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Summary 
 

mRNA localization is a common mechanism of gene regulation, studied across various cell 

types in numerous organisms. The subcellular targeting of mRNAs is involved in a broad 

range of biological processes including embryonic patterning, asymmetric cell division and 

cell migration. To study the underlying principles of mRNA localization, Drosophila 

melanogaster is an excellent model, as many RNAs display a localized pattern both in the 

oocyte and in the early embryo. In Drosophila, asymmetric deposition of maternal oskar (osk), 

nanos and bicoid mRNAs defines the antero-posterior polarity, while deposition of gurken 

mRNA plays an essential role in dorso-ventral axis specification. This differential targeting of 

mRNAs in a defined spatio-temporal manner requires several trans-acting factors which 

assemble with the mRNA into messenger ribonucleoprotein particles (mRNPs). Many trans-

acting factors are RNA-binding proteins (RBPs) that recognize specific cis-acting elements 

in the RNA, and often function both in the localization and translational regulation of the 

transcript. 

The heterogeneity of mRNPs poses a challenge to a comprehensive understanding of the 

underlying mechanism of mRNA regulation. Although individual RBPs have been identified 

and extensively studied for their role in mRNA localization, less is known about their 

interaction network. Often the same RBPs bind to differentially localized transcripts and it is 

unclear how transcript specificity and differential targeting is achieved. A possibility is that 

while these RBPs form the core of the mRNP, a higher level of transcript-specific regulation 

comes from the regulatory partners that interact directly with them.  

To gain further insights into the functional components of an mRNP and possibly understand 

the regulation of RBPs, in my PhD project, I performed co-purification studies of both a 

localizing mRNP and the RBPs associated with localizing transcripts in Drosophila. In the first 

part of the project, using a TAP (Tandem Affinity Purification) tagging approach, I established 

a protocol to biochemically purify osk mRNP. In this method, both the RNA and a known 

trans-acting factor of osk mRNP were tagged in parallel. To capture a transcript-specific 

complex, I generated transgenic fly lines expressing osk mRNA tagged with binding sites for 

the MS2 phage coat protein. Insertion of MS2 aptamers did not affect osk localization as the 

tagged transcript was able to localize in an endogenous osk null background. By adding 

recombinant MS2 coat protein, I could successfully purify tagged osk in vitro. However, in 

vivo osk mRNP purification from isolated egg chambers will require further optimization. 

In the second part of the project, I immunoprecipitated six tagged RBPs (eIF4AIII, Glorund, 

Hrp48, Nanos, Staufen and Vasa) that are known to regulate localization of one or more  
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maternal mRNAs at different developmental stages. As the starting material, I used egg 

chambers expressing sGFP-tagged RBPs at their endogenous levels. This ensures that the 

stoichiometry and structure of protein complexes are maintained close to the physiological 

state. I used co-purification conditions designed to preserve direct protein-protein 

interactions. By employing mass spectrometry (both labeled and label-free methods) and 

subsequent statistical analysis, I identified proteins significantly enriched with each tagged 

RBP and constructed an interactome. All the six RBP-associated proteomes are mostly 

independent, consistent with the spatial and temporal distribution of the target transcripts, but 

also showed some overlap. Interestingly, components of both translational and decay 

machinery co-purified with baits that have known functions in translational regulation of 

maternal mRNAs. Functional analysis using bioinformatics annotation tools further showed 

that the selected RBPs are involved in a broad range of events, such as RNA processing, 

mRNA splicing and regulation of cell cycle, in addition to their role in mRNA localization and 

translation during Drosophila development. By using co-immunoprecipitation assay in 

cultured HEK cells, I was able to validate several interactions identified in the mass 

spectrometric data. By transiently expressing tagged proteins, I found 26 novel interactions 

of potential RBP regulators, including several uncharacterized factors.  

This work presents the foundation for in vivo functional and co-localization studies, as well 

as in vitro structural characterization of the identified interactants, to fully understand the 

relevance of these interactions in the regulation of mRNA localization. 
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Zusammenfassung 
 

mRNA-Lokalisation ist ein weit verbreiteter Mechanismus der Genregulation, welcher in 

verschiedenen Zelltypen in vielen Organismen untersucht wird. Die Lokalisierung der mRNAs 

innerhalb der Zelle ist an einer Reihe biologischer Prozesse beteiligt, unter anderem an der 

embryonalen Musterbildung, der asymmetrischen Zellteilung und der Zellmigration. 

Drosophila melanogaster ist ein hervorragender Modellorganismus, mit dessen Hilfe sich die 

grundlegenden Prinzipien der mRNA Lokalisation untersuchen lassen, da viele mRNAs 

sowohl in der Oozyte als auch im frühen Embryo ein Lokalisierungsmuster aufweisen. In 

Drosophila bestimmt die asymmetrische Verteilung der maternalen mRNAs oskar (osk), 

nanos und bicoid die anterior-posteriore Polarität, wohingegen die gurken mRNA bei der 

Festlegung der dorso-ventralen Achse eine essentielle Rolle spielt. Diese differenzierte 

Lokalisation von mRNAs in einer räumlich und zeitlich definierten Weise benötigt 

verschiedene Faktoren, welche die mRNA in Messengerribonucleoprotein-Partikel (mRNPs) 

zusammenfügen. Viele dieser Faktoren sind RNA-bindende Proteine (RBPs), welche 

spezifische cis-wirkende Elemente in der RNA erkennen und häufig eine Funktion sowohl in 

der Lokalisation als auch in der translationalen Regulation des Transkripts haben. 

Die Heterogenität der mRNPs stellt eine Herausforderung für ein umfassendes Verständnis 

der zugrundeliegenden Mechanismen der mRNA Regulation dar. Obwohl einzelne RBPs 

identifiziert wurden und deren Rolle innerhalb der mRNA Lokalisation ausführlich untersucht 

wurde, ist nur wenig über deren Interaktionsnetzwerk bekannt. Darüber hinaus ist unklar, wie 

eine Spezifität für ein Transkript und eine unterschiedliche Lokalisation erreicht wird, da von 

einigen RBPs bekannt ist, dass sie für die Lokalisation von mehr als einer mRNA notwendig 

sind. Eine mögliche Erklärung ist, dass während diese RBPs den Kern des mRNP bilden, 

Regulationspartner, die direkt mit den RBPs interagieren, eine höhere Ordnung an 

transkriptspezifischer Regulation ermöglichen.  

Um weitere Einblicke in die funktionellen Komponenten der mRNPs zu erhalten und 

möglicherweise die Regulation von RBPs zu verstehen, habe ich während meiner 

Doktorarbeit Ko-Reinigungs-Experimente sowohl mit einem lokalisiertem mRNP, als auch 

den RBPs, welche mit der Lokalisation von Transkripten in Drosophila assoziiert sind, 

durchgeführt. Im ersten Teil des Projekts habe ich unter Nutzung eines TAP-tagging 

Ansatzes (engl.: Tandem Affinity Purification, gekoppelte Affinitätsreinigung) ein Protokoll zur 

biochemischen Reinigung eines lokalisierten mRNP etabliert. Bei dieser Methode wurden 

sowohl die RNA, als auch ein bekannter trans-wirkender Faktor eines mRNP parallel mit 

einem Tag versehen. Um einen transkriptspezifischen Komplex aufzureinigen habe ich 

transgene Fliegenlinien generiert, welche osk mRNA mit einem Tag , der die Bindestelle für 
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das MS2 Phagenhüllen-Protein enthält, exprimieren. Das Einfügen der MS2-Aptamere hatte 

keinen Einfluss auf die Lokalisation von osk, da das getaggte Transkript in Hintergrund eines 

endogenen osk Nullallels korrekt lokalisieren konnte. Durch Zugabe von rekombinantem 

MS2 Phagenhüllen-Protein konnte ich erfolgreich getaggtes osk in vitro reinigen, allerdings 

mit geringer Effizienz und Spezifität. Des Weiteren benötigt die Reinigung des mRNP in vivo 

aus isolierten Einährkammern weitere Optimierung. 

Im zweiten Teil des Projekts habe ich sechs getaggte RBPs (eIF4AIII, Glorund, Hrp48, 

Nanos, Staufen und Vasa), die die Lokalisation von einer oder mehreren maternalen mRNAs 

in verschiedenen Entwicklungsstadien regulieren, immunopräzipitiert. Zu diesem Zweck 

habe ich Fliegenlinien verwendet, welche sGFP-getaggte RBPs exprimierten. Diese 

getaggten Proteine werden auf ihren endogenen Leveln exprimiert um eine nahezu 

physiologische Stöchiometrie und Struktur der Proteinkomplexe zu erhalten. Darüber hinaus 

wurden Aufreinigungsbedingungen verwendet, die direkte Protein-Protein-Interaktionen 

erhalten. Mit Hilfe von Massenspektrometrie (sowohl markiert als auch markierungsfrei) und 

darauffolgender statistischer Analyse identifizierte ich für jedes getaggte RBP Proteine 

welche signifikant angereichert wurden und konstruierte ein Interaktom. Alle sechs RBP-

assoziierten Interaktome sind größtenteils unabhängig voneinander. Dies ist im Einklang mit 

der räumlichen und zeitlichen Verteilung ihrer Zieltranskripte. Interessanterweise konnte ich 

mehrere Proteine identifiziert, die mit mehreren Zielproteinen assoziiert waren. Komponenten 

der Translations- und der Abbaumaschinerie konnten mit RBPs mit bekannter Funktion in 

der translationalen Regulation mütterlicher mRNAs aufgereinigt werden. Eine funktionelle 

Analyse mit Hilfe bioinformatischer Annotationswerkzeugen konnte darüber hinaus zeigen, 

dass die untersuchenten RBPs an vielen verschiedenen Prozessen wie der RNA-

Prozessierung, mRNA-Splicing und der Regulation des Zellzyklus zusätzlich zu ihrem Beitrag 

in der mRNA-Lokalisation und -Translation während der Drosophila-Entwicklung beteiligt 

sind.  

Um die Interaktionen, welche mit Hilfe der Daten aus der Massenspektrometrie identifiziert 

wurden, zu validieren, habe ich einen Coimmunopräzipitationsassay in kultivierten HEK 

Zellen genutzt. Indem ich die getaggten Proteine transient exprimiert habe, konnte ich 

sechsundzwanzig neue Interaktionen potentieller RBP-Regulatoren verifizieren, darunter 

einige bisher nicht charakterisierte Proteine.  

Zusammengefasst stellt diese Arbeit die Grundlage für funktionelle in vivo und 

Kolokalisationsstudien und für die strukturelle in vitro Charakterisierung der identifizierten 

Interaktionspartner dar um die Relevanz dieser Interaktionen bei der Regulation der mRNA-

Lokalisation vollkommen zu verstehen.  
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1. Introduction 
 

1.1  Regulation of gene expression 

The control of gene expression is a fundamental biological process in all organisms, as every 

aspect of cellular function is regulated by a set of genes and their products expressed in a 

given cell. As explained by the Central Dogma (Crick, 1958), the information for these gene 

products is carried in the DNA, which is copied to make a RNA molecule and the information 

in RNA is then decoded by the ribosomes to build proteins. Thus, when and how much a 

protein is to be made is regulated at multiple steps starting with transcription, RNA processing 

and transport, translation, RNA and protein modification and degradation (Fig. 1). All the 

steps are remarkably interconnected and interdependent, not only temporally but also 

spatially. 

As the first step of information transfer, transcription is subjected to a tight control, which is 

mediated by Transcription Factors (TFs) that bind to cis-regulatory elements in the DNA, 

along with the proteins that modulate their activity. In cells, an additional level of complexity 

is added by the packaging of DNA into chromatin and epigenetic modifications, thereby 

regulating patterns of gene expression. Subcellular compartmentalization in eukaryotes 

separates transcription from translation, allowing regulation at multiple levels. In eukaryotes, 

a key control is exerted at the post-transcriptional level which ultimately regulates the 

expression of a considerable fraction of the transcriptome. 
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Fig. 1. Central steps of mRNA metabolism in eukaryotes 

mRNAs are synthesized in the nucleus through transcription. Co-transcriptionally (shown as a second 

step for clarity), the mRNA is modified at both 5’ and 3’ ends, and the introns are removed by splicing. 

The processed mRNA is exported out of the nucleus through nuclear pores, and is translated in the 

cytoplasm. Translation involves initiation, elongation and termination, and at each step, the mRNA 

associates with a number of factors in addition to the ribosomes. Alternatively, the mRNA can be 

localized (in a translationally repressed state), prior to translation. At the end of its lifecycle, mRNA is 

degraded with the aid of decapping and deadenylase complexes.  

 

1.2  Post-transcriptional control via pre-mRNA processing 

Frequently, co-transcriptional capping, splicing and cleavage/polyadenylation are the key 

pre-mRNA processing events that regulate the fate of the mRNA (Maniatis and Reed 2002; 

Proudfoot 2003). While 5’ m7G cap and 3’ poly(A) tail (mostly 150-250 nucleotides long; 

Darnell et al, 1971; Subtelny et al., 2014; Chang et al., 2014) additions remain the key 

modifications, several other internal modifications, most notably m6A, have been identified 

(reviewed in Li and Mason, 2014; Roundtree et al., 2017). These modifications not only 

regulate mRNA metabolism but have also been found to be instrumental in regulating 

splicing, export, small RNA processing, translation and decay by various mechanisms 

(reviewed in Karijolich et al., 2010; Covelo-Molares et al., 2018).  

1.2.1 Pre-mRNA splicing 

A critical step in the processing of pre-mRNA is splicing, which involves precise removal of 

the interdispersed non-coding introns to make the correct message for translation. Through 

alternative splicing (AS), this mechanism also serves as a major contributor of proteome 

diversity by expanding the coding capacity of the genome and controlling tissue- and 

development-specific expression of splicing isoforms. Splicing is mediated by highly 

conserved large ribonucleoprotein complexes known as spliceosomes, which contain five 

major snRNAs (small nuclear RNAs) along with several associated proteins to form snRNPs 

(small nuclear ribonucleoproteins). While the Sm proteins interact with the snRNAs through 

specific site elements to form the snRNP core structure (Raker et al., 1996), several other 

proteins, mainly DExD/H-box RNA-dependent ATPases/helicases are required for distinct 

steps of spliceosome formation, activation, catalysis and disassembly (reviewed by Chen and 

Cheng, 2012). On the mRNA, cis-acting auxiliary sequences which act as a binding platform 

for non-snRNP regulatory proteins, mainly SR proteins (exonic splicing enhancers) and 

hnRNP family of proteins (exonic splicing silencers), facilitate molecular rearrangements 

during assembly and alter the splice site recognition leading to AS (reviewed by House and 

Lynch, 2008; Lee and Rio, 2015). Apart from their role in constitutive splicing, DExD/H 
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proteins have also been implicated in the regulation of AS (Hönig et al., 2002; Park et al., 

2004).  

Several processes that regulate AS have been well-studied, including epigenetic processes, 

promoter architecture, RNA secondary structures, non-coding RNAs (ncRNAs) and post-

translational modifications (Buratti and Baralle, 2004; Susannah et al., 2010; Luco and 

Misteli, 2011; McManus and Graveley, 2011; Lev Maor et al., 2015; Ramanouskaya and 

Grinev, 2017; Romero-Barrios et al., 2018; Dvinge, 2018). Additionally, AS-coupled 

Nonsense-Mediated Decay (AS-NMD) has been shown to regulate expression levels of both 

core spliceosomal components and AS regulatory factors, establishing a link between mRNA 

processing and mRNA decay. (Sureau et al., 2001; Wollerton et al., 2004; Hase et al., 2006; 

Lareau et al., 2007a; Lareau et al., 2007b; Saltzman et al., 2008). Splicing has also been 

shown to be closely linked to transcription and post-transcriptional gene regulatory 

processes, including 5’ capping and 3’ cleavage/polyadenylation, mRNA transport; 

microRNA (miRNA) biogenesis and RNA degradation (Montes at al., 2012; Cordin and 

Beggs, 2013; Agranat-Tamir et al., 2014; Wang et al., 2015b), suggesting pre-mRNA splicing 

as a major regulator of gene expression.  

Exon Junction Complex (EJC) 

The EJC plays a central role in linking nuclear splicing to post-transcriptional events such as 

mRNA export, localization, quality control (NMD) and translation. The EJC is a multiprotein 

complex consisting of 4 core proteins-eIF4AIII (the main RNA-binding platform), the 

heterodimer Magoh-Y14, Barentz-and several other peripherally associated factors 

(reviewed in Woodward et al., 2017; Gerbracht and Gehring, 2018). During splicing, EJC 

proteins eIF4AIII and Mago-Y14 are recruited to the activated spliceosome through eIF4AIII 

interaction with CWC22 (Alexandrov et al., 2012; Barbosa et al., 2012; Steckelberg et al., 

2012). Upon exon ligation and release, eIF4AIII dissociates from CWC22 by an unknown 

mechanism, enabling it to bind to the mRNA in the presence of ATP (Ballut et al., 2005; 

Andersen et al., 2006; Bono et al., 2006). Conformational changes caused by eIF4AIII binding 

to RNA and ATP leads to stable deposition of EJC proteins on the nascent transcripts, 20-24 

nucleotides upstream of spliced exon-exon junctions, in a sequence-independent manner (Le 

Hir et al., 2000; Ballut et al., 2005; Bono et al., 2006; Andersen et al., 2006; Nielsen et al., 

2009). Following splicing, Barentz associates with the complex (either in the nucleus or the 

cytoplasm) and the EJC-loaded mRNA is exported to the cytoplasm, where it serves as a 

binding platform to several other downstream effectors (Le Hir et al., 2001; Bono et al., 2004; 

Diem at al., 2007; Gehring et al., 2009; reviewed in Woodward et al., 2017).  
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In the cytoplasm, the EJC is believed to be removed by translocating ribosomes in the pioneer 

round of translation and the core proteins are reimported to the nucleus to re-enter the cycle 

(Dostie and Dreyfuss 2002; Lejeune et al., 2002). In Drosophila, deposition of EJC proteins 

eIF4AIII, Mago and Y14 on nascent transcripts of genes on polytene chromosomes could be 

independent from the presence of introns or splicing factor CWC22 (Choudhury et al., 2016). 

Moreover, in Drosophila, Mago-Y14 can associate with the transcripts independently of 

eIF4AIII and eIF4AIII persistently associates with actively translated mRNAs (Choudhury et 

al., 2016), thus indicating a new role of EJC proteins, independent of splicing and EJC 

assembly. In mammals, the EJC also plays a crucial role in NMD and has been discussed in 

detail, later in the chapter.  

Contrary to a sequence-independent ubiquitous model of EJC distribution, it has been 

observed that EJC associates with only a subset of spliced junctions and is not solely present 

at canonical positions (Saulière et al., 2010, 2012; Mühlemann, 2012; Singh et al., 2012). 

EJC loading on exon junctions can also vary within the same transcript and the function of 

EJC can differ from one splice site to another, as observed for localization of oskar (osk) 

mRNA in Drosophila (Hachet and Ephrussi, 2004; Ghosh et al., 2012; Simon et al., 2015). 

The EJC was also found to be dispensable for NMD in Drosophila (Gatfield et al., 2003; 

Saulière et al., 2010). Furthermore, EJC loading can also serve as a splicing modulator of 

neighboring introns in Drosophila, though only for a subset of transcripts (Roignant and 

Treisman, 2010; Ashton-Beaucage et al., 2010; Malone et al., 2014; Hayashi et al., 2014). 

Together these observations suggest that EJC assembly is not an obligatory consequence 

of splicing, but is rather a differential and regulated process with widespread implications in 

gene regulation.  

1.3 Post-transcriptional control by mRNA decay 

mRNA synthesis and mRNA decay are the two fundamental post-transcriptional mechanisms 

which dictate mRNA turnover. mRNA decay can significantly influence mRNA metabolism by 

altering the mRNP (messenger ribonucleoprotein) composition, as well as the translational 

status of the mRNA and ensures that only functional proteins are produced. Accumulating 

evidences suggest coupling of transcription to mRNA decay (Braun and Young, 2014; Das 

et al., 2017), as well as co-translational decay (reviewed in Heck and Wilusz, 2018), further 

stressing the key role of mRNA degradation in the regulation of gene expression. 

RNA degradation is facilitated by ribonucleases (endonucleases, 3’-5’ and 5’-3’ 

exonucleases), which are often multifunctional, and their co-factors (helicases, polymerases, 

chaperons and small RNAs) which confer the specificity (reviewed in Houseley and Tollervey, 

2009). Although initially exonucleases were thought to be the key players in eukaryotic RNA 
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decay, several novel endonucleases involved in both cytoplasmic and nuclear RNA 

degradation and surveillance have been discovered (reviewed in Tomecki and Dziembowski, 

2010). 

Although most transcripts are targeted for decay in the cytoplasm, errors in nuclear pre-

mRNA processing and formation of export-competent mRNP can lead to degradation or 

retention in the nucleus, by nuclear exosomes (Lemieux et al., 2011; Perez-Ortin et al., 2013). 

In the cytoplasm, exoribonucleolytic cleavage is mainly triggered by deadenylation (removal 

of poly(A) tail), often followed by decapping (removal of cap structure) (Fig. 2; Coutett et al., 

1997; Yamashita et al., 2005). Deadenylation, which is a reversible process, and thought to 

be biphasic, is initiated by the PAN2-PAN3 complex. After initial trimming of poly(A) tail by 

PAN2-PAN3, the remaining bulk is deadenylated by the CCR4-NOT complex (Fig. 2A; Tucker 

et al., 2001; Yamashita et al., 2005; Bonisch et al., 2007). The CCR4-NOT deadenylase 

complex consists of NOT1, which acts as a scaffold protein for docking of conserved core 

subunits, CCR4, CAF1/POP2, CAF40, NOT2 and NOT3/5. Additional complex subunits 

include: NOT4; NOT10 and NOT11 in humans and flies; TAB182 in mammals and CAF130  

 

 

 

Fig. 2. General mRNA decay pathways 

Bulk mRNA decay is initiated by deadenylation (A). Initial trimming of poly(A) tail by PAN2-PAN3 

complex is followed by CCR4-NOT complex-mediated deadenylation. Following deadenylation, 

mRNAs can be degraded by 3’-5’ exonucleolytic digestion catalyzed by exosome and the SKI complex 



13 
 

(B), or undergo decapping mediated by the DCP1-DCP2 complex (C) and subsequent degradation by 

5’ to 3’ exonuclease XRN1 (D). Adapted from Eulalio et al. (2007a). 

 

in yeast (reviewed in Collart and Panasenko, 2012; Collart, 2016). In addition to PAN2, CCR4 

and CAF1, other deadenylases such as PARN, Nocturnin and ANGEL1/2 also regulate the 

poly(A) tail length in eukaryotes (reviewed in Labno et al., 2016). Several examples of 

translation termination-dependent deadenylation have been reported in both yeast and 

mammalian systems, linking mRNA translation to decay (Hosoda et al., 2003; Funakoshi et 

al, 2007; Jolles et al., 2018). It has been proposed that in mammals, dissociation of eukaryotic 

termination factor 3 (eRF3) from poly(A)-binding protein (PABP) triggers deadenylation, as 

the two deadenylase complexes can then bind to PABP, leading to their activation (Funakoshi 

et al., 2007). 

After deadenylation, mRNAs can be degraded by 3’-5’ exonucleolytic activity of cytoplasmic 

exosomes, followed by cap hydrolysis by the DcpS scavenger decapping enzyme (Fig. 2B; 

reviewed in Tucker and Parker, 2000; Wilusz et al., 2001). Often, deadenylation is followed 

by decapping by the DCP1-DCP2 complex of enzymes (along with associated factors) and 

subsequent degradation by 5’-3’ exonucleolytic activity of XRN1 (Fig. 2C, 2D; Muhlrad et al., 

1994; Tritschler et al., 2009; reviewed in Ling et al., 2011; Braun et al., 2012). A recent study 

in S. cerevisiae has shown that the NOT proteins (NOT2, NOT3, and NOT5) promote mRNA 

decapping by recruiting decapping factors. Moreover, NOT3 and NOT5 were shown to bind 

to decapping activator protein PAT1 (Alhusaini and Coller, 2016), further coupling 

deadenylation with decapping. Deadenylation-independent degradation via direct decapping 

(reported in S. cerevisiae by Muhlrad and Parker, 1994; Badis et al., 2004; Muhlrad and 

Parker, 2005) or endonucleolytic cleavage followed by degradation of the resulting fragments 

by XRN1 and/or exosomes has also been reported (reviewed in Garneau et al., 2007; 

Schoenberg, 2011).  

Similar to deadenylation, uridylation, oligoadenylation and CUCU-addition at the mRNAs 

3’end, have also been shown to activate degradation pathways (via the same downstream 

mechanisms as deadenylation) (reviewed in Labno et al., 2016). 

1.3.1 Regulation of mRNA decay by cis-acting elements and their binding proteins 

RNA-binding proteins (RBPs) and their binding to cis-acting elements present in the 3’ 

untranslated region (UTR) have been widely known to influence mRNA stability and to 

regulate mRNA decay. Cytoplasmic polyadenylation elements (CPE), GU-rich sequences 

(GREs), AU- rich sequences (AREs) and miRNA target sites, are well-studied examples of 

such cis-acting elements (reviewed in Wu and Brewer, 2012; Schoenberg and Maquat, 
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2012). Among these, AREs represent the best-studied group of cis-acting elements located 

in the 3’ UTRs of many short-lived RNAs, regulating the expression of proteins involved in 

cell growth regulation or response of an organism to external factors, in a ARE-dependent 

mechanism termed as AMD (ARE-Mediated Decay) (Barreau et al., 2005; Bakheet et al., 

2006; Spasic et al., 2012). Besides 3’UTRs, elements in 5’ UTRs, open reading frames (ORF) 

and even promoters (modulated by transcription factor binding) can also regulate mRNA 

decay (reviewed in Perez-Ortin et al., 2013).  

Among the trans-acting factors that bind to mRNA motifs and structures, several ARE-binding 

proteins (ARE-BPs) have been identified, which recruit decay machinery via interaction with 

one or more factors, including exosomes, PARN or CCR4 deadenylases or decapping 

enzymes (reviewed in Schoenberg and Maquat, 2012; Perez-Ortin et al., 2013; Garcia-

Mauriño et al. 2017). While binding of ARE-BPs to AU-rich elements is one of the best 

characterized mechanisms of transcript-specific mRNA decay, several other examples have 

been discovered and studied in various model organisms. These include: Puf proteins in 

budding yeast and Pumilio, a Puf-related protein in Drosophila, that recognize UG-rich 

sequences and recruit CCR4-NOT deadenylase to trigger decay (Wreden et al., 1997; 

Wickens et al., 2002; Goldstrohm et al., 2006); Staufen-Mediated Decay (SMD) of target 

RNAs containing 3’UTR Staufen Binding Sites (SBS), via interaction with NMD factor Up-

frameshift 1 (Upf1; Kim et al., 2005); CCR4-NOT-mediated decay of Hsp83 transcript by 

Drosophila protein Smaug (Smg; Semotok et al., 2005); binding of mammalian protein Roquin 

to Constitutive Decay Element (CDE) in the 3’UTR of TNF-α mRNA, to promote its 

degradation by recruiting CCR4-NOT complex in macrophages (Leppek et al., 2013)  and 

histone mRNA decay by Stem-Loop-Binding Protein (SLBP) that binds 3’ stem-loop structure 

and recruits Upf1 for subsequent degradation (Kaygun and Marzluff, 2005). Recently, two 

novel regulatory motifs, preferentially found in 3’ UTRs of many transcripts encoding 

regulatory proteins, recognized by hnRNPs A2/B1 and A1 were shown to trigger CCR4-NOT-

mediated deadenylation (Geissler et al., 2016).  

1.3.2 Regulation of mRNA decay by miRNAs 

Small RNA target sites are another example of cis-acting elements that regulate mRNA 

decay. miRNAs are evolutionary conserved small ncRNAs, encoded in nearly all eukaryotic 

genomes and participating in the regulation of almost every cellular function. They are known 

to be major regulators of post-transcriptional gene expression by affecting both the 

translational state and the stability of the mRNA (reviewed in Bartel, 2004; Bushati and 

Cohen, 2007; Jonas and Izaurralde, 2015). Processed by endonucleases Dicer and Drosha, 

along with other associate proteins, miRNAs function together with Argonaute proteins (AGO) 

as components of RNP complexes, referred to as miRNA-induced silencing complexes 
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Box 1:  Mechanism of translation initiation in eukaryotes 

As the first step of translation, translation initiation is subjected to a very tight control and is 

rate-limiting. Initiation of translation of bulk mRNAs in eukaryotes is facilitated by binding of 

the small ribosomal unit (40s) loaded with Met-tRNAi (methionyl tRNA specialized for 

initiation) in a pre-initiation complex (PIC), comprising of eIF2, eIF3, eIF1, eIF1A and eIF5, to 

the capped 5’end of the mRNA and identification of the start codon (AUG), commonly through 

scanning. Recruitment of the PIC to the mRNA is assisted by PABP and the eIF4 group of 

factors, mainly by the assembly of the eIF4F complex (eIF4E, eIF4G and eIF4A), eIF4B and 

eIF4H. Through a series of conformational changes, finally, the ribosomal attachment is 

achieved by a chain of m7G-eIF4E-eIF4G-eIF3-40S interactions. The scanning is facilitated 

by DEAD-box helicases such as eIF4A and Dhx29, with contribution from eIF1, eIF1A, eIF2, 

eIF3 and eIF5, eIF4G and eIF4B. eIF1 also plays a key role in AUG recognition. Identification 

of the start codon triggers the arrest of scanning and leads to joining of the large ribosomal 

subunit (60s). This requires the activities of eIF5 and eIF5B to dissociate eIF1, eIF1A, eIF3 

and eIF2 and form the elongation-competent 80s ribosome. eIF2B further recycles eIF2 for 

the next round of initiation (the detailed mechanism has been reviewed in Jackson et al., 

2010; Hinnebusch, 2014). The subsequent steps in protein synthesis: elongation, 

translocation, termination and release of polypeptide further require elongation factors and 

release factors, and are also highly regulated (reviewed in Mathews et al., 2007). 

A distinct mode of translation initiation, first discovered in viral systems (Pelletier and 

Sonenberg, 1998; Jang et al., 1988), is the 5’ cap-independent initiation. In this mechanism, 

the direct recruitment of PIC to the start codon is mediated by special sequences called 

IRESs (Internal Ribosome Entry Sites; reviewed in Vagner et al., 2001; Hellen and Sarnow, 

2001; Komar and Hatzoglou, 2005). In addition to viruses, several cellular IRESs have been 

reported in the human genome, residing not only in the 5’UTRs but also in the coding regions 

and 3’UTRs of the transcripts (Cornelis et al., 2000; Coldwell et al., 2001; Candeias et al., 

2006; Wellensiek et al., 2013; Du et al., 2013; Weingarten-Gabbay et al., 2016). IRESs-

mediated initiation has been shown to promote translation under various physiological 

conditions, including apoptosis, hypoxia, cellular stress, mitosis and viral infections, allowing 

expression of specific proteins when cap-dependent translation is limiting (reviewed in Hellen 

and Sarnow, 2001; Spriggs et al., 2008). Additionally, cap-independent translation can also 

be facilitated by m6A methylation of mRNAs (Meyer at al., 2015; Wang et al., 2015a; Coots 

et al., 2017). A new idea of Cap-Independent Translation Enhancers (CITEs) elements in 

mammalian mRNAs, has been proposed by Shatsky and colleagues (2018). These elements 

can be located in both 5’ and 3’ UTR of mRNAs and bind components of the translation 

machinery that recruit ribosomes to the mRNA.  
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(miRISCs). They bind to complementary sequences in the 3’ UTRs of the target genes, 

mostly imperfectly, leading to post-transcriptional silencing (Fig. 3; Filipowicz et al., 2008; 

Bartel, 2009; Carthew and Sontheimer, 2009; Fabian and Sonenberg, 2012). 

 

 

 

Fig. 3. Mechanisms of miRNA-mediated gene silencing 

(A) Translational repression by inhibition of translation initiation. AGO proteins compete with the cap-

binding protein eIF4E, for binding to the cap structure (brown dot) or prevent the joining of large 

ribosomal subunit with the small subunit, by recruiting eIF6. Alternatively, GW182 interferes with 

PABP-eIF4G interaction by binding with PABP, thus inhibiting the formation of mRNA closed-loop 

structure. Please note that miRNAs can also inhibit translation at post-initiation steps, not shown here 

(B) miRNA-mediated mRNA decay. GW182-mediated recruitment of deadenylases trigger 

deadenylation and subsequent decapping and degradation of the target mRNA. Adapted from Eulalio 

et al. (2008b). 

 

In recent years, the GW182 protein has emerged as a central player in miRNA-mediated 

gene silencing. Besides directly interacting with AGO proteins, GW182 proteins facilitate 

silencing by recruiting deadenylases (PAN2-PAN3 and CCR4-NOT complex). In addition, 

they also interact with PABP to associate miRISCs to target RNAs or inhibit translation 

(reviewed in Fabian and Sonnenberg, 2012; Braun et al., 2012; Jonas and Izaurralde 2015). 

Association of AGO1 with GW182 has been shown to be essential and required in Drosophila 

for miRNA-mediated translational repression (Behm-Ansmant et al., 2006; Eulalio et al., 

2008a). However, GW182 and CCR4-NOT-independent silencing mechanisms have also 

been reported, at least in Drosophila (Fukaya and Tomari 2011; 2012; Wu et al., 2013; 

Fukaya et al., 2014). 

