalization, conv and deconv are convolutions and
transposed convolutions with 5x5 filters, and fully connected (FC)
are linear layers with bias. The distribution over Z is uniform over
the unit box. We use the Adam optimizer with β1 = 0.5, with 2 G
steps for 1 D step and learning rates 0.005 for G, 0.001 for D, and
0.0001 for the classifier C that does the reweighting of digits. We
optimized D and G over 200 epochs and C over 5 epochs, using the
original Jensen-Shannon objective (4.2), without the log trick, with
no unrolling and with minibatches of size 128.

Empirical observations. Although we could not find any appropri-
ate metric to measure the increase of diversity promoted by Ada-
GAN, we observed that the re-weighting scheme indeed focuses on
digits with very specific strokes. In Figure B.2 for example, we see
that after 1 AdaGAN step, the generator produces overly thick dig-
its (top left image). Thus AdaGAN puts small weights on the thick
digits of the dataset (bottom left) and high weights on the thin ones
(bottom right). After the next step, the new GAN produces both
thick and thin digits.
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Figure B.2: AdaGAN on MNIST.
Bottom row are true MNIST digits
with smallest (left) and highest (right)
weights after re-weighting at the end
of the first AdaGAN step. Those with
small weight are thick and resemble
those generated by the GAN after the
first AdaGAN step (top left). After
training with the re-weighted dataset
during the second iteration of Ada-
GAN, the new mixture produces more
thin digits (top right).

B.2.4 Refinement of Lemma 5.1.4

If the ratio dPY/dPX is almost surely bounded, the first inequality of
Lemma 5.1.4 can be refined as follows.

Lemma B.2.1. Under the conditions of Theorem 5.1.2

Df

(
(1−β)PY +βR∗β

∥∥∥PX) 6 f(λ∗) +
f(M)(1− λ∗)

M− 1

given there exists M > 1 such that PX((1−β)dPY > MdPX) = 0.

This upper bound can be tighter than that of Lemma 5.1.4 when
λ∗ gets close to 1. Indeed, for λ∗ = 1 the upper bound is exactly 0
and is thus tight, while the upper bound of Lemma 5.1.4 will not be
zero in this case.

Proof. We use Inequality (C.25) of Lemma C.4.2 with X = β, Y =

(1 − β)dPY/dPX, and c = λ∗. We easily verify that X + Y = ((1 −
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β)dPY +βdPX)/dPX and max(c, Y) = ((1−β)dPY +βdR∗β)/dPX and
both have expectation 1 with respect to PX. We thus obtain:

Df

(
(1−β)PY +βR∗β

∥∥∥PX) 6 f(λ∗) +
f(M) − f(λ∗)

M− λ∗
(1− λ∗) . (B.1)

Since λ∗ 6 1 and f is non-increasing on (0, 1) we get

Df

(
(1−β)PY +βR∗β

∥∥∥PX) 6 f(λ∗) +
f(M)(1− λ∗)

M− 1
.

B.2.5 Conditions for finite steps convergence

Here we study the convergence of (5.3) to 0 in the case where, while
performing the iterations, we use the upper bound (5.5) and the
weight β is fixed (i.e. the same value at each iteration). We will
provide necessary and sufficient conditions for the iterative process
to converge to the data distribution PX in finite number of steps. The
analysis can easily be extended to a non-constant (variable) weight
scheduling β. We start with the following result.

Lemma B.2.2. For any f ∈ Fdiv such that f(x) 6= 0 for x 6= 1, the following
conditions are equivalent:

(i) PX((1−β)dPY > dPX) = 0;
(ii) Df

(
(1−β)PY +βR∗β

∥∥∥PX) = 0.

Proof. The first condition is equivalent to λ∗ = 1 according to Theo-
rem 5.1.2. In this case, (1− β)PY + βR∗β = PX, hence the divergence
is 0. In the other direction, when the divergence is 0, since f is strictly
positive for x 6= 1 (keep in mind that we can always replace f by f0 to
get a non-negative function which will be strictly positive if f(x) 6= 0
for x 6= 1), this means that with PX probability 1 we have the equality
dPX = (1 − β)dPY + βdR∗β, which implies that (1 − β)dPY > dPX

with PX probability 1 and also λ∗ = 1.

This result tells that we cannot perfectly match PX by adding a
new mixture component to PY as long as there are points in the space
where our current model PY severely over-samples. As an example,
consider an extreme case where PY puts a positive mass in a region
outside of the support of PX. Clearly, unless β = 1, we will not be
able to match PX.

We now provide the conditions for the convergence of the iterative
process in a finite number of steps. The criterion is based on the ratio
dP1/dPX, where P1 is the first component of our mixture model.

Corollary B.2.3. Take any f ∈ Fdiv such that f(x) 6= 0 for x 6= 1. Starting
from P1model = P1, update the model iteratively according to Pt+1model =

(1− β)Ptmodel + βR
∗
β, where on every step R∗β is as defined in Theorem
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5.1.2 with PY := Ptmodel. In this case Df
(
Ptmodel

∥∥PX) will reach 0 in
a finite number of steps if and only if there exists M > 0 such that

PX((1−β)dP1 > MdPX) = 0 . (B.2)

When the finite convergence happens, it takes at most
− ln max(M, 1)/ ln(1−β) steps.

Proof. From Lemma B.2.2, it is clear that if M 6 1 the convergence
happens after the first update. So let us assume M > 1. No-
tice that dPt+1model = (1 − β)dPtmodel + βdR∗β = max(λ∗dPX, (1 −
β)dPtmodel) so that if PX((1 − β)dPtmodel > MdPX) = 0, then
PX((1 − β)dP

t+1
model > M(1 − β)dPX) = 0. This proves that (B.2)

is a sufficient condition.
Now assume the process converged in a finite number of steps.

Let Ptmodel be a mixture right before the final step. Note that
Ptmodel is represented by (1 − β)t−1P1 + (1 − (1 − β)t−1)P for cer-
tain probability distribution P. According to Lemma B.2.2 we have
PX((1− β)dP

t
model > dPX) = 0. Together these two facts immedi-

ately imply (B.2).

It is also important to keep in mind that even if (B.2) is not satisfied
the process still converges to the true distribution at exponential rate
(see Lemma 5.1.4 as well as Corollaries 5.1.5 and 5.1.6 below)
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B.3 Chapter 6

B.3.1 Effects of Strided and Average-Pooling Layers on Ad-
versarial Vulnerability

It is common practice in CNNs to use average-pooling layers or
strided convolutions to progressively decrease the number of pixels
per channel. Corollary 6.2.3 shows that using strided convolutions
does not protect against adversarial examples. However, what if we
replace strided convolutions by convolutions with stride 1 plus an
average-pooling layer? Theorem 6.2.2 considers only randomly ini-
tialized weights with typical size 1/

√
in-degree. Average-poolings

however introduce deterministic weights of size 1/(in-degree). These
are smaller and may therefore dampen the input-to-output gradients
and protect against adversarial examples. We confirm this in our next
theorem, which uses a slightly modified version (H ′) of (H) to allow
average pooling layers. (H ′) is (H), but where the He-init H3 applies
to all weights except the (deterministic) average pooling weights, and
where H1 places a ReLU on every non-input and non-average-pooling
neuron.

Theorem B.3.1 (Effect of Average-Poolings). Consider a succession of
convolution layers, dense layers and n average-pooling layers, in any order,
that satisfies (H ′) and outputs logits fk(x). Assume the n average pooling
layers have a stride equal to their mask size and perform averages over a1,
..., an nodes respectively. Then ‖∂xfk‖2 and |∂xfk| scale like 1/

√
a1 · · ·an

and 1/
√
da1 · · ·an respectively.

Proof in Appendix C.5.4. Theorem B.3.1 suggest to try and replace
any strided convolution by its non-strided counterpart, followed by
an average-pooling layer. It also shows that if we systematically re-
duce the number of pixels per channel down to 1 by using only non-
strided convolutions and average-pooling layers (i.e. d =

∏n
i=1 ai),

then all input-to-output gradients should become independent of d,
thereby making the network completely robust to adversarial exam-
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ty Figure B.3: As predicted by Theo-

rem B.3.1, average-pooling layers make
networks more robust to adversarial ex-
amples, contrary to strided (and max-
pooling) ones. But the vulnerability
with average-poolings remains higher
than anticipated.
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ples. Our following experiments (Figure B.3) show that after training,
the networks get indeed robustified to adversarial examples, but re-
main more vulnerable than suggested by Theorem B.3.1.

Experimental setup. Theorem B.3.1 shows that, contrary to strided
layers, average-poolings should decrease adversarial vulnerability.
We tested this hypothesis on CNNs trained on CIFAR-10, with
6 blocks of ‘convolution → BatchNorm →ReLU’ with 64 output-
channels, followed by a final average pooling feeding one neuron
per channel to the last fully-connected linear layer. Additionally, af-
ter every second convolution, we placed a pooling layer with stride
and mask-size (2, 2) (thus acting on 2× 2 neurons at a time, with-
out overlap). We tested average-pooling, strided and max-pooling
layers and trained 20 networks per architecture. Results are shown
in Figure B.3. All accuracies are very close, but, as predicted, the
networks with average pooling layers are more robust to adversarial
images than the others. However, they remain more vulnerable than
what would follow from Theorem B.3.1. We also noticed that, con-
trary to the strided architectures, their gradients after training are an
order of magnitude higher than at initialization and than predicted.
This suggests that assumptions (H) get more violated when using
average-poolings instead of strided layers. Understanding why will
need further investigations.

B.3.2 Comparison to the Cross-Lipschitz Regularizer

In their Theorem 2.1, Hein and Andriushchenko [48] show that the [48] Hein and Andriushchenko, Formal
Guarantees on the Robustness of a Classifier
against Adversarial Manipulation, 2017

minimal ε = ‖δ‖p perturbation to fool the classifier must be bigger
than:

min
k6=c

fc(x) − fk(x)

maxy∈B(x,ε) ‖∂xfc(y) − ∂xfk(y)‖q
. (B.3)

They argue that the training procedure typically already tries to max-
imize fc(x) − fk(x), thus one only needs to additionally ensure that
‖∂xfc(x) − ∂xfk(x)‖q is small. They then introduce what they call a
Cross-Lipschitz Regularization, which corresponds to the case p = 2

and involves the gradient differences between all classes:

RxLip :=
1

K2

K∑
k,h=1

‖∂xfh(x) − ∂xfk(x)‖22 (B.4)
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In contrast, using (C.29), (the square of) our proposed regularizer
‖∂xL‖q from (6.4) can be rewritten, for p = q = 2 as:

R‖·‖2(f) =
K∑

k,h=1

qk(x)qh(x)
(
∂xfc(x) − ∂xfk(x)

)
·

·
(
∂xfc(x) − ∂xfh(x)

)
(B.5)

Although both (B.4) and (B.5) consist in K2 terms, corresponding
to the K2 cross-interaction between the K classes, the big difference
is that while in (B.4) all classes play exactly the same role, in (B.5)
the summands all refer to the target class c in at least two different
ways. First, all gradient differences are always taken with respect to
∂xfc. Second, each summand is weighted by the probabilities qk(x)
and qh(x) of the two involved classes, meaning that only the classes
with a non-negligible probability get their gradient regularized. This
reflects the idea that only points near the margin need a gradient
regularization, which incidentally will make the margin sharper.

B.3.3 Perception Threshold

To keep the average pixel-wise variation constant across dimensions
d, we saw in (6.3) that the threshold εp of an `p-attack should scale
like d1/p. We will now see another justification for this scaling. Con-
trary to the rest of this work, where we use a fixed εp for all images
x, here we will let εp depend on the `2-norm of x. If, as usual, the
dataset is normalized such that the pixels have on average variance
1, both approaches are almost equivalent.

Suppose that given an `p-attack norm, we want to choose εp such
that the signal-to-noise ratio (SNR) ‖x‖2 / ‖δ‖2 of a perturbation δ
with `p-norm 6 εp is never greater than a given SNR threshold 1/ε.
For p = 2 this imposes ε2 = ε ‖x‖2. More generally, studying the
inclusion of `p-balls in `2-balls yields

εp = ε ‖x‖2 d1/p−1/2 . (B.6)

Note that this gives again εp = ε∞d1/p. This explains how to adjust
the threshold ε with varying `p-attack norm.

