Aus dem Department für Frauengesundheit Tübingen

Forschungsinstitut für Frauengesundheit

Inaugural-Dissertation
zur Erlangung des Doktorgrades
der Medizin
der Medizinischen Fakultät
der Eberhard Karls Universität
tübingen

vorgelegt von

Hayder, Sarah Sabina

2018
Dekan: Professor Dr. I. B. Authenrieth
1. Berichterstatter: Privatdozentin Dr. B. Lawrenz
2. Berichterstatter: Privatdozent Dr. C. Gille

Tag der Disputation: 11.12.2018
Inhaltsverzeichnis

1 Einleitung ... 1

1.1 Definition Sterilität und Infertilität ... 4

1.2 Ursachen Sterilität und Infertilität ... 5

1.2.1 Sterilitätsursachen der Frau ... 5

1.2.1.1 Ovarelle Ursachen ... 5

1.2.1.2 Tubare Sterilitätsursachen ... 6

1.2.1.3 Uterine Sterilitätsursachen ... 6

1.2.1.4 Zervikale Sterilitätsursachen .. 7

1.2.1.5 Vaginale Sterilitätsursachen .. 7

1.2.1.6 Extragenitale Sterilitätsursachen ... 7

1.2.1.7 Sterilitätsursachen des Mannes ... 8

1.3 Rechtliche Grundlagen ... 8

1.4 In-vitro-Fertilisation .. 9

1.4.1 Indikationen für den Einsatz von „Assisted Reproductive Technologies“ (ART) 10

1.4.2 Formen der ART ... 10

1.4.2.1 IVF ... 10

1.4.2.2 ICSI ... 10

1.4.3 Follikelgewinnung ... 11

1.4.4 Spermiengewinnung .. 11

1.5 Ovarielle Stimulation ... 12

1.5.1 Downregulation durch GnRH-Anologa ... 13

1.5.1.1 Allgemeines ... 13

1.5.2 Downregulierung durch GnRH-Agonisten .. 13

1.5.3 Downregulierung durch GnRH-Antagonisten ... 14
1.5.4 GnRH-Agonisten-Protokolle... 14
1.5.5 Antagonistenprotokoll .. 15
 1.5.5.1 Unerwünschte Wirkungen der GnRH-Agonisten............................ 15
1.5.6 Ovulationsinduktion ... 16
1.5.7 Embyrotransfer: .. 16
1.6 Risiken und Komplikationen der IVF ... 16
 1.6.1 Ovarielles Hyperstimulationssyndrom (OHSS) 16
 1.6.2 Mehrlingsschwangerschaften ... 18
 1.6.3 Operationsrisiken Follikelpunktion .. 18
2 Material und Methoden .. 20
 2.1 Fragestellung ... 20
 2.2 Statistische Berechnung und Auswertung .. 21
 2.2.1 Kreuztabellen.. 21
 2.2.2 Signifikanztest ... 21
 2.2.3 Chi-Quadrat-Test ... 22
 2.2.4 Fisher-Test .. 22
 2.3 Effektstärkeanalyse .. 22
 2.3.1 Cramers V ... 23
3 Ergebnisse ... 24
 3.1 Altersverteilung der Frauen .. 24
 3.2 Indikationen ... 25
 3.2.1 Indikationen bei Fertilitätsstörungen der Frau............................... 28
 3.2.2 Indikationen beim Mann ... 30
 3.3 Stimulationsprotokolle ... 32
 3.4 Verwendete Medikamente ... 33
 3.5 Stimulationsdosis .. 34
Tabellenverzeichnis
Tabelle 1: Ungefähre relative Häufigkeit Sterilitätsursachen der Frau (Stauber und Weyerstahl 2007) ... 5
Tabelle 2: Abkürzungen der ART Methoden .. 10
Tabelle 3: Indikationen zur ICSI nach Befunden im Ejakulat (Bundesausschuss 2014) 11
Tabelle 4: Gradeinteilung OHSS (World Health Organization 1972), (Stauber und Weyerstahl 2007) ... 16
Tabelle 5: Quantile Altersverteilung 2001 und 2011 .. 25
Tabelle 6: Mittelwert und Standardabweichung Altersverteilung 2001 und 2011........... 25
Tabelle 7: T-Test für zwei unabhängige Stichproben zum Vergleich der Altersverteilung 2011 zu 2001 ... 25
Tabelle 8: Kreuztabelle absolute und relative Häufigkeiten von Indikationen zur IFV bei Mann , Frau oder beiden 2011 zu 2001 ... 26
Tabelle 9: Vergleich der Indikationen zur IVF 2011 zu 2001 zwischen Mann und Frau mittels χ²-Test nach Pearson ... 27
Tabelle 10: Indikationsverteilung zur ICSI zwischen Mann und Frau 2001 27
Tabelle 11: Indikationsverteilung zur ICSI zwischen Mann und Frau 2011 27
Tabelle 12: Kreuztabelle absolute Häufigkeiten der Indikationen zur IVF bei der Frau 2001 und 2011 ... 27
Tabelle 13: Vergleich der Indikationen bei der Frau 2001 und 2011 mittels χ² Test nach Pearson und Fisher’s exaktem Test ... 30
Tabelle 14: Kreuztabelle absolute Häufigkeiten der Indikationen zur IVF beim Mann 2001 und 2011 ... 31
Tabelle 15: Vergleich der Indikationen beim Mann mittels χ² Test nach Pearson und Fisher’s exakter Test ... 32
Tabelle 16: Kreuztabelle absolute und relative Häufigkeiten der Stimulationspläne 2001 und 2011 ... 32
Tabelle 17: Vergleich der verwendeten Stimulationspläne mittels Fisher’s exaktem Test ... 33
Tabelle 18: Kreuztabelle absolute und relative Häufigkeiten der verwendeten Medikamente 2001 und 2011 ... 34
Tabelle 19: Vergleich der verwendeten Medikamente mittels χ² Test 34
Tabelle 20: Kreuztabelle absolute und relative Häufigkeiten der verwendeten Stimulationsdosen

Tabelle 21: Quantile Stimulationsdosen 2001 und 2011

Tabelle 22: Mittelwert und Standardabweichung Stimulationsdosis 2001 und 2011

Tabelle 24: Quantile Stimulationsdauer 2001 und 2011

Tabelle 25: Mittelwert und Standardabweichung Stimulationsdauer 2001 und 2011

Tabelle 26: T-Test für zwei unabhängige Stichproben zum Vergleich der Stimulationsdauer 2011 zu 2001

Tabelle 27: Quantile gewonnene Eizellen 2001 und 2011

Tabelle 28: Mittelwert und Standardabweichung gewonnene Eizellen 2001 und 2011

Tabelle 29: T-Test für zwei unabhängige Stichproben zum Vergleich der gewonnenen Eizellen 2011 zu 2001

Tabelle 30: Quantile Befruchtete Eizellen 2001 und 2011

Tabelle 31: Mittelwert und Standardabweichung befruchtete Eizellen 2001 und 2011

Tabelle 32: T-Test für zwei unabhängige Stichproben zum Vergleich der befruchteten Eizellen 2001 und 2011

Tabelle 33: Quantile befruchtete pro gewonnene Eizelle 2001 und 2011

Tabelle 34: Mittelwert und Standardabweichung befruchtete pro gewonnene Eizelle 2001 und 2011

Tabelle 35: T-Test für zwei unabhängige Stichproben zum Vergleich der befruchteten pro gewonnenen Eizellen 2011 zu 2001

Tabelle 36: Quantile für ICSI verwendete Eizellen 2001 und 2011

Tabelle 37: Mittelwert und Standardabweichung für ICSI verwendete Eizellen 2001 und 2011

Tabelle 38: T-Test für zwei unabhängige Stichproben zum Vergleich der für ICSI verwendeten Eizellen 2011 zu 2001

Tabelle 39: Quantile für ICSI verwendete Eizellen/Anzahl gewonnene Eizellen 2001 und 2011