 

Studies have shown that miRNA-mediated translational repression precedes deadenylation 

and decapping (Fabian et al., 2009; Djuranovic et al., 2012; Bazzini et al., 2012; Béthune et 

al., 2012). However, contrasting studies have demonstrated that active translation or 
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translational repression is not a requirement for deadenylation (Mishima et al. 2006; Wu et 

al. 2006; Eulalio et al. 2009; Beilharz et al., 2009; Zekri et al., 2009) and at least in yeast, 

mRNAs can also be co-translationally deadenylated (Hu et al., 2009). Conversely, miRISCs 

can also repress translation in a deadenylation-independent manner (Wu et al., 2006; Eulalio 

et al., 2009; Braun et al., 2011; Chekulaeva et al., 2011; Fukaya and Tomari 2011, 2012; 

Mishima et al., 2012; Ricci et al., 2013; Zekri et al., 2013). Moreover, recruitment of CCR4-

NOT complex has also been shown to trigger translational repression, independently from 

deadenylation (Cooke et al., 2010; Chekulaeva et al., 2011; Braun et al., 2011; Zekri et al., 

2013). Together these observations suggest that translational repression and deadenylation 

are two independent mechanisms used by miRNAs to silence target mRNAs. However, they 

influence each other and can still be mechanistically linked, perhaps through the CCR4-NOT 

complex, which has been shown to interact with GW182, in both Drosophila and mammalian 

system (Braun et al., 2011; Chekulaeva et al., 2011; Fabian et al., 2011; Huntzinger et al., 

2013; Chen et al., 2014). These observations also suggest a central role of CCR4-NOT 

complex as a conserved downstream effector of miRNA-mediated gene silencing, capable of 

eliciting both the effects of translational repression and deadenylation. 

 

Other than recruiting deadenylases, miRISC can also promote decay by recruiting decapping 

factors directly (Nishihara et al., 2013; Makino et al., 2014; reviewed in Iwakawa and Tomari, 

2015). Instead of immediate degradation, deadenylated and translationally repressed 

mRNAs may also be stored as such, depending on the cell type and/or target mRNA. 

1.4 mRNA quality control  

To further ensure that erroneous proteins are not produced, mRNA surveillance events occur 

on the ribosomes, modulating mRNA turnovers. Loss of these pathways leads to increased 

aggregation of proteins, further stressing their importance in modulating proteomes (Jamar 

et al., 2018). Three cytoplasmic surveillance pathways are best known to selectively target 

and degrade different classes of defective mRNAs: Nonsense-Mediated Decay or NMD 

(targets mRNAs with premature stop codon), Non-Stop Decay or NSD (targets mRNAs 

lacking a stop codon) and No-Go Decay or NGD (degradation of mRNAs with potential stall-

inducing sequences). RNAs targeted via all three mechanisms are then subjected to 

endonucleolytic cleavage, followed by degradation by exosomes and/or XRN1, digestion of 

derived aberrant peptides by proteasomes and ribosome recycling (reviewed in Shoemaker 

and Green, 2012). However, in NMD, deadenylation-dependent and deadenylation-

independent decapping pathways have also been reported in addition to endonucleolytic 

cleavage (Muhlrad and Parker, 1994; Mitchell and Tollervey, 2003; Lejeune et al., 2003; Cao 

and Parker, 2003; Chen and Shyu, 2003; Gatfield and Izaurralde, 2004; Couttet and Grange, 
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2004; Yamashita et al., 2005; Huntzinger et al., 2008; Eberle et al., 2009; Cho et al., 2013; 

Loh et al., 2013).  

 

 

BOX 2: Regulation of mRNA decay in P-bodies 

 

In eukaryotic cells, translationally repressed mRNAs can accumulate in cytoplasmic granules 

called Processing bodies (P-bodies) or GW bodies (reviewed in Parker and Sheth, 2007; 

Kulkarni et al., 2010; Decker and Parker, 2012). These are dynamic and reversible structures, 

containing pools of nontranslating mRNPs, formed as a consequence of deadenylation 

(Andrei et al., 2005; Kedersha et al., 2005; Zheng et al., 2008). Although the exact 

composition of P-bodies is unclear, they are enriched in factors involved in translational 

repression, deadenylation, decapping, 5’-3’ decay machinery, NMD pathway (under certain 

conditions), AMD pathway, miRNA-mediated decay (in metazoans) and several other RBPs 

associated with mRNA translation/decay (Andersen and Kedersha, 2006; Parker and Sheth, 

2007; Kulkarni et al., 2010; Standart and Weil, 2018). Translationally silenced mRNAs can 

be recruited to P-bodies either for storage, where they can re-enter translation or are destined 

for decay, thus allowing rapid adaptation of the transcriptome to the cell requirements 

(Cougot et al., 2004; Brengues et al., 2005; Bhattacharyya et al., 2006; Hubstenberger et al., 

2017). However, recent studies in mammalian systems support their primary role in storage 

rather than decay (Stalder and Mühlemann, 2009; Hubstenberger et al., 2017; Standart and 

Weil, 2018). Interestingly, P-bodies are generally devoid of ribosomes, translation initiation 

factors (except eIF4E and eIF4E-T) and PABP, further supporting the fact that they are sites 

of repressed mRNPs (Brengues et al., 2005; Andrei et al., 2005; Teixeira et al., 2005; 

Ferraiuolo et al., 2005; Kedersha et al., 2005). Moreover, it has been shown that they are 

formed as a consequence, rather than the cause of translational repression, as disrupting P-

bodies does not affect the pathways in which P-body components are involved, including 

mRNA decay, NMD and miRNA-mediated silencing  (Pillai et al., 2005; Chu and Rana, 2006; 

Eulalio et al., 2007b). 

In addition to P-bodies, several other functionally linked RNA granules: stress granules, germ 

cell granules and transport granules are known, that play important roles in post-

transcriptional regulation (reviewed in Andersen and Kedersha, 2005; Eulalio et al., 2007a). 
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1.4.1 NMD 

NMD is a conserved mRNA surveillance mechanism, which elicits rapid degradation of 

premature termination codon (PTC)-containing or abnormally 3’-extended transcripts 

(reviewed in Chang et al., 2007; Nicholson et al., 2010; Nicholson and Mühlemann, 2010). In 

addition, NMD also differentially targets unspliced pre-mRNAs, mRNAs resulting from an out-

of-frame initiation codon, mRNAs with upstream open reading frames (uORFs), mRNAs 

subjected to frameshifting and products of alternative splicing, bicistronic mRNAs, transcripts 

of pseudogenes, transposable elements and unproductively rearranged genes (He et al., 

1993, 2003; Morrison et al., 1997; Welch and Jacobson, 1999; Wang et al., 2002). NMD 

shares its regulators with translation, thereby coupling both processes.  

First discovered in S. cerevisiae, Upf proteins (Upf1, Upf2, and Upf3) constitute the core NMD 

machinery (Culbertson et al., 1980; He et al., 1997; Lykke-Andersen et al,. 2000; Serin et al., 

2001). In metazoans, additional NMD factors have been identified, which include the SMG 

group of proteins that determine the phosphorylation status of Upf1 (Page et al., 

1999; Denning et al., 2001; Pal et al., 2001; Yamashita et al., 2001; Okada-Katsuhata et al., 

2012). Although considerable information is available on the structure and interactions of 

NMD factors, the exact mechanism remains controversial and different models have been 

proposed for different organisms. According to the widely accepted “faux 3’UTR model” 

proposed in yeast and C. elegans, the key determinant of NMD activation is the competitive 

reaction between PABP and Upf1 for binding to release factor eRF3 on the terminating 

ribosomes, largely influenced by the length of 3’UTR (reviewed in Kervestin and Jacobson, 

2012). In mammals, the proposed model involves splicing-dependent PTC recognition. In this 

case, EJC retained on an intron or an exon-exon junction and downstream of PTC serves as 

a signal for NMD (Fig. 4). In this model, ribosomal release factors recruit Upf1 and associated 

SMG1 complex (SMG1, SMG8, SMG9) to the terminating ribosomes to form the SURF 

complex. Upf1 and SMG1 complex subsequently form a complex with Upf2-Upf3 associated 

with EJC positioned downstream of the PTC. This induces the formation of the decay 

complex that activates ATPase and helicase activity of Upf1, via phosphorylation by SMG1. 

Phosphorylated Upf1 then interacts with SMG6 and/or SMG5-SMG7 triggering independent 

and redundant decay pathways (Fig. 4; reviewed in Kervestin and Jacobson, 2012). Although 

EJC-independent NMD has been reported not only in mammals, but also in other models 

(Zhang et al., 1998a; Rajavel and Neufeld, 2001; Gatfield et al., 2003; Delpy et al., 

2004; LeBlanc and Beemon, 2004; Bühler et al., 2006; Matsuda et al., 2007; Longman et al., 

2007; Eberle et al., 2008; Singh et al., 2008; Kerényi et al., 2008; Wen and Brogna, 2010), 

the presence of EJC has been shown to enhance NMD in human cells (Bühler et al., 

2006; Singh et al., 2008; Metze et al., 2013). Therefore, degradation of NMD targets occurs  
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Fig. 4. Mechanism of EJC-mediated NMD 

In case of a transcript carrying a premature termination codon (PTC), the EJC downstream of the PTC 

is not removed by the pioneer ribosomes. The eukaryotic release factors (eRF1 and eRF3) associated 

with the terminating ribosome are joined by additional factors to form the transient SURF complex, 

which includes Upf1 and the SMG1 complex. If the ribosome-SURF complex forms ≥ 50 − 55  

nucleotides upstream of an exon-exon junction that has a bound EJC, NMD is initiated. The Upf1-Upf2 

interaction causes a conformational change leading to the activation of Upf1. Phosphorylation of Upf1 

results in recruitment of the SMG6 endonuclease, while SMG5-SMG7 recruits the CCR4-NOT 

deadenylase complex, leading to decapping by the DCP1-DCP2 complex and subsequent degradation 

by general exoribonucleases. Adapted from Popp and Maquat (2016). 

 

via different pathways in different organisms. In yeast, NMD involves targeting mRNAs to P-

bodies for subsequent degradation. In contrast, in metazoans, P-bodies are dispensable for 

NMD, reflecting mechanistic differences in the degradation of NMD targets (Sheth and 

Parker, 2006; Eulalio et al., 2007b; Stalder and Mühlemann, 2009). 

Besides decay of bulk mRNA, NMD factors have also been studied for their role in regulation 

of expression of splicing factor and ribosomal proteins (via AS-NMD), embryonic 

development, antiviral immunity, telomere maintenance, histone mRNA degradation and 

SMD. In addition, NMD factors also play an important role in proliferation and maintenance 

of stem cells, neuronal cell differentiation, cellular response to stress, and DNA replication 

and repair, thus indicating a global regulation of physiological processes by NMD (reviewed 

in Nicholson et al., 2010; Lykke-Andersen and Jensen, 2015; Ottens and Gehring, 2016; da 

Costa et al., 2017).  
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1.5 Translational control 

After pre-mRNA processing, mature mRNA is exported out of the nucleus, often associated 

with a large number of proteins, and can then either localize in a repressed state or undergo 

translation (reviewed in Besse and Ephrussi, 2008; Palazzo and Akef, 2012; Buchan, 2014; 

Katahira, 2015). 

Translation can be regulated by two main mechanisms: (i) by impacting the initiation factors 

or ribosomes (ii) impacting mRNA itself, either via RBPs or miRNAs. 

(i) The modifications of both the RNA (2′-O methylation and pseudouridylation) and the 

protein (stoichiometry and post-translational modifications) components of the ribosomes 

have been shown to modulate the rate as well as the fidelity of translation (Guo, 2018). 

Additionally, ribosome-associated factors (for example: RACK1, Reaper, FMRP and several 

metabolic enzymes) have also been shown to influence the translation of specific mRNAs 

(Colon-Ramos et al., 2006; Darnell et al., 2011; Fuchs et al., 2011; Chen et al., 2014; 

Thompson et al., 2016; Simsek et al., 2017). Recent studies have also suggested a regulatory 

role of ribosomal proteins in the translation of certain mRNAs, by interacting with specific cis-

regulatory elements, such as IRESs (Mauro and Edelman, 2007; Gilbert, 2011; Xue and 

Barna, 2012, 2015; Mauro and Matsuda, 2015; Guo, 2018). 

Modification of initiation factors by phosphorylation is one of the key regulatory mechanism 

of translation. Several initiation factors are known to be phosphorylated including eIF1, eIF4B, 

eIF4H, eIF5, eIF5B, eIF2, eIF4F and several eIF3 subunits (Jackson et al., 2010; Andaya et 

al., 2014). In addition, eIF4E and the eIF4E-binding proteins (4E-BPs) are also regulated via 

phosphorylation (Pyronnet et al., 1999; Mader et al., 1995; Haghighat et al., 1995; 

Marcotrigiano et al., 1999; Shveygert et al., 2010). It has been proposed that eIF4E 

phosphorylation is facilitated by eIF4G that recruits the protein kinase Mnk1 (Pyronnet et al., 

1999; Shveygert et al., 2010). However, the role of eIF4E phosphorylation in enhancing 

mRNA translation remains unclear (Scheper and Proud, 2002). 4E-BPs, in a reversible 

reaction, when hypophosphorylated, block translation initiation by preventing the eIF4F 

assembly, as they compete with eIF4G for eIF4E binding (Gingras et al, 1999; Marcotrigiano 

et al., 1999). Proteolytic cleavage of eIF4G and PABP are other mechanisms to modulate 

translation (Bushell et al., 2000; Marissen et al., 2004).  

(ii) While the canonical eIFs/ribosomes regulate global mRNA translation, RBPs and miRNAs 

provide mRNA-specific control by selectively binding to distinct regions of specific transcripts. 

They often work in concert with the translation machinery, forming distinct regulatory 

complexes to direct gene expression.  
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Several RBPs have been identified and characterized to play a crucial role in the regulation 

of translation by binding to motifs in the coding sequence, 5’UTRs and more commonly in the 

3’UTRs of the transcripts (reviewed in Babitzke et al., 2009; Jackson et al., 2010; Harvey et 

al., 2018). RBP interaction is mostly inhibitory, but exceptions are known such as stimulatory 

effect of the poly(A) tail binding of PABP (reviewed in Jackson et al., 2010). RBPs also play 

a crucial role during development across various organisms and are discussed in detail later 

in this chapter. 

Among small ncRNAs, miRNAs are important regulators of gene expression via mRNA 

degradation and/or translational repression. Similar to RBPs, miRNAs have also been shown 

to regulate translation by interacting mostly with 3’UTRs of the target mRNA (in conjugation 

with sequence-specific RBPs), although targets in 5’UTRs and coding regions have also been 

reported (Kloosterman et al., 2004; Lewis et al, 2005; Lytle et al., 2007; Easow et al., 2007; 

Chi et al., 2009; Hafner et al., 2010; Fang and Rajewsky, 2011; Gu et al., 2014). Apart from 

their function as cytoplasmic regulators, via miRISC formation, recent evidence also suggest 

their function in the nucleus at the transcription level, where they may act both as gene 

activators or repressors (reviewed in Catalanotto et al., 2016).  

miRNA-mediated translational repression may occur at the initiation (interfering with 

ribosomal recruitment, cap recognition, scanning, 80s assembly; recruitment of repressors; 

PABP displacement), post-initiation or elongation steps (recruitment of proteolytic enzymes; 

ribosomal drop-off; rate of association with polysomes) (reviewed in Fabian et al., 2010; 

Oliveto et al., 2017). Depending on the complementarity, miRNA-directed endonucleolytic 

cleavage of the target mRNAs is another mechanism by which miRNAs can inhibit translation 

(Hutvagner and Zamore, 2002; Yekta et al., 2004; Barth et al., 2008). Under certain 

conditions of stress or starvation, miRNA-mediated translational activation has also been 

reported via interaction with 3’UTR or 5’UTR sequences (reviewed in Fabian et al., 2010; 

Oliveto et al., 2017).  

1.6 mRNA localization and regulated translation 

mRNA targeting coupled with local translation is yet another critical posttranscriptional 

regulatory mechanism by which gene products are confined to specific regions of a cell. The 

best illustrated examples of spatial and temporal restriction of gene expression have been 

derived from transcripts whose protein products play specialized roles within highly polarized 

asymmetrical cells, most notably oocytes or embryos. This polarization is achieved through 

asymmetrical localization of maternally inherited mRNAs that are targeted to defined 

subcellular compartments. The best-studied examples include: ASH1 mRNA in budding 

yeast, which is localized to the bud tip of a dividing cell, producing daughter cells with a 
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distinct mating type (Bobola et al., 1996; Long et al., 1997; Paquin and Chartrand, 2008); 

targeting of the maternal mRNAs osk, bicoid (bcd), nanos (nos) and gurken (grk) to distinct 

regions of the Drosophila oocyte, which establishes the future embryonic axes (reviewed in 

Kugler and Lasko, 2009); localization of VegT mRNA to the vegetal pole of the Xenopus 

oocyte, to induce mesodermal and endodermal cell fates in the embryos (King et al., 2005) 

and asymmetric localization of β-actin and macho-1 mRNAs in ascidian eggs and embryos 

(Jefferey et al., 1983; Nishida and Sawada, 2001). mRNAs are also asymmetrically localized 

in differentiated somatic cells such as fibroblasts (Liao et al., 2015); oligodendrocytes (Smith, 

2004); astrocytes (Sakers et al., 2017) and axons (Jung et al., 2012). Moreover, mRNA 

localization is not just limited to animal cells, but cases have also been documented in 

bacteria (Buskila et al., 2014; Kannaiah and Choder, 2014); algae (Colon-Ramos et al., 2003) 

and plants (Okita and Choi, 2002; Muench et al., 2012), establishing intracellular transport of 

mRNAs as a mechanism with widespread implications, across diverse cell types and 

organisms. 

Significant advancements in RNA detection methods have established mRNA localization as 

a global cellular feature regulating a large proportion of expressed transcripts. The most 

striking example is Drosophila, where 71% of 2314 detectable transcripts in early embryos 

(Lécuyer et al., 2007) and 35% of the 3475 detectable transcripts in oocytes (Jambor et al., 

2015), were observed in spatially distinct patterns. Similar observations have been made in 

diverse cell types and cellular features such as mitotic apparatus (Blower et al., 2007; Sharp 

et al., 2011); migrating fibroblasts (Mili et al., 2008); dendrites (Moccia et al., 2003; Poon et 

al., 2006; Zhong et al., 2006; Suzuki et al., 2007; Cajigas et al., 2012); astrocytes (Thomsen 

et al., 2013) and axons (Andreassi et al., 2010; Zivraj et al., 2010; Gumy et al., 2011). 

Moreover, mRNAs are also found to be localized in cell organelles such as mitochondria, 

endoplasmic reticulum, endo/lysosomes, peroxisomes and centrosomes (reviewed in Weis 

et al., 2003; Blower, 2013; Ryder and Lerit, 2018), suggesting that mRNA localization is a 

prevalent mechanism and is a key contributor to cellular functions. 

Localizing a transcript prior to translation has several advantages. Besides spatially 

restricting gene expression to a defined region, it is energetically beneficial to locally translate 

an mRNA, rather than transporting individual protein molecules from their site of synthesis. 

mRNA localization also enables efficient assembly of functional protein complexes, as co-

targeting can generate high local protein concentrations, also allowing co-translation of 

different subunits (Batada et al., 2004; Mingle et al., 2005; Lécuyer et al., 2007). Besides 

enabling cells to differentially respond to extracellular stimuli or acquire different cell fates 

(Martin and Ephrussi, 2009; Jung et al., 2012), localized translation can also limit deleterious 

effects of toxic proteins to certain regions of the cell, as exemplified by the localization of 
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MBP mRNA in oligodendrocytes (Smith, 2004). Finally, targeted protein synthesis offers the 

possibility to alter the properties of locally translated proteins, as compared to pre-existing 

copies, via posttranslational modifications or folding pathways (Lin and Holt, 2007). 

1.6.1 mRNA localization mechanisms 

Targeting of mRNAs to distinct subcellular locations is a multistep process. The initial steps 

are determined by the information encoded in cis-acting elements called “zipcodes” or 

“localization elements”, recognized by trans-acting RBPs, which associate with the mRNA to 

form mRNP complexes. Assembled mRNPs, in most cases, are then packed into RNA 

transport granules which associate with motor proteins to propel the RNA along the 

cytoskeletal structures. Once the mRNA reaches its final destination, it is anchored in place 

and the translational repression is lifted off, either directly upon arrival or until specific signals 

lead to its translational activation (reviewed in Besse and Ephrussi, 2008; Hilliker, 2014). 

Several studies have suggested that nuclear history of an mRNA is also critical to determine 

its eventual cytoplasmic targeting, as in the case of osk, for which pre-mRNA splicing is 

essential for its proper localization (Hachet and Ephrussi, 2004; Ghosh et al., 2012). 

Studies in diverse systems have proposed three principal mechanisms of mRNA localization, 

mediated by RNA localization elements: random diffusion combined with local anchoring, 

general degradation coupled with localized stabilization and directed transport along the 

cytoskeleton, the most common mechanism (reviewed in Martin and Ephrussi, 2009). 

Another potential mechanism is the dimerization of transcripts for localization, facilitated by 

the cis stem-loop structures, which is best illustrated by Drosophila maternal transcripts osk 

and bcd (Ferrandon et al., 1997; Wagner et al., 2001; Jambor et al., 2011). However, 

oligomerization is not an obligatory mechanism for localization (Jambor et al., 2011; Amrute-

Nayak and Bullock, 2012), except for one known case (Ferrandon et al., 1997). Although it 

has been reported for very few transcripts, the presence of multiple RNA molecules in 

localizing mRNPs (Lange et al., 2008; Mhlanga et al., 2009) suggest that RNA:RNA 

interactions might be a common mechanism for localization. However, as mRNA oligomers 

formed by heterologous mRNAs have not been reported so far, this possibility needs to be 

further investigated.  

Emerging evidence of spatially controlled mRNA degradation and factors common to both 

localization and degradation pathways has led to the hypothesis of existence of quality control 

mechanisms for mRNA localization. This is also supported by the general coordination 

between localization, translation and degradation machineries. According to a model 

proposed by Walters and Parker (2014), upon transport to the cytosol, mRNPs become 

substrate for both localization and deadenylation processes. Mislocalized mRNAs fail to 
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outcompete the decay machinery with the translation machinery, resulting in their 

degradation through canonical pathways. Though the model remains to be validated, this 

hypothesis proposes an additional layer of control to ensure spatial restriction of mRNAs. 

1.6.2 Cis-acting elements in mRNA localization 

Cis-acting elements that direct localization can range from few to hundreds of nucleotides 

and reside primarily in the 3’UTR of the mRNAs. However, functional elements have also 

been reported in the 5’UTRs and coding sequences (reviewed in Martin and Ephrussi, 2009). 

Although several attempts have been made to characterize localization elements, very few 

localization signals have been mapped so far and no clear consensus has emerged at a 

sequence level. This is probably due to the fact that their molecular features are not solely 

defined by the primary sequence, but also by the secondary/tertiary structures or a 

combination of both (reviewed in Bergalet and Lécuyer, 2014). Furthermore, these elements 

may also function in a redundant or complementary manner, as indicated by the presence of 

multiple elements in a given mRNA, making it difficult to identify common signatures shared 

by localizing mRNAs (Gautreau et al., 1997; Macdonald and Kerr, 1997, 1998; Deshler et al., 

1998; Bergsten and Gavis, 1999; Chan et al., 1999; Crucs et al., 2000). In some cases, 

different elements in an mRNA are required for distinct steps of localization, which may also 

involve events in different cellular compartments. This suggests that localization elements 

may work in a collaborative manner, both as general and specific elements to tightly regulate 

spatial restriction of mRNAs (Zhou and King, 1996; Ainger et al., 1997; Saunders and Cohen, 

1999; Thio et al., 2000; Kloc et al., 2000; Hachet and Ephrussi, 2004; Ghosh et al., 2012). 

Additionally, there is evidence that the conformation of structured localization elements can 

be modulated by changes in the intracellular milieu, such as increased concentrations of 

divalent ions, thereby modulating protein interactions (Muslimov et al., 2006, 2011).  

High-throughput in vitro approaches are being increasingly employed to identify localizing 

mRNAs (Zivraj et al., 2010; Gumy et al., 2011). However, for these techniques, a major 

challenge lies in successfully separating sub-cellular compartments with differentially 

localized transcripts. Following identification of such transcripts, motif analysis needs to be 

performed to identify sequence features. As regulatory elements tend to be evolutionary 

conserved in related species, several computational tools have been developed for 

secondary structure prediction, alignment and identification of elements involved in mRNA 

localization (Hamilton and Davis, 2011). However, our understanding of the localization of an 

mRNA to a particular region of a cell via specific recognition of RNA signals remains limited. 

Application of deep sequencing combined with development of more sophisticated structure-

aware algorithms should help to gain new insights into localized RNA recognition. 
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1.6.3 RBPs and their diverse roles in mRNA localization 

Association of RBPs with the mRNA regulates the localization, stability and translation of the 

transcript. RBPs are often highly modular in nature, containing RBDs (RNA-Binding Domains) 

and other protein-interaction motifs, allowing them to associate with specific RNAs and other 

co-factors to form functional mRNPs (Lunde et al., 2007). The same RBP can recognize 

multiple elements within an mRNA, which requires correct spatial positioning of these 

elements (Patel et al., 2012). Binding of all elements can significantly alter the binding affinity 

of the RBP for the target mRNA, due to the structural changes that the mRNA undergoes 

upon binding (Lunde et al., 2007; Chao et al., 2010). Conversely, RBPs also often contain 

multiple RBDs which act synergistically by inter/intra-molecular cooperativity (Lunde et al., 

2007; Dienstbier et al., 2009; Doyle and Kiebler, 2012). High degree of conservation within 

the RBDs suggest that the functional properties and RNA-binding specificities of RBPs are 

also likely to be conserved (Perrone-Bizzozero and Bolognani, 2002; Yisraeli, 2005). The 

functional diversity within RBPs also suggests a large diversity at the structural level, 

imparted by the structural modularity, auxiliary functional domains and post-translational 

modifications. Often, alternative splicing also adds to the cell’s ability to expand its repertoire 

of RBPs (reviewed in Glisovic et al., 2008). Over the years, a large compendium of RBPs 

involved in mRNA localization across organisms has been generated (King et al, 2005; Kugler 

and Lasko, 2009; Jansen and Niessing, 2012; Tolino et al., 2012; Lasko, 2012; Singer-Krüger 

and Jansen, 2014; Bergalet and Lécuyer, 2014; Di Liegro et al., 2014; Haag et al., 2015). 

Identified through genetic and biochemical means, several RBPs have been extensively 

studied in Drosophila development and are discussed in detail in the following section.   

1.7 Drosophila: an excellent model to study mRNA localization 

Some of the best characterized examples of mRNA localization and translational regulation 

come from studies in Drosophila melanogaster. Drosophila offers many technical advantages 

over other vertebrate models as it is easy to culture and has a short life cycle of 10-12 days. 

The small genome (released in March 2000 by Adams and co-workers) and low number of 

chromosomes are highly advantageous for genetic manipulations and have been 

successfully exploited to study a diverse range of biological processes (reviewed in Jennings, 

2011). Moreover, about 75% of known human diseases have counterparts in Drosophila 

(Reiter et al., 2001), further stressing its importance as a model, also for medical research. 

Due to its ease of manipulation, an extensive range of genetic tool kits have been developed 

and a vast assortment of transgenic strains are available through stock centers. All the 

available literature about the estimated 14,000 protein-coding genes (annotated with a “CG 

number”) has been collated in FlyBase (Gramates et al., 2017) and new genes are 

continuously being characterized by researchers all over the globe. 
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1.8 Drosophila oogenesis 

Drosophila oogenesis has been extensively studied and has emerged as a powerful tool to 

investigate mechanisms of mRNA localization. The main events of Drosophila oogenesis 

have been characterized in detail and are summarized in Johnstone and Lasko (2001), 

Bastock and St Johnston (2008) and Kugler and Lasko (2009), among many others. 

Drosophila females have a pair of ovaries, where oogenesis takes place in an assembly-like 

manner (Fig. 5). Each ovary consists of about 20 ovarioles and a single ovary contains all 

the stages of development, from stem cells to the mature egg, connected by somatic stalk 

cells (Spradling, 1993). The anterior end of the ovariole is formed by the germarium, where 

a stem cell divides asymmetrically to form another stem cell and a cystoblast, which 

differentiates to an oocyte. The cystoblast undergoes 4 rounds of mitotic divisions with 

incomplete cytokinesis to form 16 cells in a cyst, interconnected by cytoplasmic bridges called 

the ring canals. Determined by cell fate markers and markers of mitotic chromosome pairing, 

one of the 16 cells differentiates into an oocyte, while the remaining cells become the 

polyploid nurse cells. Nurse cells support the growth of the oocyte by providing nutrients and 

cytoplasmic components via the ring canals. As the cyst matures, it is enveloped by somatic 

follicle cells and moves along the germarium to finally pinch off as an egg chamber, led by a 

series of cell-signaling events. As the follicle cells migrate to surround the cyst, the oocyte 

comes to rest at the posterior of the cyst and becomes polarized, as the centrosomes and a 

set of RNA and proteins are differentially localized to the posterior of the oocyte.  

 

 

 

Fig. 5. Schematic representation of Drosophila ovaries and localization of maternal mRNAs during 

oogenesis. The oocyte is highlighted in grey. S: Stages of oogenesis; A: Anterior; P: Posterior; D: 

Dorsal; V: Ventral. 
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Oogenesis has been divided into 14 morphologically distinct stages, further divided into three 

broad categories: early oogenesis (until stage 6); mid oogenesis (stage 7-stage 10) and late 

oogenesis (stage 11 onwards); stage 1 is defined as the budding of the egg chamber from 

the germarium, while the mature egg marks stage 14 (Fig. 5). The first step in establishing 

anterior-posterior asymmetry is the posterior positioning of the oocyte during early oogenesis, 

which later translates into anterior-posterior axis of the oocyte. At this stage, microtubule 

minus-ends are concentrated at the posterior pole of the oocyte, along with the nucleus, grk 

mRNA and Grk protein. Posterior localization of Grk induces a posterior identity to a subset 

of overlying follicle cells that send back an unidentified signal triggering repolarization of the 

oocyte. In response, the microtubules reorganize during mid oogenesis, directing the 

localization of grk, osk and bcd mRNAs. Initially, plus ends accumulate in the middle of the 

oocyte, but later point towards the posterior, driving localization of bcd to the anterior and osk 

to the posterior of the oocyte, establishing the anterior-posterior axis. This reorganization of 

microtubules also allows for the migration of nucleus, grk mRNA and Grk protein to the dorsal-

anterior corner, which determines the dorsal side of the egg chamber, thus establishing the 

dorsal-ventral axis (reviewed in Steinhauer and Kalderon, 2006). In late oogenesis, the 

polarized microtubule array disassembles and vigorous streaming of the ooplasm occurs, 

directed by short subcortical microtubules. This streaming coincides with nurse cells dumping 

their bulk cytoplasm into the oocyte, in an event called “nurse cell dumping”. At the same 

time, the localization of some specific factors such as nos mRNA takes place. The posterior 

localization of nos is required for germ cell development and embryonic abdominal patterning 

(Gavis et al., 2007). Nurse cells eventually degenerate and are removed by apoptosis (Foley 

and Cooley, 1998; Jenkins et al., 2013) to form the mature egg. 

1.8.1 Localization of maternal mRNAs during oogenesis 

Maternal mRNAs are produced in the nurse cells and transported to the oocyte. All three 

localized mRNAs osk, bcd and grk utilize the same conserved pathway dependent on the 

complex of two interacting proteins Egalitarian (Egl) and Bicaudal-D (BicD). These proteins 

link the mRNA to the microtubules and minus-end directed motor dynein/dynactin (Mach and 

Lehmann, 1997; Bullock and Ish-Horowicz, 2001; Clark et al., 2007; Dienstbier et al., 2009; 

Sladewski et al., 2018). In the oocyte, grk first accumulates at the anterior and is then 

transported laterally towards the oocyte nucleus (MacDougall et al., 2003; Jaramillo et al., 

2008). Though both steps are dynein- and microtubule-dependent, the second step is thought 

to be mediated by the oocyte nucleus, which nucleates a distinct population of microtubules 

to facilitate lateral movement of the mRNA (MacDougall et al., 2003; Januschke et al., 

2006; Delanoue et al., 2007). During mid oogenesis, osk initially localizes to the anterior 

margins of the oocyte (at stage 8), before it localizes to the posterior by stage 9, (Ephrussi et 
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al., 1991; Kim-Ha et al., 1991) as shown in Fig. 5. This posterior localization is driven by the 

heavy chain of the plus-end directed motor kinesin (Khc; St Johnston, 2005). Visualization of 

osk mRNPs in living oocytes has shown that mRNP particles move actively in all directions, 

with a slight bias towards the posterior (Zimyanin et al., 2008). Two recent studies have 

reported that Khc is recruited to osk RNA molecules by atypical RNA-binding tropomyosin 

Tm1C (Veeranan-Karmegam et al., 2016; Gaspar et al., 2017). Khc is probably recruited 

already in the nurse cell cytoplasm, and is activated in the oocyte by a properly assembled 

EJC/SOLE (Spliced oskar Localization Element) to drive the posterior localization of osk 

mRNA (Clark et al., 1994; Brendza et al., 2000; Gaspar et al., 2017). 

Although both nos and osk are targeted to the same region of the oocyte, the mechanism of 

posterior localization of nos is strikingly different from that of osk. Until mid-oogenesis, nos 

accumulates in dynamically changing asymmetric patterns and posterior enrichment begins 

only in late oogenesis, much later than osk (Forrest and Gavis, 2003). Contrary to osk, bcd 

and grk transcripts, nos enters the oocyte through nurse cell dumping and localizes mainly 

through diffusion (enhanced by cytoplasmic streaming) and local entrapment at the posterior 

pole. This process is facilitated by F-actin cytoskeleton (reviewed in Kugler and Lasko, 2009). 