Now, let us see how to adjust the threshold of a given `p-norm
when the dimension d varies. Suppose that x is a natural image and
that decreasing its dimension means either decreasing its resolution
or cropping it. Because the statistics of natural images are approxi-
mately resolution and scale invariant [52], in either case the average [52] Huang, Statistics of Natural Images

and Models, 2000
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squared value of the image pixels remains unchanged, which implies
that ‖x‖2 scales like

√
d. Pasting this back into (B.6), we again get:

εp = ε∞ d1/p .

In particular, ε∞ ∝ ε is a dimension-free number, exactly like in (6.3)
of the main part.

Now, why did we choose the SNR as our invariant reference quan-
tity and not anything else? One reason is that it corresponds to a
physical power ratio between the image and the perturbation, which
we think the human eye is sensible to. Of course, the eye’s sensitivity
also depends on the spectral frequency of the signals involved, but
we are only interested in orders of magnitude here.

Another point: any image x yields an adversarial perturbation δx,
where by constraint ‖x‖2 / ‖δx‖ 6 1/ε. For `2-attacks, this inequality
is actually an equality. But what about other `p-attacks: (on average
over x,) how far is the signal-to-noise ratio from its imposed upper
bound 1/ε? For p 6∈ {1, 2,∞}, the answer unfortunately depends on
the pixel-statistics of the images. But when p is 1 or ∞, then the
situation is locally the same as for p = 2. Specifically:

Lemma B.3.2. Let x be a given input and ε > 0. Let εp be the greatest
threshold such that for any δ with ‖δ‖p 6 εp, the SNR ‖x‖2 / ‖δ‖2 is
6 1/ε. Then εp = ε ‖x‖2 d1/p−1/2.

Moreover, for p ∈ {1, 2,∞}, if δx is the εp-sized `p-attack that locally
maximizes the loss-increase i.e. δx = arg max‖δ‖p6εp |∂xL · δ|, then:

SNR(x) :=
‖x‖2
‖δx‖2

=
1

ε
and E

x
[SNR(x)] =

1

ε
.

Proof. The first paragraph follows from the fact that the great-
est `p-ball included in an `2-ball of radius ε ‖x‖2 has radius
ε ‖x‖2 d1/p−1/2.

The second paragraph is clear for p = 2. For p = ∞, it fol-
lows from the fact that δx = ε∞ sign∂xL which satisfies: ‖δx‖2 =

ε∞√d = ε ‖x‖2. For p = 1, it is because δx = ε1maxi=1..d |(∂xL)i|,
which satisfies: ‖δx‖2 = ε2/

√
d = ε ‖x‖2.

Intuitively, this means that for p ∈ {1, 2,∞}, the SNR of εp-sized
`p-attacks on any input x will be exactly equal to its fixed upper
limit 1/ε. And in particular, the mean SNR over samples x is the
same (1/ε) in all three cases.
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Figure B.4: Same as Figure 6.1 but us-
ing an `2 threshold instead of a `∞ one.
Now the `2-based methods (deep-fool,
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seem more effective than the `∞ ones.
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Figure B.5: Same as Figure 6.2, but
with an `2- perturbation-threshold (in-
stead of `∞) and deep-fool attacks
[78] instead of iterative `∞ ones. All
curves look essentially the same than in
Fig. 6.2.

B.3.4 Figures with an `2 Perturbation-Threshold and Deep-
Fool Attacks

Here we plot the same curves as in the main part, but using an `2-
attack threshold of size ε2 = 0.005

√
d instead of the `∞-threshold,

and deep-fool attacks [78] instead of iterative `∞-ones in Figs. B.5

[78] Moosavi-Dezfooli et al., DeepFool,
2016

and B.6. Note that contrary to `∞-thresholds, `2-thresholds must
be rescaled by

√
d to stay consistent across dimensions (see Eq.6.3

and Appendix B.3.3). All curves look essentially the same as their
counterparts in the main text.

B.3.5 A Variant of Adversarially-Augmented Training

In usual adversarially-augmented training, the adversarial image
x + δ is generated on the fly, but is nevertheless treated as a fixed
input of the neural net, which means that the gradient does not get
backpropagated through δ. This need not be. As δ is itself a function
of x, the gradients could actually also be backpropagated through δ.
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Figure B.6: Same as Figure 6.3 but with
an `2 perturbation-threshold (instead
of an `∞ one) and using deep-fool (in-
stead of iterative-`∞) attacks to approx-
imate adversarial vulnerability.

As it was only a one-line change of our code, we used this oppor-
tunity to test this variant of adversarial training (FGSM-variant in
Figure 6.2) and thank Martín Arjovsky for suggesting it. But except
for an increased computation time, we found no significant differ-
ence compared to usual augmented training.



CProofs

C.1 Chapter 1

In this section, we gather all the complements to non fully proved
theorems, propositions, corollaries or lemmas appearing in the main
text. We start with a Lemma that essentially follows from [113], and [113] Steinwart and Christmann, Sup-

port Vector Machines, 2008, Cor 4.36which we will need a few times for the proofs.

Lemma C.1.1. Let k ∈ C
(m,m)
b and let Φ : X→ Hk, x 7→ k(., x). Then

for any p ∈ Nd with |p| 6 m, the partial derivative ∂pΦ exists, belongs
to Hk, is continuous and verifies ∂pΦ(x) = ∂(0,p)k(., x). Moreover, for
any f ∈ Hk, ∂pf exists, belongs to Hk and verifies:

∂pf(x) =
〈
f , ∂(0,p)k(., x)

〉
k

. (C.1)

Applied with f = ∂(0,q)k(.,y) where |q| 6 m also proves that

∂(p,q)k(x,y) =
〈
∂(0,q)k(.,y) , ∂(0,p)k(., x)

〉
k

. (C.2)

Proof. This Lemma is essentially proven in Corollary 4.36 and in its
proof in [113]. We only added Equation (C.2), which is a straight- [113] Steinwart and Christmann, Sup-

port Vector Machines, 2008forward consequence of (C.1), and the part stating that ∂pΦ(x) =

∂(0,p)k(., x). This can be shown as follows. Steinwart and Christ-
mann [113] prove that ∂pΦ exists and belongs to Hk. Thus [113] Steinwart and Christmann, Sup-

port Vector Machines, 2008

[∂pΦ(x)](y) = 〈∂pΦ(x) , k(.,y)〉k

=

〈
lim
h→0

(Φ(x+ hei) −Φ(x))/h , k(.,y)
〉
k

= lim
h→0

(k(y, x+ hei) − k(y, x))/h

= ∂(0,p)k(y, x) ,

where we used the continuity of the inner product to swap limit and
bracket signs.

C.1.1 Proof of Corollary 1.1.3

Proof. Suppose that Hk ⊂ C→0. (i) clearly holds. Suppose (ii) was
not met. Then let xn ∈ X such that k(xn, xn) = ‖k(., xn)‖2k → ∞.
Thus k(., xn) is unbounded. But 〈f , k(., xn)〉k = f(xn) is bounded

135
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for any f ∈ Hk, thus k(., xn) is bounded (Banach-Steinhaus, see
Thm. A.2.3). Contradiction. Thus (ii) is met.

Conversely, suppose that (i) and (ii) hold. Let H
pre
k :=

span{k(., x) | x ∈ X}. Then, H
pre
k ⊂ C→0, and for any f,g ∈ Hk,

‖f− g‖∞ 6 ‖f− g‖k ‖k‖∞. Thus H
pre
k continuously embeds into the

closed C→0, thus so does its ‖.‖k-closure, Hk. The proof of the cases
Hk ⊂ C and Hk ⊂ Cb are similar (see also [10]). [10] Berlinet and Thomas-Agnan, Repro-

ducing Kernel Hilbert Spaces in Probability
and Statistics, 2004, Thm. 17

C.1.2 Proof of Corollary 1.1.4

Proof. Suppose that k ∈ C
(m,m)
b . Then H

pre
k ⊂ Cmb [113] and for any [113] Steinwart and Christmann, Sup-

port Vector Machines, 2008, Corol-
lary 4.36x ∈ X, f ∈ H

pre
k , and |p| 6 m, we have ‖∂pf‖∞ 6 ‖f‖k

∥∥∥√∂(p,p)k
∥∥∥∞.

Thus H
pre
k continuously embeds into the closed space Cmb , thus so

does its ‖.‖k-closure, Hk. But, by definition of (Cmb )c is the space
Cb equipped with a weaker topology (see Section 1.2), thus Cmb ↪→
(Cmb )c. Thus Hk ↪→ (Cmb )c , which concludes. The proofs when
k ∈ C or k ∈ C→0 are similar.

C.1.3 Proof of Theorem 1.2.4

Proof. Equivalence between (i) & (ii). As KMEs are linear over Mf,
a kernel k is characteristic to P iff it is characteristic to P − P :=

{µ− P : µ ∈ P}, where P can be any fixed probability measure. This
is equivalent to being characteristic to the linear span of P− P. But
the linear span of P− P is precisely M0f , which concludes.

Equivalence of (ii) & (v): First of all, notice that, if (v), then k and
k0 define the same MMD on M0f , because, for any µ ∈M0f , µ(1) = 0,
thus:

‖µ‖2k0 =
∫∫
〈δx − ν0 , δy − ν0〉k dµ̄(x)dµ(y)

=

∫∫
k(x,y)dµ̄(x)dµ(y) −

∫
〈δx , ν0〉k dµ̄(x)

∫
dµ(y)

−

∫
dµ̄(x)

∫
〈ν0 , δy〉k dµ(y) − ‖ν0‖2k

∫∫
dµ̄(x)dµ(y)

= ‖µ‖2k ,

Thus k0 is characteristic to M0f iff k is also. Thus (v) implies (ii). Con-
versely, if k0 is characteristic to M0f , then k0 is either characteristic
to Mf, in which case choosing k0 = k and ν0 = 0 fulfills the require-
ments of (v); or there exists a non zero measure ν0 ∈ Mf such that
Φk0(ν0) = 0. As Φk0 is linear, we can choose ν0(1) = 1 without loss
of generality. Supposing now that we are in the latter case, the proof
proceeds as follows.

(a) Show that the constant function 1 6∈ Hk0 .
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(b) Construct a new Hilbert space of functions of the form Hk =

span1⊕Hk0 .
(c) Show that it has a reproducing kernel k.
(d) Show that k0 and k fulfill the requirements of (v).

(a) Suppose that 1 ∈ Hk0 . Then 1 = ν̄0(1) =∫
〈1 , k0(., x)〉k0 dν̄0(x)

(∗)
=

〈
1 ,
∫
k0(., x)dν0(x)

〉
k0

=〈
1 , Φk0(ν0)

〉
k0

= 0, where in (∗) we use the definition
of KMEs (1.1) . Contradiction. Thus 1 6∈ Hk0 .

(b) Define H := span1⊕Hk0 and equip it with the inner product
〈. , .〉 that extends the inner product of Hk0 so, that

1 ⊥ Hk0 and ‖1‖ = 1 . (C.3)

In other words, for any f = cf1+ f⊥ ∈ H and any g = cg1+

g⊥ ∈ H:

〈f , g〉 :=
〈
f⊥ , g⊥

〉
k0

+ cfc̄g. (C.4)

Obviously H is a Hilbert space of functions.
(c) We now construct k by first defining an injective embedding Φ

and then showing that k(x,y) := 〈Φ(δx) , Φ(δy)〉 is a reproduc-
ing kernel with KME Φ.
As M0f is a hyperplane in Mf and ν0 ∈ Mf\M

0
f , each measure

µ ∈ Mf can be decomposed uniquely in a sum: µ = µ⊥ +

µ(1)ν0 where µ⊥ = µ− µ(1)ν0 ∈M0f . We may thus define the
following linear embedding Φ : Mf → H by

Φ(µ) :=

 Φk0(µ) if µ ∈M0f

1 if µ = ν0

i.e.
Φ(µ) := Φk0(µ

⊥) + µ(1)1

= Φk0(µ) + µ(1)1
. (C.5)

Noting that Φ(µ)⊥ = Φ(µ⊥) = Φk0(µ
⊥) = Φk0(µ) and using

(C.4), we get

∀f ∈ H, ∀x ∈ X, 〈f , Φ(δx)〉 =
〈
f⊥ , Φ(δx)

⊥
〉
k0

+ cf

= f⊥(x) + cf1(x) = f(x) .
(C.6)

So by defining k(x,y) := 〈Φ(δy) , Φ(δx)〉 and applying (C.6)
to f = Φ(δy), we see that Φ(δy) = k(.,y). Thus (C.6) may be
rewritten as

∀f ∈ H,∀x ∈ X, 〈f , k(., x)〉 = f(x).