Tabelle 40: Mittelwert und Standardabweichung für ICSI verwendete Eizellen/Anzahl gewonnene Eizellen 2001 und 2011
Tabelle 41: Wilcoxon-Rangsummen-Test zum Vergleich von für ICSI verwendete Eizellen/Anzahl gewonnene Eizellen 2001 und 2011 .. 45
Tabelle 42: 2-Stichproben Test mit Normal-Approximation des Wilcoxon-Tests von für ICSI verwendete EZ/Anzahl gewonnener EZ ... 45
Tabelle 43: Kreuztabelle absoluter und relativer Anzahl transferierter Embryonen 2001 und 2011 .. 47
Tabelle 44: Quantile transferierte Embryonen 2001 und 2011 .. 48
Tabelle 45: Mittelwert und Standardabweichung transferierter Embryonen 2001 und 2011 ... 48
Tabelle 46: T-Test für zwei unabhängige Stichproben zum Vergleich der transferierten Embryonen 2011 zu 2001 ... 48
Tabelle 47: χ² Test nach Pearson zum Vergleich der transferierten Embryonen 2011 zu 2001 .. 48
Tabelle 48: Quantile transferierte Embryonen 2001 und 2011 ohne missglückte Fälle 48
Tabelle 49: Mittelwert und Standardabweichung transferierte Embryonen 2001 und 2011 ohne missglückte Fälle .. 48
Tabelle 50: T-Test für zwei unabhängige Stichproben zum Vergleich der transferierte Embryonen 2011 zu 2001 ohne missglückte Fälle .. 48
Tabelle 51: Kreuztabelle transferierter Embryonen ohne missglückte Fälle 2001 und 2011 ... 49
Tabelle 52: χ² Test nach Pearson zum Vergleich der transferierten Embryonen 2011 zu 2001 ohne missglückte Fälle ... 49
Tabelle 53: Graphische Darstellung Häufigkeit IVF/ICSI 2001 und 2011 50
Tabelle 54: Häufigkeitsverteilung IVF und ICSI 2001 zu 2011 .. 50
Tabelle 56: Kreuztabelle der Häufigkeitsverteilung der Schwangerschaftsraten 2001 zu 2011 .. 51
Tabelle 58: Kreuztabelle Häufigkeitsverteilung von Lebend- und Todgeburten 2001 zu 2011 ... 52
Tabelle 59: Fisher's Exakter Test und Cramers V-Test zum Vergleich der Häufigkeitsverteilung Lebend- vs. Totgeburten 2001 und 2011................................. 52
Tabelle 60: Zusammenfassung der Ergebnisse mit Hinblick auf die Signifikanz......... 58
Abbildungsverzeichnis
Abbildung 1: Kinderlose Frauen Jahrgänge 1937-1972 in West- und Ostdeutschland (Bundesinstitut für Bevölkerungsforschung 2012) ... 2
Abbildung 2: Durchschnittliches Alter der Mütter bei Geburt in Deutschland, 1960-2015 (Bundesinstitut für Bevölkerungsforschung 2016) ... 3
Abbildung 3: Altersverteilung Frauen 2001 und 2011 ... 24
Abbildung 4: Graphische Darstellung zum Vergleich der Häufigkeiten der Altersverteilung der Frauen 2001 zu 2011 in Jahren ... 25
Abbildung 5: Graphische Darstellung der absoluten Häufigkeiten für die Anzahl der Indikationen zur IVF bei der Frau, beim Mann, oder bei beiden 2001 und 2011 26
Abbildung 6: Graphische Darstellung absoluten Häufigkeiten der Indikationen zur IVF der Frau 2001 zu 2011 .. 29
Abbildung 7: Graphische Darstellung der absoluten Häufigkeiten der Indikationen zur IVF beim Mann 2001 und 2011 ... 31
Abbildung 8: Grafische Darstellung der absoluten Häufigkeiten der verwendeten Stimulationspläne 2001 und 2011 ... 32
Abbildung 9: Grafische Darstellung der absoluten Häufigkeiten der verwendeten Medikamente 2001 und 2011 .. 34
Abbildung 10: Graphische Darstellung der absoluten Häufigkeiten von Stimulationsdosen 2001 und 2011 .. 35
Abbildung 12: Graphische Übersicht der Stimulationsdauer in Tagen 2001 und 2011. 37
Abbildung 14: Graphische Darstellung absolute Häufigkeiten der durch Punktion gewonnenen Eizellen 2011 und 2011 ... 38
Abbildung 15: Graphische Darstellung zum Vergleich der Häufigkeitsverteilung gewonnener Eizellen 2001 und 2011 ... 39
Abbildung 16: Graphische Darstellung zum Vergleich der Häufigkeitsverteilung von gewonnenen Eizellen 2001 und 2011 logarithmiert .. 39
Abbildung 17: Graphische Darstellung zum Vergleich der Häufigkeitsverteilung von befruchteten Eizellen 2001 und 2011 ... 41
Abbildung 18: Graphische Darstellung zum Vergleich der Häufigkeitsverteilung von befruchteten Eizellen 2001 und 2011 logarithmiert ... 41
Abbildung 19: Graphische Darstellung befruchtete pro gewonnene Eizelle 2001 und 2011 ... 42
Abbildung 20: Graphische Darstellung Vergleich der Häufigkeitsverteilung von für ICSI verwendeten Eizellen 2001 und 2011 .. 44
Abbildung 21: Graphische Darstellung der Häufigkeitsverteilung von für ICSI verwenden Eizellen 2001 und 2011 logarithmiert ... 44
Abbildung 22: Graphische Darstellung Vergleich von für ISCI verwendete Eizellen/Anzahl gewonnene Eizellen ... 45
Abbildung 23: Graphische Darstellung der absoluten Häufigkeiten transferierter Embryonen 2001 und 2011 ... 47
Abbildung 24: Graphischer Darstellung der Häufigkeitsverteilung transferierter Embryonen 2001 und 2011 ... 47
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Begriff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abs.</td>
<td>Absatz</td>
</tr>
<tr>
<td>ART</td>
<td>Assistierte Reproduktionstechniken</td>
</tr>
<tr>
<td>Bzw.</td>
<td>Beziehungsweise</td>
</tr>
<tr>
<td>C.</td>
<td>Corpus</td>
</tr>
<tr>
<td>Ca</td>
<td>Karzinom</td>
</tr>
<tr>
<td>ca.</td>
<td>Circa</td>
</tr>
<tr>
<td>CBAVD</td>
<td>Kongenitale bilaterale Aplasie des Vas deferens</td>
</tr>
<tr>
<td>Dif</td>
<td>Differenz</td>
</tr>
<tr>
<td>ESchG</td>
<td>Embryonenschutzgesetz</td>
</tr>
<tr>
<td>EUG</td>
<td>Extrauteringravidität</td>
</tr>
<tr>
<td>ET</td>
<td>Embryonentransfer</td>
</tr>
<tr>
<td>EZ</td>
<td>Eizellen</td>
</tr>
<tr>
<td>FSH</td>
<td>Follikel-stimulierendes Hormon</td>
</tr>
<tr>
<td>GnRH</td>
<td>Gonadotropin-Releasing-Hormon</td>
</tr>
<tr>
<td>HMG</td>
<td>humanes menopausales Gonadotropin</td>
</tr>
<tr>
<td>HCG</td>
<td>humanes Choriogonadotropin</td>
</tr>
<tr>
<td>ICSI</td>
<td>Intrazytoplasmatische Spermieninjektion</td>
</tr>
<tr>
<td>Insuff.</td>
<td>Insuffizienz</td>
</tr>
<tr>
<td>IUI</td>
<td>Intrauterine Insemination</td>
</tr>
<tr>
<td>IVF</td>
<td>In-vitro-Fertilisation</td>
</tr>
<tr>
<td>IVF-ET</td>
<td>In-vitro-Fertilisation-Embryotransfer</td>
</tr>
<tr>
<td>IVM</td>
<td>In-vitro-Maturation</td>
</tr>
<tr>
<td>LH</td>
<td>Luteinisierendes Hormon</td>
</tr>
<tr>
<td>MESA</td>
<td>Mikrochirurgische epididymale Spermienaspiration</td>
</tr>
<tr>
<td>OAT</td>
<td>Oligoasthenoteratozoospermie</td>
</tr>
<tr>
<td>OHSS</td>
<td>Ovarielles Hyperstimulationssyndrom</td>
</tr>
<tr>
<td>PCOS</td>
<td>Syndrom der polyzystischen Ovarien</td>
</tr>
<tr>
<td>PESA</td>
<td>Perkutane epididymale Spermienaspirati-</td>
</tr>
<tr>
<td>PN</td>
<td>Pronukleus</td>
</tr>
<tr>
<td>----------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>SD bzw. Std. Dev</td>
<td>Standardabweichung</td>
</tr>
<tr>
<td>Std Err.</td>
<td>Standardfehler</td>
</tr>
<tr>
<td>Tab.</td>
<td>Tabelle</td>
</tr>
<tr>
<td>TESE</td>
<td>Testikuläre Spermienaspiration</td>
</tr>
<tr>
<td>Teilw.</td>
<td>Teilweise</td>
</tr>
<tr>
<td>Z.n.</td>
<td>Zustand nach</td>
</tr>
</tbody>
</table>
1 Einleitung

Abbildung 1: Kinderlose Frauen Jahrgänge 1937-1972 in West- und Ostdeutschland (Bundesinstitut für Bevölkerungsforschung 2012)

* jeweils ohne Berlin

Datenquelle: Statistisches Bundesamt, Mikrozensus 2012; Berechnungen: BiB © BiB 2014
Ungewollte Kinderlosigkeit stellt eine große psychische Belastung für die Betroffenen dar. Es können sich Gefühle der Wertlosigkeit einstellen, gefolgt von Ängsten und Depressionen, besonders durch immer wieder fehlgeschlagene Versuche erfolgreich ein Kind auszutragen (Chiaffarino et al. 2011).

Studien haben gezeigt, dass die Sterilität bzw. Infertilität besonders bei Frauen eine starke emotionale Krise auslösen kann, die manchmal in ihrer Ausprägung wie beim Verlust eines nahen Verwandten empfunden wird. Auch steigt der psychische Druck je
stärker eine zeitlich und emotional aufwändige reproduktionsmedizinische Behandlung durchgeführt werden muss (Wischmann 2001).

1.1 Definition Sterilität und Infertilität

Sterilität bedeutet das Ausbleiben einer Schwangerschaft trotz mindestens 12-monatigem ungeschützten Geschlechtsverkehrs. Wenn der Zeitraum weniger als 12 Monate beträgt, so spricht man besser von „Konzeptionsschwierigkeiten“. Man unterscheidet zwei Arten von Sterilität:

1. Primäre Sterilität: Es lag noch nie eine Schwangerschaft vor
2. Sekundäre Sterilität: Es bestand schon einmal eine Schwangerschaft, dazu zählen Lebendgeburt, Extrauteringravidität (EUG) oder Fehlgeburt

Infertilität nennt man eine habituelle Abortneigung der Frau, bei der nicht die Konzeption an sich gestört ist, sondern das Austragen der Schwangerschaft. Oft werden Infertilität und Sterilität jedoch synonym gebraucht. Beim Mann bezeichnet Infertilität eine Unfruchtbarkeit aufgrund von Befunden im Spermiogramm, wie z.B. eine verminderte Anzahl an Spermien, oder deren verminderte Beweglichkeit.

Als Impotentia coenundi bezeichnet man die Unfähigkeit zum Geschlechtsverkehr.

(Stauber und Weyerstahl 2007)
1.2 Ursachen Sterilität und Infertilität

1.2.1 Sterilitätsursachen der Frau

Tabelle 1: Ungefährere relative Häufigkeit Sterilitätsursachen der Frau (Stauber und Weyerstahl 2007)

<table>
<thead>
<tr>
<th>Ursache</th>
<th>Relative Häufigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ovariell</td>
<td>30%</td>
</tr>
<tr>
<td>Tubar</td>
<td>30%</td>
</tr>
<tr>
<td>Uterin</td>
<td>5%</td>
</tr>
<tr>
<td>Zervikal</td>
<td>5%</td>
</tr>
<tr>
<td>Vaginal</td>
<td>5%</td>
</tr>
<tr>
<td>Psychisch</td>
<td>10 (–30)%</td>
</tr>
<tr>
<td>Extragenital, immunologisch, ungeklärt</td>
<td>15%</td>
</tr>
</tbody>
</table>

1.2.1.1 Ovarielle Ursachen

Die Ovarialinsuffizienz wird nach WHO Schema in die Gruppen I bis VII unterteilt.