In embryos, only ≤ 4% of nos mRNA is localized (Bergsten and Gavis, 1999). Non-localized, 

translationally silent nos is degraded by the CCR4-NOT complex, recruited by the protein 

Smg (Semotok et al., 2005; Zaessinger et al., 2006; Jeske et al., 2006) and components of 

germline-specific Piwi-interacting RNA (piRNA) machinery (Rouget et al., 2010). 

Trans-acting factors involved in mRNA localization during oogenesis 

Localized mRNPs assemble during transcription in the nucleus, where a core set of trans-

acting factors bind to the maturing mRNAs. These trans-acting factors, many of which are 

RBPs, provide a platform for the formation of larger, dynamic assemblies in the cytoplasm, 

regulating mRNA transport, silencing and localized translation. As already mentioned, signals 

usually positioned in the 3’ UTR are recognized during mRNP biogenesis/export by RBPs to 

ensure the correct cytoplasmic sorting of the transcript to be localized. 

Targeting of transcripts to distinct regions of the oocyte requires a large number of trans-

acting factors. Anterior accumulation of bcd is facilitated by Exuperantia (Exu) during mid-

oogenesis (Berleth et al., 1988; St Johnston et al., 1989) and Staufen (Stau) in late oogenesis 

(St Johnston et al., 1989; Ferrandon et al., 1994), while its anchoring requires Swallow, the 

γ-tubulin ring complex components, the ESCRT II complex and microtubule-associated 

protein Mini Spindles (reviewed in Lasko, 2012). Interestingly, Exu and Stau are also 

components of osk RNPs and are required for proper osk localization (St Johnston et al., 

1991; Ephrussi et al., 1991; Kim‐Ha et al., 1991, 1995; Wilhelm et al., 2000). Stau is required 
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for kinesin-based transport of osk mRNA (Brendza et al., 2000) while it localizes bcd in a 

dynein-dependent manner (Ferrandon et al., 1994; Bullock and Ish-Horowicz, 2001). This 

indicates that Stau associates with different motor proteins for transport to different locations 

in the oocyte. Structural analysis of Stau suggests that distinct domains might allow its 

association with different factors that direct localization (Micklem et al., 2000; Ramos et al., 

2000). Indeed, during oogenesis, ectopic expression of Miranda, a Stau-interacting protein, 

couples Stau-osk complexes to the anterior localization machinery (Irion et al., 2006). 

Moreover, Stau associates with osk during mid oogenesis but does not associate with bcd 

until late oogenesis (St Johnston et al., 1989, 1991), suggesting a temporal regulation of 

transport complexes. Initially osk colocalize with bcd at the anterior, along with proteins such 

as Exu. This has led to the suggestion of a model (Wilhelm et al., 2000) that these mRNAs 

use a same core complex, as they start their localization process in the nurse cells. Following 

their arrival in the oocyte, the mRNPs are sorted, presumably at the anterior. While bcd is 

anchored at the anterior, osk is transported further to the posterior of the oocyte (St Johnston 

et al., 1989; Kim-Ha et al., 1991; Wilhelm et al. 2000). This hypothesis is supported by the 

evidence that mutants of Stau and tropomyosin (TmII) block the release and transport of osk 

to the posterior, rather than affecting its early anterior localization (Ephrussi et al., 1991; Kim-

Ha et al,. 1991; Erdelyi et al., 1995; Tetzlaff et al., 1996). The proposed anterior sorting may 

further involve recruitment of additional factors or modifications of the transport machinery, 

but the molecular mechanism remains unclear. 

Posterior localization of osk also requires EJC components, nascent protein associated 

complex (NAC), decapping protein DCP1 and several hnRNP proteins (reviewed in Kugler 

and Lasko, 2009). Splicing of the first intron of the osk transcript assembles the SOLE, 

essential for the posterior targeting of osk mRNA (Hachet and Ephrussi, 2004; Ghosh et al., 

2012; Simon et al., 2015). Additionally, splicing results in EJC deposition, raising the 

possibility that the SOLE regulates the association of EJC with osk, either via direct binding 

or mediated by an adaptor protein (Ghosh et al., 2012; Simon et al., 2015). Besides the 

SOLE, other regulatory elements in the osk 3’ UTR are required for its posterior enrichment 

(Kim-Ha et al., 1993). Intriguingly, osk can also localize by “hitchhiking”, via dimerization 

elements in its 3’UTR (Jambor et al., 2011). This “hitchhiking” can be exploited by 

localization-incompetent mRNA molecules, by their inclusion in transport-competent mRNPs. 

Very few trans-acting factors involved in nos mRNA localization have been identified so far. 

Among those are the hnRNP M homolog Rumpelstiltskin (Rump; Jain and Gavis, 2008), Lost 

(Sinsimer et al., 2011) and Aubergine (Aub; Becalska et al., 2011). Interestingly, Rump and 

Lost are also required for posterior accumulation of osk, specifically during late oogenesis, 

and for subsequent amplification of the germ plasm (Sinsimer et al., 2011).  
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Role of hnRNPs in mRNA localization during oogenesis 

hnRNP A/B family member Hrp48 colocalizes with osk throughout oogenesis and its mutants 

specifically abolish osk localization (Huynh et al., 2004; Yano et al, 2004). Mislocalization of 

both osk mRNA and Stau in Hrp48 mutants further suggests its involvement in the formation 

of Stau-osk particles (Huynh et al., 2004; Yano et al, 2004), ultimately affecting proper osk 

deployment. However, it is unclear if Hrp48 has a direct effect on osk localization, as some 

alleles of Hrp48 show microtubule polarity defects (Yano et al., 2004). In addition to its role 

in osk localization, Hrp48 also mediates translational repression of osk during transport, by 

binding to repressor elements in the 3’UTR, coupling osk localization with translational control 

(Gunkel et al., 1998; Yano et al., 2004).  

Other hnRNPs involved in osk localization are Squid (Sqd; Norvell et al., 2005), Glorund (Glo; 

Kalifa et al., 2009) and Syncrip (Syp; McDermott et al., 2012). Notably, Hrp48 and Sqd, along 

with Ovarian tumor (Otu) act together to regulate localization and translation of grk mRNA. 

They also influence nurse cell chromosome dynamics during oogenesis (Goodrich et al., 

2004; Norvell et al., 1999). Otu also participates in osk localization (Tirronen et al., 1995), 

and it is possible that, similar to grk regulation, the same complex of Sqd-Hrp48-Otu acts in 

osk localization as well. Furthermore, Syp is also required for localization and translational 

regulation of both grk and osk mRNAs and co-immunoprecipitates with Sqd and Hrp48 

(McDermott et al., 2012). These observations suggest the existence of a core module of 

hnRNPs required for regulation of localizing transcripts. 

Besides mRNA localization, hnRNP F/H family protein Glo has multiple functions during 

oogenesis, including development of dorsal appendages of the eggs, regulation of nurse cell 

dumping and chromatin organization in the nurse cells (Kalifa et al., 2009). Similar to Sqd 

and Hrp48, Glo mutant ovaries also exhibit mislocalization and ectopic translation of grk 

transcripts (Norvell et al., 1999; Goodrich et al., 2004; Kalifa et al., 2009). Glo has also been 

shown to be required for proper osk localization in both embryos and ovaries, possibly 

mediated by its direct association with Hrp48 (Kalifa et al., 2009). Glo interaction with the 

splicing factor Half pint (Hfp or pUF68) suggests that, together with Hrp48, it might also 

participate in nuclear splicing, independently of its function in mRNA localization/translation 

(Kalifa et al., 2009). Additionally, Glo also represses translation of non-localized nos in 

oocytes by specifically interacting with a Translational Control Element (TCE) in its 3’UTR 

(Fig. 6B; Kalifa et al., 2006). Discrete RNA-binding surfaces allow Glo to specifically 

recognize different targets, possibly facilitated by interacting proteins, which explains the 

functional diversity of Glo and perhaps also of other hnRNPs (Tamayo et al., 2017). 
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1.8.2  Translational regulation of maternal mRNAs during oogenesis 

mRNA localization is often coupled to translational regulation, which allows maternally 

deposited mRNAs to direct embryonic development. This localized translation is often 

achieved by transporting the mRNAs in a translationally repressed state, which is released 

when the mRNA reaches its destination, together with selective distribution or regulation of 

factors required for its translational activation/repression. 

osk undergoes extensive translational regulation as the mRNA needs to be translationally 

repressed prior to its localization and the localized fraction must be activated, while the 

unlocalized fraction must remain silent. In early oogenesis, translational repression of osk 

occurs through proteins associated with RNAi pathway including Armitage (Armi), Aub, 

Krimper (Krimp), Cutoff (Cuff), Maelstrom (Mael), Spindle-E (Spn-E), Zucchini (Zuc), 

and Squash (Squ) (reviewed in Kugler and Lasko, 2009). Repression during mid-oogenesis 

predominantly relies on pathways that target cap-dependent translation initiation. This is 

primarily mediated by Cup, a 4E-BP that interferes with the eIF4E-eIF4G interaction (Fig. 6A; 

Nakamura et al., 2004). Cup is recruited to osk by Bruno (or Aret), which directly binds to 

BRE (Bruno-Response Element) sequences in the osk 3’UTR (Kim-Ha et al., 1995; Webster 

et al., 1997; Snee et al., 2008). Cup-mediated repression can also occur by direct recruitment 

of the CCR4-NOT deadenylase complex to maintain its target mRNAs in a repressed state 

(Igreja and Izaurralde, 2011). Cup together with Bruno, Hrp48 and Sqd also act to mediate 

translational repression of grk prior to its localization (Fig. 6A; Norvell et al., 1999; Filardo and 

Ephrussi, 2003; Clouse et al., 2008). Additionally, Cup is required to repress nos in embryos, 

by binding to the protein Smg (Fig. 6B; reviewed in Lasko, 2011). Therefore, Cup is a central 

player in the translational regulation of several localizing maternal mRNAs.  

 

 

 

 

Fig. 6. General mechanisms of cap-dependent translational regulation of maternal mRNAs.  

(A) osk and grk are regulated by binding of Bruno to the BREs in the 3’UTRs. Bruno-mediated 

recruitment of Cup prevents the eIF4E-eIF4G interaction, thereby repressing translation. Co-
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purification of hnRNPs such as Hrp48 and Sqd with Cup, suggest that they are part of the repressor 

complex. (B) Recruitment of Cup to nos is mediated by binding of Smg to the loop of the stem-loop II 

of the Translational Control Element (TCE), which contains a Smaug Recognition Element (SRE). 

Additionally, Glo binds to the stem of the stem-loop III of the TCE in the nos 3’UTR, to repress nos 

translation, by an unknown mechanism. 

 

Cap-independent translational repression mechanisms have also been reported, as in the 

case of Bruno, that facilitates osk oligomerization and forms large silencing particles, 

rendering osk inaccessible to the translation machinery (Chekulaeva et al., 2006). A similar 

mechanism of promoting osk oligomerization is mediated by direct binding of the hnRNP 

Polypyrimidine Tract Binding protein (Heph/PTB) to elements in the osk 3’UTR (Besse et al., 

2009). Translational repression of localizing osk in early oogenesis by PTB (Besse et al., 

2009) further suggests a functional link between assembly of high-order RNPs and 

translational repression.   

Other translational repressors of osk include the conserved DEAD-box helicase Maternal 

expression at 31B (Me31B; that associates with Cup-Bruno-eIF4E complex), Y-box 

containing protein Ypsilon schachtel (Yps; by directly interacting with Exu) and Drosophila 

homolog of vertebrate Zipcode-binding protein-1, Imp (reviewed in Kugler and Lasko, 2009). 

Imp also contributes to localized expression of grk, by associating with Sqd and Hrp48, 

though it is believed to act redundantly (Geng and Macdonald, 2006). Embryonal nos 

repressor complex includes Me31B, Trailer Hitch (Tral) and RNA-dependent ATPase Belle 

(Bel), along with Cup, Smg, eIF4E and PABP (Götze et al., 2017). Additionally, miRNA-

independent role of AGO1, recruited by Smg, is also involved in the translational repression 

of nos (Pinder and Smibert, 2013). 

While bcd and nos are activated after fertilization, osk and grk are translated during mid 

oogenesis. Orb has been shown to be required for efficient polyadenylation of both osk and 

grk mRNAs (Chang et al., 1999, 2001; Castagnetti and Ephrussi, 2003), thus activating their 

translation. Orb also interacts with poly(A) polymerases such as PAP and Wispy (Benoit et 

al., 2008), suggesting that polyadenylation is one of the key factors involved in regulation of 

maternal mRNAs. This is further supported by the studies of RBP Bicaudal-C (BicC), a 

negative regulator of osk translation (Saffman et al., 1998). BicC directly recruits CCR4-NOT 

deadenylase complex to regulate the expression of target mRNAs, potentially including osk 

(Chicoine et al., 2007). Additionally, BicC also interacts with Orb, PAP and Wispy, possibly 

inhibiting their association with mRNAs (reviewed in Kugler and Lasko, 2009) to regulate 

translation.  

Nos protein is expressed in two waves during oogenesis, firstly during the early stages of 

germarium, where it is thought to promote stem cell or cystoblast divisions, and then during 
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late oogenesis (Wang et al., 1994). At stage 10, Nos is highly expressed in the cytoplasm of 

nurse cells, and has been shown to be functional, as this cytoplasm is able to rescue 

abdominal defects when transplanted in posterior-group mutant embryos (Sander and 

Lehmann, 1988). However, no protein is detected after stage 12, possibly due to formation 

of chorion and vitelline membrane, which blocks antibody penetration and hence detection. 

Ectopic expression of nos at the posterior inhibits bcd translation, suggesting that the 

exclusion of Nos from the oocyte is essential to prevent it from interfering with bcd expression 

(Wharton and Struhl, 1989; Wang and Lehmann, 1991; Gavis and Lehmann, 1992), although 

the mechanism is not clear as bcd remains untranslated until embryogenesis. 

1.8.3 Pole plasm assembly and abdominal patterning 

Pole plasm/germ plasm is a specialized cytoplasm containing electron-dense particles called 

polar granules. Polar granules are enriched in RNA and ribosomes, and are incorporated into 

germline precursor pole cells during embryogenesis (reviewed in St Johnston and Nüsslein-

Volhard, 1992). Components of pole plasm are synthesized in the nurse cells and transported 

to the oocyte, where they are localized to the posterior. Formation of pole plasm is dependent 

on the posterior localization and expression of osk. Upon localization, osk needs to be 

anchored in place. Anchoring requires the F-actin cytoskeleton along with F-actin associated 

proteins and endosomal proteins (reviewed in Kugler and Lasko, 2009). Localization of osk 

functions to restrict synthesis of Osk protein to the posterior, where it initiates the assembly 

of pole plasm. Translation of osk from different start sites produces two isoforms, short Osk 

and long Osk, with different localization patterns (Markussen et al., 1995; Rongo et al., 1997). 

While short Osk induces pole plasm assembly, the long isoform is required for anchoring of 

osk mRNA and of short Osk (Ephrussi et al., 1991; Markussen et al., 1995; Rongo et al., 

1997; Vanzo and Ephrussi, 2002). Long Osk spatially restricts and maintains the integrity of 

pole plasm throughout oogenesis, ensuring proper germline formation and embryonic 

patterning (Vanzo and Ephrussi, 2002).  

Pole plasm assembly is initiated by short Osk, which recruits components for both germline 

formation and embryonic patterning. A key function of pole plasm assembly is the posterior 

localization and translational activation of nos mRNA, which directs abdominal development 

during embryogenesis (Ephrussi et al., 1991; Gavis and Lehmann, 1992; Ephrussi and 

Lehmann, 1992; Forrest and Gavis, 2003). In embryos, translational repression and 

deadenylation of nos are relieved by Osk, by preventing Smg binding to nos 3’UTR 

(Dahanukar et al., 1999; Zaessinger et al, 2006; Jeske et al., 2011). 

A number of genes (posterior class of maternal-effect genes), based on the loss-of-abdominal 

patterning phenotype, are implicated in the formation of abdominal segments: cappuccino 
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(capu), spire (spir), osk, stau, vasa (vas), valois (vls), tudor (Tud), mago, nos and pumilio 

(pum) (Boswell and Mahowald, 1985; Lehmann and Nusslein-Volhard, 1986, 1987, 

1991; Schüpbach and Wieschaus, 1986; Manseau and Schüpbach, 1989; Boswell et al., 

1991). Most of them, except nos and pum, also display a loss-of-pole cell phenotype 

(Lehmann and Nusslein-Volhard, 1987, 1991; Barker et al, 1992), suggesting that abdominal 

defects are a consequence of defective pole plasm assembly. Mutants of genes required for 

pole plasm assembly fail to efficiently localize nos mRNA to the posterior of the embryos and 

show weak abdominal segmentation phenotypes (Wang et al., 1994), further demonstrating 

that nos translation is required for abdominal development. 

Genetic analysis has revealed that pole plasm assembles in a stepwise manner in which 

capu, spir, stau and mago act upstream of osk, which in turn acts upstream of vas, followed 

by tud and vls (Hay et al., 1990; Lasko and Ashburner, 1990; Kim-Ha et al., 1991; Ephrussi 

et al., 1991; St Johnston et al, 1991; Ephrussi and Lehmann, 1992). Additionally, it was 

shown that osk, vas and tud are essential for germ-cell determination and abdomen 

formation, while capu, spir, stau and vls are dispensable for both processes (Ephrussi and 

Lehmann, 1992). In line with these observations, posterior anchoring of Vas is mediated by 

Osk and the Osk-Vas interaction is a pre-requisite for polar granule formation (Breitwieser et 

al., 1996). Furthermore, vas and tud are also required for Osk accumulation (Markussen et 

al., 1995), revealing that they are essential components of pole plasm.  

Vas is a highly conserved DEAD-box RNA helicase localized in the polar granules and is a 

germline-specific translation regulator (reviewed in Lasko, 2013). In addition to Osk protein, 

regulators of accumulation and stabilization of Vas at the posterior of the oocyte include the 

deubiquitinating enzyme Fat facets (Faf; Liu et al., 2003) and ubiquitin ligase specificity 

receptors, Gustavus (Gus) and F-box synaptic protein, Fsn (Styhler et al., 2002; Kugler et al., 

2010; Gustafson et al., 2011).  

Vas is required at several stages of development. During early oogenesis, Vas is involved in 

germline cyst maintenance, oocyte differentiation and maturation (Lasko and Ashburner, 

1988; Styhler et al., 1998). vas null mutant ovaries also display inefficient accumulation of 

certain oocyte-localized RNAs (BicD, orb, nos and osk), and also of Grk protein (Styhler et 

al., 1998; Tomancak et al., 1998). This suggests a vital role of Vas in translational activation 

of grk mRNA and thus in the establishment of oocyte polarity. In embryogenesis, Vas is 

required for pole cells formation and embryonic patterning (Schüpbach and Wieschaus, 

1986) and might be involved in translational activation of RNAs localized to the germ plasm, 

such as nos and osk (Markussen et al., 1995; Gavis et al., 1996; Dahanukar and Wharton, 

1996). 
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Vas also has a translation-independent function in the Drosophila germline, as it is required 

to regulate mitotic chromosome condensation (Pek and Kai, 2011) and piRNA-mediated 

transposable element silencing (Vagin et al., 2004; Lim and Kai, 2007; Malone et al., 2009). 

Recent studies have revealed even a broader expression of Vas, including somatic gonadal 

precursor cells of Drosophila (Renault, 2012), and multipotent cells (Gustafson and Wessel, 

2010), suggesting that Vas is not exclusively a germline marker and has wider implications 

in organismal development. 

1.8.4 Cytoplasmic mRNP particles and their role in oogenesis   

Germline granules are well conserved RNP complexes that play a critical role in the 

regulation of mRNA degradation, localization, translational regulation, and fertility. These are 

electron dense, membrane-free cytoplasmic structures, found across organisms with shared 

features, suggesting commonalities of functions in addition to potentially more specialized 

roles. 

In Drosophila egg chambers, three classes of germline RNPs have been observed, based on 

morphology and subcellular localization. These are: polar granules, nuage particles and 

sponge bodies (reviewed in Schisa, 2012). As mentioned before, polar granules are found in 

pole plasm and contain the determinants for pole cell specification and posterior patterning 

(Mahowald, 2001). Several proteins, including Osk, Vas, Tud, Me31B, Aub, eIF4A, ER-

associated protein TER94 and several mRNAs have been identified as bona fide components 

of polar granules (Thomson et al., 2008; Kugler and Lasko, 2009). 

Nuage particles are perinuclear cytoplasmic structures found in the nurse cells, in close 

proximity to nuclear pores. Although evolutionary conserved, their role and mechanism of 

function in the germ cells is unclear. In Drosophila, nuage particles share components with 

polar granules such as Vas, Tud and Aub and are possibly involved in assembly or re-

organization of mRNP complexes during oogenesis (Snee and Macdonald, 2004). 

Localization of piRNA pathway factors including, Tejas (Tej), Spn-E, Aub, AGO3, Krimp, 

Mael, Zuc, Cuff and Squ to nuage suggest an additional role of nuage particles as a site for 

processing germline piRNAs, thereby regulating germline gene expression (Findley et al., 

2003; Vagin et al., 2004; Lim and Kai, 2007; Pane et al., 2007; Chen et al., 2007; Malone et 

al., 2009; Patil and Kai, 2010; Ryazansky et al., 2016). 

Sponge bodies are dynamic structures found in the nurse cell cytoplasm and ooplasm and 

are often associated with nuage particles (Wilsch-Brauninger et al., 1997). These structures 

are compositionally and perhaps functionally similar to yeast and mammalian P-bodies and 

the two terms are often used interchangeably in Drosophila. A multitude of proteins such as 

Exu, Btz, Cup, eIF4E, Me31B, Yps, Gus, DCP1, DCP2, Hrp48, Sqd, BicC, Orb, Bruno, Tral 
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and Lost have been found associated with sponge bodies (Snee and Macdonald, 2009 and 

the references within; Weil et al., 2012). Consistent with the presence of these proteins, 

sponge bodies have been implicated in regulation of localization of grk mRNA (Delanoue et 

al., 2007). Intriguingly, ultrastructure analysis and super-resolution microscopy has revealed 

a stratified organization of sponge bodies, where the edge region of sponge bodies is 

translation-competent while the core is translationally silent (Weil et al., 2012). Localized 

transcripts like grk and bcd, are differentially translated by virtue of their association with 

distinct sponge body zones (Weil et al., 2012), highlighting a key role of sponge bodies in 

spatio-temporal regulation of developmental mRNAs. 

1.9 mRNP purification: RNA-centric vs protein-centric approaches 

As discussed above, a large number of RBPs involved in mRNA localization have been 

identified, by both genetic and biochemical means. Although information is available on the 

identification and nucleic acid recognition specificity of many RBPs, we have limited 

understanding of the structure, composition and dynamics of native mRNPs. We know little 

about the hierarchy of interactions, when and where mRNP components are acquired, their 

specific roles, and conformations during assembly, transport and disassembly of the 

localizing mRNPs. A major bottleneck has been the lack of a robust method to selectively 

enrich a given mRNP at a defined spatial location in the cell. 

To explore the composition of an mRNP, both protein-based and RNA-based approached 

have been developed. Protein-based in vivo approaches essentially rely on the purification 

of a known RBP by immunoprecipitation (IP) together with the associated RNAs, which are 

then identified by cDNA cloning, coupled to microarray (RIP-Chip; Keene et al., 2006) or high-

throughput RNA sequencing (RIP-Seq; Zhao et al., 2010). Recent techniques like CLIP 

(Cross-linking and Immunoprecipitation; Ule et al., 2005) and its variants PAR-CLIP (Hafner 

et al., 2010), iCLIP (König et al., 2011) and HITS-CLIP (Licatalosi et al., 2008), which combine 

IP, UV cross-linking and high-throughput sequencing, have emerged as efficient tools for 

transcriptome wide high-resolution identification of RBP binding sites. Circumventing the 

need of antibodies, RBPs also can be tagged directly and affinity purified. For affinity 

purifications, fusion of two affinity modules in tandem, separated by a protease cleavage site, 

is particularly advantageous. This method of Tandem Affinity Purification (TAP) allows 

purification in mild conditions in two consecutive steps with significantly reduced non-specific 

background (Rigaut et al., 1999; Puig et al., 2001). Purified complexes can be stabilized by 

UV irradiation and the recovered RNA fragments can be analyzed using high-throughput 

sequencing (Granneman et al., 2009). While UV cross-linking allows to detect previously 

undetected protein associations, this approach has the disadvantage of potentially producing 
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artefacts, including mutations caused by UV light and biases in cross-linking efficiency of 

specific residues, nucleotides and dsRNA-binding RBPs (reviewed in Wheeler et al., 2018).  

Alternatively, RNA-centric approaches can be very promising since they involve co-

purification of a single mRNA with its associated proteins. Bound proteins are then identified 

using mass spectrometry (MS) or protein arrays. For RNA tagging in vivo, use of naturally 

occurring RNA aptamers has emerged as a powerful tool. In this approach, the high affinity 

interaction between viral RBPs and cognate RNA sequences is utilized to tag specific 

mRNAs. Sequence-specific RNA-protein recognition systems for regulation of genes in 

bacteriophages have been characterized both biochemically and structurally. These include 

the RNA hairpin-binding proteins from bacteriophages GA (Gott et al., 1991), R17 (Carey et 

al., 1983), Lambda (Chattopadhyay et al., 1995), P22 (Hilliker and Botstein, 1976) and Qβ 

(Lim et al., 1996). A major breakthrough has been the characterization of the specific 

interaction between the MS2 bacteriophage coat protein (MCP) with its cognate genomic 

RNA (Uhlenbeck and his colleagues; reviewed in Johansson et al., 1997). A similar system 

from bacteriophage PP7, whose coat protein shows only 13% amino acid sequence identity 

to that of the MCP has also been well studied (Lim et al., 2001). In addition to viral genomic 

RNA sequences, other naturally occurring RNA aptamers include the stem loop domain from 

human U1snRNA (called U1hpII) which binds to U1A protein (Piekna-Przybylska et al., 2007) 

and the hairpin loop from a thermostable SRP RNA that forms a stable complex with 

Thermotoga maritima Ffh protein (Kieft and Batey, 2004). 

In contrast to naturally occurring aptamers, in vitro synthesized RNA tags with high affinity 

for specific ligands such as streptavidin, streptomycin, or tobramycin have been produced 

and effectively used to analyze the protein components of an mRNP (Bachler et al. 1999; 

Srisawat and Engelke 2001; Hartmuth et al. 2002; Deckert et al., 2006; Vasudevan and 

Steitz, 2007; Ward et al., 2011; Leppek and Stoecklin, 2014; Dong et al., 2015). In vitro 

transcribed RNAs immobilized to a solid support via RNA aptamers (Dienstbier et al., 2009; 

Iioka et al., 2011; Dix et al., 2013) or chemically modified ribonucleotides (Rouault et al., 

1989; Sharma, 2008) are other methods to assemble and purify mRNPs in vitro. Use of 

affinity-tagged anti-sense oligonucleotides presents another powerful tool to isolate RNA 

baits and associated proteins (Lingner and Cech, 1996; Blencowe and Lamond, 1999). In 

addition, a recently developed RNA affinity tag, utilizing Pseudomonas aeruginosa 

CRISPR/Csy4 system, has been shown to be highly efficient for in vitro purification of RBPs 

associated with specific RNAs (Lee et al., 2013). 

Coupled with cross-linking, RNA-affinity purification methods with aptamers have been 

shown to effectively capture weak and transient interactions with high specificity. However, 

there are some limitations. Incorporation of foreign sequences or chemical modifications may 
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alter the target RNA structure and prevent the formation and correct assembly of the mRNP 

in vivo. Moreover, structural information about the target RNA is required to predict the best 

insertion site. Additionally, degradation of artificial aptamers by cellular nucleases might 

decrease the lifetime of the tagged RNA, decreasing the efficiency of purification.  

1.9.1 MS2-MCP system in mRNP purification  

The MS2-MCP system, pioneered in yeast by Singer and co-workers (Bertrand et al., 1998) 

has been well characterized to visualize mRNA trafficking in live cells (reviewed in Urbanek 

et al., 2014; Buxbaum et al., 2015) or to tether protein of interest to reporter mRNAs to follow 

their cell fates (Keryer-Bibens et al., 2008). Due to the high affinity (dissociation constant, Kd 

of 5nM) and specificity of the MCP to the cognate RNA, this system has the potential to be 

used for biochemical purifications. Moreover, many mutant variants of MS2 RNA motif 

(Lowary and Uhlenbeck, 1987) and MCP (Peabody, 1993; Lim and Peabody, 1994; LeCuyer 

et al., 1995) have been designed to further improve the binding affinity, making it a useful tool 

for transcript-specific mRNP purifications. By fusing MCP with affinity tags such as 

Glutathione S-transferase (GST) or Maltose Binding Protein (MBP), the MS2 system has 

been used to capture complexes in various cellular contexts, including human spliceosomal 

complexes (Das et al., 2000; Jurica et al., 2002; Zhou et al., 2002; Deckert et al., 2006), 

RNPs associated with ncRNAs (Said et al., 2009; Yoon et al., 2012; Gong et al., 2012) and 

ribosomal complexes (Youngman et al., 2004; Youngman and Green, 2005; Barrett and Chin, 

2010). By incorporating fluorescent tags, for example GFP, this system can be used for 

simultaneous visualization and affinity purification (Slobodin and Gerst, 2010). Furthermore, 

by fusing MCP with multiple tags (separated by TEV protease cleavage sites) or by combining 

MS2 system with other systems such as PP7, effective approaches for RNA purification and 

visualization have been developed (Tsai et al., 2011; Hocine et al., 2013; Halstead et al., 

2015).  

Although MS2 system has been widely used to label RNAs, inefficient dimerization of MCP 

leads to high background fluorescence due to unbound MCP in the imaging experiments (Wu 

et al., 2012, 2014). As not all the stem-loops are occupied by MCPs, RNAs are often not 

uniformly labeled, complicating the quantitative analysis (Fusco et al., 2003; Wu et al., 2012). 

These factors also contribute to the inefficient recovery of the target mRNAs in biochemical 

purifications. Previous studies using the MS2 system to capture RNA-protein complexes 

assembled in vivo, have reported an efficiency ranging from 1 to 9% (Said et al., 2009; Tsai 

et al., 2011; Leppek and Stoecklin, 2014). Due to the high binding affinity between MCP and 

MS2 stem-loops, elution of the purified complexes under native conditions is problematic. In 

addition to these difficulties, necessity of making transgenics, unclear rules on positioning the 
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stem-loops, acceptable limits on loop numbers and formation of aggregates on 

overexpression of coat proteins are the other limitations of this approach. 

1.9.2 Proteomic analysis of RBPs: an alternative approach 

Purification of protein complexes in an RNA-independent manner, is yet another approach 

for the identification of the core set and other associated trans-acting factors which possibly 

govern RNA-specific mRNP formation. Taking the advantage of its robustness, this method 

can be used to construct an inventory of proteins involved in cellular processes such as 

mRNA localization, to reconstitute higher order assemblies from recombinant proteins for 

functional and structural studies.  

Due to the lack of comprehensive antibody collections or availability of efficient and/or specific 

antibodies, a more generic purification strategy is to fuse the protein of interest with a 

sequence readily recognizable by an antibody specific to the tag. In vivo purification of protein 

complexes essentially involves tagging a protein (bait), which will be incorporated into 

complexes with endogenous partner proteins. The bait can then be immunoprecipitated via 

the tag with high specificity in a single step, or in a two-step manner, as in the case of TAP 

tagging (Rigaut et al., 1999; Puig et al., 2001) and interactants can then be identified using 

MS. Together with chemical cross-linking, transient and weak interactions can also be 

captured, allowing detection of unstable protein complexes. Recently developed methods of 

BioID (Roux et al., 2013) and its variant Split-BioID (Munter et al., 2017; Schopp et al., 2017), 

which utilize a promiscuous biotin ligase to label proteins based on proximity, are other 

powerful tools to selectively isolate physiological protein complexes. Finally, isolated 

complexes can be integrated into interactome networks to gain functional insights into poorly 

characterized proteins while enhancing network-based analysis of sub-complex formation. 

Several Drosophila systems that recapitulate in vivo conditions have been generated using 

homologous recombination (Dunst et al., 2015) or transposon-mediated cassette insertion 

(Protein-trap: Morin et al., 2001; Clyne et al., 2003; Quinones-Coello et al., 2006; Buszczak 

et al., 2007; Lowe et al, 2014; and Gene-trap: Venken et al, 2011; Nagarkar-Jaiswal et al., 

2015), to study protein distribution at endogenous expression levels. More recently, BAC 

(Bacterial Artificial Chromosome) or fosmid transgeneomics have been utilized to tag 

genomic sequences and express the reporter gene as a third copy allele (Zhang et al., 1998b, 

2008; Dolphin and Hope, 2006; Sarov et al., 2006, 2012, 2016; Poser et al., 2008; Hubner et 

al., 2010; Hein et al., 2015). These engineered transgenes maintain the endogenous 

promoters, intron-exon structure and other regulatory elements, thus providing a tagged 

functional copy of the gene, expressed at physiological levels. These resources together with 
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the rapidly emerging CRISPR/Cas9 technology (reviewed in Xu et al., 2015; Ren et al., 2017), 

present a valuable tool for genome-wide analysis of cellular processes in Drosophila. 