Thus H is an RKHS with reproducing kernel and Φ is its asso-
ciated KME.
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(d) As k0 is characteristic to M0f , Φ is injective over M0f . And
Φ(ν0) ∈ H\Φ(M0f ). Thus Φ is injective over Mf, so k is charac-
teristic to Mf. To conclude, (C.5) shows that

〈δy − ν0 , δx − ν0〉 =
〈
Φk0(δy) + (δy − ν0)(1)1 , Φk0(δx) + (δx − ν0)(1)1

〉
=
〈
Φk0(δy) + 0 , Φk0(δx) + 0

〉
= k0(x,y) .

Equivalence of (v) with (iii) & (iv): First, notice that the kernel k
constructed in the proof of (v)⇒ (ii) verifies:

k(x,y) = 〈Φ(δx) , Φ(δy)〉
=
〈
Φk0(δx) + δx(1)1 , Φk0(δy) + δy(1)1

〉
=
〈
Φk0(δx) , Φk0(δy)

〉
+ ‖1‖2

= k0(x,y) + 1 ,

where we used (C.3), (C.5) and the fact that by construction 〈. , .〉
coincides with 〈. , .〉k0 on M0f . Thus the proof of (v)⇒ (ii) shows that,
if k0 characteristic to M0f , then the kernel k0(x,y)+ 1 is characteristic
to Mf, thus

∫
spd (Thm. 1.2.2). k(x,y) := k0(x,y) + 1 is

∫
spd. More

generally, if instead of fixing ‖1‖k = 1 in (C.3) we fixed ‖1‖k = ε

for some real ε > 0, then we would have ended up with an
∫

spd
kernel k verifying k(x,y) := k0(x,y) + ε2. Thus (ii) implies (iii) and
(iv). Conversely, given any kernel k of the previous form, the inner
products defined by k and k0 coincide on M0f . So if k is characteristic
to M0f , then so is k0. Thus (iii) or (iv) implies (ii).

C.1.4 Proof of Theorem 1.3.4 Continued

The proof of Theorem 1.3.4 used the following lemma.

Lemma C.1.2. Let k be a continuous,
∫

spd kernel and let (µα)α be

bounded in M+ (meaning supα ‖µα‖TV < ∞). Then µα
w−k−→ µ ⇒

µα
σ−→ µ. Consequently: µα

‖.‖k−→ µ ⇒ µα
σ−→ µ.

Proof. We will show that µα(f) → µ(f) for any f ∈ Cc. As Cc is a
dense subset of C→0 and µα is bounded, combining Prop. 32.5 and
Thm. 33.2 of [119] then shows that µα(f) → µ(f) for any f ∈ C→0 [119] Treves, Topological Vector Spaces,

Distributions and Kernels, 1967(weak-∗ convergence), which implies weak-convergence, µα
σ→ µ [9],

[9] Berg et al., Harmonic Analysis on
Semigroups Theory of Positive Definite and
Related Functions, 1984, Chap. 2, Cor. 4.3

and thus concludes.
Let K be a compact subset of X. First, we show that there exists

a function h ∈ Hk such that h(x) > 0 for any x ∈ K. To do so,
let f ∈ Cb such that f > 1 on K. k being

∫
spd and Mf being the

dual of (Cb)c, Hk is dense in (Cb)c (Thm. 1.2.2). So we can find a
sequence of functions fn ∈ Hk that converges to f for the topology
of (Cb)c. By definition of the topology of (Cb)c, this implies in
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particular that the restrictions of fn to K converge in infinity norm,
meaning: supx∈K |fn(x) − f(x)| → 0. Thus, for a sufficiently large n,
fn > 0 on K, so we can take h = fn.

Now, let us define the measures h.µα as [h.µα](f) = µα(hf) for
any f ∈ Cb. Then ‖h.µα‖TV 6 ‖h‖∞ ‖µα‖TV , so the new net (h.µα)α
is bounded. But bounded sets are relatively compact for the weak-∗
topology w(Mf, C→0). ([119], or Banach-Alaoglu theorem). So we [119] Treves, Topological Vector

Spaces, Distributions and Kernels,
1967, Thm. 33.2

can extract a subnet h.µβ of h.µα that converges in weak-∗ topology.
Then h.µβ is also a Cauchy-net for the weak-∗ topology, meaning
that for any ε > 0 and any sufficiently large β,β ′:

|µβ(hf) − µβ ′(hf)| 6 ε, ∀f ∈ C→0 .

This inequality holds in particular for functions f whose support
is contained in K, which we denote f ∈ Cc(K). But the mapping
f 7→ g := hf is a bijective map from Cc(K) to itself (because h > 0

on K), so we actually have |µβ(g) − µβ ′(g)| 6 ε for any g ∈ Cc(K).
But this holds for any compact subset K of X. So the inequality
also holds for any function g ∈ Cc(X), which shows that µβ is
a Cauchy-net for the topology of pointwise convergence in Cc(X),
also known as the vague topology. But M+ is vaguely complete [14], [14] Bourbaki, Intégration - Chapitres 1-4,

1965, Chap III, §1, n.9, Prop 14so µβ converges to a measure µ ′ ∈ M+. But for any f ∈ Cc(X),
µ ′(f) = limβ µβ(f) = limα µα(f) = µ(f), thus µ ′ and µ coincide
on Cc(X), which is a dense subset of C→0. Thus µ ′ = µ, and
µα(f)→ µ(f) for any f ∈ Cc.

Note that if we additionally supposed that Hk ↪→ C→0 (meaning
that k is c0-universal), then Lemma C.1.2 is a simple consequence of
Lemma 1.3.3 and the fact that weak-∗ and weak convergence coincide
on P.

C.1.5 Proof of Theorem 1.4.5 Continued

Proof. We are left with proving (a) and (b). To do so, we will use the
decomposition D =

∑
|p|6m ∂

pµp of Lemma 1.4.3. Indeed, k being

in C
(m,m)
b , by Corollary 1.1.4, ∂pµp embeds into Hk for any |p| 6 m

and µp ∈Mf. Thus

〈∂pµp , ∂qµq〉k =
〈
Φ∂(0,p)k(µp) , Φ∂(0,q)k(µq)

〉
k

=

∫∫ 〈
∂(0,p)k(.,y) , ∂(0,q)k(., x)

〉
k

dµ̄q(x)dµp(y)

=

∫∫
∂(q,p)k(x,y)dµ̄q(x)dµp(y)

=

∫∫∫
i|p+q|ξp+qei(x−y)ξ dΛ(ξ)dµ̄q(x)dµp(x) ,
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where the first line uses Proposition 1.4.2, the second line
uses twice the definition of a weak integral (1.1), the third
uses (C.2) from Lemma C.1.1 and the fourth line uses the
fact that ∂(q,p)k(x,y) = (−1)|p|∂p+qψ(x − y) and F∂p+qψ =

i|p+q|ξp+qFψ = i|p+q|ξp+qΛ.
Let us denote ξpΛ the measure defined by ξpΛ(A) :=∫
A ξ

p dΛ(ξ). We will now show that ξp+qΛ is finite, so that we
can apply the usual Bochner theorem and permute the order of inte-
gration. To do so, notice that ∂(p,p)k(x,y) = (−1)|p|∂2pψ(x− y) is
a continuous kernel, thus, by Bochner’s theorem, its associated mea-
sure Λ∂ is finite and verifies FΛ∂ = ∂2pψ. But the usual calculus
rules with Fourier transforms show that ∂2pψ = (−i)|2p|ξ2pΛ. Thus
Λ∂ = i|p|ξ2pΛ, showing that Λ̃ is a finite measure. Noting now that
2|ξp+q| 6 ξ2p+ξ2q, this also implies that ξp+qΛ is a finite measure.
Consequently:

〈∂pµp , ∂qµq〉k =

∫∫∫
i|p+q|ei(x−y) d[ξp+qΛ](ξ)dµ̄q(x)dµp(x)

=

∫∫∫
i|p+q|ei(x−y) dµ̄q(x)dµp(x)dΛ̃(ξ)

=

∫
i|p+q|ξp+qFµq(ξ)Fµp(ξ)dΛ(ξ)

=

∫
[F (∂pµp)](ξ)[F (∂qµq)](ξ)dΛ(ξ).

Thus, with the decomposition D =
∑

|p|6m ∂
pµp, we get

‖D‖2k =

∥∥∥∥∥∥
∑

|p|6m

∂pµp

∥∥∥∥∥∥
2

k

=

∫ ∑
|p|,|q|6m

[F (∂pµp)](ξ)[F (∂qµq)](ξ)dΛ(ξ)

=

∫
|
∑

|p|6m

[F (∂pµp)](ξ)|
2 dΛ(ξ)

=

∫
|FD(ξ)|2 dΛ(ξ) ,

where we used the linearity of the Fourier operator on the last line.
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C.2 Chapter 2

C.2.1 Detailed Proof of Theorem 2.2.3

Notations, Reminders and Preliminaries

For any function ψ ∈ L1(Rd) and any finite (signed or complex
regular Borel) measure ν over Rd, we define their convolution as:

ν ∗ψ(x) :=
∫
ψ(x− x ′)dν(x ′) .

We define the Fourier and inverse Fourier transforms of ψ and ν
as

F ψ(ω) := (2π)−d/2
∫

Rd
e−i〈ω ,x〉ψ(x)dx and F ν(ω) := (2π)−d/2

∫
Rd
e−i〈ω ,x〉 dν(x) ,

F−1ψ(ω) := (2π)−d/2
∫

Rd
ei〈ω ,x〉ψ(x)dx and F−1 ν(ω) := (2π)−d/2

∫
Rd
ei〈ω ,x〉 dν(x) .

Fourier transforms are of particular interest when working with
translation-invariant kernel because of Bochner’s theorem. Here we
quote [125], but add a useful second sentence, which is immediate to [125] Wendland, Scattered Data Approxi-

mation, 2004, Thm 6.6show.

Theorem C.2.1 (Bochner). A continuous function ψ : Rd → C is posi-
tive definite if and only if it is the Fourier transform of a finite, nonnegative
Borel measure ν over Rd. Moreover, ψ is real-valued if and only if ν is
symmetric.

The next theorem, also quoted from [125], shows that the Fourier [125] Wendland, Scattered Data Approxi-
mation, 2004, Cor 5.25(inverse) transform may be seen as a unitary isomorphism from

L2(Rd) to L2(Rd).

Theorem C.2.2 (Plancherel). There exists an isomorphic mapping T :

L2(Rd)→ L2(Rd) such that:

(i) ‖Tf‖L2(Rd) = ‖f‖L2(Rd) for all f ∈ L2(Rd).
(ii) Tf = F f for any f ∈ L2(Rd)∩ L1(Rd).

(iii) T−1g = F−1 g for all g ∈ L2(Rd)∩ L1(Rd).

The isomorphism is uniquely determined by these properties.

We will call T the Fourier transform over L2 and note it F .

Remark C.2.3. Combining Plancherel’s and Bochner’s theorems, we
see that, if ψ is a continuous, positive definite (resp. and real-valued)
function in L2(Rd), then the measure ν from Bochner’s theorem
is absolutely continuous, and its density is F−1ψ. In particular,
F−1ψ is real-valued, nonnegative (resp. and symmetric).

Next, our proof of Theorem 2.2.3 will need the following result.
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Lemma C.2.4. Let Z = Rd
′
, ψ ∈ L2(Rd) such that F ψ ∈ L1(Rd).