WHO Gruppe I:

Diese Gruppe beschreibt die hypothalamisch-hypophysäre Ovarialinsuffizienz. Sie ist hypogonadotrop und normoprolaktinämisch. Dabei kommt es durch eine unzureichende Ausschüttung von GnRH zur verminderten Synthese und Freisetzung von LH und FSH, was anovulatorische Zyklen, eine Corpus luteum Insuffizienz oder primäre bzw. sekundäre Amenorrhö zur Folge haben kann. Ursachen der hypothalamisch-hypophysären Ovarialinsuffizienz können neben starker psychischer oder körperlicher Belastung (z.B. durch Leistungssport) und Anorexia nervosa, oder das Sheehan-Syndrom (Hypophysenvorderlappeninsuffizienz) sein.

WHO Gruppe II:

Bei der normogonadotropen-normoprolaktinämischen Ovarial-Insuffizienz handelt es sich entweder um Menstruationsblutungen mit anovulatorischen Zyklen oder eine primäre, bzw. sekundäre Amenorrhö.

Patientinnen der Gruppe WHO Gruppe IIa haben spontane Blutungen. Hier liegt eine Corpus-luteum-Insuffizienz zu Grunde.

WHO Gruppe III:

WHO Gruppe V und VI:
Erhöhte Prolaktinspiegel, z.B. durch ein Prolaktinom (WHO Gruppe V), oder durch die Einnahme von Medikamenten wie Dopaminantagonisten, oder Antidepressiva (WHO Gruppe VI), hemmen ebenfalls die pulsatile GnRH-Ausschüttung und führen dadurch zur Sterilität.

WHO Gruppe VII:
Diese Gruppe beschreibt eine hypothalamisch-hypophysäre Insuffizienz mit hypogonadotroper Amenorrhö bedingt durch einen Tumor.

(Stauber und Weyerstahl 2007)

1.2.1.2 Tubare Sterilitätsursachen

1.2.1.3 Uterine Sterilitätsursachen
Ursache von Sterilität und habituellen Aborten können anatomische Fehlbildungen (z.B. Uterus bicornis, Uterus (sub-)septus), oder eine Hypoplasie des Uterus, sowie Schädigungen des Endometriums durch Entzündungen oder Kürettagen, die zu Verwachsungen (Ashermann-Syndrom) führen, sein.
Submuköse oder intramurale Myome, die die Integrität des Cavums beeinträchtigen, können eine weitere Sterilitätsursache darstellen (Stewart 2001).
1.2.1.4 Zervikale Sterilitätsursachen

Morphologische Ursachen, wie postinfektiose Strikturen, Verletzungen nach Kürettage oder Geburten und Konisationen können zu einer Zervixinsuffizienz und Sterilität führen.

1.2.1.5 Vaginale Sterilitätsursachen

Die Kohabitation erschwerende Ursachen wie posttraumatische Stenosen, Entzündungen oder funktionelle, meist psychisch bedingte Störungen (Vaginismus) können ebenfalls zu Sterilität führen (Stauber und Weyerstahl 2007).

1.2.1.6 Extragenitale Sterilitätsursachen

Störungen anderer endokriner Systeme können ebenso die Fertilität beeinflussen, z.B. Störungen von:

- Schilddrüse: Hypothyreose, Hyperthyreose
- Nebennierenrinde: Morbus Addison, Morbus Cushing, adrenogenitales Syndrom, adrenale Hyperandrogenämie
- Pankreas: unbehandelter Diabetes mellitus

(Schultze-Mosgau et al. 2007)

Auch schwere chronische Erkrankungen, Drogen- oder Alkoholmissbrauch und die Einnahme dopaminantagonistischer Medikamente (wie z.B. Neuroleptika, Metoclopramide) können extragenitale Ursachen einer Sterilität sein. Zuletzt erwähnt werden muss
die psychogene Sterilität, bei der keine organische Ursache für eine Sterilität gefunden werden kann, dafür oft psychische Konflikte im Zusammenhang mit dem Kinderwunsch im Vordergrund stehen (Stauber und Weyerstahl 2007).

1.2.1.7 Sterilitätsursachen des Mannes

1.3 Rechtliche Grundlagen
menschliche Eizelle, was jede Entwicklungsfähige Eizelle innerhalb der ersten 24 Stunden nach Kernverschmelzung betrifft, außer einer befruchteten Eizelle, die sich nicht über das Einzellstadium hinausbewegen kann (ESchG § 8).

Rechtlich bindend ist auch das Verbot laut § 1 Abs. 1 Nr. 3 EschG pro Zyklus nicht mehr als drei Embryonen zu übertragen. Ebenfalls verboten sind die Eizell- und Embryonenenspende laut § 1 Abs. 1 Nr. 6 und 7 EschG sowie die Leihmutterschaftsvermittlung nach § 13c und d des Adoptionsvermittlungsgesetzes.

Die homologe Insemination (Samenspender ist zugleich Ehemann bzw. Lebenspartner) und die heterologe Insemination (Samenspende durch einen Fremdspender) sind in Deutschland erlaubt.

Die Kostenübernahme durch die Krankenkassen ist uneinheitlich in den verschiedenen Bundesländern und zwischen gesetzlichen und privaten Krankenversicherungen. Grund- sätzlich lässt sich aber sagen, dass seit dem Inkrafttreten des Gesundheitsmodernisierungsverordnungsge setzes am 01.04.2004 die gesetzlichen Krankenkassen 50% der Kosten für maximal 3 Versuche der künstlichen Befruchtung finanzieren, sofern das Paar verheiratet ist und bestimmte Voraussetzungen erfüllt sind. Unverheiratete Paare erhalten bisher keine Erstattung. Grundlage hierfür sind § 27 a Abs. 1 Nr. 3 und 4 des SGB V. Die privaten Krankenkassen erstatten 100% der Kosten, wenn die Infertilität des Privatversicherten ursächlich für die Kinderlosigkeit ist (§ 1 der Musterbedingungen des Verbands der privaten Krankenversicherung für die Krankheitskosten- und Krankenhaustagegeldversicherung). Heterologe Inseminationen werden weder gesetzlich noch privat erstattet (Schmidt-Recla und Noack 2011).

1.4 In-vitro-Fertilisation

1.4.1 Indikationen für den Einsatz von „Assisted Reproductive Technologies“ (ART)
Indikationen sind die tubare Sterilität (Tubenamputationen, nicht anders behandelbare Tubenverschlüsse), Einschränkungen der Samenqualität oder idiopathische Sterilität mit Ausschöpfung aller sonstigen Methoden der Sterilitätsbehandlung (Strowitzki 2006).

1.4.2 Formen der ART
Es existieren verschiedene Methoden der ART. Die Abkürzungen in Tabelle 2 zeigen eine Übersicht der gängigen ART Methoden.

Tabelle 2: Abkürzungen der ART Methoden

<table>
<thead>
<tr>
<th>IVF</th>
<th>In-vitro-Fertilisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICSI</td>
<td>Unterform der IVF mit intrazytoplasmatischer Spermieninjektion</td>
</tr>
</tbody>
</table>

1.4.2.1 IVF
Mit In-vitro-Fertilisation bezeichnet die Inkubation von Oozyten mit den Spermien des Partners. 24 Stunden nach der Insemination der Oozyten wird geprüft, ob es zur Fertilisation gekommen ist.

1.4.2.2 ICSI
Hierbei wird ein einzelnes Spermium mit einer Mikropipette direkt in das Zytoplasma einer Eizelle injiziert. ICSI wird vor allem bei andrologischer Sterilität durchgeführt, wie z.B. zu geringer Spermiendichte, einem Verlust der progressiven Motilität und ei-

| Tabelle 3: Indikationen zur ICSI nach Befunden im Ejakulat (Bundesausschuss 2014) |
|---|----------------------------------|
| Spermien nativ | Spermien nach Aufbereitung |
| Konzentration (Mio/ml) | < 10 |
| Gesamtmotilität (%) | < 30 |
| Progressivmotilität (WHO A in %) | < 25 |
| Normalformen | < 20 |
| | < 5 |
| | < 50 |
| | < 40 |
| | < 20 |

1.4.3 Follikelgewinnung

Die durch ovariale Stimulation gebildeten Follikel werden unter transvaginaler Ultraschallkontrolle punktiert und die Follikelflüssigkeit mit den darin enthaltenen Oozyten aspiriert. Die transvaginale Follikelpunktion hat andere Operationstechniken, wie die laparoskopische Gewinnung, abgelöst, da sie schonender und risikoärmer ist. Sie wird in Analgosedierung, oder kurzer Vollnarkose durchgeführt.

1.4.4 Spermiengewinnung

Normalerweise wird für eine ART-Behandlung Sperma durch orthograde Ejakulation gewonnen. Ist eine Ejakulation nicht möglich, oder enthält das Sperma keine Spermatozoen, kommen andere Möglichkeiten der Spermiengewinnung zum Einsatz. Bei obstruktiver Azoospermie des Mannes können die Spermien mittels MESA (Mikrochirurgische epididymale Spermienspiration) mikrochirurgisch aus dem Nebenhoden, oder mittels TESE (Testikuläre Spermiextraktion) aus dem Hoden selbst für die ICSI ge-
wonnen werden. Daneben existiert die PESA (Perkutane epididymale Spermienaspirati-
on), bei welcher blind durch die Haut der Nebenhoden punktiert wird.

Die MESA wird klassischerweise bei beidseitig inoperablen Obstruktionen des Ductus
derer, kongenitaler bilateraler Aplasie der Vasa deferentia (CBAVD; eine isolierte
oder milde Form der Mukoviszidose), dem Young-Syndrom (Kombination aus
Azoospermie und chronischer Infektionen der Atemwege), versagter Refertilisie-
rungsoperation nach Vasektomie, und nicht therapierbaren Ejakulationsstörungen an-
gewendet (Diemer et al. 2007). Nach mikrochirurgischer Freilegung des Nebenhodens
werden die Spermien aspiriert und anschließend entweder direkt zur ICSI verwendet
oder kryokonserviert, um sie für die nachfolgenden ICSI-Behandlungen zu verwenden
(Janzen et al. 2000).