 IP coupled to mass spectrometry (IP-MS) 

With the availability of gene/genome sequence databases and technical advances especially 

in instrumentation, IP-MS-based proteomics is becoming increasingly popular to analyze 

protein complexes and identify novel protein interactions. A typical IP-MS workflow is 

depicted in Fig. 7. Shotgun proteomics which does not focus on specific sites or proteins of 

interest, is the most commonly used method. Purified proteins are digested with a protease, 

commonly trypsin, and the resulting collection of peptides are separated by Liquid 

Chromatography (LC). The sequentially eluting peptides are ionized and analyzed by MS. By 

performing another MS measurement (tandem MS or MS/MS), additional information specific 

for the amino acid sequence of the peptide is recorded, making it possible to identify every 

 

 

 

Fig. 7. Schematic representation of the IP-MS workflow 

The workflow of IP-MS-based shotgun proteomics consists of multiple steps. Protein complexes 

isolated by affinity purification are digested proteolytically and the resulting peptides are separated by 

LC and ionized by electrospray (electrospray ionization, ESI). The ionized peptides are then 

transferred into the mass spectrometer for analysis. The instrument first records the peptide masses 

and ion intensities, referred to as MS1 (or MS) spectra. The individual peptides are then isolated and 

fragmented by the mass spectrometer. Fragments are recorded in the second spectral scan, referred 

to as MS2 or MS/MS. The peptide and fragment masses are used to identify the peptide, while the ion 

intensity is used for the quantification. Adopted from Meissner and Mann, 2014. 

 

peptide unambiguously. For peptide identification, the raw MS/MS data is analyzed by 

matching the mass measurements to theoretical sequences, digested in silico, derived from 

a protein sequence database for the respective organism (reviewed in Angel et al., 2012). 
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To identify true interactants in an IP-MS experiment, it is desirable to know the exact amount 

of proteins in a given sample, or to be able to compare relative protein abundances among 

different samples. Methods have been developed for both absolute and relative quantification 

of proteins in MS experiments (reviewed in Elliott et al., 2009; Li et al., 2017). Absolute 

quantification, which provides the copy number of a protein in a cell or its concentration, can 

be obtained by spiking standard known amounts of the targeted protein or peptide into the 

samples. Quantification is done by comparison of the spiked compound to the target analyte. 

Relative quantification determines changes in the protein amounts relative to a control 

sample. The two main approaches for relative quantification are stable isotope-based 

labeling (quantitative) and label-free (semi-quantitative) methods. Labeled versions of 

specific molecules can be incorporated into the proteins or peptides, either by metabolic 

labeling (at the protein level; Ong et al., 2002; Shenoy and Geiger, 2015), enzymatic labeling 

(peptide level; Yao et al., 2001) or by chemical labeling (both protein and peptide levels; Gygi 

et al., 1999; Zhou et al., 2002; Li et al., 2003). Relative abundances are then calculated by 

comparing the intensities of isotopic isoforms derived from the same peptide in different 

samples (reviewed in Elliott et al., 2009; Li et al., 2017). 

Metabolic labeling is accomplished by the addition of isotopically-labeled amino acids as a 

part of the normal protein synthesis, most commonly in cell culture (SILAC; Ong et al., 2002) 

and recently expanded to tissue samples and model organisms, including Drosophila 

(reviewed in Shenoy and Geiger, 2015). However, approaches used to label tissue samples 

and complete organisms are both costly and time-consuming, limiting the use of metabolic 

labeling to certain sample types. An alternative to metabolic labeling is in vitro chemical 

labeling, where the proteins/ peptides of a protein sample are labeled with stable-isotope 

containing reagents. Various approaches for chemical labeling have been developed, such 

as Isotope-Coded Affinity Tag (ICAT; Gygi et al, 1999), Dimethyl labeling (Hsu et al., 2003) 

and incorporation of isobaric mass tags (Thompson et al., 2003; Ross et al., 2004). In ICAT, 

cysteine residues in proteins are labeled using a thiol-specific reagent while in Dimethyl 

labeling, primary amines (N-terminus and side chain of Lysine residues) are converted to 

dimethyl amines to label the peptides (reviewed in Elliott et al., 2009; Hsu and Chen, 2016). 

Isobaric tagging techniques use a family of tags (up to 12-plex; Frost et al., 2015) which have 

overall identical mass, but differ structurally in the distribution of the heavy isotopes. These 

tags are mostly amine-reactive but tags that label cysteine residues and carbonyl groups are 

also available as commercial kits (reviewed in Rauniyar and Yates, 2014). The most 

commonly used isobaric tags are Tandem Mass Tags (TMT; Thompson et al., 2003), isobaric 

Tag for Relative and Absolute Quantification (iTRAQ; Ross et al., 2004) and the recently 

developed N,N-Dimethyl Leucine tags (DiLeu; Xiang et al., 2010). However, ICAT is limited 

in the exclusive tagging of cysteine residues and the isobaric labeling techniques show 
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variability in labeling efficiencies and require expensive reagents. In contrast, Dimethyl 

labeling techniques use relatively cheap reagents and have high reaction yields, accuracy 

and reproducibility (reviewed in Hsu and Chen, 2016). 

While labeling-based MS methods are more accurate and reproducible, label-free methods 

are powerful alternatives to labeled MS as they are simpler, cost-effective and provide a 

deeper proteome coverage (Li et al., 2012). Label-free quantification relies on the observation 

that protein amounts correlate well with the peptide ion intensity (extracted ion currents, XIC), 

given sufficient mass resolution of the peptides. Alternatively, the counts of peptides selected 

for MS/MS sequencing (spectral counts) can also be used to calculate protein abundances. 

However, XIC-based approaches are superior as compared to spectral counting algorithms, 

especially for low-intensity peptide species and are more accurate and reliable (reviewed in 

Wong and Cagney, 2009). With technical advances in the LC-MS instruments and 

development of sophisticated algorithms such as MaxLFQ (Cox et al., 2014) for protein 

quantification, label-free MS is being effectively and routinely used, especially in experiments 

where relatively large fold changes (greater than fourfold) are expected (Cox and Mann, 

2011; Nahnsen et al., 2013). For MS data acquisition and analysis, a wide range of 

proteomics softwares are freely available. The MaxQuant software (Cox and Mann, 2008), 

developed by Jürgen Cox and others at MPI of Biochemistry (Martinsried, Germany) can 

be used for analysis of both labeled and label-free data. MaxQuant output can be further 

analyzed by statistical tools for analysis of high-dimensional omics data, for example by the 

comprehensive Perseus framework (Tyanova et al., 2016). 
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2.  Results 
 

2.1 Biochemical characterization of a localized mRNP in Drosophila 

2.1.1 Aims and significance   

To date, our ability to systematically purify native mRNPs, to identify all associated 

components has been limited. Purifying a selected mRNP is particularly challenging as it 

requires a robust protocol which can efficiently enrich for a specific transcript from the pool 

of mRNAs, which represents a small percentage (3-5%) of the total RNAs in a cell 

(Jankowsky and Harris, 2015).  

The aim of this project is to biochemically purify a localized mRNP from Drosophila egg 

chambers by combining Tandem Affinity Purification (TAP) tagging with RNA-based 

approaches of mRNP isolation. By generating novel transgenic flies where both the mRNA 

and the protein components of the mRNP are fused with affinity tags, I aim to purify an mRNP 

expressed at physiological levels, with high specificity. By isolating an mRNP in close to 

native purification conditions, the stoichiometry and structure of the complex can be 

preserved. Mass Spectrometric (MS) analysis will further help to identify associated trans-

acting factors, including possibly novel components. As a starting point, oskar (osk) mRNA 

makes an excellent choice for this study, as it is abundant and has been very well 

characterized over the years (Lehmann and Nusslein-Volhard, 1986; Kim-Ha et al., 1991; 

Vanzo and Ephrussi, 2002; Jenny et al., 2006; Yang et al., 2015; Jeske et al., 2015; Hurd et 

al., 2016; Kistler et al., 2018; reviewed in Kugler and Lasko, 2009).  

 

By specifically purifying an osk localizing complex in close to native conditions, the mRNP 

components can be identified and characterized. This information can then be used to 

reconstitute higher order assemblies in vitro for functional and structural studies. By extending 

this study further to other differentially localized mRNAs (such as bicoid; bcd), this two-step 

purification strategy may prove to be a powerful tool to identify core and transcript-specific 

components of localized mRNPs. Given the high degree of evolutionary conservation of 

several known components of the osk localizing complex such as the Exon Junction Complex 

(EJC; Tange et al., 2004) and Bruno (Webster et al., 1997), such a study can prove to be a 

valuable framework to transfer information to other systems, potentially providing a general 

understanding of the formation and regulation of localized mRNPs.  

 



45 
 

2.1.2 mRNP purification strategy  

The experimental strategy I developed in this study to purify a transcript-specific mRNP 

includes several steps (Fig. 8). The key steps are: 

1) Generation of transgenic fly lines where both mRNA and a known protein component of 

the osk mRNP are tagged in parallel.  

2-4) Establishment of a hybrid TAP protocol using both a protein tag and an RNA tag to purify 

mRNPs. This includes optimizing material preparation and RNA tag-binding protein 

purification. 

5) MS analysis of native mRNPs isolated from egg chambers. 

 

                         

                         Fig. 8. Schematic representation of the experimental strategy 
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Step 1: Generation and characterization of fly lines expressing tagged osk mRNA  

In order to generate flies expressing tagged RNA and protein, I first generated transgenic fly 

lines expressing tagged osk mRNA. Using naturally occurring bacteriophage derived 

aptamers, MS2 and PP7 (Bernardi and Spahr, 1972; Lim et al., 2001), I tagged osk genomic 

fragments with all the regulatory elements, to maintain endogenous levels of expression. MS2 

and PP7 are well characterized RNA motifs and have been extensively used for in vivo RNA 

imaging (Bertrand et al., 1998; Forrest and Gavis, 2003; Zimyanin et al., 2008; Halstead et 

al., 2015; reviewed in Urbanek et al., 2014; Pena et al., 2015). These aptamers form hairpin 

loop structures, which are recognized by the corresponding coat protein with high specificity 

and affinity (Bernardi and Spahr, 1972; Lim and Peabody, 1994; Lim et al., 2001). To insert 

the aptamers, I used recombineering as it allows rapid and efficient modification of large 

fragments, independent of the restriction sites (Ejsmont et al., 2009, 2011). Using 

homologous recombination in E. coli, I first recombined the RNA aptamers into osk genomic 

fragments, and the clones were then introduced into the Drosophila genome as a third copy 

allele, at a specific site. I performed these experiments in collaboration with Dr. Pavel 

Tomancak, at MPI-CBG, Dresden. 

To minimize the chances of a tag interfering with the localization or function of osk, I inserted 

the tags at a characterized site after the stop codon (Zimyanin et al., 2008). This region is 

predicted to be unstructured and is not conserved in insects. This region is also upstream of 

the BRE-AB (Bruno responsive elements; Kim-Ha et al., 1995; Webster et al., 1997) that 

ensures that Osk protein translation remains switched off during osk transport. In order to 

identify a tag with minimal effects on osk function but with maximal binding capacity, I created 

a series of tags with different number of aptamer repeats and in different combinations: MS2-

6X, MS2-12X, PP7-24X and MS2-12X+PP7-24X. To select for the optimal tag to use in the 

mRNP purification, I assessed various parameters such as expression, localization, and the 

ability to rescue osk defects.  

osk mRNAs tagged with MS2-12X and MS2-6X were observed to be localized as expected 

(in the endogenous background), as the otherwise uniformly expressed Venus-tagged MS2 

coat protein (MCP) was then observed at the posterior of the oocyte (Fig. 9A). Moreover, 

both the constructs were found to be expressed well at near endogenous levels, which is 

critical to preserve the complex stoichiometry in subsequent purifications (Fig. 9B). The other 

two constructs either failed to localize correctly (MS2-12X+PP7-24X) or were not detectable 

by Northern blot (PP7-24X), and hence were not examined further.  

osk 3’UTRs, independent of the coding sequence, are capable of localizing by forming dimers 

with the endogenous transcripts (Jambor et al., 2011). This “hitchhiking” can be exploited by 
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localization-incompetent transcripts, by associating with mRNAs in transport-competent 

mRNPs, for their efficient localization (Hachet and Ephrussi, 2004; Jambor et al., 2011). 

Therefore, it was important to check if the tagged constructs can localize correctly in an osk 

RNA null background. For this, I recombined the transgenes with an osk deficiency [Df(3R)p-

XT103] and then crossed them with an osk RNA null mutation [oskA87]. By staining the RNA 

in the ovaries of the trans-heterozygotes, via in situ hybridization assay, I could show that 

both MS2-6X and MS2-12X constructs can localize correctly to the posterior of the oocyte, 

also in the absence of endogenous osk (Fig. 9C). Genetic crosses further revealed that these 

constructs can also rescue early oogenesis defects of osk mRNA null mutation, as eggs were 

successfully laid. However, only some of the eggs could hatch into adults and these flies 

exhibited grandchild-less phenotype, suggesting that the tagged mRNAs are not fully 

functional (Fig. 9D). While full rescue of osk null phenotypes would be ideal, posterior 

enrichment of MS2-tagged RNAs suggests that the complex required for osk localization was 

preserved in these transgenics. 

Characterization of fly lines expressing known osk mRNA-binding proteins 

Through genetic and biochemical studies, several osk mRNA-binding proteins have been 

identified and characterized (reviewed in Kugler and Lasko, 2009). For this study, I selected 

transgenic fly lines expressing tagged versions of five such proteins, namely eIF4AIII, Staufen 

(Stau), Hrp48, Glorund (Glo) and Vasa (Vas). These fly lines are a part of the fly-

TransgeneOme (fTRG) library (Sarov et al., 2016) and express C-terminal superfold-GFP 

(sGFP)-tagged proteins. I assessed all the selected fly lines for localization of the tagged 

protein and the ability to rescue mutant phenotype. Details are provided in second part of this 

chapter.  
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Fig. 9. Characterization of transgenic flies expressing MS2-tagged osk mRNA 

(A) Flies expressing tagged osk were crossed to flies expressing the fluorescently labeled MCP and 

stage 9 egg chambers of the offsprings were examined. Flies expressing MCP alone were used as a 

negative control (left most). Shown below the crosses are the confocal images of the egg chambers 

analyzed. In all the images, Venus signal is shown. (B) Expression levels of tagged osk mRNAs were 

analyzed using Northern blot. Wild-type flies were used as a positive control. (C) A DIG-labeled anti-

sense osk RNA probe was used to analyze the localization of tagged mRNA in an osk null background. 

Shown are the microscopy images of the in situ hybridization assay. Anterior is to the right and 

posterior is to the left. Scale bar 20 μm. (D) Rescue assay results: females expressing tagged osk, in 

an osk null background, were crossed to wild-type males and offsprings were scored for viability and 

fertility.  
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Step 2: Optimized protocol for large-scale isolation of stage-specific egg chambers 

 

 

 

  

Fig. 10. Schematic representation of the method used to isolate egg chambers, at defined stages, on 

a mass scale. In the images on the right, the material collected from 125 μm and 90 μm sieves is 

shown. 

 

Purifying mRNPs is a challenging task as mRNAs are often expressed at low levels and 

various trans-acting factors bind transiently to the mRNAs, making it difficult to obtain 

quantities sufficient for subsequent analysis. During Drosophila oogenesis, mRNAs are 

transported from the nurse cells to the oocyte in a translationally repressed state and are 

activated upon localization. This tight regulation is achieved by association of several proteins 

at different stages of localization, changing the composition of the mRNP both spatially and 

temporally. Therefore, in order to purify a homogenous population of a specific mRNP, it is 

important to isolate egg chambers at defined stages. For this, I optimized an established 

protocol from the Tomancak lab to isolate egg chambers on a mass scale (Jambor et al., 

2015). In this method, I mechanically disrupted the ovaries and using size-selection steps, 

isolated stages 8-10 egg chambers in large amounts (Fig. 10). These stages of egg chambers 

are ideal for purifying a localized osk mRNP, as osk mRNA begins to accumulate at the 
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posterior of the oocyte at late stage 8 (Markussen et al., 1995). On inspecting the isolated 

material under the microscope, I observed that egg chambers collected with a sieve of mesh 

size 90 μm best represented the desired developmental stages, as shown in Fig. 10.  

Step 3: Protein purification of recombinant MCP 

MCP binds to MS2 hairpin as a dimer, with high specificity and affinity (Bernardi and Spahr, 

1972; Lim and Peabody, 1994; Ni et al., 1995; Chao et al., 2008). In order to co-precipitate 

MS2-tagged osk mRNA, MCP fused with an affinity tag was expressed in E. coli. To select 

an optimal tag, I expressed MCP with a series of different N-terminal tags: His, GST and His-

MBP (hereafter referred to as MBP). A recent study by Wu et al. (2012) showed that tagged 

single-chain dimers of MCP are more efficient for in vivo imaging, as these constructs are 

able to dimerize more efficiently and hence can effectively label the RNA at lower 

concentration, resulting in a lower signal-to-noise ratio. Therefore, I also expressed a tandem 

version of the MCP, as N-terminal MBP-tagged (MBP-tdMCP), in E.coli cells. I optimized a 

protocol to purify all the MCP variants in large scale, along with MBP, to serve as a control. 

GST control was purified by Jonas Mühle in the lab. I could successfully purify all the tagged 

MCPs, as shown by Size Exclusion Chromatography (SEC) profiles in Fig. 11. 

Chromatograms of the intermediate steps are shown in supplementary Fig. 1. 

To ensure that the purified proteins can bind to their target RNA with high specificity in vitro, 

I incubated purified GST-MCP with the MS2 hairpin. An unstructured ssRNA (U20) and an 

unrelated structured RNA (UA-rich sequence) were used as controls. Upon analyzing the 

resulting RNA-protein complexes by SEC, I could demonstrate that recombinant MCP binds 

specifically to its cognate hairpin, but not to ssRNA or to an unrelated RNA hairpin (Fig. 12). 

This shows that the MS2-specific binding activity of the MCP has been preserved during the 

purification process. The same approach was used to verify other MCP fusion proteins, such 

as MBP-MCP (supplementary Fig. 2), indicating that the tags did not interfere with the binding 

activity of the coat protein. 
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Fig. 11. All recombinant MCP fusions could be purified successfully. 

(A) Representative SEC profiles of the differently tagged MCP. Highlighted are the peak fractions 

collected and the corresponding protein bands as observed on SDS-PAGE gels (below). Elution 

profiles show UV absorption at 280nm (blue) and 260nm (red). (B) A representative SDS-PAGE gel 

showing all the purified proteins.  
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Fig. 12. MCP binds to MS2 hairpin with high specificity  

SEC profiles of the GST-tagged MCP in complex with MS2 hairpin (A), an unrelated RNA hairpin (B) 

and ssRNA (C). Profiles for RNA and protein are shown on the left, while the RNA-protein complex is 

shown on the right. Elution profiles show UV absorption at 280nm (blue) and 260nm (red). Elution 

volume of the reference protein is marked by a dotted black line; the reference RNA in a dotted green 

line and the complex in a dotted orange line. 

 

Step 4.1: Protein pull-down by immunoprecipitation (IP) 

For the first step of mRNP purification, I established an optimized protocol to pull-down a 

tagged osk-binding protein from isolated egg chambers. By selecting different proteins, 

temporally and spatially separated osk mRNPs can be isolated. IPs were done using the 
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GFP-TRAP system (Chromotek). All the proteins could be successfully purified. Details are 

provided in second part of this chapter.  

Step 4.2: mRNA purification using affinity-tagged MCP 

For the second step of mRNP purification, I developed a protocol to purify and detect the 

tagged mRNAs. This is a key step for the isolation of a transcript-specific mRNP. In order to 

set up optimal conditions for the purification, I used total RNA extracted from the isolated 

stage-specific egg chambers of flies expressing MS2-12X-tagged osk mRNA. I then tested 

different tags and tandem/non-tandem versions of MCP for their ability to capture the 

aptamer-tagged osk and analyzed the results using Northern blotting. I further optimized the 

buffer conditions (see methods and materials) to maximize the recovery and purity of the 

tagged mRNA. I also used a constitutively and abundantly expressed ribosomal protein 49 

(rp49) mRNA as an internal control, to assess the specificity of MCP (Fig. 13).  

Even though I could successfully purify the tagged mRNA, only up to a maximum of 29% of 

the input tagged RNA could be retained on beads (quantified by comparing the band 

intensities of the input and pull-down samples on the Northern blot; Fig. 13). MBP-tdMCP 

showed the highest efficiency (29.3%) as compared to GST-MCP (24.5%) or MBP-MCP 

(7.7%). Endogenous osk was also enriched with the tagged osk, which can be explained by 

the dimerization of the osk 3’UTRs (Jambor et al., 2011). However, in the absence of tagged 

osk (in the wild-type samples), MCP still enriched the endogenous transcript, irrespective of 

the tag used. This suggests a general binding of the MCP to unspecific RNAs present in the 

lysate, as the tags in the absence of MCP showed no binding. This is further demonstrated 

by the detection of rp49 in the MCP pull-downs.  

In order to obtain a transcript-specific mRNP, the issue of specificity and homogeneity needs 

to be solved. The recovery of the tagged transcript also needs to be improved to obtain 

amounts sufficient for subsequent analysis.  
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Fig. 13. Recombinant MCPs can successfully precipitate aptamer-tagged osk mRNA in vitro. 

Shown above is a representative Northern blot. MS2-12X-tagged osk mRNA was affinity-purified using 

GST-MCP, MBP-MCP and MBP-tdMCP, from total RNA extracted from isolated egg chambers. Wild-

type osk mRNA and tag alone (GST and MBP) were used as negative controls. The membrane was 

hybridized with osk and rp49 probes to check for efficiency and specificity, respectively. Alpha-tubulin 

(at 67C) was used as a loading control in the input and as a purity check of the precipitate in the pull-

down. 
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2.2 Proteomic analysis of RNA-binding proteins (RBPs) in mRNA 
localization in Drosophila 

2.2.1 Aims and significance 

Genetic and biochemical studies in Drosophila have identified several proteins involved in 

the localization of four key maternal transcripts which define the future embryonic axes: bcd, 

osk, gurken (grk) and nanos (nos). For efficient localization, RBPs must bind to specific 

elements in these transcripts and couple them to the appropriate localization machinery. 

Interestingly, several of these RBPs are required for localization of more than one mRNAs, 

suggesting that common RNA localization factors might be coupled with additional interactors 

to regulate localization of mRNAs to distinct regions of the oocyte.  

While several global proteomic datasets from different developmental stages (including 

oocytes, embryos, larvae, pupae, adults) as well as cell lines (S2 and Kc) are available 

(Brunner et al., 2007; Kronja et al., 2014; Valentzas et al, 2015), few attempts have been 

made to construct an inventory of proteins involved in mRNA localization in Drosophila 

oocytes. The aim of this project is to purify several RBPs that are known to regulate the 

localization of maternal mRNAs at different developmental stages and identify their 

interactants. This constitutes the first step to construct an inventory of proteins for future 

functional studies. By comparing the RBP-associated proteomes, this approach can prove to 

be a useful tool to identify components of the localization machinery and also possibly to 

decipher how the differential targeting of these mRNAs is achieved. Constructing an 

interaction network of proteins will further help to gain mechanistic insights into the functional 

components of a localized mRNP and will help to provide a general understanding of the 

regulation of developmental mRNAs. 

2.2.2 Characterization of fly lines expressing RBPs involved in mRNA localization 

To perform IPs, I selected six RBPs, eIF4AIII, Glo, Hrp48, Nos, Stau and Vas, that are known 

to regulate localization of one or more maternal mRNAs at different developmental stages in 

Drosophila. The fly lines expressing these tagged RBPs are a part of recently published fTRG 

library (Sarov et al., 2016). These transgenic lines express C-terminally-tagged proteins, 

close to endogenous levels. The 40kDa tagging cassette consists of “2XTY1-sGFP-V5-

preTEV-BLRP-3XFLAG” (Sarov et al., 2016) that can be used for affinity purification. To serve 

as a control, I generated a transgenic line expressing the tag alone (hereafter referred to as 

GFP for simplicity). To avoid overexpression of GFP, I placed the the tag under a promoter 

of a moderately expressing gene (exu) and the construct was inserted in the genome at a 

specific site. The embryo injections to generate the transgenics were performed by Kristina 

Ile in the lab.  
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In order to ensure that the RBP fusions are functional in vivo, various approaches were used. 

First, I checked their localization patterns in vivo, using confocal microscopy. For this, I 

examined egg chambers at different stages of oogenesis (Fig. 14A, B) and could show that 

all the proteins localize as expected (Hay et al., 1988a, 1988b; St Johnston et al., 1991; Wang 

et al., 1994; Liang et al., 1994; Yano et al., 2004; Palacios et al., 2004; Kalifa et al., 2006). 

Egg chambers from flies expressing GFP showed a uniform expression in the nurse cells and 

the oocyte nucleus, while the wild-type egg chambers (control for autofluorescence) showed 

no signal, demonstrating that these flies serve well as controls (Fig. 14A). In agreement with 

the previous reports, eIF4AIII-GFP signal was observed in the nucleus of the nurse cells and 

localized to the posterior of the oocyte at stage 5. (Fig. 14A; Palacios et al., 2004). eIF4AIII 

enriches weakly at the posterior at stage 9 (Palacios et al., 2004), which however, could not 

be detected in my samples (Fig. 14A). Glo-GFP was detected in the nucleus of the nurse 

cells, oocyte and in the surrounding follicle cells (Fig. 14A; Kalifa et al., 2006). Hrp48-GFP 

was present in the cytoplasm of the nurse cells and was observed to be localized to posterior 

of the oocytes at stage 9, similar to Vas-GFP (Fig. 14A; Yano et al., 2004). The nuage 

localization of GFP-tagged Vas at early stages was also observed, consistent with the 

previous studies (Fig. 14A; Hay et al., 1988a, 1988b; Liang et al., 1994). At stage 8, Stau-

GFP was concentrated at the anterior of the oocyte, while stage 9 egg chambers showed a 

strong posterior enrichment (Fig. 14A; St Johnston et al., 1991). Nos-GFP could be detected 

only via antibody staining (Fig. 14B). In embryos, Nos primarily localizes to the posterior 

(Wang and Lehmann, 1991). In the nurse cells of stage 10 egg chambers, it showed a strong 

uniform GFP expression, as also observed by Wang and colleagues (1994). Nos function at 

this stage is not known, making it an interesting protein to investigate further. 

Since all the transgenes were introduced in a wild-type background, I next checked their 

ability to rescue the effects of mutations that cause either lethality or sterility. For this, I set 

up the crosses and assessed the trans-heterozygotes for embryonic lethality or female 

sterility. For nos, stau and vas, the phenotype of the individual is dependent on the genotype 

of the mother (maternal gene effects). Therefore, the trans-heterozygous females of these 

genes were further crossed to wild-type males to test for phenotypic rescue. The crosses and 

the results are summarized in Fig. 14C. Only half of the transgenes assayed were found to 

be fully functional (Fig. 14C), probably due to the instability of the fusion protein. However, 

the ability to recapitulate endogenous protein localization pattern (Fig. 14A, B) suggests 

partial functionality, which is adequate for my experiments since I am interested in the 

localization events during oogenesis. 
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Fig. 14. Localization patterns in the egg chambers and genetic rescue of the RBP fusions  

(A) Images showing localization of the GFP-tagged proteins, in stages 4-9 egg chambers. Wild-type 

flies and flies expressing GFP serve as negative and positive controls, respectively. (B) nos ovaries 

immunostained for GFP show a uniform expression in the nurse cells of stage 10 egg chambers. Wild-

type flies serve as a negative control. In panels A and B, GFP signal is shown. Anterior is to the left 

and posterior is to the right. Scale bar, 20 μm. (C) Table summarizing the genetic rescue of the mutant 

phenotypes with the transgenes. Respective mutations used for the rescue assay to assess the 

functionality of the transgenes in vivo, are indicated. 
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2.2.3 Isolation and identification of protein complexes by IP-MS 

 

To co-purify factors associated with each of the RBPs involved in mRNA localization in the 

oocytes, I performed IPs from lysates of ovaries isolated from flies expressing GFP-tagged 

proteins (Fig. 15). IP from flies expressing GFP alone was used as a negative control to 

identify proteins binding unspecifically to the tag.  

 

 

 

Fig. 15. Overview of the IP-MS workflow 

(A) Schematic representation of the workflow (FDR: False Discovery Rate). (B) IPs were performed 

and analyzed by Western blot using anti-GFP. Inputs and eluates were loaded in different amounts for 

efficient visualization. Input of the total lysate: 2.1% for GFP, eIF4AIII, Nos; 4.2% for Glo, Vas, Stau 

and 1.2% for Hrp48. Loading of the respective eluates is highlighted on the top of each lane.† is an 

unspecific detection by the antibody (C) Shows a representative SDS-PAGE gel used for MS analysis. 

IPs were performed and bands were visualized by Coomassie staining. IP from transgenic line 

expressing GFP served as a negative control (B, C).  
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For IPs, whole ovaries were hand-dissected and maintained on ice to minimize protein 

degradation. They were collected in batches and flash-frozen for subsequent use. To be able 

to purify complexes close to their native composition, I performed lysis in mild salt and 

detergent conditions and developed an efficient protocol to purify complexes using the GFP-

TRAP system (Chromotek). As I am interested in identifying RNA-independent protein-

protein interactions, I performed the experiments in the presence of RNases and could 

successfully purify all the proteins (Fig. 15B). Since the transgenes are regulated by their 

endogenous promoters, their expression levels were highly different. This can be observed 

by comparing the intensity of input signals on the Western blots (Fig. 15B). Please note that 

for effective visualization, different amounts of inputs and eluates were loaded on the blots, 

as indicated in Fig. 15B. 

To identify protein-protein interactions, label-free MS analysis was employed. Label-free 

quantification, which is a semi-quantitative approach, offers high processivity in terms of 

samples that can be compared at the same time, making it a suitable approach for multiple 

IP experiments. For analysis, experiments were performed in triplicates. To compensate for 

the variability in the expression levels, the number of flies for each transgene were up scaled 

accordingly (see methods and materials), to achieve a visible band on the gel (Fig. 15C). 

Given the sensitivity of the assay, weak bands such as those of Nos-GFP and Stau-GFP, 

were sufficient for the analysis.  

Identification of significantly enriched proteins associated with selected RBPs by semi-

quantitative label-free MS analysis 

MS was done in collaboration with Prof. Dr. Boris Macek’s group at the Proteome Center, 

University of Tübingen. LC-MS/MS reads were collected on a Proxeon Easy-nLC 1200 

(Thermo Fisher Scientific) coupled to a QExactive HF mass spectrometer (Thermo Fisher 

Scientific). All the measurements were performed by Johannes Madlung in the lab of Prof. 

Dr. Boris Macek, at the Proteome Center. For confident identification of proteins and accurate 

intensity-based Label-Free Quantification (LFQ; Cox et al., 2014), I processed the raw data 

using the MaxLFQ module of the MaxQuant software (Cox and Mann, 2008). For generic 

statistical testing, I further used Perseus software (Tyanova et al., 2016) to identify specific 

interactors of the selected RBPs (hereafter referred to as baits for simplicity). 

To effectively distinguish true interactors from contaminants, I designed an optimal MaxQuant 

workflow. For this, I tested different combinations of two MaxQuant parameters, namely the 

minimum ratio count (minimum number of peptide ratios required to consider protein ratios 

valid, for relative quantification; Cox et al., 2014) and the number of unique peptides 

(minimum number to unique peptides required for the identification of a protein). On using a 

minimum ratio count of 2, information on small proteins (for example the EJC component 
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Mago, which is a known interactant of eIF4AIII; Palacios et al., 2004) and the low-intensity 

background was lost, thus creating an enrichment bias. Relaxing the stringency of unique 

peptides to 0 resulted in the identification of Tral (including various isoforms), which is a 

known translational repressor of nos mRNA (Götze et al., 2017) and is a part of mRNP that 

includes other localization/translation factors such as Cup, Me31B and PABP (Wilhelm et al., 

2005; Igreja and Izaurralde, 2011; Götze et al., 2017; Wang et al., 2017). This suggested that 

the combination of “minimum ratio count of 1” and “minimum unique peptides 0” are optimal 

parameters, as they retained positive controls without increasing the background noise and 

were used for the analysis. Additionally, I activated “matching between runs” algorithm to 

quantify unidentified or unsequenced peptides in the samples, by transferring peptide 

identifications among replicates. 

Global analysis of the proteomes resulted in the identification of 14,978 peptides mapping to 

1885 protein groups, at the FDR of 1% at the peptide and protein level. 1870 proteins were 

quantified in at least one of the 21 samples. Of these, 1850 proteins were unique, which 

account for 88% of the total ovary proteome of Drosophila, as previously reported (Velentzas 

et al., 2015).  

Since normally distributed data is advantageous for statistical testing, I log transformed the 

LFQ intensity values and plotted the histograms for each sample separately, to verify that the 

data followed a normal distribution (Fig. 16). I then calculated Pearson correlation coefficients 

for all the samples (depicted as a heat map in Fig. 17A) and could show that all the replicates 

correlate well. Overall, the coefficient values ranged from 0.49 to 0.97, while the average 

correlation within replicates ranged from 0.72 (Glo) to 0.91 (Hrp48). To further assess the 

quality of the data, I generated a heat map (with hierarchical row clustering) of the LFQ 

intensities of all the samples (Fig. 17B) and demonstrated that all the baits were consistently 

enriched and the replicates profiles looked largely similar, with only minor differences due to 

technical variability. However, the number of proteins identified with each bait varied highly, 

as can be observed in the heat map, marked by the absence of quantitative information (Fig. 

17B).  