Let k be the translation-invariant kernel k(z, z ′) := ψ(z − z ′) and
h(z) := F−1√F ψ(z). Let Z be any random variable on Z, and
Ẑ := {(zi,wi)}ni=1. Then:∥∥∥µ̂kZ − µkZ

∥∥∥2
k
= (2π)

d ′
2

∫
z∈Z

∣∣∣µ̂hZ − µhZ

∣∣∣2 dz . (C.7)

Proof. (of Lemma C.2.4) For any finite (signed) measure ν over Z =

Rd
′
, we define:

µkν :=

∫
k(z, .)dν(z) .

Then we have:∥∥∥µkν∥∥∥2
k
=

∫
z∈Rd

∫
z ′∈Rd

ψ(z− z ′)dν(z)dν(z ′)

=

∫
z∈Rd

∫
z ′∈Rd

(
(2π)−d

′/2
∫
ω∈Rd

e−i〈ω,z−z ′〉F−1ψ(ω)dω
)

dν(z)dν(z ′)

=

∫
ω∈Rd

(2π)−d
′/2
∫
z∈Rd

∫
z ′∈Rd

e−i〈ω,z−z ′〉 dν(z)dν(z ′)F−1ψ(ω)dω

=

∫
ω∈Rd

(2π)d
′/2F ν(ω)F ν(−ω)F−1ψ(ω)dω

= (2π)d
′/2
∫
ω∈Rd

|F ν(ω)|2F−1ψ(ω)dω

The second line uses the following: (i) ψ is continuous, because
F ψ ∈ L1(Rd) (Riemann-Lebesgue lemma); (ii) Theorem C.2.1
(Bochner) and Remark C.2.3 from the Appendix. Third and fourth
line use Fubini’s theorem. Last line uses the fact that F ν(−ω) is the
complex conjugate of F ν because F ψ is positive (thus real-valued).

Applying this with ν = Q̂−Q, where Q is the distribution of Z
and Q̂ :=

∑
iwiδzi , we get:∥∥∥µ̂kZ − µkZ

∥∥∥2
k
=
∥∥∥µk
Q̂−Q

∥∥∥2
k

= (2π)d
′/2
∫
ω∈Rd

∣∣F [Q̂−Q](ω)
∣∣2F ψ(ω)dω

= (2π)d
′/2
∫
ω∈Rd

∣∣∣F [Q̂−Q](ω)
√

F ψ(ω)
∣∣∣2 dω

= (2π)d
′/2
∫
z∈Z

∣∣∣F−1
[
F [Q̂−Q]

√
F ψ

]
(z)
∣∣∣2 dz

= (2π)d
′/2
∫
z∈Z

∣∣[Q̂−Q] ∗ h(z)
∣∣2 dz

= (2π)d
′/2
∫
z∈Z

∣∣∣∣∣∑
i

wih(z− zi) −

∫
h(z− z ′)dQ(z ′)

∣∣∣∣∣
2

dz

= (2π)d
′/2
∫
z∈Z

∣∣∣µ̂hZ − µhZ(z)
∣∣∣2 dz .
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Third line uses the fact that F ψ is positive (see Appendix, Re-
mark C.2.3). Fourth line uses Plancherel’s theorem (see Appendix,
Theorem C.2.2). Fifth line uses the fact that the Fourier (inverse)
transform of a product equals the convolutional product of the (in-
verse) Fourier transforms [55, Theorem 1.4, and its generalisation to
finite measures p.145].

We now state Theorem 1 from [54], which serves as basis to our [54] Kanagawa et al., Convergence Guar-
antees for Kernel-Based Quadrature Rules
in Misspecified Settings, 2016

proof. Slightly modifying1 the notation of [1], for 0 < θ < 1 and
1 [1] introduce interpolation spaces us-
ing so-called J- and K-methods, resulting
in two notations (E0,E1)θ,q;J (Defini-
tion 7.12) and (E0,E1)θ,q;K (Def 7.9)
respectively. However, it follows from
Theorem 7.16 that these two definitions
are equivalent if 0 < θ < 1 and we
simply drop the K and J subindices.
[1] Adams and Fournier, Sobolev Spaces,
2003, Chap 7

1 6 q 6 ∞ we will write (E0,E1)θ,q to denote interpolation spaces,
where E0 and E1 are Banach spaces that are continuously embedded
into some topological Hausdorff vector space E. Following [54], we

[54] Kanagawa et al., Convergence Guar-
antees for Kernel-Based Quadrature Rules
in Misspecified Settings, 2016

also define (E0,E1)1,2 := E1.

Theorem C.2.5 (Kanagawa et al.). Let X be a random variable with distri-
bution P and let {(xi,wi)}ni=1 be random variables with joint distribution
S satisfying Assumption 2.2.2 (with corresponding distribution Q). Let
µ̂X :=

∑
iwik(xi, .) be an estimator of µX :=

∫
k(x, .)dP(x) such that for

some constants b > 0 and 0 < c 6 1/2:

(i) ES
[∥∥µ̂X − µX

∥∥
k

]
= O(n−b) ,

(ii) ES
[∑

iw
2
i

]
= O(n−2c)

as n→∞. Let θ be a constant such that 0 < θ 6 1.
Then, for any function g : Rd → R in

(
L2(Q),Hk

)
θ,2, there exists a

constant C, independent of n, such that:

E
S

[∣∣∣∣∣∑
i

wig(xi) − E
X∼P

[g(X)]

∣∣∣∣∣
]
6 Cn−θb+(1/2−c)(1−θ) . (C.8)

In the proof of our finite sample guarantee, we will need the fol-
lowing slightly modified version of this result, where we (a) slightly
modify condition (ii) by asking that it holds almost surely, and (b)
consider squared norms in Condition (i) and (C.8).

Theorem C.2.6 (Kanagawa et al.). Let X be a random variable with dis-
tribution P and let {(xi,wi)} be random variables with joint distribution
S satisfying Assumption 2.2.2 (with corresponding distribution Q). Let
µ̂X :=

∑
iwik(xi, .) be an estimator of µX :=

∫
k(x, .)dP(x) such that for

some constants b > 0 and 0 < c 6 1/2:

(i) ES

[∥∥µ̂X − µX
∥∥2
k

]
= O(n−2b) ,

(ii)
∑n
i=1w

2
i = O(n−2c) (with S-probability 1) ,

as n→∞. Let θ be a constant such that 0 < θ 6 1.
Then, for any function g : Rd → R in

(
L2(Q),Hk

)
θ,2, there exists a

constant C, independent of n, such that:

E
S

[∣∣∣∣∣∑
i

wig(xi) − E
X∼P

[g(X)]

∣∣∣∣∣
]
6 Cn−2 (θb−(1/2−c)(1−θ)) . (C.9)
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Proof. The proof of this adapted version of Theorem 1 in [54] is al- [54] Kanagawa et al., Convergence Guar-
antees for Kernel-Based Quadrature Rules
in Misspecified Settings, 2016

most a copy paste of the original proof, but with the appropriate
squares to account for the modified condition (i), and with their f
renamed to g here. The only slight non-trivial difference is in their
Inequality (20). Replace their triangular inequality by Jensen’s in-
equality to yield:

E
S

∣∣∣∣∣
n∑
i=1

wig(xi) − E
X∼P

[g(X)]

∣∣∣∣∣
2
 6


3ES

[∣∣∑n
i=1wig(xi) −

∑n
i=1wigλn(xi)

∣∣2]
+3ES

[∣∣∑n
i=1wigλn(xi) − EX∼P [gλn(X)]

∣∣2]
+3ES

[
|EX∼P [gλn(X)] − EX∼P [g(X)]|

2
]

,

where g and gλn are the functions that they call f and fλn .

We are now ready to prove 2.2.3.

Starting Proof of Theorem 2.2.3

Proof. This proof is self-contained: the sketch from the main part
is not needed. Throughout the proof, C designates constants that
depend neither on sample size n nor on radius R (to be introduced).
But their value may change from line to line.

Let ψ be such that ktz(z, z ′) = ψ(z − z ′). Then F ψ(ω) = (1 +

‖ω‖22)−t [125, Chapter 10]. Applying Lemma C.2.4 to the Matérn
kernel ktz thus yields

E
S

[∥∥∥µ̂ktzf(X) − µktzf(X)∥∥∥2ktz
]
= (2π)

d ′
2

∫
Z

E
S

[(
[µ̂hf(X) − µ

h
f(X)](z)

)2]
dz, (C.10)

where h = F−1
√

F ktz is again a Matérn kernel, but with smooth-
ness parameter t/2 > d ′/2.

Step 1: Applying C.2.6

We now want to upper bound the integrand by using C.2.6. To do
so, let K be the common compact support of P and marginals of
x1, . . . , xn. Now, rewrite the integrand as:

E
S

[(
[µ̂hf(X) − µ

h
f(X)](z)

)2]
= E
S

(∑
i

wih
(
f(xi) − z

)
− E
X∼P

[
h
(
f(X) − z

)])2
= E
S

(∑
i

wih
(
f(xi) − z

)
ϕK(xi) − E

X∼P

[
h
(
f(X) − z

)
ϕK(X)

])2
= E
S

(∑
i

wigz(xi) − E
X∼P

[gz(X)]

)2 , (C.11)
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where ϕK is any smooth function 6 1, with compact support, that
equals 1 on a neighborhood of K and where gz(x) := h(f(x) −

z)ϕK(x).
To apply C.2.6, we need to prove the existence of 0 < θ 6 1 such

that gz ∈
(
L2(Q),Hksx

)
θ,2 for each z ∈ Z. We will prove this fact

in two steps: (a) first we show that gz ∈
(
L2(Rd),Hksx

)
θ,2 for each

z ∈ Z and certain choice of θ and (b) we argue that
(
L2(Rd),Hksx

)
θ,2

is continuously embedded in
(
L2(Q),Hksx

)
θ,2.

Step 1(a): Note that gz ∈ W
min(α,t/2)
2 (Rd) because f is α-times

differentiable, h ∈ W
t/2
2 (Rd

′
) (thus gz is min(α, t/2)-times differ-

entiable in the distributional sense), and gz has compact support
(thus meets the integrability conditions of Sobolev spaces). As
ksx is a Matérn kernel with smoothness parameter s, its associated
RKHS Hksx is the Sobolev space Ws

2 (R
d) [125, Chapter 10]. Now, if

s 6 min(α, t/2), then gz ∈ Ws
2 (R

d) = Hksx =
(
L2(Rd),Ws

2 (R
d)
)
1,2

and step (a) holds for θ = 1. Thus for the rest of this step, we as-
sume s > min(α, t/2). It is known that Ws

2 (R
d) = Bs2,2(R

d) for
0 < s < ∞ [1], where Bs2,2(R

d) is the Besov space of smoothness s. [1] Adams and Fournier, Sobolev Spaces,
2003, Page 255It is also known that Bs2,2(R

d) =
(
L2(Rd),Wm

2 (Rd)
)
s/m,2 for any

integer m > s [1]. Applying this to W
min(α,t/2)
2 (Rd) and denoting [1] Adams and Fournier, Sobolev Spaces,

2003, Page 230
s ′ = min(α, t/2) we get

gz ∈Ws ′
2 (Rd) =

(
L2(Rd),Ws

2 (R
d)
)
s ′/s,2 =

(
L2(Rd),Hksx

)
s ′/s,2, ∀z ∈ Z .

Thus, whatever s, step (a) is always satisfied with θ :=

min(αs , t2s , 1) 6 1.