Bei der TESE gelten typischerweise die gleichen Indikationen wie bei der MESA -oft
werden die beiden Verfahren auch kombiniert- sowie zusätzlich noch Vernarbungen aus
früheren MESA-Operationen. Darüber hinaus können auch bei nichtobstruktiver, testi-
kulärer Azoospermie mit schweren Spermatogenesestörungen, Kryptozoospermie, oder
dem Klinefelter-Syndrom, Spermatozoen aus dem Hoden gewonnen werden (Diemer et
al. 2007).

Bei der TESE wird der Hoden freigelegt, biopsiert, die Biopsien analysiert und gegebe-
nenfalls kryokonserviert.

Die Mikro-TESE (m-TESE) beschreibt ein mikrochirurgisches Verfahren mit Aufsu-
chen von Spermatogenesearealen mittels Mikroskop. Durch ihre Selektivität soll sie
dabei schonender und effektiver als die klassische TESE sein (Tsujimura et al. 2006).

Eine weitere Sonderform ist die perkutane testikuläre Spermienaspiration (TESA), die
weniger invasiv ist, aber schlechtere Ergebnisse bezüglich der Spermiengewinnung er-
zielen soll (Friedler et al. 1997).

1.5 Ovarielle Stimulation

Die Zyklen zur IVF können prinzipiell unstimuliert durchgeführt werden (mit der Ge-
winnung einer Eizelle), jedoch bevorzugt man die kontrollierte medikamentöse Stimula-
tionstherapie mit der Heranreifung mehrerer Follikel aufgrund besserer Schwanger-
schaftsraten (Schmidt-Matthiesen und Fournier 2005).
Ziel der Eierstockstimulation zur Eizellentnahme für eine IVF ist das Heranreifen meh-
rerer reifer, befurchtungsfähiger Eizellen. Zur Stimulation des Ovars werden Gona-
dotropine genutzt. Diese sind in Deutschland Humans Menopausengonadotropin hMG
(z.B. Menogon©), reines Follikelstimulierendes Hormon FSH (z.B. Gonal-F©, Pu-
regon©, Elonva©), Luteinisierendes Hormon LH (z.B. Luveris©), oder eine Mischung
aus FSH und LH (z.B. Pergoveris©). LH kann in Kombination mit FSH gegeben wer-
den, reines FSH kann auch alleine gegeben werden (Youssef et al. 2011). Zur Unterdrück-
ung eines LH-Anstiegs, der zur vorzeitigen Ovulation und damit zum Verlust der
Oozyten führen würde, kommen GnRH-Analoga zum Einsatz.

1.5.1 Downregulation durch GnRH-Analoga

1.5.1.1 Allgemeines

GnRH-Analoga sind strukturell vom natürlichen GnRH abgeleitet, weisen jedoch eine
höhere Rezeptoraffinität und Wirkdauer auf. In physiologischer Weise ist die pulsatile
Ausschüttung des hypothalamischen GnRH Voraussetzung für eine Stimulation des
Hypophysenvorderlappens und der damit verbundenen Freisetzung von Gonadotropinen
(Barbieri 2014). Die Frequenz der GnRH-Pulse bestimmt dabei ob eher LH oder FSH
sezerniert wird (Jayes 1997). Um einen endogenen LH-Anstieg, der zur Ovulation füh-
ren würde, während der Stimulation der Ovarien mittels Gonadotropinen zu verhindern,
muss die Gonadotropinfreisetzung aus der Hypophyse verhindert werden. Hierzu wer-
den
GnRH-Analoga eingesetzt. Es existieren zwei Formen von GnRH-Analoga: GnRH-
Agonisten und GnRH-Antagonisten, welche in den nach ihnen benannten Stimulations-
protokollen zum Einsatz kommen.

1.5.2 Downregulierung durch GnRH-Agonisten

Durch kontinuierlicher Gabe von GnRH-Agonisten kommt es zuerst zu einer vermehr-
ten Gonadotropinausschüttung -einem sogenannten „flare-up“- später dann durch
Downregulierung der Rezeptoren zu einer Hemmung der Hypophyse mit induziertem reversiblen hypogonadotropem Hypogonadismus (Dorn und Griesinger 2009)

1.5.3 Downregulierung durch GnRH-Antagonisten

1.5.4 GnRH-Agonisten-Protokolle
Beim kurzen bzw. ultrakurzen flare-up Protokoll macht man sich die kurzfristig stimulierende Wirkung von GnRH-Agonisten zu Nutze und verabreicht diese erst am 2.-4. Zyklustag des Behandlungszyklus. Die ovarielle Stimulation kann entweder gleichzeitig oder nach etwa 2 Tage gestartet werden. Auch hier dauert die Stimulation etwa 9-11 Tage, danach wird wie oben beschrieben die Ovulationsinduktion durch HCG-Gabe ausgelöst und 36 Stunden später punktiert. Als Vorteil dieses Protokolls wird ein zusätzlicher Stimulationseffekt durch den initialen flare-up der Hypophyse, was sich positiv
auf das Follikelwachstum auswirken soll, angenommen. Dieser Effekt kann bei Frauen mit nachlassender Eierstockfunktion positiv sein.

1.5.5 Antagonistenprotokoll

1.5.5.1 Unerwünschte Wirkungen der GnRH-Agonisten
1.5.6 Ovulationsinduktion
Um den Eisprung auszulösen wird HCG (humanes Choriogonadotropin) appliziert, welches große biochemische Ähnlichkeit zur LH besitzt, dabei aber länger und stärker wirkt. Es bewirkt die letzte Reifung der Eizellen und unterstützt die Lutealphase. 36 Stunden nach HCG-Gabe erfolgt die Eizellgewinnung via transvaginaler Punktion.

1.5.7 Embryo transfer:
Alle gewonnenen Eizellen befinden sich nach erfolgreicher Befruchtung im 2-Pronukleus-Stadium (2-PN-Stadium).
Der Embryotransfer kann zwischen Tag 2 und 5 nach der Follikelpunktion durchgeführt werden. Nach dem ESchG ist es nur zulässig so viele 2-PN-Zellen zu Embryonen heranreifen zu lassen, wie der Frau nachher transferiert werden sollen, also maximal 3 (Schmidt-Matthiesen und Fournier 2005).
Der Embryotransfer in den Uterus transvaginal mittels Katheter, möglichst unter sonographischer Kontrolle.

1.6 Risiken und Komplikationen der IVF

1.6.1 Ovarielles Hyperstimulationssyndrom (OHSS)
Das OHSS kann sich als Folge einer hormonellen Stimulation mit Gonadotropinen zur IVF / ICSI entwickeln, ein OHSS nach Therapie mit dem Antiöstrogen Clomifen ist zwar nicht ausgeschlossen, aber sehr selten. Es wird nach WHO in drei Schweregrade, von leicht, mittel bis schwer, eingeteilt.

Tabelle 4: Gradeinteilung OHSS (World Health Organization 1972), (Stauber und Weyerstahl 2007)

<table>
<thead>
<tr>
<th>Grad 1</th>
<th>Befunde</th>
<th>Therapie</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Variable ovarielle Vergrößerung (<5cm), teilw. kleine Zysten. Im Urin Östrogenkonzentrationen >150µg/24h und Progesteronkonzentrationen >10mg/24h. Keine oder wenig abdominelle Beschwerden.</td>
<td>Engmaschig überwachen.</td>
</tr>
</tbody>
</table>

Die Häufigkeit eines leichten OHSS pro stimuliertem Zyklus liegt bei bis zu 5%, die Inzidenz eines schweren OHSS in etwa bei 0.3%. Ein erhöhtes Risiko haben Frauen mit hypogonadotropem Hypogonadismus (WHO I), da sie besonders empfindlich auf die Gonadotropingabe reagieren (Neulen 2001).

Die größte Risikogruppe umfasst Frauen mit einer hohen ovariellen Reserve, z.B. bei bestehendem PCOS. Ebenso sind jüngere Patientinnen und Frauen mit einem hohen Anti-Müller-Hormon (AMH) und hohem antralen Follikel-Count (antral follicle count, AFC) und niedrigem Gewicht einem erhöhten Risiko ausgesetzt. Das liegt vermutlich daran, dass ihre Ovarien besser auf Gonadotropine ansprechen, weil sie eine vermehrte Gonadotropin-Rezeptordichte, oder mehr Follikel, die auf Gonadotropine ansprechen, besitzen (Delvigne 2002). Daneben zählen eine unerkannte Hypothyreose und mehr als drei dominante Follikel in unstimulierten Zyklen zu den Risikofaktoren (Binder et al. 2007).

1.6.2 Mehrlingsschwangerschaften

1.6.3 Operationsrisiken Follikelpunktion

Durch Verwendung der transvaginalen sonographischen Follikelaspiration anstelle der laparoskopischen Eizellgewinnung, ist die Komplikationsrate deutlich zurückgegangen. Trotzdem kann es durch die Aspirationsnadel zu Verletzungen von Beckenorganen und -strukturen kommen. Mögliche Komplikationen sind vaginale und intraabdominale Blutungen und Infektionen des Beckens. Laut Deutschem IVF-Register 2014 wurden bei 0,84% aller Follikelpunktionen Komplikationen verzeichnet, die mit großem Abstand Häufigste war die vaginale Blutung mit einem Anteil von 62%, gefolgt von ca. 20% intraabdominellen Blutungen. In jeweils 5% der Komplikationsfälle war eine Operation
oder eine stationäre Behandlung notwendig. Darmverletzungen (1,2%) und Peritonitis (0,5%) traten dagegen vergleichsweise selten auf (Deutsches IVF-Register. 2014).

Die Punktion wird üblicherweise in kurzer Allgemeinnarkose oder in Analgosedierung, durchgeführt, wobei die für die jeweilige Prozedur spezifischen Narkosekomplikationen ebenfalls bedacht werden sollten.
2 Material und Methoden

2.1 Fragestellung

Im Folgenden werden unten aufgeführte Parameter hinsichtlich signifikanter Unterschiede zwischen den Jahren 2001 und 2011 untersucht:

- Alter der Patientinnen zur Zeit der Punktion
- Indikation für die IVF/ICSI
- Stimulationsplan: Agonistenprotokoll oder Antagonistenprotokoll
- Medikation
- Stimulationsdosis
- Stimulationsdauer
- Anzahl bei der Punktion gewonnener Eizellen
- Anzahl der für die IVF und ICSI genutzten Eizellen
- Anzahl befruchteter Eizellen
- Anzahl transferierter Embryonen
- Schwangerschaftsraten
- Lebendgeburtenraten
2.2 Statistische Berechnung und Auswertung

Die Daten wurden aus Akten der Kinderwunschprechstunde der Universitäts-Frauenklinik entnommen, mit dem Programm Excel in eine tabellarische Form überführt und durch die Statistikprogramme JMP 10.0.0 von SAS und IBM SPSS Statistics für Windows ausgewertet. Die Grafiken des Ergebnisteils wurden durch JMP, SPSS, Microsoft Word und Microsoft Excel erstellt.