 

To enable statistical analysis, the missing values needed to be replaced by imputation. To 

prevent introducing artefacts, the random values generated should represent a normal 

distribution around the detection limit of the mass spectrometer. Since there was a 

considerable difference between the numbers of identifications for each bait (Fig. 17B), I 

grouped the replicates (of a given bait) together, to preserve the normality of the data for 

subsequent analysis. Imputation was performed on a bait-control pair, after discarding the 

proteins that were not reproducibly detected in one of the two replicate groups. This filtering 
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and imputation was repeated for each pair. Since it is important that these simulated low- 

intensity values fit well into the profiles of low abundant proteins, I plotted the histograms 

again and could show that the substitution of missing values did not disturb the overall 

distribution (Fig. 18). An overlay of histograms pre- and post-imputation is presented in 

supplementary Fig. 3. 

 

To identify significantly enriched proteins associated with each bait, I performed the Welch’s 

t-test (with the 5% FDR cutoff), post-imputation, on each bait-control matrix. Results are 

presented as volcano plots in Fig. 19. All the baits were highly enriched and I observed a 

minimal background, indicating the high specificity of the purifications. For some baits, such 

as eIF4AIII-GFP and Glo-GFP, few interactors were found to be significantly enriched, as 

compared to others. This difference in the number of detections is not likely due to differences 

in sample amounts used for MS analysis (as eIF4AIII-GFP was enriched in higher amounts 

as compared to Nos-GFP; Fig. 15C) but possibly due to loss of interactions upon RNase 

treatment. The partial functionality of some of the tagged proteins, suggested by the lack of 

rescue (Fig. 14C), might also be an explanation for the loss of associations. 

 

For most baits, I found several known interactants (which served as positive controls) to be 

significantly enriched. This indicates that both the experimental conditions, as well as the 

parameters used for data analysis were optimal to preserve and identify true interactions. For 

example, all the other three core components of the EJC were co-purified with eIF4AIII-GFP 

(Palacios et al., 2004; Tange et al., 2005; Bono et al., 2006). Known partners of Vas, involved 

in the pole plasm assembly in the oocyte or piRNA-mediated gene silencing in the Drosophila 

germline, were also significantly enriched (Fig.19). In addition, other known components of 

both of these functionally distinct cellular pathways were also found to be associated with 

Vas-GFP, suggesting that not only direct interactants, but whole complexes were efficiently 

purified (supplementary Fig. 4). 
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Fig. 16. The IP-MS data follows a normal distribution. 

Frequency distribution of the logarithmized (Log2) LFQ intensities of all the proteins quantified in each 

IP, without data imputation. N is the total number of values. X axis represents the range of values; Y 

axis represents the number of values.  



63 
 

 

 

Fig. 17. Baits are consistently enriched in all the IPs 

(A) Heat map representation of the matrix of Pearson correlation coefficients calculated for all the IP 

samples. The zoomed plots show the highest and lowest coefficient values (r) among the replicates. 

(B) Heat map of the logarithmized (Log2) LFQ intensities of all proteins quantified in each sample. 

Hierarchical row clustering was performed on data without imputation. The zoomed area shows the 

high enrichment of eIF4AIII-GFP and Hrp48-GFP in the three replicates. Missing quantitative 

information is highlighted in grey. 
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Fig. 18. The normality of the data is preserved post-imputation 

Frequency distribution of the logarithmized (Log2) LFQ intensities of all the proteins quantified in each 

IP, after filtering and data imputation. The missing values were replaced with the substituted values 

from the normal distribution, for each bait-control matrix. For simplicity, control (GFP) plots are not 

shown. X axis represents the range of values; Y axis represents the number of values.  
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Fig. 19. Bait-associated proteomes differ in amount and composition  

Volcano plots of proteins identified associated with each bait in the label-free MS analysis, after filtering 

and data imputation. The significance of enrichment was calculated using the two-tailed Welch’s t-test 

with a 5% FDR cutoff. IP from GFP expressing sample served as a negative control. For each bait-
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control pair, the resulting differences between the logarithmized means of the two groups 

“Log2(bait/control)” and the negative logarithmized p values were plotted against each other. N 

indicates the number of protein groups plotted. All the IPs were measured in triplicates. Each identified 

protein is represented as a dot in light grey; each bait is highlighted in green; significantly enriched 

proteins are highlighted in pink; known interactants are highlighted in blue; background binders are 

highlighted in dark grey. 

 
 

Interestingly, I observed ribosomal proteins (components of both large and small subunits), 

which due to their abundance are typical background binders (Mellacheruvu et al., 2013), to 

be significantly enriched with Vas-GFP and Hrp48-GFP, but not with other RBPs analyzed 

(Fig. 20). Previous studies have shown the requirement of Vas in translational activation of 

osk, nos and grk mRNAs (Styhler et al., 1998; Tomancak et al., 1998; Gavis et al., 1996; 

Dahanukar and Wharton, 1996; Markussen et al., 1995). However, the molecular mechanism 

by which Vas activates translation is unclear.  Studies in Drosophila have shown that Vas 

directly binds translation initiation factor eIF5B to regulate grk translation and possibly other 

germline-specific transcripts (Carrera et al., 2000; Johnstone and Lasko, 2004). In addition, 

Vas also interacts genetically with the translation initiation factor eIF4A for efficient germ cell 

formation (Thomson et al., 2008). However, in contrast to these reports, both eIF5B and 

eIF4A were either not detected or enriched in this dataset. Instead, I observed a high 

enrichment of other translation initiation factors such as eIF4G, eIF4E, eIF2, eIF3 subunits 

and eIF2B subunits (Fig. 20). These results suggest that Vas might be directly involved in the 

early steps of translation initiation. It is possible that Vas assists in recruiting factors required 

for mRNA activation and pre-initiation complex formation, and as a consequence binds to 

eIF5B. As eIF5B is released upon ribosome assembly, this binding to Vas can be transient 

and thus could not be detected (general translation initiation mechanism reviewed in Jackson 

et al., 2010; Hinnebusch, 2014).  

Similar to Vas, Hrp48 is also involved in translational regulation of maternal mRNAs. 

However, in contrast to the translational activation function of Vas, Hrp48 is required for 

translational repression of osk and grk mRNAs (Gunkel et al., 1998; Goodrich et al., 2004; 

Yano et al., 2004). Interestingly, several lines of evidence, such as its binding to a 

derepressor element in osk 5’UTR (Gunkel et al., 1998) and co-immunoprecipitation with 

PABP (Clouse et al., 2008), suggest a yet uncovered role of Hrp48 in translational activation. 

Similar to Vas-GFP, ribosomal proteins along with translation initiation factors, especially 

eIF4E and eIF4G, were also observed to be significantly enriched with Hrp48-GFP (Fig. 20). 

However, further experimentation is required to exclude the possibility that the enrichment of 

translation initiation factors and ribosomal proteins in isolated Vas-GFP and Hrp48-GFP 

complexes are biochemical impurities. 
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Fig. 20. Vas-GFP and Hrp48-GFP show higher enrichment of ribosomal proteins and translation 
initiation factors, differentially from the other RBPs but overlapping with each other. 
 
Volcano plots showing the distribution of ribosomal proteins and translation initiation factors found 

associated with each bait in the label-free MS analysis, after filtering and data imputation. Significance 

of enrichment was calculated using the two-tailed Welch’s t-test with a 5% FDR cutoff. IP from GFP 

sample served as a negative control. For each pair, the resulting differences between the logarithmized 
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means of the two groups “Log2(bait/control)” and the negative logarithmized p values were plotted 

against each other. N indicates the number of protein groups plotted. All the IPs were measured in 

triplicates. Each identified protein is represented as a dot in light grey; baits are highlighted in green; 

ribosomal proteins are highlighted in brown; translation initiation factors are highlighted in orange.  

 

 

Quantitative analysis of proteins associated with Hrp48- and Vas-GFP, using Dimethyl 

labeling MS 

 

Label-free MS techniques have several advantages. However, they are more sensitive to 

technical variability and do not provide accurate quantitative information. Conversely, labeling 

MS approaches can prove to be a helpful tool to detect small fold changes in protein 

abundances, due to the robustness and precise quantification. Therefore, the combination of 

labeled and label-free MS data can provide a comprehensive view of proteomes. Since its 

introduction in 2003 (Hsu et al., 2003), in vitro Dimethyl labeling of peptides has emerged to 

be one of the fastest and reliable chemical-labeling strategies for quantitative proteomics, 

especially for organisms such as Drosophila, where metabolic isotopic labeling is still 

challenging. However, the method is limited by its requirement of sufficient background to be 

able to calculate protein abundance ratios and the absence of background binding often leads 

to loss of information. 

 

In Dimethyl labeling approach, peptides are labeled with isotopomeric dimethyl labels (light, 

medium and heavy), differing in mass by at least 4 Da. The labeled samples are mixed 

together and analyzed by LC-MS/MS, whereby proteins/peptides from different samples are 

distinguished based on the mass difference of the labels. Protein intensity is calculated by 

statistical evaluation of the peptide ratio counts while the abundance ratios are calculated by 

comparing the intensity of the differently labeled peptides (Boersema et al., 2009; reviewed 

in Hsu and Chen, 2016).  

 

The experimental strategy for Dimethyl labeling MS is depicted in Fig. 21. Since only three 

conditions can be compared at a time, I selected Hrp48- and Vas-GFP, along with the GFP 

control, as these proteins express very well and have known interactions data available to 

serve as positive controls. I performed the experiments in duplicates and prepared the 

samples the same way as for label-free MS (Step 1, Fig. 21). All the subsequent steps were 

performed by Johannes Madlung in the lab of Prof. Dr. Boris Macek, at the Proteome Center. 

After in-gel digestion, peptides were labeled with heavy, medium or light isotopes and the 

labels were inverted in the replicate, to minimize the variability due to labeling procedures 

(Step 2, Fig. 21). LC-MS/MS reads were collected on a Proxeon Easy-nLC 1200 (Thermo 

Fisher Scientific) coupled to a QExactive HF mass spectrometer (Thermo Fisher Scientific) 
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(Step 3-5, Fig. 21). The raw data were processed (also by Johannes Madlung) using 

MaxQuant software (Cox et al., 2014), providing confident identification of proteins (1% FDR) 

and normalized protein abundance ratios (Step 6, Fig. 21). 

 

Analysis of Vas- and Hrp48-associated proteomes resulted in the identification of a total of 

4027 peptides, mapping to 615 protein groups. Out of these, protein intensities were 

calculated for 594 protein groups, in at least one of the samples. For Hrp48-GFP IP samples, 

protein intensities were calculated for 450 proteins in both the replicates and protein 

abundance ratios (over control) for 268 proteins were calculated reproducibly (Fig. 22A). 

Similar observations were made for Vas-GFP IP samples, where protein intensities were 

calculated for 435 proteins in both the replicates and 268 protein abundance ratios were 

calculated reproducibly (Fig. 22B). Abundance ratios calculated within the replicates showed 

more than 80% overlap. Furthermore, replicates showed high correlation, suggesting an 

overall good quality of the data (Fig. 22A, 22B). 

 

Proteins identified with an abundance ratio of more than 2 in both replicates, were considered 

to be significantly enriched. Consistently with the semi-quantitative analysis, several known 

interactors were found, most of them reproducibly enriched (Fig. 22). Proteins with high fold 

change were dominated by ribosomal proteins and many translational initiation factors were 

also identified to be enriched, in agreement with the label-free MS data (Fig. 20, 23).  
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Fig. 21. Dimethyl labeling strategy for quantitative proteomics 

Schematic representation of the experimental strategy. IPs were performed and bands were visualized 

by Coomassie staining. Representative Coomassie stained SDS-PAGE gels used for quantitative MS 

are shown on the right. IP from GFP sample served as a negative control. 
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Fig. 22. Quantitative MS analysis reveals several interactors that associate with Hrp48-GFP and Vas-
GFP with a high fold change. 
 
Scatter plots of the proteins identified to be associated with Hrp48-GFP (A) and Vas-GFP (B) in the 

Dimethyl labeling MS analysis. Normalized ratios (Log2) of both the replicates are plotted against each 

other. IP from GFP sample served as a negative control. N denotes the number of protein groups 

plotted and “r” denotes the Pearson correlation coefficient. Dotted lines mark the proteins with more 

than 2 fold change over control, in each replicate. Venn diagrams on the right show the overlap of 

protein intensities calculated and abundance ratios calculated in the two replicates. Each identified 

protein is represented as a dot in light grey; baits are highlighted in green; known interactants are 

highlighted in blue; background binders are highlighted in dark grey. 
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Fig. 23. Ribosomal proteins and translation initiation factors are significantly enriched and overlap in 
Hrp48-GFP and Vas-GFP IP samples, as analyzed by quantitative MS. 
 
Scatter plots highlighting the distribution of ribosomal proteins and translation initiation factors found 

associated with Hrp48-GFP (A) and Vas-GFP (B) in the Dimethyl labeling MS analysis. Normalized 

ratios (Log2) of both the replicates are plotted against each other. IP from GFP sample served as a 

negative control. Dotted lines mark the proteins with more than 2 fold change over control, in each 

replicate. Each identified protein is represented as a dot in light grey; baits are highlighted in green; 

ribosomal proteins are highlighted in brown; translation initiation factors are highlighted in orange.  

 

 

 

To check how semi-quantitative and quantitative analyses relate with each other and whether 

both methods yielded similar associated proteomes, I mapped the proteins identified in 

labeled MS analysis onto the label-free MS data. As shown in Fig. 24, significantly enriched 

proteins (more than 2 fold in both replicates) and background proteins (less than 2 fold in 

both replicates) identified in the labeled MS followed the same profile as in the label-free MS 

analysis and showed a good overlap in Venn diagrams (Fig. 24). 
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Fig. 24. Quantitative MS data supports the semi-quantitative MS data 

Volcano plots (on the right) with an overlay of the labeled MS data (on the left) analyzed for Hrp48-

GFP (A) and Vas-GFP (B) IPs. At the bottom of each panel, Venn diagrams represent the overlap 

between the significantly enriched interactants found in the two datasets. In the scatter/volcano plots, 
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each identified protein is represented as a dot in light grey; baits are highlighted in green; significantly 

enriched proteins are highlighted in pink; background binders are highlighted in black. 

 

2.2.4 Global analysis of proteomes associated with the tagged RBPs 

To understand how the proteomes identified with each bait interact with each other, I built a 

composite network of all the statistically significant interactants identified in the label-free MS 

data analysis (Fig. 25). While each bait has its distinct proteome, the network is also highly 

connected. In particular, a considerable overlap can be observed between functionally 

related proteins. To gain a systemic understanding of the network, I mapped the known 

protein-protein associations from curated databases, such as String (Szklarczyk et al., 2017) 

and FlyBase (Gramates et al., 2017) onto the network, resulting in a complex and dense 

interactome, as shown in Fig. 26.   
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Fig. 25 The global interactome reveals novel protein interactions  

Shown is the interaction network of significantly enriched proteins, identified to be associated with 

each bait in the label-free MS analysis. Nodes are presented as circles: green nodes represent the 

baits; pink nodes represent the interactants; blue nodes represent the known interactants identified in 

the respective IPs; connecting edges represent the interactions. The size of the node (except the green 

nodes that represent the baits) indicate the fold change (Log2) over control; highest fold change values 

were considered for the interactants found associated with multiple baits.  

 

 

 

 

Fig. 26 Network complexity increases upon addition of protein-protein interaction data retrieved from 
database sources. 

The interactome built from label-free MS analysis (inset) was integrated with the existing interaction 

data extracted from String (Szklarczyk et al., 2017) and FlyBase (Gramates et al., 2017). Nodes are 

presented as circles: green nodes represent the baits; pink nodes represent the interactants; blue 

nodes represent the known interactants identified in the respective IPs; connecting edges represent 

the interactions. IP-MS data is highlighted by solid grey edges while the database information is 

highlighted by dotted pink edges. The size of the node indicates the fold change (Log2) over control. 

 

 

To further characterize the interactome functionally, I performed an enrichment analysis to 

identify which Gene Ontology (GO) terms are overrepresented in my gene set (as compared 

to the Drosophila genome). For this, I used the functional annotation tool from DAVID 

(Database for Annotation, Visualization and Integrated Discovery; Huang et al., 2009a,b) and 
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clustered the results in the representative subset of terms using REVIGO (Reduce + Visualize 

Gene Ontology; Supek at al., 2011). As expected, I found several terms related to RNA 

processes and translation. GO Biological Process analysis showed a very high enrichment 

of proteins involved in the regulation of osk mRNA translation and localization, cytoplasmic 

mRNA processing, cytoplasmic and mitochondrial translation, ribosome assembly, and 

mRNA splicing and polyadenylation. Similarly, for molecular functions, terms for dsRNA 

binding, RNA helicase activity, translation initiation and regulator activity were enriched. The 

analysis of cellular compartments/complexes revealed high enrichment of proteins as part of 

ribosomes, pole plasm, P-bodies, RISC complex and the EJC (Fig. 27). 
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Fig. 27 Enrichment analysis of the proteins identified to be significantly enriched with each bait  

All the proteins identified to be significantly associated with each bait in the label-free MS analysis 

were functionally annotated for their roles in biological processes, molecular functions and cellular 

components using GO terms. Analysis was done using functional annotation tool from DAVID (Huang 

et al., 2009a,b). Fisher Exact test with a p-value cutoff of 0.01 was employed to find enriched 

categories (as compared to the Drosophila genome). Results were summarized using REVIGO (Supek 

et al., 2011).  
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2.2.5 In vitro validation of interactants using co-immunoprecipitation (co-IP) assay 

The inherent complex and dynamic nature of protein interactions render the interpretation of 

large-scale proteomic datasets particularly challenging, despite the technological advances 

in instruments, algorithms and analysis tools. One of the major concerns in MS-related 

studies is the identification of false positives due to artefacts caused by protein destabilization 

or aggregation and by bringing together unrelated proteins that might not interact with each 

other in native conditions. Therefore, follow up biological studies are imperative to validate 

functionally relevant protein associations.  

One of the ways to validate interactions in vitro, is by co-IP of overexpressed candidate pairs 

in a heterologous cell system. This method relies on the stable interaction between bait and 

prey proteins in the sample solution, which can be precipitated together by a bait-specific 

antibody. Due to their ease of culture and high transfection efficiency, human HEK cells have 

been extensively used to transiently express recombinant proteins. Since I am working with 

Drosophila proteins, this system can be effectively used to study direct protein-protein 

interactions, with reduced possibility of involvement of additional endogenous proteins 

mediating these associations.  

 

For validation by co-IP, I selected candidates from the list of protein partners that were 

determined to be statistically significant in the label-free MS data analysis (i.e. based on the 

combination of fold change and 5% FDR cut-off). Additionally, I also considered functionally 

relevant partners, enriched with at least a 2 times fold change in the label-free MS data, 

otherwise excluded by statistical filtering. For Hrp48 and Vas, where quantitative information 

was also available, I selected the candidates from the combined list of interacting proteins 

identified in both the datasets, based on high enrichment and/or functional relevance. 
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Fig. 28 Schematic representation of co-IP validation strategy in HEK cells 

 

The experimental strategy is depicted in Fig. 28. Typically, I co-expressed an EGFP (referred 

to as GFP for simplicity) -tagged bait with an HA-tagged candidate protein, and performed 

the IP using the GFP-TRAP system (Chromotek). I observed that small proteins (<25kDa) 

express poorly as fusions with HA/HA-Flag and substitution with the GFP tag improved the 

expression significantly in all the cases tested. To be able to validate the interactions of such 

small proteins, I co-expressed an HA-Flag-tagged candidate with a GFP-tagged bait and 

performed the IP using anti-Flag (Fig. 29.2D, 29.5C). Since Vas does not express well as an 

HA/HA-Flag fusion, the small proteins could not be assayed efficiently for interaction with 

Vas. To serve as negative controls, I used MBP or GFP, as these tags are presumed inert, 

with minimal effects on the activity or distribution of the tagged protein. I also included known 

interactions as positive controls, wherever possible.  

I analyzed the co-IP results by Western blotting using anti-GFP and anti-HA antibodies (Fig. 

28). To confirm the IP, baits were detected with anti-GFP (or anti-HA in the case of anti-Flag 

IPs) and to confirm the co-IP, partner candidates were detected with anti-HA (or anti-GFP in 

case of anti-Flag IPs). Since the proteins are expressed at different levels, I frequently 

observed that the stronger signals overshadowed the nearby weaker signals or saturated the 

blot. In such cases, increased exposure did not cause a linear increase in the density of the 

image, leading to the loss of information. To overcome this, I split the samples for effective 

visualization (via chemiluminescence) on the blots. For the same reasons, the amount of 

starting material, the concentration of lysate and the amount of input to be loaded were also 

balanced accordingly. 
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Out of 94 protein-protein interactions assayed, I could confirm 32 interactions (34%), of which 

26 were found to be novel (summarized in Fig. 30). All positive interactions were confirmed 

at least 3 times, in independent experiments. In addition, I was also able to validate some of 

the interactions by reciprocal IP, as shown in Fig. 29.2C. In both the labeled and label-free 

MS data, Sqd was identified as an unspecifically binding protein with all the baits. I could 

confirm these interactions to be negative in vitro (Fig. 31), which shows that the pipeline 

constructed to analyze the MS data could effectively separate the background binders from 

the true interactants. Furthermore, interaction of Sqd with Hrp48 is RNA-dependent 

(Goodrich et al., 2004). This confirms that the RNases added during the purification could 

effectively disrupt RNA-mediated associations and only protein-protein interactions were 

identified. However, many interactions that were determined to be significant in the MS data 

analysis could not be validated, possibly due to the following reasons: lack of biochemical 

machinery required for post-translational modifications, misfolding of proteins, low affinity, 

transient interactions or interactions mediated by other proteins.  

To gain a better perspective of the co-IP results, I integrated the validated interactions with 

the IP-MS data (both labeled and label-free), together with information from databases such 

as String (Szklarczyk et al., 2017) and FlyBase (Gramates et al., 2017) to create a 

subnetwork (Fig. 32). As the majority of the validated interactants are known regulators of 

maternal mRNAs, this subnetwork highlights a general machinery involved in oocyte 

development in Drosophila.  
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Fig. 29.1 Validation of selected eIF4AIII candidate partners 

(A) Volcano plot highlighting all the candidate proteins that were assayed for interaction with eIF4AIII, 

through a co-IP screen in HEK cells. (B) GFP-tagged eIF4AIII was co-expressed with HA-tagged 

candidates, as indicated. IPs were performed using GFP-coated beads. Inputs and eluates were 

analyzed by Western blotting. For detection, eluates were split into 10% for IP (with anti-GFP) and 

90% for co-IP (with anti-HA); indicated amounts of inputs were loaded equally for both IP and co-IP. 

HA-MBP served as a negative control. Molecular weight makers are shown on the left. 
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Fig. 29.2 Validation of selected Glo candidate partners 

(A) Volcano plot highlighting all the candidate proteins that were assayed for interaction with Glo 

through a co-IP screen in HEK cells. (B) GFP-tagged Glo was co-expressed with HA-tagged 

candidates, as indicated. Co-IPs were performed using GFP-coated beads. HA-MBP served as a 
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negative control. (C) HA-Flag-tagged Glo was co-expressed with GFP-tagged candidates, as indicated 

and cell lysates were split for IP with anti-GFP and (D) anti-Flag. GFP served as a negative control. 

Inputs and eluates were analyzed by Western blotting. For detection, eluates were split into 10% for 

IP: with anti-GFP (B,C) or with anti-HA (D); 90% for co-IP: with anti-HA (B,C) or with anti-GFP (D); 

indicated amounts of inputs were loaded equally for both IP and co-IP. Molecular weight markers are 

shown on the left. 
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Fig. 29.3 Validation of selected Hrp48 candidate partners  

(A) Volcano plot highlighting all the candidate proteins that were assayed for interaction with Hrp48 

through a co-IP screen in HEK cells. (B) GFP-tagged Hrp48 was co-expressed with HA-tagged 

candidates, as indicated. IPs were performed using GFP-coated beads. Inputs and eluates were 

analyzed by Western blotting. For detection, eluates were split into 10% for IP (with anti-GFP) and 

90% for co-IP (with anti-HA); indicated amounts of inputs were loaded equally for both IP and co-IP. 

HA-MBP served as a negative control. Molecular weight markers are shown on the left. 

 

 

 

Fig. 29.4 Validation of selected Nos candidate partners  

(A) Volcano plot highlighting all the candidate proteins that were assayed for interaction with Nos 

through a co-IP screen in HEK cells. (B) GFP-tagged Nos was co-expressed with HA-tagged 



85 
 

candidates, as indicated. IPs were performed using GFP-coated beads. Inputs and eluates were 

analyzed by Western blotting. For detection, eluates were split into 10% for IP (with anti-GFP) and 

90% for co-IP (with anti-HA); indicated amounts of inputs were loaded equally for both IP and co-IP. 

HA-MBP served as a negative control. Molecular weight markers are shown on the left. 

 

 

 

Fig. 29.5 Validation of selected Stau candidate partners  

(A) Volcano plot highlighting all the candidate proteins that were assayed for interaction with Stau 

through a co-IP screen in HEK cells. (B) GFP-tagged Stau was co-expressed with HA-tagged 

candidates, as indicated. IPs were performed using GFP-coated beads. HA-MBP served as a negative 

control. (C) HA-Flag-tagged Stau was co-expressed with GFP-tagged candidates, as indicated and 

co-IPs were performed using anti-Flag. GFP served as a negative control. Inputs and eluates were 

analyzed by Western blotting. For detection, eluates were split into 10% for IP: with anti-GFP (B) or 

with anti-HA (C); 90% for co-IP: with anti-HA (B) or with anti-GFP (C); indicated amounts of inputs 

were loaded equally for both IP and co-IP. Molecular weight markers are shown on the left. 
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Fig. 29.6 Validation of selected Vas candidate partners  

(A) Volcano plot highlighting all the candidate proteins that were assayed for interaction with Vas 

through a co-IP screen in HEK cells. (B) GFP-tagged Vas was co-expressed with HA-tagged 

candidates, as indicated. IPs were performed using GFP-coated beads. Inputs and eluates were 

analyzed by Western blotting. For detection, eluates were split into 10% for IP (with anti-GFP) and 
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90% for co-IP (with anti-HA); indicated amounts of inputs were loaded equally for both IP and co-IP. 

HA-MBP served as a negative control. Molecular weight markers are shown on the left. 

 

 

 

 

                       

 

 

                          Fig. 30. Summary of interactions assayed by co-IPs in HEK cells 

 

 

Fig. 31. Sqd shows negative interaction with the selected RBPs, consistent with the MS data analysis. 

Shown above is the assay performed to analyze the interaction of Sqd with different baits in HEK cells. 

GFP-tagged baits were co-expressed with HA-tagged Sqd, as indicated. IPs were performed using 

GFP-coated beads. Inputs and eluates were analyzed by Western blotting. For detection, eluates were 

split into 10% for IP (with anti-GFP) and 90% for co-IP (with anti-HA); indicated amounts of inputs were 

loaded equally for both IP and co-IP. HA-MBP served as a negative control. Molecular weight markers 

are shown on the left.  
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Fig. 32. Subnetwork of the protein interactions validated in vitro, integrated with the IP-MS data and 
information from String (Szklarczyk et al., 2017) and FlyBase (Gramates et al., 2017). 

 

Analysis of co-IP validation results revealed that while the statistical analysis efficiently 

filtered out most of the non-specific interactors, some of the proteins that were excluded (due 

to the 5% FDR cutoff, despite high fold change) showed positive interactions upon validation 

in vitro. This suggested that the initial statistical filtering I used was very stringent, potentially 

leading to the loss of valuable information. Therefore, I altered the cut off used to determine 

significantly enriched proteins in the label-free MS analysis and set the new cut off based on 

the HEK IP validations. For this, I sorted all the proteins identified with each bait in the label-

free MS data in decreasing order of fold change and included all the candidates until the last 

validated interaction, irrespective of the %FDR value of the interaction. This was done for all 

the baits, except Hrp48-GFP and Vas-GFP. Since quantitative MS data was available for 

both Hrp48 and Vas, I unified the significantly enriched interactants previously determined in 

both datasets independently, in a single list. These new lists of bait-associated proteins, 

identified with revised parameters were analyzed again.  

To gain insights into which processes are differentially associated with each bait, I performed 

GO analysis for proteins identified with each bait (with revised parameters) separately. 

Proteins were functionally annotated for their roles in biological processes, molecular 

functions and cellular components, and were further mapped onto KEGG pathways (Fig. 33A-

C), using DAVID (Huang et al., 2009a,b). Consistent with the initial analysis, functionally 

related baits (Vas and Hrp48) shared many processes. Interestingly, all baits, except Nos, 
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showed enrichment of proteins involved in pre-mRNA splicing. Proteins involved in negative 

regulation of cell cycle were identified with Nos, suggesting its yet unidentified role in cell 

cycle regulation during oogenesis.  
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Fig. 33.  GO term analysis of proteins associated with each bait 

Shown above are the results of GO term analysis, depicted as heat maps. Bait-associated proteins 

included in the complement of bona fide interactants after revision of parameters were analyzed 

separately, using the functional annotation tool from DAVID (Huang et al., 2009a,b). Fisher Exact test 

with a p-value cutoff of 0.01 was employed to find categories enriched for (A) GO Biological Process 

(B) GO Molecular Function and GO Cellular Compartment (C) KEGG pathways, as compared to the 

Drosophila genome. 
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3.    Discussion 

 

The main objective of my PhD project was to gain a better understanding of the interactions 

underlying localization of maternal mRNAs involved in Drosophila oogenesis. For this, I 

combined RNA-based and protein-based approaches.  

3.1  MS2-based methods are limited in their efficiency for purification of 
mRNPs assembled in vivo 

3.1.1 MS2 tagging can affect the functionality of transcripts 

To purify a localizing mRNP assembled in vivo, I used an approach similar to the TAP tagging, 

in which both the RNA and a known protein component of the osk mRNP were tagged. As 

higher number of repeats result in stronger affinity during the capture step of the purification, 

I inserted tandem repeats of MS2 stem-loop sequences upstream of the 3’UTR of a full-length 

osk genomic construct to tag the mRNA. Similar to the results previously reported by 

Zimyanin et al. (2008), insertion of either MS2-6X or MS2-12X tags did not interfere with osk 

mRNA localization suggesting that the complex required for localization was able to 

successfully assemble on these transcripts. However, both constructs could only rescue the 

early defects of oogenesis in an osk mRNA null mutant and failed to produce viable and/or 

fertile offsprings. Since posterior expression of osk is required for pole cell formation and 

abdominal patterning (Ephrussi and Lehmann, 1992; Markussen et al., 1995; Vanzo and 

Ephrussi, 2002), these observations suggest that the tag interfered with the translation of osk 

at the posterior pole of the oocyte. In addition to its role in pole plasm assembly, Osk protein 

levels also correlate with the number of pole cells formed (Ephrussi and Lehmann, 1992; 

Smith et al., 1992; Vanzo and Ephrussi, 2002). It is possible that when expressed in an 

endogenous osk null background, only a subset of the tagged transcript was able to localize 

and undergo translation. In some cases, a low level of the protein was sufficient to allow 

survival but gave rise to sterile adult flies. Therefore, to fully understand the effects of the 

insertion of exogenous aptamer tag in the osk mRNA, further visualization of both the osk 

mRNA and protein at late stages of oogenesis and embryogenesis, at a single molecule 

resolution, is required. 

Recent studies in yeast have shown that insertion of MS2 tags can affect the stability of some 

overexpressed transcripts, leading to the  accumulation of 3’ decay fragments (Garcia and 

Parker, 2015, 2016; Haimovich et al., 2016). This can potentially yield erroneous mRNA 

localization results. Here, I expressed the osk transgenes under their endogenous promoters 

to ensure that they are not overexpressed, which I could also confirm by Northern blotting 
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(Fig. 9B). To verify that the localized mRNAs are intact, I further characterized the osk 

transgenes by expressing them in the absence of endogenous osk. The posterior enrichment 

of tagged osk mRNA and its ability to rescue early oogenesis defects show that these 

transgenic transcripts are intact and not degraded transcripts acting as pseudo-full-length 

mRNAs. While the quantitative comparison of the localization of tagged osk with untagged 

endogenously expressed osk would be ideal, these qualitative measures support the stability 

of the MS2-tagged osk mRNAs. 

3.1.2  mRNP purification using the MS2 system: challenges and alternative strategies  

To establish a protocol for the purification of a specific transcript from the native material, I 

co-purified MS2-tagged osk from a pool of total RNA (purified from egg chambers of 

transgenic flies), using MCP fused to affinity tags (purified from E.coli cells). I observed 

binding of MCP to the tagged osk to be inefficient and non-specific, irrespective of the affinity 

tag used (since only one-third of the input RNA could be recovered; Fig. 13). However, the 

low recovery of the tagged transcript is consistent with the yields obtained in previous studies 

using aptamer-based systems to capture RNA-protein complexes assembled in vivo. 

(Srisawat and Engelke 2001; Vasudevan and Steitz, 2007; Said et al., 2009; Tsai et al., 2011; 

Leppek and Stoecklin, 2014). This suggests a general difficulty in purifying mRNPs 

assembled on endogenously expressed tagged mRNAs from cellular samples. To note that 

most of the previous works have been carried out in either cell lines, yeast or bacterial cells, 

which have simpler transcriptome and proteome architecture than the Drosophila oocytes 

(Vasudevan and Steitz, 2007; Tsai et al., 2011; Said et al., 2009; Slobodin and Gerst, 2010; 

Leppek and Stoecklin, 2014). In addition, cultured cells can be easily upscaled to obtain 

sufficient amounts of purified mRNPs for subsequent analysis, which is particularly 

challenging when working with the Drosophila ovaries. This suggests that the aptamer-based 

systems are not very suitable for large-scale studies, where the starting material is a limiting 

factor.  