Step 1(b): If θ = 1, then
(
L2(Rd),Hksx

)
1,2 = Hksx =(

L2(Q),Hksx
)
1,2. Now assume θ < 1. Note that L2(Rd) is con-

tinuously embedded in L2(Q), because we assumed that Q has a
bounded density. Thus Theorem V.1.12 of [8] applies and gives the [8] Bennett and Sharpley, Interpolation of

Operators, 1988desired inclusion.
Now we apply C.2.6, which yields a constant Cz independent of

n such that:

E
S

[(
[µ̂hf(X) − µ

h
f(X)](z)

)2]
6 Czn

−2ν ,

with ν := θb− (1/2− c)(1− θ).
We now prove that the constants Cz are uniformly bounded. From

Equations (18-19) of [54], it appears that Cz = C
∥∥∥T−θ/2gz∥∥∥

L2(Q)
, [54] Kanagawa et al., Convergence Guar-

antees for Kernel-Based Quadrature Rules
in Misspecified Settings, 2016where C is a constant independent of z and T−θ/2 is defined as

follows. Let T be the operator from L2(Q) to L2(Q) defined by

Tf :=

∫
kx(x, .)f(x)dQ(x).
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It is continuous, compact and self-adjoint. Denoting (ei)i an or-
thonormal basis of eigenfunctions in L2(Q) with eigenvalues µ1 >

µ2 > · · · > 0, let Tθ/2 be the operator from L2(Q) to L2(Q) defined
by:

Tθ/2f :=

∞∑
i=1

µ
θ/2
i 〈ei , f〉L2(Q) ei .

Using [98] together with [113] we conclude that Tθ/2 is injective. [98] Scovel et al., Radial kernels and their
RKHS, 2010, Cor 4.9.i
[113] Steinwart and Christmann, Sup-
port Vector Machines, 2008, Thm 4.26.i

Thus µi > 0 for all i. Thus, if θ = 1, Lemma 6.4 of [114] shows

[114] Steinwart and Scovel, Mercer’s The-
orem on General Domains, 2012

that the range of Tθ/2 is [Hk]∼, the image of the canonical embed-
ding of Hk into L2(Q). And as Q has full support, we may identify
[Hk]∼ and Hk =

(
L2(Q),Hk

)
θ,2. Now, if θ < 1, Theorem 4.6 of [114]

shows that the range of Tθ/2 is
(
L2(Q),Hk

)
θ,2.

Thus the inverse operator T−θ/2 is well-defined, goes from(
L2(Q),Hk

)
θ,2 to L2(Q) and can be written in the following form:

T−θ/2f :=

∞∑
i=1

µ
−θ/2
i 〈ei , f〉L2(Q) ei . (C.12)

Using this, we get:

|Cz| = C
∥∥∥T−θ/2gz∥∥∥

L2(Q)

= C

∥∥∥∥∥
∞∑
i=1

µ
−θ/2
i 〈ei , h(f(·) − z)ϕK(·)〉L2(Q) ei

∥∥∥∥∥
L2(Q)

6 Cmax
z∈Z

|h(z)|

∥∥∥∥∥
∞∑
i=1

µ
−θ/2
i 〈ei , ϕK〉L2(Q) ei

∥∥∥∥∥
L2(Q)

= Cmax
z∈Z

|h(z)|
∥∥∥T−θ/2ϕK

∥∥∥
L2(Q)

,

which is a constant independent of z. Hereby, we used the fact that
ϕK ∈

(
L2(Q),Hk

)
θ,2, because it is infinitely smooth and has com-

pact support. Thus we just proved that

E
S

[(
[µ̂hf(X) − µ

h
f(X)](z)

)2]
6 Cn−2ν . (C.13)

Step 2: Splitting the integral in two parts

However, now that this upper bound does not depend on z anymore,
we cannot integrate over all Z (= Rd

′
). Thus we now decompose the

integral in (C.10) as:

∫
Z

E
S

[(
[µ̂hf(X) − µ

h
f(X)](z)

)2]
dz =


∫
BR

E
S

[(
[µ̂hf(X) − µ

h
f(X)](z)

)2]
dz

+

∫
Z\BR

E
S

[(
[µ̂hf(X) − µ

h
f(X)](z)

)2]
dz ,

(C.14)
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where BR denotes the ball of radius R, centered on the origin of
Z = Rd

′
. We will upper bound each term by a function depending

on R, and eventually make R depend on the sample size so as to
balance both upper bounds.

On BR we upper bound the integral by Rate (C.13) times the ball’s
volume (which grows like Rd

′
):∫

BR

E
S

[(
[µ̂hf(X) − µ

h
f(X)](z)

)2]
dz 6 CRd

′
n−2ν . (C.15)

On Z\BR we upper bound the integral by a value that decreases
with R. The intuition is that, according to (C.11), the integrand is the
expectation of sums of Matérn functions, which are all centered on a
compact domain. Thus it should decay exponentially with z outside
of a sufficiently large ball. Next we turn to the formal argument.

Let us define ‖f‖K := maxx∈X ‖f(x)ϕK(x)‖, which is finite be-
cause fϕK is an α-times differentiable (thus continuous) function
with compact support. Now, Matérn kernels are radial kernels,
meaning that there exists a function h̃ over R such that h(x) = h̃(‖x‖)
[118]. Moreover h̃ is strictly positive and decreasing. Using (C.11) we

[118] Tolstikhin et al., Minimax Estima-
tion of Kernel Mean Embeddings, 2017, p.5

may write

E
S

[(
[µ̂hf(X) − µ

h
f(X)](z)

)2]
= E
S

(∑
i

wih
(
f(xi) − z

)
ϕK(xi) − E

X∼P

[
h
(
f(X) − z

)
ϕK(X)

])2
6 E
S

(∑
i

wih
(
f(xi) − z

)
ϕK(xi)

)2
+

(
E
X∼P

[
h
(
f(X) − z

)
ϕK(X)

])2
(†)
6 h̃(‖z‖− ‖f‖K)2E

S

(∑
i

wi

)2
+ 1

 ,

where we assumed R > ‖f‖K and used the fact that h̃ is a decreasing
function in (†). Using Cauchy-Schwarz and applying hypothesis (ii),
we get:

E

[(
[µ̂hf(X) − µ

h
f(X)](z)

)2]
6 h̃(‖z‖− ‖f‖K)2E

S

[(
n

(∑
i

w2i

)
+ 1

)]
6Cn1−2c h̃(‖z‖− ‖f‖K)2 .

Let Sd ′ be the surface area of the unit sphere in Rd
′
. We have:



148 | proofs

∫
Z\BR

E

[(
[µ̂hf(X) − µ

h
f(X)](z)

)2]
dz 6 Cn1−2c

∫
Z\BR

h̃(‖z‖− ‖f‖K)2 dz

(†)
= Cn1−2c

∫+∞
r=R−‖f‖K

h̃(r)2Sd ′(r+ ‖f‖K)d
′−1 dr

6 Cn1−2c2d
′−1
∫+∞
r=R−‖f‖K

h̃(r)2Sd ′r
d ′−1 dr,

(for R > 2 ‖f‖K) (C.16)

where (†) switches to radial coordinates. From Lemma 5.13 of [125] [125] Wendland, Scattered Data Approxi-
mation, 2004we get, for any r > 0:

|h̃(r)| 6 Crt/2−d
′/2

√
2π

r
e−re|d

′/2−t/2|2/(2r).

Recalling that t > d ′ by assumption we have∫
Z\BR

E

[(
[µ̂hf(X) − µ

h
f(X)](z)

)2]
dz

6 Cn1−2c
∫+∞
r=R−‖f‖K

rt−2e−2re(t−d
′)2/(4r) dr

6 Cn1−2ce
(t−d ′)2
4(R−‖f‖K)

∫+∞
r=R−‖f‖K

rt−2e−2r dr.

Now, t/2 being by assumption a strictly positive integer, t− 2 is an
integer. Thus, using [40]

[40] Gradshteyn and Ryzhik, Table of In-
tegrals, Series, and Products, 2007, 2.321.2

∫+∞
r=R−‖f‖K

rt−2e−2r dr = e−2(R−‖f‖K)

(
t−2∑
k=0

k!
(
t−2
k

)
2k+1

(R− ‖f‖K)t−2−k

)

we continue by writing∫
Z\BR

E

[(
[µ̂hf(X) − µ

h
f(X)](z)

)2]
dz

6 Cn1−2ce
(t−d ′)2
4(R−‖f‖K) e−2(R−‖f‖K)(R− ‖f‖K)t−2

(for R > ‖f‖K + 1) (C.17)

6 Cn1−2c(R− ‖f‖K)t−2e−2(R−‖f‖K) (C.18)

(for R > ‖f‖K +
(t− d ′)2

4
) . (C.19)

Step 3: Choosing R to balance the terms

Compiling (C.14), (C.15) and (C.18), we get:∫
Z

E
S

[(
[µ̂hf(X) − µ

h
f(X)](z)

)2]
dz 6

 CRd
′
n−2ν

+Cn1−2c(R− ‖f‖K)t−2e−2(R−‖f‖K).
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We now let R depend on the sample size n so that both rates be
(almost) balanced. Ideally, defining γ := ν+ 1/2− c > 0 and taking
the log of these rates, we would thus solve

d ′ logR = 2γ logn+ (t− 2) log(R− ‖f‖K) − 2(R− ‖f‖K) , (C.20)

and stick the solution Rs back into either of the two rates. Instead,
we will upper bound Rs and stick the upper bound into the first rate,
Rdn−2ν, which is the one increasing with R. More precisely, we will
now show that for large enough nwe can upper bound Rs essentially
with 2γ log(n) + ‖f‖K, which also satisfies conditions (C.16), (C.17)
and (C.19). This will complete the proof.

Note that t > d ′ > 1 and t ∈ N+. First assume t = 2. Then
it is easy to check that (C.20) has a unique solution Rs satisfying
Rs 6 γ logn+ ‖f‖K as long as n > exp

(
1−‖f‖K
γ

)
.

Next, assume t > 2. Then for n large enough (C.20) has exactly 2
solutions and the larger of which will be denoted Rs. We now replace
the right hand side of (C.20) with a lower bound d ′ log(R− ‖f‖K):

(d ′ − t+ 2) log(R− ‖f‖K) = 2γ logn− 2(R− ‖f‖K) , (C.21)

Clearly, (C.21) has one (if d ′ − t+ 2 > 0) or two (if d ′ − t+ 2 < 0)
solutions, and in both cases the larger one, R∗s, satisfies R∗s > Rs. If
d ′ − t+ 2 > 0 then, for n > e1/γ, R∗s 6 ‖f‖K + γ logn, because

(d ′ − t+ 2) log(γ logn) > 0

Finally, if d ′ − t+ 2 < 0 then the smaller solution of (C.21) decreases
to ‖f‖K and the larger one R∗s tends to infinity with growing n. Eval-
uating both sides of (C.21) for R = ‖f‖K + 2γ logn we notice that

(d ′ − t+ 2) log(2γ logn) > −2γ logn

for n large enough, as logn increases faster than log logn. This
shows that R∗s 6 ‖f‖K + 3γ logn. Thus there exists a constant C
independent of n, such that, for any n > 1:

E

[∥∥∥[µ̂kzf(X) − µkzf(X)]∥∥∥2kz
]
6 C(logn)d

′
n−2ν

= O
(
(logn)d

′
n−2ν

)
.
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C.2.2 Detailed Proof of 2.3.1

Proof.∥∥∥µ̂kxyXY − µ
kxy
XY

∥∥∥
kxy

=
∥∥∥µ̂kxX ⊗ µ̂kyY − µkxX ⊗ µ

ky
Y

∥∥∥
kxy

=
∥∥∥µ̂kxX ⊗ µ̂kyY − µ̂kxX ⊗ µ

ky
Y + µ̂kxX ⊗ µ

ky
Y − µkxX ⊗ µ

ky
Y

∥∥∥
kxy

=
∥∥∥µ̂kxX ⊗ (µ̂

ky
Y − µ

ky
Y ) + (µ̂kxX − µkxX )⊗ µkyY

∥∥∥
kxy

6
∥∥∥µ̂kxX ∥∥∥kx

∥∥∥µ̂kyY − µ
ky
Y

∥∥∥
ky

+
∥∥∥µkyY ∥∥∥ky

∥∥∥µ̂kxX − µkxX

∥∥∥
kx

=
∥∥∥µkxX + µ̂kxX − µkxX

∥∥∥
kx

∥∥∥µ̂kyY − µ
ky
Y

∥∥∥
ky

+
∥∥∥µkyY ∥∥∥ky

∥∥∥µ̂kxX − µkxX

∥∥∥
kx

6


∥∥∥µkxX ∥∥∥kx

∥∥∥µ̂kyY − µ
ky
Y

∥∥∥
ky

+
∥∥∥µkyY ∥∥∥ky

∥∥∥µ̂kxX − µkxX

∥∥∥
kx

+
∥∥∥µ̂kxX − µkxX

∥∥∥
kx

∥∥∥µ̂kyY − µ
ky
Y

∥∥∥
ky

= O(sn) +O(sn) +O(s
2
n) = O(sn + s2n).
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C.3 Chapter 3