Zur statistischen Analyse wurden zum Vergleich der Mittelwerte zweier unabhängiger Stichproben bei Annahme einer Normalverteilung der Zweistichproben-t-Test und bei Nichtvorliegen einer Normalverteilung der Wilcoxon-Mann-Whitney-Test verwendet. Zudem wurden Kreuztabellen erstellt und mit dem χ^2-Test nach Pearson und Fisher’s exaktem Test (wenn die zugrundeliegenden Stichprobenumfänge <5 sind) für unabhängige Stichproben auf signifikante Unterschiede der Verteilung überprüft. Das Signifikanzniveau beträgt hier $\alpha=0.05$ für alle Tests.

Im Folgenden werden die im Rahmen der vorliegenden Arbeit eingesetzten statistischen Methoden kurz skizziert.

2.2.1 Kreuztabellen

Kreuztabellen geben die absoluten und relativen (Prozent) Häufigkeiten von Kombinationen bestimmter Merkmalsausprägungen (hier: Kombinationen bestimmter Merkmalsausprägungen von zwei Variablen) an. Eine Kreuztabelle enthält auch die Randhäufigkeiten (die zeilenweisen und die spaltenweisen Summen, also die Summen der Merkmalsausprägungen einer Variablen über die Summe der Merkmalsausprägungen der anderen Variablen hinweg). Die von Kreuztabellen angegebenen Werte sind deskriptiv.

2.2.2 Signifikanztest

Ein deskriptiv für eine Stichprobe ermitteltes Ergebnis ist auf die Grundgesamtheit übertragbar, wenn die Stichprobe für die Grundgesamtheit repräsentativ ist. Eine Zufallsstichprobe ist für die Grundgesamtheit repräsentativ, wenn sie hinreichend groß ist

Das Ergebnis eines Signifikanztests sagt nichts über die Stärke oder die Wichtigkeit eines Effekts aus. Ein praktisch bedeutungsloser Effekt kann signifikant werden wenn die Stichprobe sehr groß ist, und ein großer, praktisch bedeutsamer Effekt wird möglicherweise nicht signifikant, wenn die Stichprobe klein ist.

2.2.3 Chi-Quadrat-Test

Der Chi-Quadrat-Test wurde im Rahmen der vorliegenden Arbeit verwendet, um die Häufigkeitsverteilungen von Kontingenztabellen mit mehr als vier Zellen auf Signifikanz zu testen.

2.2.4 Fisher-Test

Der Fisher-Test (exakter Test nach Fisher) wurde im Rahmen der vorliegenden Arbeit verwendet, um die Häufigkeitsverteilungen von Kontingenztabellen mit genau vier Zellen auf Signifikanz zu testen. Da ungerichtete Unterschiedshypothesen vorlagen, wurde im Regelfall zweiseitig getestet.

2.3 Effektstärkeanalyse

Effektstärkeanalysen versuchen die Stärke eines Effekts messbar zu machen und zu objektivieren.
2.3.1 Cramers V

3 Ergebnisse

3.1 Altersverteilung der Frauen

Im Zweistichproben t-Test (Tabelle 7) erkennt man einen signifikanten Unterschied der Altersverteilung der Frauen 2001 zu 2011 mit einem Wert von p=0,0063. Das Alter der Frauen ist im Jahr 2011 im Mittel signifikant höher als zehn Jahre zuvor.

![Altersverteilung Frauen 2001 und 2011](image)

Abbildung 3: Altersverteilung Frauen 2001 und 2011
Abbildung 4: Graphische Darstellung zum Vergleich der Häufigkeiten der Altersverteilung der Frauen 2001 zu 2011 in Jahren

Tabelle 5: Quantile Altersverteilung 2001 und 2011

<table>
<thead>
<tr>
<th>Level</th>
<th>Minimum</th>
<th>10%</th>
<th>25%</th>
<th>Median</th>
<th>75%</th>
<th>90%</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>25</td>
<td>28,1</td>
<td>31</td>
<td>34</td>
<td>36,25</td>
<td>39,9</td>
<td>42</td>
</tr>
<tr>
<td>2011</td>
<td>25</td>
<td>28,1</td>
<td>31,75</td>
<td>38</td>
<td>41</td>
<td>42</td>
<td>45</td>
</tr>
</tbody>
</table>

Tabelle 6: Mittelwert und Standardabweichung Altersverteilung 2001 und 2011

<table>
<thead>
<tr>
<th>Level</th>
<th>Number</th>
<th>Mean</th>
<th>Std Dev</th>
<th>Std Err Mean</th>
<th>Lower 95%</th>
<th>Upper 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>50</td>
<td>33,7000</td>
<td>4,04187</td>
<td>0,57161</td>
<td>32,551</td>
<td>34,849</td>
</tr>
<tr>
<td>2011</td>
<td>50</td>
<td>36,2800</td>
<td>5,13905</td>
<td>0,72677</td>
<td>34,819</td>
<td>37,741</td>
</tr>
</tbody>
</table>

Tabelle 7: T-Test für zwei unabhängige Stichproben zum Vergleich der Altersverteilung 2011 zu 2001

Difference	2,58000	t Ratio	2,790322		
Std Err Dif	0,92462	DF	98		
Upper CL Dif	4,41489	Prob >	t		0,0063*
Lower CL Dif	0,74511	Prob > t	0,0032*		
Confidence	0,95	Prob < t	0,9968		

3.2 Indikationen

Der Grund für die Indikationsstellung zur IVF/ICSI konnte rein weiblich, rein männlich, oder gemischt sein. Die Anzahl weiblicher Indikationen betrug 2001 34%, männlicher Indikation 32% und bei beiden kombiniert 34% (Abbildung 5 und Tabelle 8). Im Jahr
2001 betrug die Anzahl an weiblichen Indikationen 55,1%, Männliche 26,5% und Kombinierte 18,4%.

![Graphische Darstellung der absoluten Häufigkeiten für die Anzahl der Indikationen zur IVF bei der Frau, beim Mann, oder bei beiden 2001 und 2011](image)

Abbildung 5: Graphische Darstellung der absoluten Häufigkeiten für die Anzahl der Indikationen zur IVF bei der Frau, beim Mann, oder bei beiden 2001 und 2011

Tabelle 8: Kreuztabelle absolute und relative Häufigkeiten von Indikationen zur IFV bei Mann, Frau oder beiden 2011 zu 2001

<table>
<thead>
<tr>
<th>Count Col %</th>
<th>2001</th>
<th>2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>beide</td>
<td>17</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>34.0</td>
<td>18.4</td>
</tr>
<tr>
<td>nur Frau</td>
<td>17</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>34.0</td>
<td>55.1</td>
</tr>
<tr>
<td>nur Mann</td>
<td>16</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>32.0</td>
<td>26.5</td>
</tr>
<tr>
<td>Summe</td>
<td>50</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>
Tabelle 9: Vergleich der Indikationen zur IVF 2001 zu 2001 zwischen Mann und Frau mittels χ²-Test nach Pearson

<table>
<thead>
<tr>
<th>Test</th>
<th>ChiSquare</th>
<th>Prob>ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson</td>
<td>5.035</td>
<td>0.0807</td>
</tr>
</tbody>
</table>

Noch einmal gesondert dargestellt sind hier die Indikationsverteilungen zwischen Mann und Frau zur ICSI-Behandlung. Indikationsgemäß war in allen 16 Fällen 2001 eine Fertilitätsstörung des Mannes ursächlich für die ICSI, dabei war in der Hälfte der Fälle zusätzlich noch eine weibliche Fertilitätsstörung zu verzeichnen (Tabelle 10). 2011 sind 12 von 22 (54,5%) Indikationen rein männlich, alle davon wegen eines eingeschränkten Spermiogramms, 3 Fälle gemischt (13,6%) und 7 Fälle rein weiblich (31,8%) (ungeklärtes Fertilitätsversagen) (Tabelle 11).

Tabelle 10: Indikationsverteilung zur ICSI zwischen Mann und Frau 2001

<table>
<thead>
<tr>
<th>Fälle ICSI 2001 (n=16)</th>
<th>Indikation Mann</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Spermiogramm</td>
</tr>
<tr>
<td></td>
<td>n</td>
</tr>
<tr>
<td>Normal</td>
<td>5</td>
</tr>
<tr>
<td>Prolaktin</td>
<td>4</td>
</tr>
<tr>
<td>Tuben</td>
<td>1</td>
</tr>
<tr>
<td>Zyklusstör.</td>
<td>3</td>
</tr>
<tr>
<td>Summe</td>
<td>13</td>
</tr>
</tbody>
</table>

Tabelle 11: Indikationsverteilung zur ICSI zwischen Mann und Frau 2011

<table>
<thead>
<tr>
<th>Fälle ICSI 2011 (n=22)</th>
<th>Indikation Mann</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Spermiogramm</td>
</tr>
<tr>
<td>Alter</td>
<td>0</td>
</tr>
<tr>
<td>Endometriose</td>
<td>0</td>
</tr>
<tr>
<td>Hyperandrogenämie</td>
<td>0</td>
</tr>
<tr>
<td>Z.n. Mamma-Ca</td>
<td>0</td>
</tr>
<tr>
<td>Myom</td>
<td>1</td>
</tr>
<tr>
<td>normal</td>
<td>12</td>
</tr>
<tr>
<td>Ovarialinsuff.</td>
<td>1</td>
</tr>
<tr>
<td>Zyklusstörung</td>
<td>1</td>
</tr>
<tr>
<td>Summe</td>
<td>15</td>
</tr>
</tbody>
</table>
3.2.1 Indikationen bei Fertilitätsstörungen der Frau

Abbildung 6: Graphische Darstellung absoluten Häufigkeiten der Indikationen zur IVF der Frau 2001 zu 2011