In MS2-based imaging techniques in vivo, not all the MS2-binding sites are fully occupied by 

MCP, leading to a high background noise (Fusco et al., 2003; Wu et al., 2012, 2014). 

Therefore, the unspecific binding observed in this study can be attributed to the excess MCP, 

capturing unspecific mRNAs. Therefore, finding the optimal MCP concentration without 

compromising on the pull-down efficiency remains critical. One possibility would be to 

quantify the expressed tagged transcript and calculate the amount of MCP required. While 

such calculations are possible for purification of mRNPs assembled on in vitro transcribed 

mRNAs, this can be difficult for in vivo purifications. When working with Drosophila ovaries, 

the copy number of the tagged transcript needs to be determined both in a cell-specific and 
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stage-specific manner to obtain a homogeneous population of purified mRNPs, making it a 

challenge. 

Similar to in vivo imaging, where incorporation of multiple MS2-binding sites has been shown 

to improve the signal of target-bound MCP over background MCP (Wu et al., 2012), 

increasing the number of aptamers on the mRNA can prove to be an effective strategy to 

increase both the specificity and efficiency of mRNP purification. However, large repetitive 

sequences are highly prone to recombinant deletion (Gebow et al., 2000; Bzymek and Lovett, 

2001; Lovett, 2004; Wu et al., 2015). To circumvent this issue, an improved MS2 system 

includes use of synonymous modifications in aptamer sequences as well as in tdMCP to 

remove the repetitiveness (Wu et al., 2015). Adapting the same model of stabilized repeats 

for effective mRNP purification presents a potential approach for improved specificity and 

efficiency. However, additional repeats are not always productive, as shown in the case of 

streptavidin aptamers, where higher than 4X aptamers were found to be less efficient for 

mRNP purification (Leppek and Stoecklin, 2014), suggesting that the number of repeats need 

to be empirically determined on a case-to-case basis.  

For successful purification of a transcript-specific mRNP, the current strategy can be modified 

in several ways. This include co-expression of MCP in the ovaries, under the control of a 

moderately expressing promoter, for specific binding of MCP in vivo, thereby reducing the 

background binding.  Use of cross-linking reagents is another alternative, which allows 

capturing of complexes under stringent conditions to retain true trans-acting components 

while removing non-specific binders (Slobodin and Gerst, 2010; Tsai et al., 2011). Pre-

assembled MS2 stem-loop-MCP complexes can be incubated with cell lysates, a strategy 

frequently used to purify spliceosomal complexes (Das et al., 2000; Jurica et al., 2002; Zhou 

et al., 2002; Deckert et al., 2006). Finally, replacing the MS2 aptamers with 

tobramycin/streptavidin-binding aptamers, which do not require stem-loop binding proteins 

for their capture (Srisawat and Engelke 2001; Hartmuth et al. 2002; Deckert et al., 2006; 

Vasudevan and Steitz, 2007; Ward et al., 2011; Leppek and Stoecklin, 2014; Dong et al., 

2015). However, a major consideration in screening different kinds of aptamers is the 

requirement of the generation and characterization of new transgenics, which is often a rate-

limiting and a time consuming step. 

Due to the various caveats of the MS2 system in mRNP purification in general, I changed the 

strategy and opted for a protein-based approach. To gain a global overview of the factors 

and the interactions involved in mRNA localization, I co-purified protein complexes 

associated with six different RBPs that bind localized transcripts during Drosophila 

oogenesis.  
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3.2  IP-MS data provides new insights into the regulation of RBPs in 
localization and translation of maternal mRNAs 

3.2.1 Label-free MS in combination with statistical analysis is an effective approach to 

distinguish true interactants from background binders 

Label-free quantification is particularly advantageous for IP samples as large number of 

samples can be compared at the same time. Although label-free methods provide a wider 

proteome coverage, they lack the robustness of labeling methods. The low reproducibility of 

label-free MS techniques inevitably leads to the identification of a large number of unspecific 

binders, and requires a statistical pipeline to identify interactors with high confidence. This 

becomes especially important when comparing interactors of a diverse set of bait proteins for 

interactome studies.  

In this study, I used the MaxLFQ algorithm (Cox et al., 2014) integrated in the MaxQuant 

software, (Cox and Mann, 2008; Cox et al., 2011) for label-free relative protein quantification. 

This approach has been shown to produce quantitative accuracies comparable to labeled 

MS techniques such as SILAC (Eberl et al., 2013). By implementing statistical filtering, I could 

effectively separate background and specific binders associated with each bait. Several well 

characterized interactions, acting as positive controls, were significantly enriched with most 

baits, indicating the efficacy of the workflow. Additionally, the MS data obtained from Dimethyl 

labeling of some of the samples was comparable to the corresponding label-free data (Fig. 

24). Many interactions identified were novel and could be validated in cultured cells. 

Therefore, label-free MS, when combined with appropriate statistical methods, is a reliable 

and efficient method to map protein complexes, without resorting to exhaustive technical 

procedures. 

3.2.2  Differential and common proteomes associated with each tagged RBP  

While discrete proteomes were associated with each RBP, some baits shared components 

of common cellular machineries (supplementary Fig. 5). In addition to known regulators of 

mRNA localization, distinct nuclear and cytoplasmic complexes involved in different aspects 

of RNA metabolism were co-purified with baits, highlighting their diverse roles in post-

transcriptional regulation of developmental mRNAs. 

Consistent with the roles of Hrp48 and Vas in translational regulation of osk, nos and grk 

mRNAs (Markussen et al., 1995; Gavis et al., 1996; Dahanukar and Wharton, 1996; Styhler 

et al., 1998; Tomancak et al., 1998; Gunkel et al., 1998; Goodrich et al., 2004; Yano et al., 

2004), ribosomal proteins and translation initiation factors were consistently enriched with 

both the RBPs (Fig. 20, 23). Furthermore, a considerable overlap was observed between the 

proteomes associated with both the baits (Fig 25; supplementary Fig. 5), in agreement with 
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the common mRNAs they regulate. Although no direct association is known, Hrp48 has been 

identified to be associated with Vas-containing complexes isolated from early embryos 

(Thomson et al., 2008). Consistent with this report, Hrp48 was enriched with Vas in the 

labeling MS data. Reciprocally, Vas was also enriched in one of the two replicates of Hrp48-

GFP IP. However, these results could not be reproduced in label-free MS and the interaction 

could not be validated in vitro (data not shown). A possible explanation could be indirect 

association of Vas with Hrp48 mediated by other trans-acting factors. One such example 

could be protein Cup, which is a known translational regulator of osk, grk and nos mRNAs 

(Nelson et al., 2004; Nakamura et al., 2004; Clouse et al., 2008) and associates with both 

Hrp48 (Clouse et al., 2008) and Vas (Ottone et al., 2012). Cup was highly enriched in both 

Hrp48-GFP and Vas-GFP IPs and this interaction could also be validated in vitro (Fig. 29.3, 

29.6). 

3.2.3 Potential role of Hrp48 in regulating degradation of specific transcripts by 

recruiting additional partners 

An interesting observation was the co-purification of Hrp48-GFP with components of decay 

machinery, most notably the CCR4-NOT deadenylase complex, in both label-free and labeled 

MS data (Fig. 35). This is consistent with the function of Hrp48 in translational repression of 

osk and grk mRNAs (Gunkel et al., 1998; Goodrich et al., 2004; Yano et al., 2004). However, 

the direct interaction of Hrp48 with components of the CCR4-NOT complex could not be 

tested. It is possible that this interaction is mediated by BicC, which negatively regulates 

target mRNAs in early oogenesis by recruiting the CCR4-NOT complex (Chicoine et al., 

2007) and is also involved in translational regulation of osk mRNA (Saffman et al., 1998). 

BicC was enriched in Hrp48 IP and the interaction could be validated in vitro (Fig 29.3). 

Additionally, Hrp48 also interacts with Bel (Fig. 29.3), which is a part of nos repressor 

complex, together with components of the CCR4-NOT complex (Götze et al., 2017). These 

results suggest that by recruiting specific proteins such as Bel and BicC, Hrp48 might be able 

to differentially regulate expression of nos and osk mRNAs respectively (Saffman et al., 1998; 

Götze et al., 2017), possibly via CCR4-mediated deadenylation (Fig. 34). However, the role 

of Hrp48 in nos regulation remains unidentified and needs to be further investigated. 
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Fig 34. Model for the role of Hrp48-mediated protein associations in the regulation of maternal mRNAs  

Shown above is a subset of protein complexes identified to be significantly enriched with Hrp48 

(combining both label-free and labeled MS datasets), possibly involved in regulation of maternal 

mRNAs. Many of these proteins were also found to be enriched in Vas-associated complexes. Note 

that only in vitro validated or known interactions of Hrp48 and Vas are shown here, except for their 

association with the translation machinery which was identified in the IP-MS data. Proteins are 

represented as circles and the interactions are represented as dotted lines. Dotted pink lines represent 

the known interactions from databases; dotted grey lines represent the interaction identified in the IP-

MS data; dotted green lines represent the in vitro validated novel interactions. Black arrows represent 

positive regulation while the red arrows represent negative regulation of mRNAs. 
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Fig 35. Co-purification of decay machineries and P-bodies components with Hrp48-GFP  

Scatter plots highlighting the distribution of decay machineries and P-bodies components, found 

associated with Hrp48-GFP in the label-free MS (top) and the labeling MS analysis (bottom). IP from 

GFP sample served as a negative control. Each identified protein is represented as a dot in light grey; 

the bait is highlighted in green; significantly enriched proteins are highlighted in pink; components of 

different complexes are highlighted in different colors as indicated. 
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Co-precipitation of Hrp48 with components of the mRNA degradation pathways and 

translational repressors (Fig. 35), which are characteristic of P-bodies, is in agreement with 

previous findings of co-localization of Hrp48 with P-bodies (Weil et al., 2012). However, the 

high enrichment of ribosomal proteins observed in Hrp48 complexes is puzzling, as 

ribosomes are excluded from the core of P-bodies (Wilsch-Brüäuninger et al., 1997; Teixeira 

et al., 2005; Weil et al., 2012).  Association of a small fraction of ribosomes with the P-bodies 

edges, as demonstrated by labeling of endogenous ribosomes by Immuno-Electron 

Microscopy (IEM), raises the possibility that Hrp48, via its association with ribosomal proteins, 

might be responsible for the dynamic patterning of silenced mRNPs in the P-bodies core to 

the translationally active P-bodies edges, as seen in the case of grk mRNA (Weil et al., 2012). 

3.2.4  Nuclear processing is required for function of RBPs 

In addition to their crucial role in pre-mRNA processing, splicing factors play an important 

role in affecting the cytoplasmic fates of mRNAs. For example, SmB, a Sm protein (which 

form the core of the functional unit of spliceosomes), is a known osk mRNP component and 

functions in germ cell specification by facilitating osk mRNA localization (Gonsalvez et al., 

2010). Indeed, several splicing factors were enriched in the IPs of multiple baits. SmB was 

co-purified with Stau, a known interactant (Gonsalvez et al., 2010), and also with Glo, Hrp48 

and Vas, suggesting it to be a bona fide component of the localization machinery. However, 

none of the interactions could be validated in vitro, possibly due to the lack of methylation in 

cultured cells, which has been proposed to be essential for the proper functioning of Sm 

proteins in Drosophila germ cell formation (Anne et al., 2007; Gonsalvez et al., 2006, 2010).  

Additionally, two SR family proteins, SC35 and SF2, which function both in the early steps of 

splicing as well as in alternative splicing (Krainer et al., 1990; Ge and Manley, 1990), were 

found to be associated with most baits (though not significantly in all cases). Both SC35 and 

SF2 could also be validated for their interaction with Glo and Stau in vitro (Fig 29.2C, 29.2D, 

29.5C), suggesting that they might be involved in osk regulation, together with other splicing 

factors. Co-purification of SF2 with the EJC in mammalian cells (Singh et al., 2012) and with 

the short isoform of Osk in Drosophila embryos (Hurd et al., 2016), support its potential role 

in osk mRNA localization and remain to be investigated. 

3.2.5  Validation of several previously uncharacterized interactions  

Numerous novel gene interactions were identified in the MS data. Out of 94 interactions 

tested, 26 novel interactions could be confirmed as direct protein-protein interactions in cell 

culture. Of these, most interesting are the ones of previously uncharacterized genes, with yet 

unknown functions. One such example is CG5726, which contains a MIF4G-like domain. This 

domain is found in many proteins involved in RNA metabolism including translation initiation 
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factors, NMD factors and nuclear cap-binding proteins. With no identifiable orthologs in 

humans, CG5726 protein shows up to 50% sequence identity among Drosophilids. In early 

embryos of Drosophila melanogaster, CG5726 interacts with short Osk (Hurd et al., 2016). 

In this study, CG5726 was found to be interacting with Glo, Hrp48 and Vas, both in vivo (by 

IP-MS) and in vitro (by co-IP; Fig 29.2, 29.3, 29.6), suggesting its potential role in mRNA 

localization. 

Another example of novel interaction was the binding of Stau to Loquacious (Loqs). Loqs is 

a cytoplasmic double stranded RNA-binding protein (dsRBP), which is conserved in 

mammals and participates in RNAi pathways by binding to Dicer (Dcr; reviewed in Fukunaga 

and Zamore, 2012). RNAi plays an important role in Drosophila germline development and 

early phase of osk repression (Kugler and Lasko, 2009). Furthermore, Drosophila Loqs 

mutant females are sterile and their ovaries fail to sustain germ-line stem cells (Förstemann 

et al., 2005), indicating a critical role of Loqs in oogenesis. In this study, both Dcr and Loqs 

were found to be highly enriched in the Stau IP and Stau-Loqs interaction could be validated 

in vitro (Fig. 29.5). This suggests a potential role of Stau in translational repression of osk, by 

associating with the RNAi machinery. Although no such evidence have been presented in 

Drosophila, recent reports in C.elegans (LeGendre et al., 2013) and other insects 

(Diaphorina citri and L. decemlineata; Taning et al., 2016; Yoon et al., 2018) have shown a 

requirement of Stau in RNAi responses, suggesting a conserved role of Stau in RNAi-

mediated gene silencing. 

Several conserved RNA helicases, including Vas and Bel, have been shown to be required 

for oogenesis and female fertility (Raz, 2000; Johnstone et al., 2005; Lasko, 2013; Dehghani 

and Lasko, 2015; Wang et al., 2015c). Consistent with the crucial role of RNA helicases in 

embryonic development, two such genes were identified to be enriched in this study: the 

putative RNA helicase CG10077 and the DEAD-box RNA helicase Mahe (Maheshvara). 

While CG10077 is an ortholog of human DDX5, Mahe is an evolutionary conserved regulator 

of Notch signaling pathway and displays a wide range of phenotypes upon ectopic expression 

in Drosophila (Surabhi et al., 2015). Mahe is maternally expressed and displays strong 

neuronal expression during both embryogenesis and larval development (Surabhi et al., 

2015). Both in vivo and in vitro, CG10077 binds Hrp48 (Fig. 29.3), while Mahe binds both Glo 

and Hrp48 (Fig. 29.2, 29.3). Whether these proteins also play a role in mRNA localization in 

Drosophila, needs to be further investigated.  
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Further in vivo characterization of the protein interactions uncovered in this study is 

imperative in order to delineate their functional relationships and discern their role in mRNA 

localization. Since the experiments were done in a transcript-independent manner, the 

current analysis relies on existing information to separate complexes that contain shared 

components into different entities. Isolating transcript-specific complexes, together with this 

dataset, would be highly informative in identifying functional units driving localization of 

different mRNAs. With the optimized IP conditions and the pipeline I developed for the filtering 

of MS data, up scaling the current dataset by including more bait proteins, separated by time 

and space during oogenesis, presents a potential tool to map the complete ovary interactome 

underlying mRNA localization in Drosophila.  

 

 

  



102 
 

4.    Methods and Materials 
 

4.1 Cloning 

4.1.1 DNA amplification by PCR 

For cloning purposes, cDNA was amplified from wild-type fly ovaries. Total RNA was 

extracted using TRI-Reagent® (Sigma #T9424), according to the manufacturer’s instructions 

and reverse transcribed using Moloney Murine Leukemia Virus (M-MuLV) reverse 

transcriptase (Thermo Fisher Scientific # EP0352), in the presence of oligo (dT)15 primers. 

4.1.2 Reverse Transcription 

4 μg of total RNA was mixed with 0.5 g of oligo (dT)15 primers in a total volume of 11 μl; the 

RNA was denatured for 5 min at 70 ºC and chilled on ice. The following components were 

then added, in the indicated order: 4 μl of 5X reaction buffer (250 mM Tris-HCl pH 8.3, 250 

mM KCl, 20 mM MgCl2, 50 mM DTT), 2 μl of dNTP mix (dATP, dCTP, dGTP and dTTP, 10 

mM each; all from Fermentas), 0.5 μl RiboLock™ RNase Inhibitor (Thermo Fisher Scientific 

# EO0381) and ddH2O to a final volume of 30 μl. The mixture was incubated for 5 min at 37 

ºC before the addition of 1 μl of M-MuLV reverse transcriptase (Thermo Fisher Scientific # 

EP0352). The mixture was then incubated for 2 hours at 42 ºC and the enzyme was 

inactivated by heating the reaction mix for 10 min at 70 ºC. 

4.1.3 PCR amplification 

Genes of interest were amplified using the Phusion® High fidelity DNA polymerase (NEB 

#M0530L). The reaction mixes were prepared according to the manufacturer’s instructions. 

If a plasmid served as a template, 150–250 ng of DNA were used; if the template consisted 

of cDNA, 0.5-1 μl of the reverse transcription reaction were used. PCR conditions (annealing 

temperature and extension times) were adjusted each time according to the oligonucleotides 

and template used (Green and Sambrook, 2012). Oligonucleotides used in this study have 

been summarized in Table 13. 

5 μl of the generated amplicons were analyzed by agarose gel electrophoresis (1% Agarose 

prepared in TAE buffer), visualized with Midori Green staining (Midori green advance DNA 

stain, Nippon genetics Europe GmbH #MG04) and the rest of the reaction was purified using 

the QIAquick Gel Extraction Kit (QIAGEN), according to the manufacturer’s instructions; the 

purified DNA was eluted with 25 μl of ddH2O and used for subsequent cloning either by 

standard restriction digestion-ligation approach (Green and Sambrook, 2012) or Gibson 

cloning (Gibson et al., 2009). 
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4.1.4 Digestion with restriction endonucleases 

Cloning vectors (summarized in Table 14) and purified DNA amplicons were digested with 

appropriate restriction enzymes (supplied by NEB). Reactions were carried out using the 

optimal reaction buffers and conditions recommended by the supplier. Usually, 4-5 μg of 

vector or the entire PCR product (after purification) were digested each time. Restricted DNA 

fragments were further purified, to get rid of buffers and ions that may interfere with 

downstream steps, using the QIAquick PCR Purification Kit (QIAGEN), according to the 

manufacturer’s instructions. Digested vectors were first analyzed by agarose gel 

electrophoresis and the desired fragments were purified from gel using the QIAquick Gel 

Extraction Kit (QIAGEN), according to the manufacturer’s instructions. In both cases, the 

purified DNA was eluted with 30 μl of ddH2O.  

4.1.5 Ligation 

After purification, the linearized vector and a gene (or gene fragment) with compatible ends 

were ligated using T4 DNA ligase (NEB #M0202L). Typically, 100 ng of the purified digested 

vector and 6X molar excess of the purified digested insert were ligated; the ligation reaction 

was performed in 20 μl, according to the manufacturer’s instructions, at 16 ºC overnight. 

4.1.6 Gibson Assembly  

As an alternative to standard restriction digestion-ligation based cloning, Gibson Assembly 

was used (Gibson et al., 2009). This method utilizes three enzymatic activities to assemble 

multiple DNA sequences in a single reaction, without the need for compatible restriction sites. 

The enzyme cocktail typically includes a 5’ exonuclease which generates the long overhangs, 

allowing annealing of terminal homologous overlapping sequences. This is followed by 

extension by a polymerase and sealing by a ligase, to yield an assembled product. 

Primers with ends overlapping (20-24 base pairs) with a linearized vector were used to 

amplify the insert (either from a plasmid or cDNA), using a standard PCR reaction with 

Phusion® High fidelity DNA polymerase (NEB #M0530L). 70 ng of the linearized vector and 

equimolar amount of the purified insert were mixed with 15 μl Gibson assembly mix (Table 

1) in a total volume of 20 μl. The reaction was incubated at 50 ºC for 60 min. Assembly 

reaction was either transformed in electrocompetent E. coli cells (strain XL1-Blue; Agilent 

Technologies) directly or stored at -20 ºC for future use. 

 

 

 



104 
 

 
Table 1: Buffers for Gibson cloning 

 

 
* 1 μl of T5 exonuclease was diluted in 100 μl of 50 mM Tris-HCl (pH 8 at 4 ºC), 100 mM NaCl.  

 
 

4.1.7 Preparation of electro competent E. coli and transformation 

For the transformation and propagation of the plasmids for DNA preparations, except for the 

tagging vector pTagNG (Ejsmont et al., 2011; provided by Mihail Sarov, MPI-CBG Dresden), 

E. coli strain XL1-Blue (Agilent Technologies) was used. For propagation of pTagNG, strain 

pir-116 (EPICENTRE) was used, as its R6K origin of replication requires the pir gene product 

to initiate the DNA amplification. For expressing recombinant proteins, E. coli strains BL21 

(DE3) Star (Life technologies) and BL21 (DE3) Gold (Agilent technologies) were used. All the 

strains with their respective genotypes have been listed in Table 2. 

 

Table 2: List of E. coli strains used in the study 

 

 

Gibson Assembly mix (for 120  μl) 

5X ISO buffer 32 μl 

10 U/ μl T5 exonuclease * 
(NEB #M0363S) 

6.4 μl 

2 U/ μl Phusion polymerase 
(NEB # M0530L) 

2 μl 

40 U/ μl Taq ligase 
(NEB #M0208L) 

16 μl 

ddH2O 
 
Stored at -20 ºC in 15 μl aliquots 

to 120 μl  

5X ISO Buffer (6 ml)   

1 M Tris-HCl pH 8 at 4 ºC 3 ml 

2 M MgCl2 150 μl 

100 mM dNTP mix (25mM each 
of dGTP, dCTP, dATP, dTTP) 

240 μl 

1 M DTT 300  μl 

PEG-800 1.5 g 

50 mM NAD 600  μl 

ddH2O 
 
Stored at -20 ºC in 32 μl aliquots 

to 6 ml 
 

E. coli strain                            Genotype Source 

 

XL1-Blue 

(recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 

lac [F’ proAB lacIqZΔM15 Tn10 (TetR)]) 

Agilent 

Technologies 

 

EC100D™ pir-

116 

F- mcrA Δ(mrr-hsdRMS-mcrBC) Φ80dlacZ ΔM15 
ΔlacX74 recA1 endA1 araD139 Δ(ara, leu)7697 
galU galK λ- rpsL (StrR) nupG pir-116(DHFR) 

 

 

EPICENTRE 

BL21 (DE3) 

Star 

 

(F-ompT hsdSB (rB
-, mB

-) galdcmrne131 (DE3)) Life 

technologies 

BL21 (DE3) 

Gold 

(F– ompT hsdS (rB – mB – ) dcm+ Tetr gal λ(DE3) 

endA Hte) 

Agilent 

Technologies 
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Electrocompetent cells preparation 

Since electroporation is a rapid and efficient method of introducing foreign DNA into a wide 

range of cells, electrocompetent cells were preferred over chemically-competent cells.  

Bacteria from a frozen glycerol stock were streaked out on Luria-Bertani (LB)-agar (10 g/l 

tryptone, 5 g/l yeast extract, 10 g/l NaCl, 15 g/l Agar), and incubated overnight at 37 ºC. A 

single colony was used to inoculate 50 ml of LB medium (10 g/l tryptone, 5 g/l yeast extract, 

10 g/l NaCl), and bacteria were allowed to grow overnight at 37 ºC with vigorous shaking. 

500 μl of the bacterial suspension was used to inoculate 500 ml of LB. The bacteria were 

grown at 37 ºC shaking at 180 rpm until they reached an optical density (measured at 

wavelength 600mn; OD600) of 0.6-0.8 units. The culture was cooled on ice and bacteria were 

then pelleted by centrifugation at 5000 rpm in a pre-cooled rotor (4 ºC). The subsequent steps 

were performed at 4 ºC in a cold room, using pre-cooled reagents to increase the survival 

rate of the cells and therefore, their transformation efficiency. The cell pellet was resuspended 

twice in 200 ml of ice-cold double distilled water to remove any traces of salts from the media 

and pelleted again as described above. Finally, the pellet was resuspended in 10 ml of 10% 

glycerol. The cells were quickly dispensed in 50 μl aliquots, immediately transferred to liquid 

nitrogen and stored at −80 ºC.  

 

Bacterial electroporation 

For the transformation, 50 μl aliquots of competent bacteria were thawed on ice and DNA (1 

μl of plasmid DNA, or 5 μl of a ligation/gibson reaction) was added before transferring the 

cells to electroporation cuvettes (2 mm gap cuvettes; Peqlab #PEQL71-2020). The cells were 

then electroporated via Micropulser (Biorad) with a pulse of 1.8kV for 5.80ms. To allow the 

cells to recover and express antibiotic resistance genes, 200 μl of LB was added to the cells. 

This suspension was transferred to a microcentrifuge tube and incubated for 30-40 min on a 

thermomixer at 37 ºC, shaking at 800 rpm. The cells were then plated onto LB-agar plates 

containing the appropriate antibiotic for selection (25 g/ml kanamycin or 100 g/ml ampicillin) 

and incubated overnight at 37 ºC. 

To check the efficiency of the cloning, single colonies were picked and used to inoculate 2 

ml LB cultures. After overnight incubation at 37 ºC, the cells were pelleted by centrifugation 

(6000g at RT for 3 min) and the plasmid was extracted using Nucleospin® Plasmid EasyPure 

kit (MACHEREY-NAGEL), following the manufacturer’s instructions. The identity of the insert 

was verified first by restriction with appropriate endonucleases or by Colony PCR, and then 

by full sequencing of the insert (Genome facility, MPI Tübingen). 
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For Colony PCR, 20 μl reactions (complete with the enzyme; Taq DNA polymerase, NEB # 

M0267X) were assembled according to the manufacturer’s instructions using appropriate 

primers. Picked colonies were briefly suspended directly into the PCR mixture to serve as 

the template. PCR program was run as described before.  

For the propagation of the plasmid of interest, single colonies were used to inoculate 100 ml 

of LB medium, additioned with the appropriate antibiotic for selection, and incubated 

overnight at 37 ºC with vigorous shaking. The cells were then pelleted by centrifugation 

(5000g at RT) and the plasmid was extracted using QIAGEN Plasmid Midi Kit (QIAGEN), 

following the manufacturer’s instructions. 

 

4.1.8 Vectors and plasmid constructs 

Constructs for MS2 coat protein (MCP) bacterial expression 

Construct for MCP was purchased from Addgene (27122: pMS2-YFP) and subcloned into 

pET-MCN vectors (provided by Christophe Romier, IGBMC Strasbourg) bearing N-terminal 

Glutathione S-transferase (GST), Hexahistidine (His) and Hexahistidine- Maltose Binding 

Protein (His-MBP) tags. This version of MCP is optimized to prevent oligomerization 

(mutation: dlFG and A81G) and also binds more tightly to the stem-loops (SL) (mutation V29I) 

(Lim and Peabody, 1994; LeCuyer et al., 1995). 

GST-MCP was obtained by inserting MCP sequence into the NdeI and HindIII sites of the 

pET-MCN-GST vector. Similarly, His-MCP and His-MBP-MCP were obtained by cloning the 

sequence in NdeI and BamHI sites of pET-MCN-His and pET-MCN-His-MBP vectors 

respectively. A codon-optimized construct designed to express two copies of MCP in tandem, 

tandem-MCP (tdMCP), was synthesized by GenScript USA Inc. 

(https://www.genscript.com/). The sequence was subcloned into pET-MCN-His-MBP using 

NdeI and XbaI sites.  

Constructs for recombineering 

The constructs for cloning of MS2 and PP7SL were purchased from Addgene: pCR4-

24XMS2SL-stable (Addgene 31865); pCR4-24XPP7SL (Addgene 31864) and pCR4-

12XMS2SL (Addgene 27119). These constructs, with several copies of the SL, are designed 

to prevent recombination among repeats and to achieve higher coat protein binding 

efficiency. For MS2SL, a variant of the wild-type sequence optimized for higher binding 

affinity, where U-5 has been substituted by C, was used (Lowary and Uhlenbeck, 1987). The 

SL fragments were subcloned into 5’ EcoRI and 3’ BamHI sites of the tagging vector pTagNG 

(Ejsmont et al., 2011; provided by Mihail Sarov, MPI-CBG Dresden), using standard cloning 



107 
 

procedures. For preparing a construct expressing both MS2 and PP7SL,  MS2-12XSL 

fragment bearing 5’ EcoRI and 3’ BglII sticky ends and PP7-24XSL fragment bearing 5’ 

BamHI and 3’ BglII sticky ends were ligated into pTagNG, digested with 5’ EcoRI and 3’ 

BamHI. 

Constructs for HEK cell expression 

For expressing proteins in human HEK cells, all cDNAs, amplified as described before, were 

cloned in overexpression vectors bearing N-terminal HA, HA-Flag or EGFP tags (provided 

by Elisa Izaurralde, MPI Tübingen). Full-length cDNAs were cloned, except for protein “Ncm” 

where a sequence encoding amino acids 359-664 was amplified and used. The boundaries 

were designed based on the MIF4G domain of the human ortholog CWC22, which has been 

shown to bind eIF4AIII (Buchwald et al., 2013). To serve as a control, either MBP or EGFP 

alone was used. Some of the clones prepared by Kristina Ile and Desiree Zerbst in the lab 

were also used in the study. 

For a list and details of the plasmids used in this study, refer to Table 14. 

 

4.1.9 Liquid culture recombineering 

Liquid culture recombineering was done in collaboration with Helena Jambor, Tomancak lab 

(MPI-CBG Dresden). Tagging vector pTagNG was used for all cloning purposes (Ejsmont et 

al., 2011; provided by Mihail Sarov, MPI-CBG Dresden). The protocol was adapted from 

Ejsmont et al. (2009, 2011). 

Using the constructs: pTagNG-MS2-12XSL; pTagNG-MS2-24XSL; pTagNG-PP7-24XSL; 

pTagNG-MS2-12X-PP7-24XSL as templates, the recombineering cassettes (2XTY1-(SL)-

FRT-rpSL-KanR-FRT-3XFlag) were amplified. Primers binding to epitope tags TY1 (forward) 

and Flag (reverse) were used, which simultaneously introduced flanking sequences 

homologous to the osk 3’UTR region, downstream of stop the codon, for recombination.  

Recombineering cassettes were amplified using Phusion Flash Mix (Phusion Flash High-

Fidelity PCR master mix, Thermo Fisher Scientific # F-548S). Since the quality of the PCR 

product is a bottleneck for efficient recombineering, HPLC purified primers were used and 

only 18 cycles were programmed to avoid PCR induced mutations. To further increase the 

PCR efficiency, DMSO was added to disrupt secondary structure formation in the template 

and facilitate primer annealing. A reaction was prepared as follows:         
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                                                                             Amplification program: two-step protocol 
25 ng    plasmid template                                           1.    98 ºC           2 min 
25 μl     10x Phusion Flash mix                                   2.   98 ºC           15-20 sec 
2.5 μl    sense oligonucleotide (10 μM)                       3.   72º C            30 sec/kb * 
2.5 μl    antisense oligonucleotide (10 μM)                 4.    go to 2         x 18 X                                                                    
2.5 μl    DMSO                                                            5.   72 ºC            7 min 
to 50 μl  ddH2O                                                                                       
--------------------------------- 
50 μl final volume 

* 60 sec used for MS2-12X + PP7-24X construct 

The PCR amplicons with different SLs were recombineered into a fosmid containing the osk 

genomic fragment (Ejsmont et al., 2009). Constructs were sequence-verified for successful 

recombination and purified using QIAGEN Plasmid Midi Kit (QIAGEN), following the 

manufacturer’s instructions, for subsequent integration into the Drosophila genome. Upon 

sequencing osk fosmid tagged with MS2-24XSL, it was observed that a major part of the tag 

was lost, most likely due to recombinant deletion. As only six SL were remaining, the 

construct was renamed as MS2-6XSL and used for fly transformation. 

 

4.2 Drosophila stocks and genetic rescue experiments 

Fly stocks were maintained using standard conditions and all crosses were set up at room 

temperature. 

To produce transgenic lines expressing aptamer-tagged osk mRNA (listed in Table 3), 

constructs were injected in embryos collected from flies expressing landing site on the 3rd 

chromosome, in a wild-type background. oskFlyfosPP7-24XSL and MS2-6XSL were injected 

at MPI-CBG in Dresden. Other constructs (oskFlyfosMS2-12XSL and MS2-12X+PP7-

24XSL) were sent for injection to Bestgene Inc. (USA). Eye promoter-driven dominant 

selectable marker (dsRED) was used as an indicator of successful transgenesis and stable 

fly lines were established. 