C.3.1 Proof of Theorem 3.1.3

Proof. ⇐: suppose that k is not characteristic to P ∈ P. Then there
exists Q ∈ P s.t. Q 6= P but Φk(P) = Φk(Q). Then the constant
sequence Pn = Q does not converge weakly to P, but converges to P
in kernel metric.
⇒: Let k be continuous, characteristic to P and bounded. Let

Pn be a sequence of probability measures. We will first show that
if Pn is tight and converges to P in kernel metric, then Pn →σ P.
Suppose that Pn did not converge weakly to P. Then there exists
a subsequence (Pl)l of (Pn)n and a neighborhood of P which does
not contain any Pl. (Pl)l is tight, thus by Prokhorov’s theorem, (Pl)l
is a precompact subset of P(X). As P(X) is complete, we may again
extract a subsequence (Ph)h of (Pl)l which converges to a probability
measure P ′, which cannot be P (because Ph is ‘bounded away’ from
P). As k is continuous and bounded, any function f ∈ Hk is also in
Cb, thus Ph(f) → P ′(f) = 〈f , Φk(P ′)〉k for any f ∈ Hk. But we also
have ‖Ph − P‖k → 0, so by continuity of the inner product we have:
Ph(f) = 〈f , Φk(Ph)〉k → 〈f , Φk(P)〉k = P(f). Thus, for any f in Hk,
we have: 〈f , Φk(P)〉k = 〈f , Φk(P ′)〉k, thus Φk(P) = Φk(P

′), thus
P = P ′. Contradiction. Thus Pn →σ P.

Conversely, suppose that Pn →σ P. Then by Prokohrov’s theorem,
Pn is tight. Now let us show that MMDk(Pn,P)→ 0. As Pn − P → 0

(in the space of finite signed measures), the tensor product (Pn−P)⊗
(Pn − P) defined over X×X also converges weakly to 0 [9]. Thus: [9] Berg et al., Harmonic Analysis on

Semigroups Theory of Positive Definite and
Related Functions, 1984, Chap 2, Prop 3.3

MMDk(Pn,P)2 =

∫∫
k(x,y)d(Pn − P)(x)d(Pn − P)(y) (C.22)

= [(Pn − P)⊗ (Pn − P)](k) −→ 0.

C.3.2 Proof of Theorem 3.1.4

Proof. ⇒: Let k be continuous, characteristic to P and x 7→ k(x, x) be
O(|x|2p). Let Pn be a tight sequence of probability measures with
uniformly integrable α-moments that converges to P in kernel met-
ric. Suppose for a moment that Pn did not weakly-α converge to
P. Then we could find a weak-α neighborhood of P that does not
contain any element of a subsequence Pl of Pn. By Proposition 7.1.5
of [2], the set {Pl}l would be precompact for the Wα norm. Thus, [2] Ambrosio et al., Gradient Flows, 2005

by Lemma 5.1.7, it would also be weak-α precompact, and we could
extract a subsequence Ph of Pl that converges to a measure P ′ ∈ Pα.
We would then get a contradiction, as in the preceding proof. Thus
Pn →α P.
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Conversely, suppose that Pn →α P, and define P̃ as the mea-
sure P̃(A) :=

∫
A(1+ |x|α)dP(x) and k̃(x,y) := k(x,y)/((1+ |x|α)(1+

|y|α)). Then P̃n → P̃, and using (C.22), we conclude that

MMDk(Pn,P)2 =

∫∫
k(x,y)d(Pn − P)(x)d(Pn − P)(y)

=

∫∫
k(x,y)

(1+ |x|α)(1+ |y|α)
d(P̃n − P̃)(x)d(P̃n − P̃)(y)

= dk̃(P̃n, P̃)2 −→ 0

⇐: Same as in the proof of Theorem 3.1.3.

C.3.3 Proof of Proposition 3.2.5

Proof. Define the Lipschitz constant M1(b) = supx 6=y|b(x) −
b(y)|2/|x − y|2. Since k ∈ C (1,1) and b Lipschitz, kb ∈
C (1,1). Moreover, for each x, kb(x, ·) ∈ C→0 and ∂x∂ykb(x, ·) =

∂xb(x)(∂x∂yk)(b(x),b(·)))∂yb(·)T ∈ C→0 since b is norm-coercive
and Lipschitz and k ∈ C

(1,1)
→0 . In addition, if |·|2 designates the spec-

tral norm for matrices, then k ∈ C
(1,1)
→0 implies

sup
x∈X

max(kb(x, x), |(∂x∂ykb)(x, x)|2)

6 sup
y∈X

max(k(y,y),M1(b)2|(∂x∂yk)(y,y)|2) <∞ ,

so kb ∈ C
(1,1)
→0 . Now, select any f ∈ C 1→0 and any ε > 0. Since C 1c

is dense in C 1→0, choose any h ∈ C 1c with supx∈X |f(x) − h(x)| 6 ε.
Next, let c = b−1 represent the inverse of b and hc(y) = h(c(y))

denote the composition of h and c so that hc(b(x)) = h(x). By [19], [19] Chen et al., Stein Points, 2018,
Lem 8

hc ∈ C 1c ⊂ C 1→0, and hence there exists hc,ε ∈ Hk such that

sup
y∈X

max(|∂y(hc − hc,ε)(y)|2, |(hc − hc,ε)(y)|2) 6 ε/max(1,M1(b)).

Now define hε(x) = hc,ε(b(x)) so that hε ∈ Hkb by [19]. We have [19] Chen et al., Stein Points, 2018,
Lem 9supx∈X|hε(x) − h(x)|2 6 supy∈X|hc,ε(y) − hc(y)|2 6 ε, and

sup
x∈X

|∂x(hε − h)(x)|2 = sup
x∈X

|(∂xb(x))∂x(hc,ε − hc)(b(x))|2

6M1(b)ε/max(1,M1(b)) 6 ε,

demonstrating that every f ∈ C 1→0 is 2ε-approximated by some hε ∈
Hkb . Hence, kb is c10-universal.
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C.3.4 Proof of Theorem 3.2.3

Our proof mimics the proof of Theorem 2.2 in Chwialkowski
et al. [21] (reproduced in Appendix B.1.1), but uses Schwartz- [21] Chwialkowski et al., A Kernel Test of

Goodness of Fit, 2016differentiation instead of the usual differentiation. More precisely,
they work with expressions of the form sQ(x)dQ(x), which as-
sumes that Q has a differentiable density, otherwise sQ(x) :=

∂x log(q(x)) = ∂xq(x)/q(x) is not defined. Instead, we replace
those expressions by ∂xQ(x)dx, which is a well defined order 1
Schwartz-distribution for any probability measure Q, and coincides
with sQ(x)q(x)dx when Q has a differentiable density, because

sQ(x)q(x)dx =
∂xq(x)

q(x)
q(x)dx = ∂xq(x)dx = ∂xQ(x)dx .

We first generalize Lemma 1 of Chwialkowski et al. [21], which [21] Chwialkowski et al., A Kernel Test of
Goodness of Fit, 2016essentially states that any κ-embeddable probability measure Q with

differentiable density satisfies Ex∼Q
[
ξQ(x, ·)

]
= 0.

Lemma C.3.1. Let k be a kernel in C
(1,1)
b . Then for any probability mea-

sure Q and any y ∈ X:∫
Rd

∑
16i6d

k(x,y)∂xiQ(x)dx+ ∂xik(x,y)Q(x)dx = 0 (C.23)

Proof. (of Lemma C.3.1) Suppose that k ∈ C
(1,1)
b . Then Corol-

lary 1.1.4 shows that set of integrable distributions D1
L1

embeds into
Hk. But ∂xiQ ∈ D1

L1
for any i, thus ∂xiQ embeds into Hk. Thus

Proposition 1.4.2 shows that, for any y ∈ X and 1 6 i 6 d:∫
k(x,y)∂xiQ(x)dx = −

∫
∂xik(x,y)Q(x)dx .

We now finally proceed with the main proof.

Proof. (of Theorem 3.2.3) Combining the definitions of KSDk,P(Q)

and of characteristicness to P ∈ Pα shows that statements (i) and (ii)
are equivalent. Furthermore, applying Theorem 3.1.4 with κ and (i)
proves the equivalence between Pn →α P and (a) and (c).

We now show the equivalence of (iii) and (ii). To do so, we
use Lemma C.3.1 to rewrite ξiP, and then conclude with Propo-
sition 3.2.2. Indeed, because k ∈ C

(1,1)
b , ∂xQ embeds into Hk
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(see proof of Lemma C.3.1). We may thus consider its embedding∫
k(x, ·)∂xQ(x)dx and add and subtract it from EQ

[
ξiP
]

as follows.

E
Q

[
ξiP

]
=

∫ (
k(x, ·)siP(x) + ∂xik(x, ·)

)
Q(x)dx

=

∫ (
k(x, ·)∂xiQ(x)dx+ ∂xik(x, ·)Q(x)dx

)
+

∫
k(x, ·)

(
siP(x)Q(x)dx− ∂xiQ(x)dx

)
= 0+

∫
k(x, ·)Di(x)dx .

Here Di denotes the Schwartz-distribution siPQ− ∂xiQ, and the 0
comes from Lemma C.3.1. We conclude by noticing that, by Propo-
sition 3.2.2, (ii) is equivalent to: for any Q ∈ Pα, Q = P iff for all
1 6 i 6 d, EQ

[
ξiP
]
= 0, i.e. iff for all i, Di = 0, which is condi-

tion (iii). Thus (ii) and (iii) are equivalent.
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C.4 Chapter 5

C.4.1 Proof of Lemma 5.1.1

For the first inequality, we use the fact that Df is jointly convex. We
write PX = (1 − β)PX−βR1−β + βR which is a convex combination of
two distributions when the assumptions are satisfied. The second
inequality follows from using the triangle inequality for

√
Df and

using convexity of Df in its first argument.

C.4.2 Proof of Theorem 5.1.2

Before proving Theorem 5.1.2, we introduce two lemmas. The first
one is about the determination of the constant λ, the second one is
about comparing the divergences of mixtures.

Lemma C.4.1. Let P and Q be two distributions, γ ∈ [0, 1] and λ ∈ R.
The function

g(λ) :=

∫(
λ− γ

dQ

dP

)
+

dP

is nonnegative, convex, nondecreasing, satisfies g(λ) 6 λ, and its right
derivative is given by

g ′+(λ) = P (λ · dP > γ · dQ).

The equation g(λ) = 1− γ has a solution λ∗ (unique when γ < 1) with
λ∗ ∈ [1− γ, 1]. Finally, if P(dQ = 0) > δ for a strictly positive constant δ
then λ∗ 6 (1− γ)δ−1.

Proof. The convexity of g follows immediately from the convexity of
x 7→ (x)+ and the linearity of the integral. Similarly, since x 7→ (x)+

is non-decreasing, g is non-decreasing.
We define the set I(λ) as follows:

I(λ) := {x ∈ X : λ · dP(x) > γ · dQ(x)}.

Now let us consider g(λ+ ε) − g(λ) for some small ε > 0. This can
also be written:

g(λ+ ε) − g(λ) =

∫
I(λ)

εdP+

∫
I(λ+ε)\I(λ)

(λ+ ε)dP−

∫
I(λ+ε)\I(λ)

γdQ

= εP(I(λ)) +

∫
I(λ+ε)\I(λ)

(λ+ ε)dP−

∫
I(λ+ε)\I(λ)

γdQ.

On the set I(λ+ ε)\I(λ), we have

(λ+ ε)dP− γdQ ∈ [0, ε].
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So that

εP(I(γ)) 6 g(λ+ε)−g(λ) 6 εP(I(γ))+εP
(
I(λ+ε)\I(λ)

)
= εP(I(λ+ε))

and thus

lim
ε→0+

g(λ+ ε) − g(λ)

ε
= lim
ε→0+

P(I(λ+ ε)) = P(I(λ)).