Tabelle 12: Kreuztabelle absolute Häufigkeiten der Indikationen zur IVF bei der Frau 2001 und 2011

<table>
<thead>
<tr>
<th>Diagnose</th>
<th>2001</th>
<th>2011</th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primär</td>
<td>10</td>
<td>6</td>
<td>16</td>
</tr>
<tr>
<td>PCO</td>
<td>3</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>Tuben</td>
<td>13</td>
<td>11</td>
<td>24</td>
</tr>
<tr>
<td>Hyperprolaktinämie</td>
<td>4</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Endometriose</td>
<td>1</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Hyperandrogenämie</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Myom</td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Oligomenorrhoe</td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>C. luteum Insuff.</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Erhöhtes Alter</td>
<td>0</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Mamma-Ca</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Andere</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Ovarialinsuff.</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Sekundär</td>
<td>0</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Gesamt</td>
<td>37</td>
<td>57</td>
<td>94</td>
</tr>
</tbody>
</table>
Tabelle 13: Vergleich der Indikationen bei der Frau 2001 und 2011 mittels χ^2 Test nach Pearson und Fisher’s exaktem Test

<table>
<thead>
<tr>
<th></th>
<th>Wert</th>
<th>df</th>
<th>Asymptotische Signifikanz (2-seitig)</th>
<th>Exakte Signifikanz (2-seitig)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi-Quadrat nach Pearson</td>
<td>28,726(^a)</td>
<td>13</td>
<td>.007</td>
<td>.002</td>
</tr>
<tr>
<td>Exakter Test nach Fisher</td>
<td>27,185</td>
<td>94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anzahl der gültigen Fälle</td>
<td>94</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) 23 Zellen (82,1%) haben eine erwartete Häufigkeit kleiner 5. Die minimale erwartete Häufigkeit ist .79.

3.2.2 Indikationen beim Mann

Abbildung 7: Graphische Darstellung der absoluten Häufigkeiten der Indikationen zur IVF beim Mann 2001 und 2011

Tabelle 14: Kreuztabelle absolute Häufigkeiten der Indikationen zur IVF beim Mann 2001 und 2011

<table>
<thead>
<tr>
<th>Diagnose</th>
<th>Jahr 2001</th>
<th>Jahr 2011</th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Jahr 2001</td>
<td>Jahr 2011</td>
<td>Gesamt</td>
</tr>
<tr>
<td>OAT</td>
<td>18</td>
<td>15</td>
<td>33</td>
</tr>
<tr>
<td>Asthenozoospermie</td>
<td>3</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>Kryptozoospermie</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Azoospermie</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Teratozoospermie</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Oligoasthenozoospermie</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Vasektomie</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Urogenital</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Gesamt</td>
<td>33</td>
<td>22</td>
<td>55</td>
</tr>
</tbody>
</table>
Tabelle 15: Vergleich der Indikationen beim Mann mittels χ^2 Test nach Pearson und Fisher’s exakter Test

<table>
<thead>
<tr>
<th>Chi-Quadrat nach Pearson</th>
<th>Wert</th>
<th>df</th>
<th>Asymptotische Signifikanz (2-seitig)</th>
<th>Exakte Signifikanz (2-seitig)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exakter Test nach Fisher</td>
<td>7,006</td>
<td>55</td>
<td>.447</td>
<td>.570</td>
</tr>
</tbody>
</table>

a. 16 Zellen (88.9%) haben eine erwartete Häufigkeit kleiner 5. Die minimale erwartete Häufigkeit ist .40.

3.3 Stimulationsprotokolle

2011 waren 74% der verwendeten Protokolle Agonistenprotokolle und 26% Antagonistenprotokolle. Das Verhältnis kehrt sich 2011 mit 22% Agonisten- und 78% Antagonistenprotokollen (siehe Abbildung 8 und Tabelle 16) beinahe um.

Mithilfe dem exakten Test nach Fisher lässt sich auch statistisch eine eindeutige Signifikanz ($p=0.0001$) nachweisen (Tabelle 17).

Abbildung 8: Grafische Darstellung der absoluten Häufigkeiten der verwendeten Stimulationspläne 2001 und 2011

Tabelle 16: Kreuztabelle absolute und relative Häufigkeiten der Stimulationspläne 2001 und 2011

<table>
<thead>
<tr>
<th>Count</th>
<th>Agonistenprotokoll</th>
<th>Antagonistenprotokoll</th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>37</td>
<td>13</td>
<td>50</td>
</tr>
</tbody>
</table>
Tabelle 17: Vergleich der verwendeten Stimulationspläne mittels Fisher’s exaktem Test

<table>
<thead>
<tr>
<th></th>
<th>Fisher’s Exact Test</th>
<th>Prob</th>
<th>Alternative Hypothesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left</td>
<td>1,0000</td>
<td></td>
<td>Prob(Stim. Plan=Antagonistenprotokoll) is greater for Jahr=2001 than 2011</td>
</tr>
<tr>
<td>Right</td>
<td><.0001*</td>
<td></td>
<td>Prob(Stim. Plan=Antagonistenprotokoll) is greater for Jahr=2011 than 2001</td>
</tr>
<tr>
<td>2-Tail</td>
<td><.0001*</td>
<td></td>
<td>Prob(Stim. Plan=Antagonistenprotokoll) is different across Jahr</td>
</tr>
</tbody>
</table>

3.4 Verwendete Medikamente

Zur Heranreifung der Follikel zur IVF und ICSI wurden hier die rekombinanten FSH Präparate, ein HMG-Präparat und eine FSH/LH-Kombination genutzt.

Die im Agonistenprotokoll verwendeten Wirkstoffe zur Suppression des LH-Anstieges waren Leuprolrelin (Enantone), Goserelin (Zoladex), Nafarelin (Synarel) und Triptorelin (Decapeptyl). Die verwendeten Wirkstoffe für das Antagonistenprotokoll waren Cetrorelix (Cetrotide) und Ganirelix (Orgalutran).

Mit nur einer Fallzahl kann zur Verwendung von FSH/LH keine relevante Aussage getroffen werden.
Abb. 9: Grafische Darstellung der absoluten Häufigkeiten der verwendeten Medikamente 2001 und 2011

Tabelle 18: Kreuztabelle absolute und relative Häufigkeiten der verwendeten Medikamente 2001 und 2011

<table>
<thead>
<tr>
<th>Count</th>
<th>FSH</th>
<th>HMG</th>
<th>FSH/LH</th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>40</td>
<td>10</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>2011</td>
<td>25</td>
<td>24</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>Gesamt</td>
<td>65</td>
<td>34</td>
<td>1</td>
<td>100</td>
</tr>
</tbody>
</table>

Tabelle 19: Vergleich der verwendeten Medikamente mittels χ^2 Test

<table>
<thead>
<tr>
<th>Test</th>
<th>ChiSquare</th>
<th>Prob>ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>χ^2</td>
<td>10,23</td>
<td><.0001*</td>
</tr>
</tbody>
</table>

3.5 Stimulationsdosis

Abbildung 10: Graphische Darstellung der absoluten Häufigkeiten von Stimulationsdosen 2001 und 2011

![Graphische Darstellung der absoluten Häufigkeiten von Stimulationsdosen 2001 und 2011](image)

Abbildung 11: Graphische Darstellung zum Vergleich der Häufigkeitsverteilung von Stimulationsdosen 2001 zu 2011

![Graphische Darstellung zum Vergleich der Häufigkeitsverteilung von Stimulationsdosen 2001 zu 2011](image)

Tabelle 20: Kreuztabelle absolute und relative Häufigkeiten der verwendeten Stimulationsdosen

<table>
<thead>
<tr>
<th>Count</th>
<th><150</th>
<th>150</th>
<th>225</th>
<th>>225</th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row %</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>2</td>
<td>22</td>
<td>20</td>
<td>6</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>4.00</td>
<td>44.00</td>
<td>40.00</td>
<td>12.00</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>9</td>
<td>15</td>
<td>25</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>18.00</td>
<td>30.00</td>
<td>50.00</td>
<td>2.00</td>
<td></td>
</tr>
<tr>
<td>Gesamt</td>
<td>11</td>
<td>37</td>
<td>45</td>
<td>7</td>
<td>100</td>
</tr>
</tbody>
</table>
Tabelle 21: Quantile Stimulationsdosen 2001 und 2011

<table>
<thead>
<tr>
<th>Level</th>
<th>Minimum</th>
<th>10%</th>
<th>25%</th>
<th>Median</th>
<th>75%</th>
<th>90%</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>75</td>
<td>150</td>
<td>150</td>
<td>225</td>
<td>225</td>
<td>300</td>
<td>450</td>
</tr>
<tr>
<td>2011</td>
<td>75</td>
<td>108,45</td>
<td>150</td>
<td>212,5</td>
<td>225</td>
<td>225</td>
<td>300</td>
</tr>
</tbody>
</table>

Tabelle 22: Mittelwert und Standardabweichung Stimulationsdosis 2001 und 2011

<table>
<thead>
<tr>
<th>Level</th>
<th>Number</th>
<th>Mean</th>
<th>Std Dev</th>
<th>Std Err Mean</th>
<th>Lower 95%</th>
<th>Upper 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>50</td>
<td>199,000</td>
<td>65,6521</td>
<td>9,2846</td>
<td>180,34</td>
<td>217,66</td>
</tr>
<tr>
<td>2011</td>
<td>50</td>
<td>182,110</td>
<td>51,0863</td>
<td>7,2247</td>
<td>167,59</td>
<td>196,63</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exakter Test nach Fisher</th>
<th>Wert</th>
<th>df</th>
<th>Asymptotische Signifikanz (2-seitig)</th>
<th>Exakte Signifikanz (2-seitig)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl der gültigen Fälle</td>
<td>9,660</td>
<td>3</td>
<td></td>
<td>.019</td>
</tr>
</tbody>
</table>

a. 2 Zellen (25,0%) haben eine erwartete Häufigkeit kleiner 5. Die minimale erwartete Häufigkeit ist 3,50.