Fosmid lines (listed in Table 4) expressing GFP-tagged proteins were purchased from the 

Vienna Drosophila Resource Center (VDRC), except for Stau-GFP and eIF4AIII-GFP which 

were provided by the Tomancak lab (MPI-CBG, Dresden). The control fly line (expressing 

tag only, referred to as GFP) was injected in the lab by Kristina Ile. Fly lines used for rescue 

experiments were purchased from Bloomington Drosophila Stock Center (BDSC; listed in 

Table 3); stau mutant lines were provided by Uwe Irion (MPI Tübingen).  
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4.2.1 Construction of transgenic line expressing tag alone 

To amplify the tag sequence (to serve as a control for IP-MS experiments), genomic DNA 

was prepared from flies expressing Stau-GFP. For this, 5 flies were frozen at -80 ºC before 

grinding them in 60 μl of lysis buffer (100 mM Tris-HCl pH 7.5, 100 mM EDTA, 100 mM NaCl, 

0.5% SDS). The lysate was incubated at 65 ºC for 30 min. 120 μl of LiCl/KAc solution (1 part 

5M KAc stock: 2.5 parts 6M LiCl stock) was added to remove RNA by selective precipitation, 

followed by incubation on ice for an additional 10 min. The lysate was cleared by 

centrifugation at 16000g at RT and the supernatant was transferred to a fresh tube. 90 μl of 

isopropanol was added for precipitation and DNA was pelleted by centrifugation at 16000g 

for 15 min at RT. The pellet was washed with 70% ethanol, air dried and resuspended in 30 

μl of ddH2O. 0.5 μl of the genomic DNA was used to set up a standard 2-step PCR reaction. 

The amplified fragment was placed downstream of a moderately expressing exu promoter in 

pUI-Venus (an existing vector in the lab) using AgeI and NheI sites, replacing the existing 

Venus sequence. The entire construct was then subcloned in a modified pUAST-attB vector 

(without UAS sites or SV40 poly(A) signal; original vector provided by Uwe Irion, MPI 

Tübingen) using KpnI and BamHI sites. The sequence verified vector was then purified using 

QIAGEN Plasmid Midi Kit (QIAGEN), following the manufacturer’s instructions. The purified 

vector was injected into embryos expressing ΦC31 integrase (Groth et al., 2004) that 

recognizes a landing site on the 3rd chromosome, for site-specific integration. Transgenic flies 

were identified in the F1 generation by the presence of red eyes and a stable fly line was 

established. 

 

4.2.2 Genetic rescue assay 

To check if the tagged osk genes can rescue the null phenotype, the transgenes were 

recombined with an osk deficiency and then crossed with an osk RNA null mutation 

(osk[A87]; provided by Anne Ephrussi, EMBL Heidelberg). The resulting osk null females 

were crossed to wild-type males and the ability to lay eggs, viability and fertility of the 

offsprings were checked. dsRed was used as a selection marker for the presence of the 

transgene in every generation. 

To check if the tagged proteins are fully functional, transgenes were tested against a 

deficiency in trans to a mutant allele, or two mutant alleles as in the case of stau, for the 

rescue of the respective phenotypes. For nos, the transgene was recombined with a nos 

deficiency, since the gene is located on the same chromosome as the insertion. The resulting 

trans-heterozygotes were checked for embryonic lethality or female sterility, to assess the 

functionality of the transgenes. For the maternal effect genes (phenotype of the individual is 
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dependent on the genotype of the mother), trans-heterozygotes were further crossed with 

wild-type males and the progenies were examined for their ability to rescue the phenotype. 

dsRed was used as a selection marker for all the transgenes in every generation. 

 

Table 3: List of fly stocks 

 
Gene/strain Genotype  Origin Chromosome  

Wild-type - Lab stock - 

Balancer w- ; PrDr/ TM6C Lab stock 3 

Balancer w- ; If/CyO; MKRS/TM6B Lab stock 1;2;3 

Control line 
(tag) 

w- ; PBac(y+ w[+]-exu-promoter:: 2XTY1-
sGFP-V5-preTEV-BLRP-3XFLAG-3B) 

Lab stock 
(Kristina Ile) 

3 

stau stau[D3]/CyO Uwe Irion 
(MPI, Tübingen) 

2 

stau w- ; stau[R9]/SM6a Uwe Irion 
(MPI, Tübingen) 

1;2 

oskFlyfosMS2
-6XSL 

y w- ; PBac(y+ osk-2X TY1-MS2-6X-3X Flag-
dsRED-3B) 

Helena Jambor 
(MPI-CBG, 
Dresden) 

1; 3 

oskFlyfosMS2
-12XSL 

y w- ; PBac(y+ osk-2X TY1-MS2-12X-3X Flag-
dsRED-3B) 

Addgene Inc. 1; 3 

oskFlyfosPP7-

24XSL 

y w- ; PBac(y+ osk-2X TY1-PP7-24X-3X Flag-

dsRED-3B) 
Helena Jambor 
(MPI-CBG, 
Dresden) 

1; 3 

oskFlyfosMS2
-12X+PP7-
24XSL 

y w- ; PBac(y+ osk-2X TY1-MS2-12X-PP7-
24X- 3X Flag-dsRED-3B) 

Addgene Inc. 1; 3 

osk w; osk[A87]/TM6C 

 

Anne Ephrussi 
(EMBL, 
Heidelberg) 

1; 3 

Deficiency for 
osk 

w; Df(3R)p-XT103 ru st e ca/TM6C Uwe Irion 
(MPI, Tübingen) 

1; 3 

MS2 coat 
protein 

w- ; tandem-MS2Venus ST Uwe Irion 
(MPI, Tübingen) 

1; 3 

osk w; Df(3R)p-XT103 ru st e ca PBac(y+ osk-2X 
TY1-MS2-6X-3X Flag-dsRED-3B)/ TM6C  

Prashali Bansal 1; 3 

osk w; Df(3R)p-XT103 ru st e ca PBac(y+ osk-2X 
TY1-MS2-12X-3X Flag-dsRED-3B)/ TM6C  

Prashali Bansal 1; 3 

nos Df(3R)Exel6183- PBac(y[+]-Nos-2XTY1-sGFP-
V5-preTEV-BLRP-3XFLAG-dsREd-3B) /TM6B 

Prashali Bansal 3 

eIF4AIII CG7483[19] red[1] e[4]/TM3, Sb[1] BDSC 2781 3 

Deficiency for 
eIF4AIII 

w[1118]; Df(3R)Exel6147, P{w[+mC]=XP-

U}Exel6147/TM6B, Tb[1] 

BDSC 7626 1;3 

nos st[1] nos[L7] e[1]/TM3, Sb[1] Ser[1] BDSC 3285 3 

Deficiency for 
nos 

w[1118]; Df(3R)Exel6183, repo[*] 

P{w[+mC]=XP-U}Exel6183/TM6B, Tb[1] 

BDSC 7662 1;3 

vas vas[RJ36] cn[1] bw[1]/CyO, μl(2)DTS513[1] BDSC 5011 2 

Deficiency for 
vas 

Df(2L)A72, b[1] cn[1] bw[1]/CyO, Adh[nB] BDSC 6058 2 

glo y[1] w[*]; P{ry[+t7.2]=neoFRT}82B 

glo[162x]/TM3, Sb[1] 

BDSC 57693 1;3 

Deficiency for 
glo 

w[1118]; Df(3R)Exel7310/TM6B, Tb[1] BDSC 7965 1;3 

Deficiency for 
hrp48 

w[1118]; Df(2L)BSC108/CyO BDSC 8847 1;2 

hrp48 y[1] w[67c23]; 
P{w[+mC]=lacW}hrb27C[k02814]/CyO 

BDSC 10375 1;2 

For 
transgenesis 
(tag control) 

y[1] M{vas-int.Dm} ZH-2A w[*]; PBac{y[+]-attP-
3B}VK00033 

BDSC 24871 1; 3 
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For 
transgenesis 
(oskFlyfos 
lines) 

y[1] w[1118]; PBac{y[+]-attP-3B}VK00033 BDSC 9750 1; 3 

 

 
Table 4: List of fosmid fly lines  

 
Fly line Fosmid clone  Origin Chromosome  

fTRG 930 
(Hrp48-
GFP) 

FlyFos024565(pRedFlp-
Hgr)(Hrb27C28387::2XTY1-sGFP-V5-preTEV-

BLRP-3XFLAG)dFRT 

VDRC 318283 3 

fTRG 1009 
(Glo-GFP) 

FlyFos018316(pRedFlp-Hgr)(glo19733::2XTY1-
sGFP-V5-preTEV-BLRP-3XFLAG)dFRT 

VDRC 318719 2 

fTRG 700 
(Nos-GFP) 

FlyFos017035(pRedFlp-Hgr)(nos18565::2XTY1-
sGFP-V5-preTEV-BLRP-3XFLAG)dFRT 

VDRC 318195 3 

fTRG 577 
(Vas-GFP) 

FlyFos031335(pRedFlp-Hgr)(vas41728::2XTY1-
sGFP-V5-preTEV-BLRP-3XFLAG)dFRT 

VDRC 318157 3 

fTRG 1134 
(eIF4AIII-
GFP) 

FlyFos022832(pRedFlp-
Hgr)(eIF4AIII25582::2XTY1-sGFP-V5-preTEV-
BLRP-3XFLAG)dFRT 

Tomancak lab 
(MPI-CBG, 
Dresden) 

2  

fTRG 1404 
(Stau-
GFP) 

FlyFos028195(pRedFlp-
Hgr)(stau[29658]::S000169_fly_pretag)::2XTY1-
sGFP-V5-preTEV-BLRP-3XFLAGdFRT 

Tomancak lab 
(MPI-CBG, 
Dresden) 

3 

 
 

4.3 In situ hybridization 

The protocol was adapted from Lécuyer et al. (2008). 

For in situ hybridizations, digoxigenin (DIG)-UTP labeled osk (full length), rp49 (CDS only) 

and alpha-tubulin 67C (full length) antisense RNA probes were prepared. Typically, 2 μg 

of the linearized template was transcribed using T7 RNA polymerase (Roche 

#10881767001) and DIG labeling mix (Roche #11277073910) according to the 

manufacturer’s instructions. The reaction was purified using Ambion MEGAclear™ Kit 

(Invitrogen™ #AM1908) according to the manufacturer’s instructions and probes were 

eluted in 30 μl of ddH2O. An equal amount of formamide was added before storage at -20 

ºC. 

To check the localization of aptamer-tagged osk RNA, well-fed flies were dissected in PBT 

(PBS with 0.1% Tween-20) at RT and fixed in 4% PFA solution (in PBT) for 25 min. Extracted 

ovaries were then washed 4x in PBT, to remove any traces of fixing solution, followed by 

addition of 100% MeOH for dehydration and stored at -20 ºC overnight. The following day, 

they were rehydrated by washing 3x in PBT and fixed again, in 4% PFA solution, for 20 min. 

Post-fixation, ovaries were washed with PBT 3x for 2 min and samples were incubated with 

protein kinase (3 μg/ml in PBT) for 10 min at RT, followed by an hour incubation on ice. The 

digestion was stopped by washing twice with glycine solution (2 mg/ml in PBT), followed by 

washing 2x in PBT. Ovaries were fixed again as before and after washing with PBT 5x for 2 
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min, samples were pre-hybridized in hybridization buffer (50% de-ionized formamide, 5X SSC 

pH 6.8, yeast tRNA 36 μg/ml, heparin 100 μg/ml, salmon sperm DNA 100 μg/ml and 0.1% 

Tween-20) for at least 90 min at 70 ºC. The DIG-labeled probe was added in fresh buffer and 

samples were incubated at 70 ºC overnight. The following day, after washing with 

hybridization buffer for 20 min at 70 ºC, samples were washed in PBT and blocking buffer 

was added (1% milk in PBT). Samples were blocked for 1 hour at RT and alkaline phosphate-

conjugated anti-DIG antibody (diluted 1:2.000 in blocking buffer) was added. Following 

incubation for 2 hours at RT, ovaries were washed several times in PBT and transferred to 

staining buffer (100 mM Tris-HCl, pH 8.0, 150 mM NaCl, 50 mM MgCl2, 0.2% Tween-20). For 

colorimetric detection of alkaline phosphatase activity, the substrate, a mixture of NBT (nitro 

blue tetrazolium; Promega #S380C) and BCIP (5-bromo-4-chloro-3-indolyl-phosphate; 

Promega #S381C) was added to the staining buffer, according to the manufacturer’s 

instructions and development of the chromogen was monitored. Staining was stopped by 

washing in PBT several times and finally in PBS to remove the detergent. All the washing 

steps were carried out on a nutator mixer.  

Ovaries were mounted in Fluoromount-G™ (Southern Biotech #0100-01c) and slides were 

stored at 4 ºC overnight. Images were acquired on a Zeiss AxioImager Z1 microscope, with 

a Plan-Apochromat 40X objective (NA 0.95) and a differential interference contrast (DIC) 

condenser. Image processing was done using FIJI (Schindelin et al., 2012). 

4.4   Large-scale material preparation for mRNP purification 

For mass isolation of the egg chambers, an optimized protocol adapted from Jambor et al. 

(2005) was employed. A kitchen aid grinder (KitchenAid, model: 5K45SS EWH #105759) 

fitted with a corn mill (KitchenAid, model: 5KGM # 100748) was used to process the flies. 

Flies fed on fresh yeast paste for 2 days were collected in PBS and passed through the mill 

twice. The flow-through was collected and sieved through a series of meshes: 200 μm, 125 

μm and 90 μm; top to bottom (VWR International GmbH; # 510-4914; 510-4909; 510-4905). 

Material from 90 μm sieve was collected in a falcon. After a quick spin, the supernatant was 

removed and the material was transferred to a microcentrifuge tube. Another brief spin 

(1000g at 4 ºC) was employed to remove the remaining PBS. After weighing, samples were 

transferred to liquid nitrogen and stored at -80 ºC. All steps were performed in the cold room 

(at 4 ºC) with pre-cooled equipments and reagents. 

4.5   Purification of affinity-tagged MS2 coat protein (MCP) 

The recombinant MS2 coat proteins (MCP) were expressed in E.coli using either BL21 (DE3) 

gold or BL21 (DE3) star cells, grown in either TB or ZY medium (Table 5), supplemented with 
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respective antibiotics. Cells were cultivated initially at 37 ºC until the required OD600 was 

reached (0.6-0.8 units for TB media and 1.8-2.0 units for ZY media) and then grown overnight 

at 20 ºC. In case of TB media, protein expression was induced by addition of isopropyl β-D-

1-thiogalactopyranoside (IPTG) to a final concentration of 1mM, at required OD600. Cells were 

pelleted by centrifugation at 4000 rpm for 20 min at 4 ºC and stored at -80 ºC. 

 

Table 5: Composition of TB and ZY media 

TB media (per litre) 

Bacto tryptone 12 g 

Bacto yeast extract 24 g 

87% Glycerol 5 ml 

10X Phosphate buffer 100 ml 

 

ZY media (per litre) 

Bacto tryptone 10 g 

Yeast extract 5 g 

20X NPS 50 ml 

50X 5052 20 ml 

1 M MgSO4 1 ml 

 

 

 

Typically, cells were lysed in a high salt buffer (500 mM - 1.2 M) and affinity purified on cobalt 

resin (His-MCP, His-MBP-MCP, His-MBP-tdMCP) or glutathione resin (GST-MCP). Proteins 

were further applied to Heparin Sepharose 6 Fast Flow columns and finally to Size Exclusion 

columns to obtain pure proteins (HiLoad 16/600 Superdex75pg or HiLoad 16/600 

Superdex200pg). All the purified proteins were aliquoted and stored at -80 ºC. 

His-MCP was purified by cobalt affinity chromatography in lysis buffer (20 mM Tris-HCl pH 

7.5 at 4 ºC, 1.2 M NaCl, 20 mM imidazole, 1 mM 2-mercaptoethanol) supplemented with 

protease inhibitors (cOmplete™, EDTA-free Protease inhibitor cocktail, Roche # 

04693132001). After washing in buffer A (20 mM Tris-HCl pH 7.5 at 4 ºC, 300 mM NaCl, 20 

mM imidazole, 1 mM 2-mercaptoethanol), the recombinant protein was eluted from the resin 

with a gradient to 500 mM imidazole. The imidazole was subsequently removed by dialysis 

overnight at 4 ºC, in dialysis buffer (20 mM Tris-HCl pH 7.5 at 4 ºC, 100 mM NaCl, 1 mM 

DTT). 10% glycerol was added to prevent precipitation and His-MCP was further purified on 

a Heparin Sepharose 6 Fast Flow column in the buffer: 20 mM Tris-HCl pH 7.5 at 4 ºC, 100 

mM NaCl, 10% glycerol, 1 mM DTT; eluted with a gradient to 1 M NaCl, and finally applied 

10X Phosphate buffer (per litre) 

0.17 M Potassium dihydrogen phosphate 23.1 g 

0.72 M di-Potassium hydrogen phosphate 125.4 g 

20X NPS composition (per litre) 

Ammonium sulphate 66.07 g 

Potassium hydrogen phosphate 136.09 g 

Di-sodium hydrogen phosphate dihydrate 177.99 g 

50X 5052 composition (per litre) 

Glucose 25 g 

Lactose 100 g 

Glycerol (87%) 287 ml 
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on a HiLoad 16/600 Superdex75pg column, 120 ml (GE Healthcare) and eluted in the buffer: 

20 mM Tris-HCl pH 7.5 at 4 ºC, 100 mM NaCl, 10% glycerol, 1 mM DTT.  

GST-MCP was affinity-purified on glutathione resin in lysis buffer (20 mM Tris-HCl pH 7.5 at 

4 ºC, 500 mM NaCl, 1 mM DTT) supplemented with protease inhibitors (cOmplete™, EDTA-

free Protease inhibitor cocktail, Roche # 04693132001). After washing in lysis buffer, the 

recombinant protein was eluted from the resin with a gradient to buffer B (lysis buffer plus 20 

mM reduced glutathione). GST-MCP was dialyzed overnight at 4 ºC in dialysis buffer (20 mM 

Tris-HCl pH 7.5 at 4 ºC, 35 mM NaCl, 10% glycerol, 1 mM DTT) and further purified on 

Heparin Sepharose 6 Fast Flow columns (GE Healthcare), eluted with a gradient to 1 M NaCl. 

The unbound fraction was then applied on a HiLoad 16/600 Superdex200pg column (GE 

Healthcare) and eluted in the buffer: 20 mM Hepes pH 7.5, 100 mM NaCl, 10% glycerol, 1 

mM DTT.    

His-MBP-MCP and His-MBP-tdMCP were purified by cobalt affinity chromatography in lysis 

buffer (20 mM Tris-HCl pH 7.5 at 4 ºC, 1.2 M NaCl, 0.5 mM DTT) supplemented with protease 

inhibitors (cOmplete™, EDTA-free Protease inhibitor cocktail, Roche # 04693132001). After 

washing in buffer A (20 mM Tris-HCl pH 7.5 at 4 ºC, 300 mM NaCl, 0.5 mM DTT), the 

recombinant proteins were eluted from the resin with a gradient to 500 mM imidazole. The 

imidazole was subsequently removed by dialysis overnight at 4 °C, in dialysis buffer (20 mM 

Tris-HCl pH 7.5 at 4 ºC, 50 mM NaCl, 10% glycerol, 1 mM DTT). His-MBP-MCP and His-

MBP-tdMCP were further purified on a Heparin Sepharose 6 Fast Flow column and eluted 

with a gradient to 1 M NaCl, and finally applied on a HiLoad 16/600 Superdex200pg column, 

120 ml (GE Healthcare) and eluted in the buffer: 20 mM Hepes pH 7.5, 100 mM KCl, 10% 

glycerol, 1 mM DTT.  

4.6  RNA binding assay 

For RNA-binding assays, 500 μg of gel filtrated recombinant proteins (GST-MCP and His-

MBP-MCP) were incubated with 1.1 molar excess (or 1.4 molar excess in the case of GST-

MCP) of different RNAs (MS2 hairpin, UA-rich hairpin, polyU20; Integrated DNA 

Technologies) in 2:1 ratio, for 1.5 hours at 4 ºC.  Complexes were then loaded on a Size 

Exclusion column (Superdex200 10/300GL; GE Healthcare) in 25 mM Hepes pH 7.5, 150 

mM KCl and 1 mM DTT. For comparison, protein alone and RNA alone samples were 

incubated and loaded the same way.  
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4.7  RNA pull-down 

To pull-down MS2-12X tagged osk mRNA, total RNA was extracted from the material 

collected by mass isolation, using Tri-Reagent® (Sigma #T9424) according to the 

manufacturer’s instructions. To facilitate proper secondary structure formation, 75 μg of RNA 

was incubated in buffer (25 mM Hepes, pH 7.5, 150 mM KCl, 250 mM Sucrose, 1 mM MgCl2, 

0.1% NP-40, 1 mM DTT) for 30 min at RT. 25 μl of bead slurry: Glutathione resin (Protino® 

Glutathione Agarose 4B, MACHEREY-NAGEL # 745500.100) in case of GST and Amylose 

resin (NEB #E8021S) in case of MBP pull-down, was incubated with 50 μg of purified MCP 

for 2 hours at 4 ºC. Unbound protein was removed by washing the beads with buffer 3x and 

RNA was added to the MCP-coated beads and incubated for 2 hours at 4 ºC. After washing 

4x with buffer, RNA was extracted from beads by addition of Tri-Reagent® (Sigma #T9424) 

according to the manufacturer’s instructions. RNA was precipitated using Isopropanol and 

the pellet was resuspended in Glyoxal reaction mixture directly (Table 7) to denature RNA. 

After incubation at 74 ºC for 10 min, samples were immediately chilled on ice and RNA 

loading dye (95% deionized formamide, 0.05% SDS, 0.05% Xylene cyanol FF, 0.05% 

Bromophenol blue) was added.   

4.7.1 Northern Blot 

Samples were separated on 1.2% agarose gels, supplemented with SYBR™ Gold nucleic 

acid gel stain (Thermo Fisher Scientific # S11494), under denaturing conditions. MOPS was 

used as a running buffer (Table 6). 

Table 6: Buffers for Northern blot: gel electrophoresis and transfer 

 

 

 

 

Gel electrophoresis was performed over 5–6 hours at 5 V/cm, at RT. The gel was then blotted 

onto a positively charged nylon membrane (GeneScreen Plus® Hybridization Transfer 

Membrane, Perkin Elmer® #NEF1017001PK) by upward capillary transfer driven by saline-

sodium citrate (SSC) buffer (Table 7). After transfer, the RNA was cross-linked to the 

membrane by UV light using a UV crosslinker (CL-1000 Ultraviolet Crosslinker, UVP). 

Membranes were pre-hybridized at 65 ºC in Church hybridization buffer (500 mM sodium 

phosphate pH 7.0, 7% SDS, 1 mM EDTA) containing denatured salmon sperm DNA (50 

10X MOPS (pH 7.0) 

MOPS 200 mM 

NaOAc 80 mM 

EDTA 10 mM 

20X SSC (pH 7.0) 

NaCl 3M 

NaCitrate 300 mM 

Glyoxal reaction mixture (2ml) 

DMSO 1.2 ml 

Deionized glyoxal 0.4 ml 

10X MOPS running buffer 0.24 ml 

Glycerol 0.12 ml 

ddH2O 40 μl 
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μg/ml; Thermo Fisher Scientific # 15632011). After an hour incubation, the purified DIG-

labeled probe (prepared as described before) was added and hybridizations were carried out 

overnight at 65 ºC. 

After washing 4x for 20 min with Church wash buffer (40 mM sodium phosphate pH 7.0, 1% 

SDS, 1 mM EDTA), the membrane was equilibrated in Maleic acid wash buffer (Maleic acid 

buffer with 0.3% Tween-20) for 5 min at RT. After blocking the membrane (1% milk solution 

in Maleic Acid buffer) for 30 min at RT, freshly prepared antibody solution was added: alkaline 

phosphate-conjugated anti-DIG fragments (Roche #11093274910) diluted 1:10,000 in 

blocking buffer. After 30 min incubation, the membrane was washed again 2x for 15 min with 

Maleic acid wash buffer (Table 7).  

Table 7: Buffers for Northern blot: detection 

 

  

 

 

For detection, the membrane was equilibrated in detection buffer (Table 8) before adding 

substrate (Tropix CSPD, Applied Biosystems #T2142) to the membrane. After 5 min 

incubation, chemiluminescence was detected by exposing the membrane to Amersham 

Imager 600 (GE Healthcare). 

4.8  Cell culture and transfection 

Human HEK293 cells were grown in Dulbecco’s Modified Eagle Medium (DMEM, produced 

in-house; Gibco™ DMEM powder # 52100039, 20 g Sodiumhydrogen carbonate, enriched 

with CO2 for 10 min), at 37 ºC in the presence of 5% CO2. The medium was supplemented 

with 10% heat-inactivated Fetal Bovine Serum (Gibco #10500064), 2 mM L-Glutamine 

(Sigma Aldrich #G7513) and 1X Penicillin-Streptomycin solution (Sigma #P4333). 

One day before transfection, cells were washed with PBS (produced in-house; Gibco™ 

DPBS powder # 21600044, pH 7.1) and trypsinized (0.25% Trypsin-EDTA solution from 

Sigma #T4049). After resuspension, cells were counted in a cell counter (Cellometer Auto 

2000 from Nexcelom Bioscience) and diluted to 0.325 x10^6 /ml. 6-well plates were seeded 

with 0.65 x10^6 cells/well (i.e. 2 ml of diluted cells/ well). 

Cells were transfected at ~90% confluency using Lipofectamine™ 3000 (Invitrogen # L3000-

008) according to the manufacturer’s recommendations. 5 μg of DNA was transfected in each 

Detection Buffer (pH 9.5) 

Tris-HCl 0.1 M 

NaCl 0.1 M 

MgCl2 50 mM 

Maleic Acid Buffer (pH 7.5) 

Maleic Acid 0.1 M 

NaCl 0.15 M 
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well with 4 μl of Lipofectamine reagent and 5 μl of p3000 reagent. Typically, two plasmids 

were co-transfected; the ratio was adjusted based on their expression levels. If required, a 

third empty plasmid with HA tag was supplemented, to reach a total amount of 5 μg. The cells 

were incubated at 37 ºC for 48 hours before harvesting.  

4.9   Immunoprecipitations and Western blots 

4.9.1 Immunoprecipitation from Drosophila ovaries: 

Flies were fed on fresh yeast paste for 2 days at RT. Ovaries were dissected in PBS and 

immediately transferred to a microcentrifuge tube (filled with PBS) maintained on ice. Flies 

were dissected in batches of 40, immediately transferred to liquid nitrogen and stored at -80 

ºC. 

For immunoprecipitation, frozen ovaries were thawed on ice in lysis buffer (50 mM Tris-HCl 

pH 7.5 at 4 ºC, 100 mM NaCl, 250 mM Sucrose, 0.1% NP-40 and 1 mM DTT) and pooled 

together to reach the required amounts (Table 8,9). The extra buffer was removed and 

ovaries were resuspended in the appropriate amount of lysis buffer (320 μl/ 40 dissected 

flies) supplemented with 2.5X protease inhibitors (cOmplete™, EDTA-free Protease inhibitor 

cocktail, Roche # 04693132001). Ovaries were teased apart by gently pipetting up and down 

and then mechanically homogenized with 30 strokes in a tissue homogenizer with a glass 

pestle (2 or 5 ml round bottom from Hartenstein GmbH). The lysate was cleared by 

centrifugation at 21000g for 20 min at 4 ºC and supernatant was transferred to a fresh tube 

avoiding the thick fat layer on the top. 2 μl of RNase A/T1 (Thermo Fisher Scientific #EN0551) 

per 400 μl of lysis buffer was added to the lysate and incubated at 4 ºC for 30 min on a rotating 

wheel. The lysate was cleared again at 21000g at 4 ºC for 15 min and transferred to a fresh 

tube; 30 μl of lysate was taken aside as input. GFP-TRAP® MA beads (Chromotek #gtma- 

100), prewashed 3x with lysis buffer, were added to the supernatant and incubated for 1 hour 

at 4 ºC in rotation. Beads were then washed 4x in lysis buffer and collected by magnetic 

separation using DynaMag™-2 magnet (Invitrogen #12321D). All the washing steps were 

done in the cold room. Proteins were eluted with 2X protein sample buffer (100 mM Tris-HCl 

pH 6.8, 4% SDS, 20% Glycerol, 200 mM DTT, 0.05% Bromophenol blue) by boiling at 95 ºC 

for 10 min. 

 
For mass spectrometric (MS) analysis, immunoprecipitations were performed as described 

above.  Proteins were eluted with 30 μl of 2X protein sample buffer and separated by PAGE, 

using NuPAGE ™  Bis-Tris precast 4-12% gradient gels (Invitrogen # NP0321) with MES-

SDS running buffer (50 mM Tris base, 50 mM MES, 0.1% SDS, 1 mM EDTA pH 7.3). 
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Samples were run approximately 2 cm into the gel and bands were visualized with a 0.1% 

Colloidal Coomassie Blue stain (Coomassie® Brilliant Blue G 250 from Serva #17524).  

 
Table 8: Summary for Label-free MS 
(replicates were prepared on different days) 

 
    No. of dissected flies              Lysate (μl)    Amount of beads (μl) 

 Rep.1 Rep.2 Rep.3 Rep.1 Rep.2 Rep.3 Rep.1 Rep.2 Rep.3 

GFP 320* 320* 320* 2560 2560 2560 50 50            50 

eIF4AIII-GFP 200 400* 400* 1600  320 320 50 60            60 

Glo-GFP 200 200 200 1600  1600 1600 50 30            30 

Hrp48-GFP 80 80 80 640 640 640 30 30 30 

Nos-GFP 200 400* 400* 1600 320 320 50 60 60 

Stau-GFP 200 400* 400* 1600 320 320 50 60 60 

Vas-GFP 80 80 80 640 640 640 30 30 30 

 

 
Table 9: Summary for Quantitative MS  
(both replicates were prepared on the same day) 

 
    No. of dissected 

flies 

             Lysate (μl)    Amount of beads (μl) 

 Rep.1 Rep.2 Rep.1 Rep.2 Rep.1 Rep.2 

GFP 400* 400* 320 320 60 60 

Hrp48-GFP 80 80 640 640 30 30 

Vas-GFP 80 80 640 640 30 30 

 
* For processing samples with more than 200 dissected flies, the lysate was split into half after 

homogenization. IPs were treated separately and half the amount of indicated beads were added in 
each tube. After washing, beads were pooled together and proteins were eluted. 
 

 

4.9.2 Co-immunoprecipitations from HEK293 cells: 

Cells were grown and transfected as described before. Two days after transfection, for co-

immunoprecipitations (co-IP), cells were washed with ice-cold PBS and scraped off the wells 

in lysis buffer (50 mM Tris-HCl pH 7.5 at 4 ºC, 100 mM NaCl, 250 mM Sucrose, 0.1% NP-40, 

1 mM DTT) supplemented with protease inhibitors (cOmplete™, EDTA-free Protease 

inhibitor cocktail, Roche # 04693132001). 400 μl of lysis buffer per well was used. For efficient 

lysis, cells were incubated on ice for 15 min and were mechanically sheared by passing them 

through a needle (Sterican® 21G 7/8” Ø 0.8X22mm) several times (6-7x). After lysis, cell 

lysates were spun at 16000g for 15 min at 4 ºC and supernatants were transferred to a fresh 

tube. 2 μl (per well) of RNase A/T1 (Thermo Fisher Scientific #EN0551) was added to the 

lysate and incubated at 4 ºC for 30 min on a rotating wheel. The lysate was cleared again at 

16000g for 15 min and transferred to a fresh tube; 30 μl of lysate was taken aside as input. 

For GFP pull-downs, 12-20 μl of pre-washed GFP-TRAP® MA beads (Chromotek #gtma-
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100) were added to the supernatant and incubated for an hour at 4 ºC. Washing and elution 

steps were done as described above. 

For Flag pull-downs, 1.8 μl (per 400 μl of lysate) of anti-Flag (mouse monoclonal Anti-Flag® 

M2 from Sigma # F1804-1MG) was added to the supernatant. Samples were incubated for 1 

hour at 4 ºC in rotation; after incubation 20 μl of pre-washed GammaBind Plus Sepharose® 

beads (GE Healthcare #17-0886-01) were added, and the mixtures were rotated for an 

additional hour at 4 ºC. Beads were then washed 4x with lysis buffer and collected by 

centrifugation at 2000g at 4 ºC. Proteins were eluted as described before. 

 
The amount of material for each co-IP was adjusted based on the expression level of the 

proteins (visualized by western blot; see below). Typically, one or two wells per IP were used 

and the lysate was prepared as described above. However, for some proteins with low 

expression, cells from 2 wells were pooled together in a total of 600 μl of buffer, thus 

concentrating the lysate 1.5X. The corresponding lysates for control IP were prepared 

accordingly. Following steps were performed the same way as described above. 

Eluates were separated by SDS-polyacrylamide gel electrophoresis (SDS-PAGE), as 

described in Sambrook et al. (2001); Laemmli running buffer (25 mM Tris base, 192 mM 

glycine, 0.1% SDS) was used. Home-made 10% polyacrylamide gels were used for efficient 

protein separation. 

After electrophoresis, the proteins were transferred to a nitrocellulose membrane (Sartorius 

# 11306-41BL) in a wet transfer system (BioRad), for 1.5 hours at 50V. The transfer buffer 

contained 20 mM Tris base, 150 mM glycine, 20% MeOH, 0.1% SDS. 