This gives the expression of the right derivative of g. Moreover, no-
tice that for λ,γ > 0

g ′+(λ) = P (λ · dP > γ · dQ) = P

(
dQ

dP
6
λ

γ

)
= 1−P

(
dQ

dP
>
λ

γ

)
> 1−γ/λ

by Markov’s inequality.
It is obvious that g(0) = 0. By Jensen’s inequality applied to the

convex function x 7→ (x)+, we have g(λ) > (λ− γ)+. So g(1) > 1− γ.
Also, g = 0 on R− and g 6 λ. This means g is continuous on R

and thus reaches the value 1− γ on the interval (0, 1] which shows
the existence of λ∗ ∈ (0, 1]. To show that λ∗ is unique we notice that
since g(x) = 0 on R−, g is convex and non-decreasing, g cannot be
constant on an interval not containing 0, and thus g(x) = 1− γ has a
unique solution for γ < 1.

Also by convexity of g,

g(0) − g(λ∗) > −λ∗g ′+(λ
∗),

which gives λ∗ > (1− γ)/g ′+(λ
∗) > 1− γ since g ′+ 6 1. If P(dQ =

0) > δ > 0 then also g ′+(0) > δ > 0. Using the fact that g ′+ is
increasing we conclude that λ∗ 6 (1− γ)δ−1.

Next we introduce some simple convenience lemma for compar-
ing convex functions of random variables.

Lemma C.4.2. Let f be a convex function, X, Y be real-valued random
variables and c ∈ R be a constant such that

E[max(c, Y)] = E[X+ Y].

Then we have the following bound:

E[f(max(c, Y))] 6 E[f(X+ Y)] −E
[
X(f ′(Y) − f ′(c))+

]
6 E[f(X+ Y)].

(C.24)

If in addition, Y 6M a.s. for M > c, then

E[f(max(c, Y))] 6 f(c) +
f(M) − f(c)

M− c
(E[X+ Y] − c). (C.25)
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Proof. We decompose the expectation with respect to the value of the
max and use the convexity of f:

f(X+ Y) − f(max(c, Y))

= 1[Y6c](f(X+ Y) − f(c))

+ 1[Y>c](f(X+ Y) − f(Y))

> 1[Y6c]f
′(c)(X+ Y − c) + 1[Y>c]Xf

′(Y)

= (1− 1[Y>c])Xf
′(c) + f ′(c)(Y − max(c, Y))

+ 1[Y>c]Xf
′(Y)

= f ′(c)(X+ Y − max(c, Y))

+ 1[Y>c]X(f
′(Y) − f ′(c))

= f ′(c)(X+ Y − max(c, Y)) +X(f ′(Y) − f ′(c))+,

where we used that f ′ is non-decreasing in the last step. Taking the
expectation gives the first inequality.

For the second inequality, we use the convexity of f on the interval
[c,M]:

f(max(c, Y)) 6 f(c) +
f(M) − f(c)

M− c
(max(c, Y) − c).

Taking an expectation on both sides gives the second inequality.

Theorem 5.1.2. We first apply Lemma C.4.1 with γ = 1− β and this
proves the existence of λ∗ in the interval (β, 1], which shows that R∗β
is indeed well-defined as a distribution.

Then we use Inequality (C.24) of Lemma C.4.2 with X = βdQ/dPX,
Y = (1 − β)dPY/dPX, and c = λ∗. We easily verify that X + Y =

((1−β)dPY +βdQ)/dPX and max(c, Y) = ((1−β)dPY +βdQ
∗
β)/dPX

and both have expectation 1 with respect to PX. We thus obtain for
any distribution Q,

Df

(
(1−β)PY +βQ∗β

∥∥∥PX) 6 Df ((1−β)PY +βQ ‖PX) .

This proves the optimality of R∗β.

C.4.3 Proof of Theorem 5.1.3

Lemma C.4.3. Let P and Q be two distributions, γ ∈ (0, 1), and λ > 0.
The function

h(λ) :=

∫(
1

γ
− λ

dQ

dP

)
+

dP
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is convex, non-increasing, and its right derivative is given by h ′+(λ) =

−Q(1/γ > λdQ(X)/dP(X)). Denote ∆ := P(dQ(X)/dP(X) = 0). Then
the equation

h(λ) =
1− γ

γ

has no solutions if ∆ > 1− γ, has a single solution λ† > 1 if ∆ < 1− γ,
and has infinitely many or no solutions when ∆ = 1− γ.

Proof. The convexity of h follows immediately from the convexity
of x 7→ (a − x)+ and the linearity of the integral. Similarly, since
x 7→ (a− x)+ is non-increasing, h is non-increasing as well.

We define the set J(λ) as follows:

J(λ) :=

{
x ∈ X :

1

γ
> λ

dQ

dP
(x)

}
.

Now let us consider h(λ) − h(λ+ ε) for any ε > 0. Note that J(λ+
ε) ⊆ J(λ). We can write:

h(λ) − h(λ+ ε)

=

∫
J(λ)

(
1

γ
− λ

dQ

dP

)
dP−

∫
J(λ+ε)

(
1

γ
− (λ+ ε)

dQ

dP

)
dP

=

∫
J(λ)\J(λ+ε)

(
1

γ
− λ

dQ

dP

)
dP+

∫
J(λ+ε)

(
ε
dQ

dP

)
dP

=

∫
J(λ)\J(λ+ε)

(
1

γ
− λ

dQ

dP

)
dP+ ε ·Q(J(λ+ ε)).

Note that for x ∈ J(λ) \ J(λ+ ε) we have

0 6
1

γ
− λ

dQ

dP
(x) < ε

dQ

dP
(x).

This gives the following:

ε ·Q(J(λ+ ε)) 6 h(λ) − h(λ+ ε)

6 ε ·Q(J(λ+ ε)) + ε ·Q(J(λ) \ J(λ+ ε))

= ε ·Q(J(λ)),

which shows that h is continuous. Also

lim
ε→0+

h(λ+ ε) − h(λ)

ε
= lim
ε→0+

−Q(J(λ+ ε))

= −Q(J(λ)).

It is obvious that h(0) = 1/γ and h 6 γ−1 for λ > 0. By Jensen’s
inequality applied to the convex function x 7→ (a − x)+, we have
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h(λ) >
(
γ−1 − λ

)
+

. So h(1) > γ−1 − 1. We conclude that h may
reach the value (1− γ)/γ = γ−1 − 1 only on [1,+∞). Note that

h(λ)→ 1

γ
P

(
dQ

dP
(X) = 0

)
=
∆

γ
> 0 as λ→∞.

Thus if ∆/γ > γ−1 − 1 the equation h(λ) = γ−1 − 1 has no solutions,
as h is non-increasing. If ∆/γ = γ−1 − 1 then either h(λ) > γ−1 − 1
for all λ > 0 and we have no solutions or there is a finite λ ′ > 1

such that h(λ ′) = γ−1 − 1, which means that the equation is also
satisfied by all λ > λ ′, as h is continuous and non-increasing. Finally,
if ∆/γ < γ−1 − 1 then there is a unique λ† such that h(λ†) = γ−1 − 1,
which follows from the convexity of h.

Next we introduce some simple convenience lemma for compar-
ing convex functions of random variables.

Lemma C.4.4. Let f be a convex function, X, Y be real-valued random
variables such that X 6 Y a.s., and c ∈ R be a constant such that2 2 Generally it is not guaranteed that

such a constant c always exists. In this
result we assume this is the case.

E[min(c, Y)] = E[X].

Then we have the following lower bound:

E[f(X) − f(min(c, Y))] > 0.

Proof. We decompose the expectation with respect to the value of the
min, and use the convexity of f:

f(X) − f(min(c, Y))

= 1[Y6c](f(X) − f(Y)) + 1[Y>c](f(X) − f(c))

> 1[Y6c]f
′(Y)(X− Y) + 1[Y>c](X− c)f ′(c)

> 1[Y6c]f
′(c)(X− Y) + 1[Y>c](X− c)f ′(c)

= Xf ′(c) − min(Y, c)f ′(c),

where we used the fact that f ′ is non-decreasing in the previous to
last step. Taking the expectation we get the result.

Lemma C.4.5. Let PY ,PX be two fixed distributions and β ∈ (0, 1). As-
sume

PX

(
dPY
dPX

= 0

)
< β.

Let M(PX,β) be the set of all probability distributions T such that (1 −

β)dT 6 dPX. Then the following minimization problem:

min
T∈M(PX,β)

Df (T ‖PY)
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has the solution T∗ with density

dT∗ := min(dPX/(1−β), λ†dPY),

where λ† is the unique value in [1,∞) such that
∫
dT∗ = 1.

Proof. We will use Lemma C.4.4 with X = dT(Z)/dPY(Z), Y =

dPX(Z)/
(
(1 − β)dPY(Z)

)
, and c = λ∗, Z ∼ PY . We need to verify

that assumptions of Lemma C.4.4 are satisfied. Obviously, Y > X.
We need to show that there is a constant c such that∫

min
(
c,

dPX
(1−β)dPY

)
dPY = 1.

Rewriting this equation we get the following equivalent one:

β =

∫
(dPX − min (c(1−β)PY ,dPX))

= (1−β)

∫ (
1

1−β
− c

dPY
dPX

)
+

dPX.
(C.26)

Using the fact that

PX

(
dPY
dPX

= 0

)
< β

we may apply Lemma C.4.3 and conclude that there is a unique c ∈
[1,∞) satisfying (C.26), which we denote λ†.

To conclude the proof of Theorem 5.1.3, observe that from Lemma
C.4.5, by making the change of variable T = (PX − βQ)/(1− β) we
can rewrite the minimization problem as follows:

min
Q: βdQ6dPX

Df◦

(
PY

∥∥∥∥ PX −βQ

1−β

)
and we verify that the solution has the form dQ

†
β =

1
β

(
dPX − λ†(1−β)dPY

)
+

. Since this solution does not depend on
f, the fact that we optimized Df◦ is irrelevant and we get the same
solution for Df.

C.4.4 Proof of Lemma 5.1.4

The first inequality follows from the optimality of R∗β (hence the
value of the objective at R∗β is smaller than at PX), and the fact that
Df is convex in its first argument. The second inequality follows
from the optimality of R†β (hence the objective at R†β is smaller than
its value at PX which itself satisfies the condition βdPX 6 dPX). For
the third inequality, we combine the second inequality with the first
inequality of Lemma 5.1.1 (with Q = R = R†β).
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C.4.5 Proof of Corollaries 5.1.5 and 5.1.6

For Corollary 5.1.5, combine Lemma 5.1.1, Theorem 5.1.2, and
Lemma 5.1.4. Corollary 5.1.6 immediately follows from Lemma 5.1.1,
Theorem 5.1.3, and Lemma 5.1.4. It is easy to verify that for γ < β/4,
the coefficient is less than (β/2+

√
1−β)2 < 1 (for β > 0).
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C.5 Chapter 6

C.5.1 Proof of Proposition 6.1.3

Proof. Let εδ be an adversarial perturbation with ‖δ‖ = 1 that
locally maximizes the loss increase at point x, meaning that δ =

arg max‖δ ′‖61∂xL · δ ′. Then, by definition of the dual norm of ∂xL
we have: ∂xL · (εδ) = ε |||∂xL|||. Thus

L̃ε,‖·‖(x, c) =
1

2
(L(x, c)+L(x+εδ, c)) =

1

2
(2L(x, c)+ε |∂xL · δ|+o(‖δ‖)) =

= L(x, c) +
ε

2
|||∂xL|||+ o(ε) = Lε,|||·|||(x, c) + o(ε) . ( )

C.5.2 Proof of Theorem 6.2.1

Proof. Let x designate a generic coordinate of x. To evaluate the size
of ‖∂xL‖q, we will evaluate the size of the coordinates ∂xL of ∂xL
by decomposing them into

∂xL =

K∑
k=1

∂L

∂fk

∂fk
∂x

=:

K∑
k=1

∂kL∂xfk,

where fk(x) denotes the logit-probability of x belonging to class k.
We now investigate the statistical properties of the logit gradients
∂xfk, and then see how they shape ∂xL.