3.6 Stimulationsdauer

Abbildung 12: Graphische Übersicht der Stimulationsdauer in Tagen 2001 und 2011

Tabelle 24: Quantile Stimulationsdauer 2001 und 2011

<table>
<thead>
<tr>
<th>Level</th>
<th>Minimum</th>
<th>10%</th>
<th>25%</th>
<th>Median</th>
<th>75%</th>
<th>90%</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>6</td>
<td>8,1</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>17</td>
</tr>
<tr>
<td>2011</td>
<td>7</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
</tbody>
</table>

Tabelle 25: Mittelwert und Standardabweichung Stimulationsdauer 2001 und 2011

<table>
<thead>
<tr>
<th>Level</th>
<th>Number</th>
<th>Mean</th>
<th>Std Dev</th>
<th>Std Err Mean</th>
<th>Lower 95%</th>
<th>Upper 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>50</td>
<td>10,860</td>
<td>1,93791</td>
<td>0,27406</td>
<td>10,309</td>
<td>11,411</td>
</tr>
<tr>
<td>2011</td>
<td>50</td>
<td>11,140</td>
<td>1,41436</td>
<td>0,20002</td>
<td>10,738</td>
<td>11,542</td>
</tr>
</tbody>
</table>
Tabelle 26: T-Test für zwei unabhängige Stichproben zum Vergleich der Stimulationsdauer 2011 zu 2001

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>t Ratio</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Difference</td>
<td>0,28000</td>
<td>0,82525</td>
<td></td>
</tr>
<tr>
<td>Std Err Dif</td>
<td>0,33929</td>
<td></td>
<td>98</td>
</tr>
<tr>
<td>Upper CL Dif</td>
<td>0,95331</td>
<td>Prob ></td>
<td>t</td>
</tr>
<tr>
<td>Lower CL Dif</td>
<td>-0,39331</td>
<td>Prob > t</td>
<td>0,2056</td>
</tr>
<tr>
<td>Confidence</td>
<td>0,95</td>
<td>Prob < t</td>
<td>0,7944</td>
</tr>
</tbody>
</table>

3.7 Gewonnene Eizellen

Mittels t-Test lässt sich hier keine eindeutige Signifikanz nachweisen (Tabelle 29), allerdings ist sie mit p=0,071 grenzwertig.

![Gewonnene Eizellen](image)

Abbildung 14: Graphische Darstellung absolute Häufigkeiten der durch Punktion gewonnenen Eizellen 2011 und 2011
Abbildung 15: Graphische Darstellung zum Vergleich der Häufigkeitsverteilung gewonnener Eizellen 2001 und 2011

Abbildung 16: Graphische Darstellung zum Vergleich der Häufigkeitsverteilung von gewonnenen Eizellen 2001 und 2011 logarithmiert

Tabelle 27: Quantile gewonnene Eizellen 2001 und 2011

<table>
<thead>
<tr>
<th>Level</th>
<th>Minimum</th>
<th>10%</th>
<th>25%</th>
<th>Median</th>
<th>75%</th>
<th>90%</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td>7,5</td>
<td>12,25</td>
<td>16,8</td>
<td>20</td>
</tr>
<tr>
<td>2011</td>
<td>0</td>
<td>1,1</td>
<td>2</td>
<td>5,5</td>
<td>11</td>
<td>14,9</td>
<td>28</td>
</tr>
</tbody>
</table>

Tabelle 28: Mittelwert und Standardabweichung gewonnene Eizellen 2001 und 2011

<table>
<thead>
<tr>
<th>Level</th>
<th>Number</th>
<th>Mean</th>
<th>Std Dev</th>
<th>Std Err Mean</th>
<th>Lower 95%</th>
<th>Upper 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>50</td>
<td>8,6000</td>
<td>4,94459</td>
<td>0,69927</td>
<td>7,1948</td>
<td>10,005</td>
</tr>
<tr>
<td>2011</td>
<td>50</td>
<td>7,3800</td>
<td>6,17067</td>
<td>0,87266</td>
<td>5,6263</td>
<td>9,134</td>
</tr>
</tbody>
</table>
Tabelle 29: T-Test für zwei unabhängige Stichproben zum Vergleich der gewonnenen Eizellen 2011 zu 2001

Difference	-0,26340	t Ratio	-1,82439		
Std Err Dif	0,14438	DF	98		
Upper CL Dif	0,02311	Prob >	t		0,0711
Lower CL Dif	-0,54992	Prob > t	0,9644		
Confidence	0,95	Prob < t	0,0356*		

3.8 Befruchtete Eizellen

Im t-Test zeigt sich mit einem p=0,57 keine statistische Signifikanz im Hinblick auf Unterschiede zwischen den beiden Jahren (Tabelle 32). Im Jahr 2001 wurden 36% der gewonnenen Eizellen erfolgreich befruchtet, im Jahr 2011 46%. Vergleicht man darüber die befruchteten Eizellen in Abhängigkeit von den gewonnenen Eizellen zeigt sich mit einem p=0,036 ein signifikanter Unterschied 2011 zu 2001 (Tabelle 35). Der Mittelwert befruchtete EZ/gewonnene EZ betrug 2001 39% (Variationsbreite von 0% bis 100%, SD=±31%) und 2011 52% (Variationsbreite 0% bis 100%, SD=±28%), siehe Tabelle 33 und Tabelle 34. Es zeigt sich somit eine signifikante Steigerung der befruchteten Eizellen pro gewonnenen Eizellen im Jahr 2011. Eine graphische Vergleichsübersicht findet sich in Abbildung 19.
Abbildung 17: Graphische Darstellung zum Vergleich der Häufigkeitsverteilung von befruchteten Eizellen 2001 und 2011

Tabelle 30: Quantile Befruchtete Eizellen 2001 und 2011

<table>
<thead>
<tr>
<th>Level</th>
<th>Minimum</th>
<th>10%</th>
<th>25%</th>
<th>Median</th>
<th>75%</th>
<th>90%</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4,25</td>
<td>7,8</td>
<td>13</td>
</tr>
<tr>
<td>2011</td>
<td>0</td>
<td>0,1</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>7</td>
<td>20</td>
</tr>
</tbody>
</table>

Tabelle 31: Mittelwert und Standardabweichung befruchtete Eizellen 2001 und 2011

<table>
<thead>
<tr>
<th>Level</th>
<th>Number</th>
<th>Mean</th>
<th>Std Dev</th>
<th>Std Err Mean</th>
<th>Lower 95%</th>
<th>Upper 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>50</td>
<td>3,12000</td>
<td>3,00095</td>
<td>0,42440</td>
<td>2,2671</td>
<td>3,9729</td>
</tr>
<tr>
<td>2011</td>
<td>50</td>
<td>3,40000</td>
<td>3,53409</td>
<td>0,49980</td>
<td>2,3956</td>
<td>4,4044</td>
</tr>
</tbody>
</table>
Tabelle 32: T-Test für zwei unabhängige Stichproben zum Vergleich der befruchteten Eizellen 2001 und 2011

<table>
<thead>
<tr>
<th></th>
<th>2001</th>
<th>2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Difference</td>
<td>0.07891</td>
<td>0.560147</td>
</tr>
<tr>
<td>Std Err Dif</td>
<td>0.14088</td>
<td>DF</td>
</tr>
<tr>
<td>Upper CL Dif</td>
<td>0.35848</td>
<td>Prob ></td>
</tr>
<tr>
<td>Lower CL Dif</td>
<td>-0.20065</td>
<td>Prob > t</td>
</tr>
<tr>
<td>Confidence</td>
<td>0.95</td>
<td>Prob < t</td>
</tr>
</tbody>
</table>

Abbildung 19: Graphische Darstellung befruchtete pro gewonnene Eizelle 2001 und 2011

Tabelle 33: Quantile befruchtete pro gewonnene Eizelle 2001 und 2011

<table>
<thead>
<tr>
<th>Level</th>
<th>Minimum</th>
<th>10%</th>
<th>25%</th>
<th>Median</th>
<th>75%</th>
<th>90%</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>0</td>
<td>0.130252</td>
<td>0.3</td>
<td>0.620192</td>
<td>0.857143</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>0</td>
<td>0.139286</td>
<td>0.333333</td>
<td>0.5</td>
<td>0.666667</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 34: Mittelwert und Standardabweichung befruchtete pro gewonnene Eizelle 2001 und 2011

<table>
<thead>
<tr>
<th>Level</th>
<th>Number</th>
<th>Mean</th>
<th>Std Dev</th>
<th>Std Err Mean</th>
<th>Lower 95%</th>
<th>Upper 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>49</td>
<td>0.390175</td>
<td>0.305735</td>
<td>0.04368</td>
<td>0.30236</td>
<td>0.47799</td>
</tr>
<tr>
<td>2011</td>
<td>47</td>
<td>0.517588</td>
<td>0.281309</td>
<td>0.04103</td>
<td>0.43499</td>
<td>0.60018</td>
</tr>
</tbody>
</table>

Tabelle 35: T-Test für zwei unabhängige Stichproben zum Vergleich der befruchteten pro gewonnenen Eizellen 2011 zu 2001

<table>
<thead>
<tr>
<th></th>
<th>2011 zu 2001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Difference</td>
<td>0.127413</td>
</tr>
<tr>
<td>Std Err Dif</td>
<td>0.060033</td>
</tr>
<tr>
<td>Upper CL Dif</td>
<td>0.246609</td>
</tr>
<tr>
<td>Lower CL Dif</td>
<td>0.008216</td>
</tr>
<tr>
<td>Confidence</td>
<td>0.95</td>
</tr>
</tbody>
</table>
3.9 Für ICSI verwendete Eizellen

Hier wurden nur die speziell für die ICSI gewonnenen Eizellen, die dann auch tatsächlich für eine ICSI verwendet wurden, untersucht. 2001 betrug die Fallzahl für ICSI-Therapien 16 (32% der untersuchten Zyklen), 2011 waren es 22 (44% der untersuchten Zyklen).

Zuerst wurde untersucht wie sich die Gesamtzahl der für ICSI verwendeten Eizellen 2001 und 2011 unterscheidet. Im Mittel wurden 2001 7,00 Eizellen einer ICSI unterzogen (Variationsbreite von 0 bis 18 Eizellen, SD= ±5,14 Eizellen) und 2011 6,32 Eizellen (Variationsbreite von 1 bis 17 Eizellen, SD= ±4,40 Eizellen), siehe Tabelle 36 und Tabelle 37. In Abbildung 20 und Abbildung 21 (logarithmiert) ist zum Vergleich eine Übersicht über die Verteilung der für die ICSI verwendeten Eizellen 2001 und 2011 dargestellt.