Membranes were blocked in 5% milk solution in PBT (PBS + 0.1% Tween-20) for an hour 

and incubated with primary antibodies (diluted in 5% milk in PBT; Table 11) overnight at 4 

ºC. The blots were then washed with PBT 3x, for 15 min each and incubated with Horseradish 

Peroxidase (HRP)-conjugated secondary antibody (Table 11)  solutions for at least an hour 

at RT. Blots were washed again 3x with PBT, 15 min each. Detection was done with 

enhanced chemiluminescence (ECL) reagents, produced in-house (Table 10). After 

incubation with the substrate, chemiluminescence was detected by exposing the membrane 

in an Amersham Imager 600 (GE Healthcare). 
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Table 10: ECL reagents for western blot detection 

 

 
 

Table 11: List of antibodies used for Western blot  

 
 Antigen  Organism and 

description 
Company (catalog nº)      Dilution 

   HA Mouse (monoclonal) 
 

BioLegend®  (901501) 1:5000 

GFP Rabbit (polyclonal) 
 

Thermo Fisher Scientific (A11122) 1:2500 

Mouse 
IgG 

Goat (polyclonal), 
HRP-conjugated 
 

Dianova (115-035-003) 1:8000 

Rabbit 
IgG 

Goat (polyclonal), 
HRP-conjugated 

Dianova (111-035-003) 1:8000 

 
 

4.10 Mass spectrometry and Data analysis 

4.10.1 Sample preparation and data processing 

 
Immunoprecipitation samples from ovaries were sent for MS analysis at the Proteome Center 

Tübingen (PCT), University of Tübingen. Gel slices were processed by Johannes Madlung, 

in the lab of Prof. Dr. Boris Macek’s lab at PCT. For label-free MS, proteins were digested in-

gel using trypsin. LC-MS/ MS reads were collected on a Proxeon Easy-nLC 1200 (Thermo 

Fisher Scientific) coupled to a QExactive HF mass spectrometer (Thermo Fisher Scientific); 

method: 60 min, Top12 HCD. For Dimethyl labeling, after tryptic in-gel digestion derived 

peptides were loaded on C18-stage tips and dimethylated (Boersema et al., 2009). 

Measurements were done the same way as for the unlabeled.  

Raw data of Dimethyl labeling MS was processed by Johannes Madlung. All 6 samples were 

processed together using MaxQuant version 1.5.2.8. False discovery rate (FDR) setting was 

1% on peptide as well as protein level.  

For label-free MS, raw data files for all the 21 samples (biological triplicates for six baits+ 

controls) were processed together using MaxQuant software suite v. 1.6.0.1 (Cox and Mann, 

2008). Using Andromeda search engine (Cox et al., 2011), the spectra were searched against 

UniProt D. melanogaster proteome database (canonical and isoform entries; downloaded in 

July 2017; http://www.uniprot.org/proteomes/UP000000803) and a database comprising a 

sequence of the tag alone. 

ECL SOLUTION A (200 ml)                                             

0.1 M Tris-HCl pH 8.6 200ml 

Luminol 50 mg 

ECL SOLUTION B (10ml) 

DMSO 10 ml 

p-Coumaric acid 11 mg 

DETECTION MIX (FRESH) 

5 ml  Solution A 

0.5 ml Solution B 

1.8  μl H2O2 35% 
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Briefly, MaxLFQ algorithm was activated and the minimum number of peptide ratio count was 

set to 1, to quantify proteins across the samples (Cox et al., 2014). To transfer peptide 

identifications to unidentified or unsequenced peptides between samples, for quantification, 

matching between runs option was selected, with a match time window of 0.7 min and an 

alignment time window of 20 min. Matching was performed only between replicates by 

controlling the fraction numbers. Determined by a target-decoy approach, 1% FDR filter was 

set for PSM (peptide spectrum match) and protein identification. For a protein group to be 

considered for identification, the parameters were set to a requirement of minimum 1 

peptides; minimum 1 razor+ unique peptides and 0 unique peptides. Protein reversal method 

was used to generate the decoy database.  

4.10.2 Data analysis for Label-free MS 

 
Bioinformatics analysis was done using Perseus v. 1.6.0.7 (Tyanova et al., 2016). MaxQuant 

output file was loaded into the program. Proteins identified were arranged in rows and the 

LFQ intensity values for each experiment were arranged in columns. The data was filtered 

for proteins identified as potential contaminants, identified only by a modification site and 

identified by peptides derived from the reversed sequence of the decoy database. All the 

intensity values were then Log2 transformed and histograms were plotted for all the samples 

(Frequency distribution analysis using GraphPad Prism v.7.0.0 for windows; 

www.graphpad.com). After removing the empty rows (by filtering for at least one valid value 

in total) heat maps with hierarchical clustering on rows (Euclidean distance) and Pearson 

correlations for columns were generated. This was done in Perseus software (Tyanova et al., 

2016). 

Significantly enriched proteins were identified using a pipeline constructed in Perseus 

software (Tyanova et al., 2016). For this, replicates for each bait were grouped together and 

the data was analyzed in a pairwise fashion i.e. each individual bait group against the control 

group. After log transformation, proteins were filtered based on the identification of min 3 

valid values in at least one replicate group. The missing values were imputed using normal 

distribution (0.3 width reduction and 1.8 standard deviations downshift) on the whole matrix, 

enabling statistical analysis. Histograms were checked again to ensure sustained normal 

distribution. Both-sided Welch’s t-test was used with S0 parameter of 2 (this controls the 

artificial within-group variance). For each test, to filter the rows a requirement of at least 2 

valid values in the bait group was set, further controlling the effects of imputation. A 5% FDR 

cut-off (permutation-based; number of randomizations: 250 without preserving groupings) 

was set to determine significantly enriched proteins. The same pipeline was employed for all 

the pairwise analyses.  
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All the scatter plots and the volcano plots were generated using GraphPad Prism v.7.0.0 for 

windows (www.graphpad.com). For creating networks, Cytoscape v. 3.5.1 (Shannon et al., 

2003) was used. To integrate IP data with literature, databases like String (Szklarczyk et al., 

2017) and FlyBase (Gramates et al., 2017) were used. For String, only experimental data 

with medium confidence range was considered. Physical interaction data from FlyBase was 

extracted for each protein individually. 

For GO term analysis, DAVID (Database for Annotation, Visualization and Integrated 

Discovery) v.6.8 functional annotation tool was used (Huang et al., 2009a,b), which adopts 

Fisher Exact test to measure the gene-enrichment in annotation terms. Following parameters 

were used: background: Drosophila genome; count threshold (minimum number of genes for 

that term) of 2; maximum ease score (modified Fisher Exact P-value) of 0.01. To reduce 

redundancy in the GO terms, DAVID output was fed into REVIGO (Reduce + Visualize Gene 

Ontology; Supek at al., 2011) and p-values were used to select and cluster GO terms with a 

similarity score of 0.7 (medium). In advanced options, whole UniProt (default) was used for 

GO term sizes. 

For comparing GO terms across baits, the analysis was done using DAVID v.6.8 functional 

annotation tool (Huang et al., 2009a,b), for each bait separately, as described above. Data 

was compiled manually and heat maps were generated using GraphPad Prism v.7.0.0 for 

windows (www.graphpad.com) 

4.11 Immunofluorescence and Microscopy 

To visualize the localization of MS2-tagged osk mRNA, flies were fed on fresh yeast paste 

for 2 days and ovaries were dissected in PBS at RT. Ovarioles were teased apart using 

forceps, breaking the anterior fibrous tissue and leaving them attached at the posterior end. 

This allows the ovary to be moved through the steps as a single unit while allowing fixative 

and the antibody to access all the cells. Ovaries were then fixed in 4% PFA (in PBS) for 30 

min, washed in PBS 3x, 10 min each and dehydrated in 100% MeOH overnight. After 

rehydration the following day, ovaries were washed again in PBS 4x and mounted on slides 

in Fluoromount-G™ (Southern Biotech #0100-01).  

To visualize the GFP tagged proteins, sample slides were prepared the same way as above, 

except a short fixing step (in 4% PFA) of 4 min was done and samples were mounted directly 

after washing in PBS. All steps were carried out on a nutator mixer. Slides were stored at 4 

ºC overnight before imaging. 

For immunofluorescence, ovaries were dissected in PBT (0.1% Tween-20 in PBS) and 

ovarioles were separated. All the following steps were carried out on a nutator mixer. 
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Ovaries were fixed in 4% PFA (in PBT) for 20 min and washed 4x in PBT to remove any 

traces of fixing solution. They were then dehydrated by addition of 100% MeOH and stored 

at -20 ºC overnight. The following day, they were rehydrated by washing 4x in PBT and 

blocked for 60 min (in PBT, 10 % BSA). They were equilibrated in PBT containing 1% BSA 

and stained with anti-GFP (diluted in PBT, 1% BSA; Table 12) for 3 days at RT. Primary 

antibody was removed by washing 4x in PBT containing 1% BSA, before incubation with 

secondary antibody (in PBT, 1% BSA; Table 12) for at least one hour at RT. Secondary 

staining was stopped by washing 3x in PBT, 15 mins each. After washing twice with PBS, 

slides were prepared and stored at 4 ºC. 

Images were acquired on a FluoView1200 laser scanning confocal microscope (Olympus), 

with an UPlanSApo 40.0X air objective (NA 0.95) and processed using FIJI (Schindelin et al., 

2012). 

   

Table 12: List of antibodies used for Immunofluorescence 

 
Antigen Organism and 

description 

Company (catalog nº) Dilution 

GFP Rabbit (polyclonal) Thermo Fisher Scientific 

(A11122) 

 

1:1000 

Rabbit IgG Donkey (polyclonal), 

Alexa Flour 488 coupled 

Invitrogen (A21206) 1:1000 

 
 
Table 13: List of oligonucleotide sequences used for cloning  

 
Code 
 

Primer Name Sequence Cloning 
Type 

PBA01 Dm_CG5726_fwd GCTCAAGCTTCGAATTCTGATCATATGGAAATGGCCAAC
AACATG 

Gibson  

PBA02 Dm_CG5726_rev AATAAACAAGTTAACAACAACAATTGTCATTTCTGGGCC
GACAAATAG  

Gibson  

PBA03 Dm_Loqs-PB_fwd CAAGCTTCGAATTCTGATCATATGGACCAGGAGAATTTC
CACG 

Gibson  

PBA04 Dm_Loqs-PB_rev ATAAACAAGTTAACAACAACAATTGCTACTTCTTGGTCAT
GATCTTC 

Gibson  

PBA05 Dm_Nph_fwd TCAAGCTTCGAATTCTGATCATATGGAGTCCGAGTCGTT
TTATG 

Gibson  

PBA06 Dm_Nph_rev ATAAACAAGTTAACAACAACAATTGCTACTTCTTCTTATT
ACTCTTG 

Gibson 

PBA07 Dm_SC35_fwd AAGCTTCGAATTCTGATCATATGAGCAACGGTGGTGGT
GCCG  

Gibson 

PBA08 Dm_SC35_rev AATAAACAAGTTAACAACAACAATTGCTAGGAGCGACTG
CGACTAC 

Gibson 

PBA09 Dm_Vasa_2_fwd ATCTCGAGCTCAAGCTTCAGAATTCATGTCTGACGACTG
GGATGATG 

Gibson 

PBA10 Dm_Vasa_2_rev TTATCTAGATCCGGTGGATCCCGGGTCAATCCCATTGCT
CTTCTTC 

Gibson 
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PBA11 Dm_X16_fwd GCTTCGAATTCTGATCATATGTCGCGCCATCCGAGCGA
TAGAAAG 

Gibson 

PBA12 Dm_X16_rev ACAAGTTAACAACAACAATTGCTAGTCCCTTGAAACGGA
TCGTG 

Gibson 

PBA13 Dm_Armi_fwd GCTTCGAATTCTGATCATATGTTCACATACGTTAGCAAG
TTTTTC 

Gibson 

PBA14 Dm_Armi_rev ACAAGTTAACAACAACAATTGTTAGTTCAAATCATCTGTA
GTATTC 

Gibson 

PBA15 Dm_Dref_fwd GCTTCGAATTCTGATCATATGATGAGCGAAGGGGTACC
AGCG  

Gibson 

PBA16 Dm_Dref_rev ACAAGTTAACAACAACAATTGCTAATTGTTGTGATGATG
AAGAAAG 

Gibson 

PBA17 Dm_Gus_fwd GCTTCGAATTCTGATCATATGATGGGTCAAAAAATTAGT
GGCG 

Gibson 

PBA18 Dm_Gus_rev ACAAGTTAACAACAACAATTGTTATCTACGGTTTTTATAC
AATAAAT 

Gibson 

PBA19 Dm_Dco_fwd ATCTCGAGCTCAAGCTTCGAATTCTATGGAGCTGCGCG
TGGG  

Gibson 

PBA20 Dm_Dco_rev TTATCTAGATCCGGTGGATCCCGGGTTATTTGGCGTTCC
CCAC 

Gibson 

PBA21 Dm_SF2_fwd ATCTCGAGCTCAAGCTTCGAATTCTATGGGATCACGCAA
CGAG 

Gibson 

PBA22 Dm_SF2_rev TTATCTAGATCCGGTGGATCCCGGGTTAATAGTTAGAAC
GTGAG 

Gibson 

PBA23 Dm_CG7185_fwd ATCTCGAGCTCAAGCTTCGAATTCTATGGCCGACGTGG
TCTTGG 

Gibson 

PBA24 Dm_CG7185_rev TTATCTAGATCCGGTGGATCCCGGGTCAATGCCGGGAA
CGGTG 

Gibson 

PBA25 Dm_mtSSB_fwd ATCTCGAGCTCAAGCTTCGAATTCTATGCAACACACAAG
GCGC 

Gibson 

PBA26 Dm_mtSSB_rev TTATCTAGATCCGGTGGATCCCGGGTTAGTTGTTGGCAT
CACG 

Gibson 

PBA27 Dm_Glo_fwd ATCTCGAGCTCAAGCTTCAGAATTCATGTCCAACGCAGA
CGTG 

Gibson 

PBA28 Dm_Glo_rev TTATCTAGATCCGGTGGATCCCGGGTTAGATGCGCCGC
GAAAAG 

Gibson 

PBA29 Dm_CG13090_fwd ATCTCGAGCTCAAGCTTCAGAATTCATGATGGAATCCGA
GGTAG 

Gibson 

PBA30 Dm_CG13090_rev TTATCTAGATCCGGTGGATCCCGGGTTAGTATATGGGA
AAACTG  

Gibson 

PBA31 Dm_CG9684_fwd ATCTCGAGCTCAAGCTTCAGAATTCATGCTAGCACAAAA
GTCAG 

Gibson 

PBA32 Dm_CG9684_rev TTATCTAGATCCGGTGGATCCCGGGTTACAAGCTCAAC
AGCTTC 

Gibson 

PBA33 Dm_ckIIalpha_fwd ATCTCGAGCTCAAGCTTCAGAATTCATGACACTTCCTAG
TGCGG 

Gibson 

PBA34 Dm_ckIIalpha_rev TTATCTAGATCCGGTGGATCCCGGGTTATTGCTGATTAT
TGGG 

Gibson 

PBA35 Dm_Coil-D_fwd ATCTCGAGCTCAAGCTTCAGAATTCATGCAACACTCCAG
CATG 

Gibson 

PBA36 Dm_Coil-D_rev TTATCTAGATCCGGTGGATCCCGGGTCAGTCAATTGTG
GCTAC 

Gibson 

PBA37 Dm_Dip1-D_fwd ATCTCGAGCTCAAGCTTCAGAATTCATGAAGCGAAATCG
TCGTG 

Gibson 

PBA38 Dm_Dip1-D_rev TTATCTAGATCCGGTGGATCCCGGGTTAAGTGGTGTCG
CTGTAG 

Gibson 

PBA39 Dm_Hsp60_fwd ATCTCGAGCTCAAGCTTCAGAATTCATGTTCCGTTTGCC
AGTTTC 

Gibson 

PBA40 Dm_Hsp60_rev TTATCTAGATCCGGTGGATCCCGGGTTACATCATGCCA
CCCATG 

Gibson 

PBA41 Dm_nudC_fwd ATCTCGAGCTCAAGCTTCAGAATTCATGGCTGCTGAGG
AGGGAAAG 

Gibson 

PBA42 Dm_nudC_rev TTATCTAGATCCGGTGGATCCCGGGTTAATTGAATTTAC
ACTTGGAG 

Gibson 

PBA43 Dm_puf68_fwd ATCTCGAGCTCAAGCTTCAGAATTCATGGGAAGCAACG
ACAGAG 

Gibson 
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PBA44 

 
Dm_puf68_rev 

 
TTATCTAGATCCGGTGGATCCCGGGCTAACCGGACAGA
TCTCCC 

 
Gibson 

PBA45 Dm_SmB_fwd ATCTCGAGCTCAAGCTTCAGAATTCATGACGATCGGCAA
GAAC 

Gibson 

PBA46 Dm_SmB_rev TTATCTAGATCCGGTGGATCCCGGGTTAATAGCCACCC
CTGCC 

Gibson 

PBA47 Dm_ncm359 -
664_fwd 

ATCTCGAGCTCAAGCTTCAGAATTCATGGCAGACAATGA
AACCG 

Gibson 

PBA48 Dm_ncm359-664_rev TCTAGATCCGGTGGATCCCGGGTCATCCCAGGATCTCA
CGACTTAG 

Gibson 

PBA49 Dm_Vasa_fwd CAAGCTTCGAATTCTGATCATATGTCTGACGACTGGGAT
GATG 

Gibson 

PBA50 Dm_Vasa_rev ATAAACAAGTTAACAACAACAATTGTCAATCCCATTGCT
CTTCTTC 

Gibson 

PBA51 Dm_Lost_NdeI_fwd ATACATATGGAGGACCAAAGCAACGCAGCC Standard 

PBA52 Dm_Lost_MfeI_rev ATACAATTGCTATACTGTGGTGGTGTCGACAGC Standard 

PBA53 Dm_Hem_HindIII_fwd TTAAAAGCTTTGATGGCACGCCCAATTTTTC Standard 

PBA54 Dm_Hem_BamHI_rev TTAAGGATCCTTAGAGTGCCAGCCCTAAG Standard 
PBA55 Dm_BicC_NdeI_fwd AAACATATGTTGTCCTGTGCCTCTTTCAATAAAC Standard 
PBA56 Dm_BicC_XbaI

_rev 
AAATCTAGATCACCACTGGTTGGAGGGACGGC Standard 

PBA57 fTRGtag_AgeI_fwd ATAACCGGTATGGAAGTGCATACCAATCAGGACC Standard 
PBA58 fTRGtag_NheI_rev ATAGCTAGCTTACTTGTCGTCGTCATCCTTG Standard 

PBA59 
 

Osk_recomb_fwd CGCGTACTGCAAGTTATTGAAACGAGTCTGGAGTATTAA
GTTGGGTTCTTGAAGTGCATACCAATCAGGACCCGC 

Recombi
neering 

PBA60 Osk_recomb_rev GTCGGTTCCGGTGCCAGCCCAGTCAAAATTTGCATATAT
GTATCTTGATTCTTGTCGTCGTCATCCTTGTAGTCA 

Recombi
neering 

PBA61 Dm_alphatub67C_fwd AATCAGCGAACCAACTAACCTGAG Standard 

PBA62 Dm_alphatub67C_rev TTGTAATGACTGAAGTCTGGCTGG Standard 

PBA63 Dm_rp49_fwd ACCAGTCGGATCGATATG  Standard 

PBA64 Dm_rp49_rev GTTCTCTTGAGAACGCAG Standard 

PBA65 MS2cp_NdeI_fwd ATACATATG GCCGTTAAAATGGCTTC  Standard 

PBA66 MS2cp_HindIII_rev ATAAAGCTTTTAAGCGTAGATGCCGGAG Standard 

PBA67 MS2cp_BamHI_rev ATAGGATCCTTAAGCGTAGATGCCGGAG   Standard 

 
 
Table 14: List of plasmids  

 
Code Plasmid name Insert Source Oligos 

used 
Parent 
plasmid 

M105 pHA-C1-MCSNdeI HA (Hemagglutinin) Elisa Izaurralde (MPI, 
Tübingen) 

- - 

M216 pHA-ckIIalpha Casein kinase II alpha Prashali Bansal PBA33, 
PBA34 

M105 

M178 pHA-Armi Armitage Prashali Bansal PBA13, 
PBA14 

M105 

M180 pHA-BicC Bicaudal C Prashali Bansal PBA55, 
PBA56 

M105 

M214 pHA-CG13090 CG13090 Prashali Bansal PBA29, 
PBA30 

M105 

M179 pHA-CG5726 CG5726 Prashali Bansal PBA01, 
PBA02 

M105 

M159 pHA-CG7185 CG7185 Prashali Bansal PBA23, 
PBA24 

M105 

M222 pHA-CG9684 CG9684 Prashali Bansal PBA31, 
PBA32 

M105 

M217 pHA-Coil Coilin (isoform D) Prashali Bansal PBA35, 
PBA36 

M105 

M167 pHA-Dco Discs overgrown Prashali Bansal PBA19, 
PBA20 

M105 
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M223 pHA-Dip1 Disco interacting 
protein 1 (isoform D) 

Prashali Bansal PBA37, 
PBA38 

M105 

M168 pHA-Dref DNA replication-
related element factor 

Prashali Bansal PBA15, 
PBA16 

M105 

M169 pHA-Gus Gustavus Prashali Bansal PBA17, 
PBA18 

M105 

M181 pHA-Hem HEM-protein Prashali Bansal PBA53, 
PBA54 

M105 

M218 pHA-Hsp60 Heat shock protein 
60A 

Prashali Bansal PBA39, 
PBA40 

M105 

M160 pHA-Loqs Loquacious (isoform 
PB) 

Prashali Bansal PBA03, 
PBA04 

M105 

M224 pHA-Ncm (ΔNΔC) Nucampholin (359-
664) 

Prashali Bansal PBA47, 
PBA48 

M105 

M219 pHA-nudC NudC Prashali Bansal PBA41, 
PBA42 

M105 

M221 pHA-pUF68 pUF68 Prashali Bansal PBA43, 
PBA44 

M105 

M162 pHA-Nph Nucleophosmin 
 

Prashali Bansal PBA05, 
PBA06 

M105 

M166 pHA-X16 X16 splicing factor Prashali Bansal PBA11, 
PBA12 

M105 

M163 pHA-SC35 SR family splicing 
factor 35 

Prashali Bansal PBA07, 
PBA08 

M105 

E66 pHA-eIF4AIII eIF4AIII Kristna Ile  - M105 

C645 pHA-Hrp48 Heterogeneous 
nuclear 
ribonucleoprotein at 
27C 

Kristna Ile - M105 

C586 pHA-Nos Nanos (isoform B) Kristna Ile - M105 

C597 pHA-Stau Staufen Kristna Ile - M105 

M134 pHA-Mahe Maheshvara Kristna Ile - M105 

C633 pHA-Fmr1 Fragile X mental 
retardation protein 1 

Kristna Ile - M105 

C604 pHA-Cup Cup Kristna Ile - M105 

C608 pHA-DCP1 Decapping protein 1 Kristna Ile - M105 

C581 pHA-eIF4E eIF4E (isoform C) Kristna Ile - M105 

C590 pHA-Orb oo18 RNA-binding 
protein 

Kristna Ile - M105 

B96 pHA-Egl Egalitarian Kristna Ile - M105 

M130 pHA-Heph Hephaestus Kristna Ile - M105 

C606 pHA-Otu  Ovarian tumor Kristna Ile - M105 

C641 pHA-Sqd Squid (isoform B) Kristna Ile - M105 

C700 pHA-Upf1 Up-frameshift 1 Kristna Ile - M105 

M137 pHA-Bel Belle Kristna Ile - M105 

C578 pHA-Exu Exuperantia Kristna Ile - M105 

C611 pHA-Tral Trailer hitch Kristna Ile - M105 

E64 pHA-Btz Barentz Kristna Ile - M105 

M63 pEGFP-EGFP-C1 Enhanced green 
fluorescent protein  

Elisa Izaurralde (MPI, 
Tübingen) 

- - 

M173 pEGFP-eIF4AIII eIF4AIII Prashali Bansal - E66 

M187 pEGFP-Glo Glorund Prashali Bansal PBA27, 
PBA28 

M02 

M175 pEGFP-Hrp48 Heterogeneous 
nuclear 
ribonucleoprotein at 
27C 

Prashali Bansal - C645 

M174 pEGFP-Nos Nanos (isoform B) Prashali Bansal - C586 
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M182 pEGFP-Stau Staufen Prashali Bansal - C597 

M177 pEGFP-Vas Vasa Prashali Bansal PBA09, 
PBA10 

M63 

M176 pEGFP-Nph Nucleophosmin 
 

Prashali Bansal - M162 

M186 pEGFP-SC35 SR family splicing 
factor 35 

Prashali Bansal - M163 

M184 pEGFP-SF2 Splicing factor 2 Prashali Bansal PBA21, 
PBA22 

M171 

M220 pEGFP-SmB Small 
ribonucleoprotein 
particle protein SmB 
 

Prashali Bansal PBA45, 
PBA46 

M63 

M183 pEGFP-mtSSB mitochondrial single 
stranded DNA-binding 
protein 

Prashali Bansal PBA25, 
PBA26 

M170 

M185 pEGFP-X16 X16 splicing factor Prashali Bansal - M166 

M104 pHA-Flag-C1-
MCSNdeI 

HA-FLAG  Elisa Izaurralde (MPI, 
Tübingen) 

- - 

M154 pHA-Flag-Lost Lost Prashali Bansal PBA51, 
PBA52 

M104 

C583 pHA-Flag-Me31B Maternal expression 
at 31B 

Kristna Ile - M104 

C574 pHA-Flag-Osk (short) Oskar (isoform short) Kristina Ile - M104 

C646 pHA-Flag-Hrp48 Heterogeneous 
nuclear 
ribonucleoprotein at 
27C 

Kristina Ile - M104 

M133 pHA-Flag-CG10077 CG10077 Kristina Ile - M104 

C610 pHA-Flag-Bruno Bruno (isoform A) Kristina Ile - M104 

C638 pHA-Flag-Glo Glorund Kristina Ile - M104 

C596 pHA-Flag-Stau Staufen Kristina Ile - M104 

E65 pHA-Flag-eIF4AIII eIF4AIII Kristina Ile 
 

M104 

M165 pHA-Flag-Vas Vasa - PBA49, 
PBA50 

M104 

M101 pUAST-attB for transgenesis Uwe Irion (MPI, 
Tübingen) 

- - 

C665 pUI-Venus Venus Daniela Lazzaretti - - 

M125 pUI-fTRG 2XTY1; sGFP; V5; 
Pre-scission; TEV; 
BLRP; 3XFLAG 

Prashali Bansal PBA57, 
PBA58 

C665 

C685 pUAST-fTRG 2XTY1; sGFP; V5; 
Pre-scission; TEV; 
BLRP; 3XFLAG 

Prashali Bansal - M101, 
M125 

M81 pCR4-24XMS2SL-
stable 

24X- MS2SL  Addgene 31865 - - 

M82 pCR4-24XPP7SL 24X- PP7SL  Addgene 31864 - - 

M80 pCR4-12XMS2SL 12X- MS2SL  Addgene 27119 - - 

M85 pTagNG Recombineering 
cassette  

Helena Jambor, 
Tomancak lab (MPI-
CBG Dresden) 

-  

M71 pTagNG-MS2-12XSL 12X- MS2SL  Prashali Bansal - M85, 
M80 

M72 pTagNG-MS2-24XSL 24X- MS2SL  Prashali Bansal - M85, 
M81 

M73 pTagNG-PP7-24XSL 24X- PP7SL  Prashali Bansal - M85, 
M82 

M74 pTagNG-MS2-12X-
PP7-24XSL 

12X- MS2 SL; 24X- 
PP7SL  

Prashali Bansal - M85, 
M80, 
M82 
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HJ1 oskFlyfos oskar gene Helena Jambor, 
Tomancak lab (MPI-
CBG Dresden) 

- - 

- oskFlyfosMS2-6X osk gene tagged with 
6X- MS2SL  

Prashali Bansal PBA59, 
PBA60 

HJ1, M72 

- oskFlyfosMS2-12X osk gene tagged with 
12X- MS2SL 

Prashali Bansal PBA59, 
PBA60 

HJ1, M71 

- oskFlyfosPP7-24X osk gene tagged with 
24X- PP7SL 

Prashali Bansal PBA59, 
PBA60 

HJ1, M73 

- oskFlyfosMS2-12X+ 

PP7-24X 

osk gene tagged with 
12X- MS2 SL + 24X- 
PP7SL 

Prashali Bansal PBA59, 
PBA60 

HJ1, M74 

- pJET2.1 - CloneJET PCR 
cloning kit (Thermo 
Fisher Scientific 
#K1231) 

- - 

M95 pJET2.1-rp49 Antisense rp49  Prashali Bansal PBA63, 
PBA64 

- 

M96 pJET2.1-alpha-tub67C Antisense alpha-tub 
67C  

Prashali Bansal PBA61, 
PBA62 

- 

C505 pBS-osk Antisense osk Uwe Irion (MPI, 
Tübingen) 

- - 

M84 pMS2-YFP MS2 coat protein Addgene 27122 - - 

M3 pET-MCN-GST 
(pnEA-vG) 

Glutathione S-
transferase (GST) 

Christophe Romier 
(IGBMC, Strasbourg) 

- - 

M9 pET-MCN-His (pnEK-
vH) 

Hexahistidine (His) Christophe Romier 
(IGBMC, Strasbourg) 

- - 

M31 pET-MCN-His-MBP 
(pnEA-vHM) 

Hexahistidine- 
Maltose-binding 
protein (His-MBP) 

Christophe Romier 
(IGBMC, Strasbourg) 

- - 

C542 pUC57-tdMCP 2X MS2 coat protein 
(tandem) 

GenScript - - 

C437 pET-MCN-GST-MCP  
(pnEA-vG-MCP) 

GST-MS2 coat 
protein 

Prashali Bansal PBA65, 
PBA66 

M3, M84 

C446 pET-MCN-His-MCP 
(pnEK-vH-MCP) 

His-MS2 coat protein Prashali Bansal PBA65, 
PBA67 

M9, M84 

C540 pET-MCN-His-MBP-
MCP 
(pnEA-vHM-MCP) 

His-MBP-MS2 coat 
protein 

Prashali Bansal PBA65, 
PBA67 

M31, 
M84 

C545 pET-MCN-His-MBP-
tdMCP 
(pnEA-vHM-tdMCP) 

His-MBP-2X MS2 
coat protein (tandem) 

Prashali Bansal - M31, 
C542  
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5.    Contributions 
 

The research work described in this thesis has been carried out under the supervision of Dr. 

Fulvia Bono during the period of January 2014 to March 2018 at the Max Planck Institute for 

Developmental Biology, Tübingen. I hereby declare that all experiments have been 

independently performed by me, with the exception of those listed below: 

a) To tag the osk mRNA, recombineering was performed in the laboratory of Dr. Pavel 

Tomancak, MPI-CBG, Dresden, under the supervision of Dr. Helena Jambor.  

b)  Fly embryo injections to generate the transgenic lines expressing MS2-12X- and MS2-

12X+PP7-24X- tagged osk mRNA were outsourced to BestGene Inc. (USA). Transgenic lines 

expressing PP7-24X- and MS2-6X- tagged osk mRNA were generated in the laboratory of 

Dr. Pavel Tomancak, MPI-CBG, Dresden. 

c) Fly embryo injections to generate the transgenic line expressing GFP tag only, to serve as 

a control for IP-MS experiments, were performed by Kristina Ile in the lab. 

d) All the fly lines expressing tagged RBPs and those used for genetic rescue assays were 

obtained from fly stock centers or colleagues. 

e) GST tag, to serve as a control for affinity purification of MS2-tagged osk mRNA using GST-

MCP, was purified by Jonas Mühle in the lab.  

f) LC-MS/MS measurements for both label-free and Dimethyl labeling MS were performed by 

Johannes Madlung, in the laboratory of Prof. Dr. Boris Macek, Proteome Center Tübingen, 

University of Tübingen. 

g) Raw data for Dimethyl labeling MS were processed by Johannes Madlung, in the 

laboratory of Prof. Dr. Boris Macek, Proteome Center Tübingen, University of Tübingen. 

h) About half of the plasmid constructs used for co-immunoprecipitation assays in HEK cells 

were prepared by Kristina Ile and Desiree Zerbst in the lab. 

 

 

Prashali Bansal 

10 October 2018 
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7.    Supplementary figures 
 

 

Supplementary Fig. 1. Chromatograms of affinity and heparin purification steps for differently tagged 
MCPs. 
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Supplementary Fig. 2. SEC profiles of the MBP-tagged MCP in complex with MS2 hairpin (A) and with 

an unrelated RNA hairpin (B). Profiles for RNA and protein are shown on the left, while the RNA-

protein complex is shown on the right. The elution profiles show UV absorption at 280nm (blue) and 

260nm (red). Elution volume of the reference protein is marked by dotted black line; the reference RNA 

in dotted green line and the complex in dotted orange line. 
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Supp Fig. 3 Overlay of frequency distribution of the logarithmized (Log2) LFQ intensities of all the 

proteins quantified in each IP, pre-imputation (highlighted in grey) and post-imputation (highlighted in 
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red). Imputation was done pairwise on each bait-control matrix. X axis represents the range of values; 

Y axis represents the number of values. To note that the imputed values occupy the low intensity range 

and generate a close to normal distribution that can be effectively used for further statistical 

calculations. 

 

 

 

Supplementary Fig. 4. Scatter plot indicating components of functionally distinct pathways identified to 

be associated with Vas-GFP, in the label-free MS data. Each identified protein is represented as a dot 

in light grey; the bait is highlighted in green; significantly enriched proteins are highlighted in pink; 

proteins that associate in the nuage particles are highlighted in magenta; proteins involved in pole 

plasm assembly are highlighted in cyan; background binders are highlighted in dark grey. To note that 

many factors known to interact with Vas, such as Aub, are not highly enriched, suggesting transient or 

indirect association with Vas. 
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Supplementary Fig. 5. Venn representation of the proteins found common in different bait-associated 

complexes. Overlap between the proteomes found associated with Hrp48 and Vas are shown on the 

left; overlap between Hrp48, Glo and Vas are shown in the middle; overlap between Hrp48, Glo, Vas, 

Nos and Stau is shown on the right. The number of proteins analyzed in each case is shown in 

brackets. 
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