Step 1: Statistical properties of ∂xfk. Let P(x,k) be the set of
paths p from input neuron x to output-logit k. Let p− 1 and p be
two successive neurons on path p, and p̃ be the same path p but
without its input neuron. Let wp designate the weight from p− 1 to
p and ωp be the path-product ωp :=

∏
p∈p̃wp. Finally, let σp (resp.

σp) be equal to 1 if the ReLU of node p (resp. if path p) is active for
input x, and 0 otherwise.

As previously noticed by [5] using the chain rule, we see that [5] Balduzzi et al., Neural Taylor Approx-
imations, 2017

∂xfk is the sum of all ωp whose path is active, i.e. ∂xfk(x) =∑
p∈P(x,k)ωpσp. Consequently:

E
W,σ

[
∂xfk(x)

2
]
=

∑
p∈P(x,k)

∏
p∈p̃

E
W

[
w2p

]
E
σ

[
σ2p

]
= |P(x,k)|

∏
p∈p̃

2

dp−1

1

2
=
∏
p∈p̃

dp ·
∏
p∈p̃

1

dp−1
=
1

d
. (C.27)

The first equality uses H1 to decouple the expectations over weights
and ReLUs, and then applies Lemma C.5.4 of Appendix C.5.3, which
uses H3-H5 to kill all cross-terms and take the expectation over
weights inside the product. The second equality uses H3 and the
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fact that the resulting product is the same for all active paths. The
third equality counts the number of paths from x to k and we con-
clude by noting that all terms cancel out, except dp−1 from the input
layer which is d. Equation C.27 shows that |∂xfk| ∝ 1/

√
d.

Step 2: Statistical properties of ∂kL and ∂xL. Defining qk(x) :=
efk(x)∑K
h=1 e

fh(x)
(the probability of image x belonging to class k accord-

ing to the network), we have, by definition of the cross-entropy loss,
L(x, c) := − logqc(x), where c is the label of the target class. Thus:

∂kL(x) =

 −qk(x) if k 6= c
1− qc(x) otherwise,

and

∂xL(x) = (1− qc)∂xfc(x) +
∑
k6=c

qk (−∂xfk(x)). (C.28)

Using again Lemma C.5.4, we see that the ∂xfk(x) are K centered
and uncorrelated variables. So ∂xL(x) is approximately the sum of
K uncorrelated variables with zero-mean, and its total variance is
given by

(
(1−qc)

2+
∑
k6=c q

2
k

)
/d. Hence the magnitude of ∂xL(x) is

1/
√
d for all x, so the `q-norm of the full input gradient is d1/q−1/2.

(6.6) concludes.

Remark C.5.1. Equation C.28 can be rewritten as

∂xL(x) =

K∑
k=1

qk(x)
(
∂xfc(x) − ∂xfk(x)

)
. (C.29)

As the term k = c disappears, the norm of the gradients ∂xL(x) ap-
pears to be controlled by the total error probability. This suggests
that, even without regularization, trying to decrease the ordinary
classification error is still a valid strategy against adversarial exam-
ples. It reflects the fact that when increasing the classification margin,
larger gradients of the classifier’s logits are needed to push images
from one side of the classification boundary to the other. This is
confirmed by Theorem 2.1 of [48]. See also (B.3) in Appendix B.3.2. [48] Hein and Andriushchenko, Formal

Guarantees on the Robustness of a Classifier
against Adversarial Manipulation, 2017

C.5.3 Proof of Theorem 6.2.2

The proof of Theorem 6.2.2 is very similar to the one of Theorem 6.2.1,
but we will need to first generalize the equalities appearing in (C.27).
To do so, we identify the computational graph of a neural network to
an abstract Directed Acyclic Graph (DAG) which we use to prove the
needed algebraic equalities. We then concentrate on the statistical
weight-interactions implied by assumption (H), and finally throw
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these results together to prove the theorem. In all the proof, o will
designate one of the output-logits fk(x).

Lemma C.5.2. Let x be the vector of inputs to a given DAG, o be any
leaf-node of the DAG, x a generic coordinate of x. Let p be a path from the
set of paths P(x,o) from x to o, p̃ the same path without node x, p a generic
node in p̃, and dp be its input-degree. Then:∑
x∈x

∑
p̃∈P(x,o)

∏
p∈p̃

1

dp
= 1 (C.30)

Proof. We will reason on a random walk starting at o and going
up the DAG by choosing any incoming node with equal probability.
The DAG being finite, this walk will end up at an input-node x with
probability 1. Each path p is taken with probability

∏
p∈p̃

1
dp

. And
the probability to end up at an input-node is the sum of all these
probabilities, i.e.

∑
x∈x
∑
p∈P(x,o)

∏
p∈p d

−1
p , which concludes.

The sum over all inputs x in (C.30) being 1, on average it is 1/d
for each x, where d is the total number of inputs (i.e. the length of x).
It becomes an equality under assumption (S):

Lemma C.5.3. Under the symmetry assumption (S), and with the previous
notations, for any input x ∈ x:∑
p∈P(x,o)

∏
p∈p̃

1

dp
=
1

d
. (C.31)

Proof. Let us denote D(x,o) := {dp}x∈P(x,o). Each path p in
P(x,o) corresponds to exactly one element dp in D(x,o) and vice-
versa. And the elements dp of dp completely determine the product∏
p∈p̃ d

−1
p . By using (C.30) and the fact that, by (S), the multiset

D(x,o) is independent of x, we hence conclude∑
x∈x

∑
p∈P(x,o)

∏
p∈p̃

1

dp
=
∑
x∈x

∑
dp∈D(x,o)

∏
dp∈dp

1

dp

= d
∑

dp∈D(x,o)

∏
dp∈dp

1

dp
= 1 .

Now, let us relate these considerations on graphs to gradients and
use assumptions (H). We remind that path-product ωp is the prod-
uct
∏
p∈p̃wp.

Lemma C.5.4. Under assumptions (H), the path-productsωp,ωp ′ of two
distinct paths p and p ′ starting from a same input node x, satisfy:

E
W

[
ωpωp ′

]
= 0 and E

W

[
ω2p

]
=
∏
p∈p̃

E
W

[
w2p

]
.
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Furthermore, if there is at least one non-average-pooling weight on path p,
then EW [ωp] = 0.

Proof. Hypothesis H4 yields

E
W

[
ω2p

]
= E
W

∏
p∈p̃

w2p

 =
∏
p∈p̃

E
W

[
w2p

]
.

Now, take two different paths p and p ′ that start at a same node x.
Starting from x, consider the first node after which p and p ′ part
and call p and p ′ the next nodes on p and p ′ respectively. Then the
weights wp and wp ′ are two weights of a same node. Applying H4
and H5 hence gives

E
W

[
ωpωp ′

]
= E
W

[
ωp\pωp ′\p ′

]
E
W

[
wpwp ′

]
= 0 .

Finally, if p has at least one non-average-pooling node p,
then successively applying H4 and H3 yields: EW [ωp] =

EW

[
ωp\p

]
EW [wp] = 0.

We now have all elements to prove Theorem 6.2.2.

Proof. (of Theorem 6.2.2) For a given neuron p in p̃, let p− 1 desig-
nate the previous node in p of p. Let σp (resp. σp) be a variable equal
to 0 if neuron p gets killed by its ReLU (resp. path p is inactive), and
1 otherwise. Then:

∂xo =
∑

p∈P(x,o)

∏
p∈p̃

∂p−1 p =
∑

p∈P(x,o)

ωp σp

Consequently:

E
W,σ

[
(∂xo)

2
]
=

∑
p,p ′∈P(x,o)

E
W

[
ωpωp ′

]
E
σ

[
σpσp ′

]
=

∑
p∈P(x,o)

∏
p∈p̃

E
W

[
ω2p

]
E
σ

[
σ2p

]
(C.32)

=
∑

p∈P(x,o)

∏
p∈p̃

2

dp

1

2
=
1

d
,

where the firs line uses the independence between the ReLU killings
and the weights (H1), the second uses Lemma C.5.4 and the last uses
Lemma C.5.3. The gradient ∂xo thus has coordinates whose squared
expectations scale like 1/d. Thus each coordinate scales like 1/

√
d

and ‖∂xo‖q like d1/2−1/q. Conclude on ‖∂xL‖q and εp ‖∂xL‖q by
using Step 2 of the proof of Theorem 6.2.1.
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Finally, note that, even without the symmetry assumption (S), us-
ing Lemma C.5.2 shows that

E
W

[
‖∂xo‖22

]
=
∑
x∈x

E
W

[
(∂xo)

2
]

=
∑
x∈x

∑
p∈P(x,o)

∏
p∈p̃

2

dp

1

2
= 1 .

Thus, with or without (S), ‖∂xo‖2 is independent of the input-
dimension d.

C.5.4 Proof of Theorem B.3.1

To prove Theorem B.3.1, we will actually prove the following more
general theorem, which generalizes Theorem 6.2.2. Theorem B.3.1 is
a straightforward corollary of it.

Theorem C.5.5. Consider any feed-forward network with linear connec-
tions and ReLU activation functions that outputs logits fk(x) and satis-
fies assumptions (H). Suppose that there is a fixed multiset of integers
{a1, . . . ,an} such that each path from input to output traverses exactly n
average pooling nodes with degrees {a1, . . . ,an}. Then:

‖∂xfk‖2 ∝
1∏n

i=1
√
ai

. (C.33)

Furthermore, if the net satisfies the symmetry assumption (S), then:
|∂xfk| ∝ 1√

d
∏n
i=1 ai

.

Two remarks. First, in all this proof, “weight” encompasses
both the standard random weights, and the constant (determinis-
tic) weights equal to 1/(in-degree) of the average-poolings. Sec-
ond, assumption H5 implies that the average-pooling nodes have
disjoint input nodes: otherwise, there would be two non-zero deter-
ministic weights w,w ′ from a same neuron that would hence satisfy:
EW [ww ′] 6= 0.

Proof. As previously, let o designate any fixed output-logit fk(x). For
any path p, let a be the set of average-pooling nodes of p and let
q be the set of remaining nodes. Each path-product ωp satisfies:
ωp = ωqωa, where ωa is a same fixed constant. For two distinct
paths p,p ′, Lemma C.5.4 therefore yields: EW

[
ω2p
]
= ω2aEW

[
ω2q
]
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and EW
[
ωpωp ′

]
= 0. Combining this with Lemma C.5.3 and under

assumption (S), we get similarly to (C.32):

E
W,σ

[
(∂xo)

2
]
=
∑

p,p ′∈P(x,o)

ωaωa ′ E
W

[
ωqωq ′

]
E
σ

[
σqσq ′

]
=

∑
p∈P(x,o)

n∏
i=1

1

a2i

∏
q∈q̃

E
W

[
ω2q

]
E
σ

[
σ2q

]

=

n∏
i=1

1

ai︸ ︷︷ ︸
same value

for all p

∑
p∈P(x,o)

n∏
i=1

1

ai

∏
q∈q̃

2

dq

1

2︸ ︷︷ ︸∏
p∈p̃

1
dp︸ ︷︷ ︸

= 1
d (Lemma C.5.3)

(C.34)

=
1

d

n∏
i=1

1

ai
.

Therefore, |∂xo| = |∂xfk| ∝ 1/
√
d
∏n
i=1 ai. Again, note that, even

without assumption (S), using (C.34) and Lemma C.5.2 shows that

E
W

[
‖∂xo‖22

]
=
∑
x∈x

E
W,σ

[
(∂xo)

2
]

(C.34)
=
∑
x∈x

n∏
i=1

1

ai

∑
p∈P(x,o)

n∏
i=1

1

ai

∏
p∈p̃

2

dp

1

2

=

n∏
i=1

1

ai

∑
x∈x

∑
p∈P(x,o)

∏
p∈p̃

1

dp︸ ︷︷ ︸
=1 (Lemma C.5.2)

=

n∏
i=1

1

ai
,

which proves (C.33).
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