Des Weiteren wurde die Anzahl der für die ICSI verwendeten Eizellen gemessen an der Anzahl der nur für die ICSI gewonnenen Eizellen untersucht. Die Ergebnisse von den für ICSI verwendeten EZ pro den für ICSI gewonnenen EZ sind Prozentangaben (ein darstellender Vergleich findet sich in Abbildung 22). 2001 betrug die Anzahl der verwendeten Eizellen pro gewonnenen Eizellen im Mittel 68,4% (Variationsbreite von 0% bis 100%, SD= ±27,28%) und 2011 durchschnittlich 75,28% (Variationsbreite 54,55% bis 100%, SD= ±15,10%), siehe Tabelle 39 und Tabelle 40.

Da anzunehmen ist, dass keine Normalverteilung vorliegt, wurde der Wilcoxon-Rangsummen-Test verwendet (Tabelle 41 und Tabelle 42), bei dem sich mit Normal-Approximation keine Signifikanz nachweisen lässt (p=0,840).

Tabelle 36: Quantile von für ICSI verwendete Eizellen 2001 und 2011

<table>
<thead>
<tr>
<th>Level</th>
<th>Minimum</th>
<th>10%</th>
<th>25%</th>
<th>Median</th>
<th>75%</th>
<th>90%</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>0</td>
<td>0</td>
<td>3,25</td>
<td>6,5</td>
<td>9</td>
<td>15,9</td>
<td>18</td>
</tr>
<tr>
<td>2011</td>
<td>1</td>
<td>1,3</td>
<td>2</td>
<td>6</td>
<td>8,25</td>
<td>14,5</td>
<td>17</td>
</tr>
</tbody>
</table>

Tabelle 37: Mittelwert und Standardabweichung für ICSI verwendete Eizellen 2001 und 2011

<table>
<thead>
<tr>
<th>Level</th>
<th>Number</th>
<th>Mean</th>
<th>Std Dev</th>
<th>Std Err Mean</th>
<th>Lower 95%</th>
<th>Upper 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>16</td>
<td>7,00000</td>
<td>5,13809</td>
<td>1,2845</td>
<td>4,2621</td>
<td>9,7379</td>
</tr>
<tr>
<td>2011</td>
<td>22</td>
<td>6,31818</td>
<td>4,40115</td>
<td>0,9383</td>
<td>4,3668</td>
<td>8,2695</td>
</tr>
</tbody>
</table>

Tabelle 38: T-Test für zwei unabhängige Stichproben zum Vergleich der für ICSI verwendeten Eizellen 2011 zu 2001

| Difference | t Ratio | Std Err Dif | DF | Upper CL Dif | Prob > |t| |
|------------|--------|-------------|----|--------------|--------|---|
| -0,00072 | -0,00296 | 0,24299 | 36 | 0,49148 | 0,9977 |

Abbildung 22: Graphische Darstellung Vergleich von für ICSI verwendete Eizellen/Anzahl gewonnene Eizellen

Tabelle 39: Quantile für ICSI verwendete Eizellen/Anzahl gewonnene Eizellen 2001 und 2011

<table>
<thead>
<tr>
<th>Level</th>
<th>Minimum</th>
<th>10%</th>
<th>25%</th>
<th>Median</th>
<th>75%</th>
<th>90%</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>0</td>
<td>21,42857</td>
<td>50</td>
<td>76,47059</td>
<td>90</td>
<td>94</td>
<td>100</td>
</tr>
<tr>
<td>2011</td>
<td>54,54545</td>
<td>56,03175</td>
<td>66,07143</td>
<td>71,36364</td>
<td>88,35227</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Tabelle 40: Mittelwert und Standardabweichung für ICSI verwendete Eizellen/Anzahl gewonnene Eizellen 2001 und 2011

<table>
<thead>
<tr>
<th>Level</th>
<th>Number</th>
<th>Mean</th>
<th>Std Dev</th>
<th>Std Err Mean</th>
<th>Lower 95%</th>
<th>Upper 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>15</td>
<td>68,4265</td>
<td>27,2796</td>
<td>7,0436</td>
<td>53,320</td>
<td>83,533</td>
</tr>
<tr>
<td>2011</td>
<td>22</td>
<td>75,2846</td>
<td>15,0977</td>
<td>3,2188</td>
<td>68,591</td>
<td>81,979</td>
</tr>
</tbody>
</table>

Tabelle 41: Wilcoxon –Rangsummen-Test zum Vergleich von für ICSI verwendete Eizellen/Anzahl gewonnene Eizellen 2001 und 2011

<table>
<thead>
<tr>
<th>Level</th>
<th>Count</th>
<th>Score Sum</th>
<th>Expected Score</th>
<th>Score Mean</th>
<th>(Mean-Mean0)/Std0</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>15</td>
<td>278,000</td>
<td>285,000</td>
<td>18,533</td>
<td>-0,202</td>
</tr>
<tr>
<td>2011</td>
<td>22</td>
<td>425,000</td>
<td>418,000</td>
<td>19,3182</td>
<td>0,202</td>
</tr>
</tbody>
</table>

Tabelle 42: 2-Stichproben Test mit Normal-Approximation des Wilcoxon-Tests von für ICSI verwendete EZ/Anzahl gewonnener EZ

| S | Z | Prob>|Z| |
|-------|-------|--------|
| 278 | -0,20162 | 0,8402 |
3.10 Anzahl transferierter Embryonen

Untersucht wurde die Anzahl an Embryonen, welche nach erfolgreicher Fertilisierung mittels IVF oder ICSI der Patientin transferiert wurden. Die maximale Anzahl an transferierten Embryonen beträgt aufgrund der deutschen Rechtslage 3 Embryonen. In Abbildung 23 und Abbildung 24 ist eine graphische Übersicht der Verteilung für die Jahre 2001 und 2011 dargestellt (für genaue Zahlen vergleiche auch Tabelle 43). Die Variationsbreite betrug für beide Jahre 0 bis 3 Embryonen. Im Mittel waren es 2001 1,72 Embryonen (SD=±1,01) und 2011 1,78 Embryonen (SD=±0,91), siehe Tabelle 44 und Tabelle 45.

Mittels t-Test zeigt sich keine Signifikanz (p=0,756, Tabelle 46), ebenso wenig mittels χ^2-Test nach Pearson (p=0,806, Tabelle 47). Somit besteht kein signifikanter Unterschied bei der Anzahl der zurückgegebenen Embryonen 2001 zu 2011.

Untersucht man noch die Anzahl an transferierten Embryonen, in denen man die Fälle, bei denen kein Transfer möglich war (wegen fehlgeschlagener Befruchtung oder ausbleibender Entwicklung des Embryos), aus der Statistik heraus nimmt, erhält man eine mittlere Anzahl von 2,02 Embryonen im Jahr 2011 (Variationsbreite von 1 bis 3 Embryonen, SD=±0,46) und 2001 eine Anzahl von 2,10 Embryonen (Variationsbreite von 1 bis 3 Embryonen, SD=±0,46), siehe Tabelle 48 und Tabelle 49. Es ergibt sich auch hier keine Signifikanz zwischen den beiden Jahren mit einem p=0,914 mittels t-Test (Tabelle 50) und einem p=0,871 mittels χ^2-Test nach Pearson (Tabelle 52).
Abbildung 23: Graphische Darstellung der absoluten Häufigkeiten transferierter Embryonen 2001 und 2011

Abbildung 24: Graphischer Darstellung der Häufigkeitsverteilung transferierter Embryonen 2001 und 2011

Tabelle 43: Kreuztabelle absoluter und relativer Anzahl transferierter Embryonen 2001 und 2011

<table>
<thead>
<tr>
<th>Count</th>
<th>Row %</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td></td>
<td>9</td>
<td>7</td>
<td>23</td>
<td>11</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18.00</td>
<td>14.00</td>
<td>46.00</td>
<td>22.00</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td></td>
<td>6</td>
<td>9</td>
<td>25</td>
<td>10</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.00</td>
<td>18.00</td>
<td>50.00</td>
<td>20.00</td>
<td></td>
</tr>
<tr>
<td>Gesamt</td>
<td></td>
<td>15</td>
<td>16</td>
<td>48</td>
<td>21</td>
<td>100</td>
</tr>
</tbody>
</table>
Tabelle 44: Quantile transferierte Embryonen 2001 und 2011

<table>
<thead>
<tr>
<th>Level</th>
<th>Minimum</th>
<th>10%</th>
<th>25%</th>
<th>Median</th>
<th>75%</th>
<th>90%</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2011</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Tabelle 45: Mittelwert und Standardabweichung transferierter Embryonen 2001 und 2011

<table>
<thead>
<tr>
<th>Level</th>
<th>Number</th>
<th>Mean</th>
<th>Std Dev</th>
<th>Std Err Mean</th>
<th>Lower 95%</th>
<th>Upper 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>50</td>
<td>1,72000</td>
<td>1,01096</td>
<td>0,14297</td>
<td>1,4327</td>
<td>2,0073</td>
</tr>
<tr>
<td>2011</td>
<td>50</td>
<td>1,78000</td>
<td>0,91003</td>
<td>0,12870</td>
<td>1,5214</td>
<td>2,0386</td>
</tr>
</tbody>
</table>

Tabelle 46: T-Test für zwei unabhängige Stichproben zum Vergleich der transferierten Embryonen 2011 zu 2001

Difference	0.06000	t Ratio	0.311908		
Std Err Dif	0.19236	DF	98		
Upper CL Dif	0.44174	Prob >	t		0.7558
Lower CL Dif	-0.32174	Prob > t	0.3779		
Confidence	0.95	Prob < t	0.6221		

Tabelle 47: χ² Test nach Pearson zum Vergleich der transferierten Embryonen 2011 zu 2001

<table>
<thead>
<tr>
<th>Test</th>
<th>ChiSquare</th>
<th>Prob>ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Likelihood Ratio</td>
<td>0.986</td>
<td>0.8047</td>
</tr>
<tr>
<td>Pearson</td>
<td>0.981</td>
<td>0.8059</td>
</tr>
</tbody>
</table>

Tabelle 48: Quantile transferierte Embryonen 2001 und 2011 ohne missglückte Fälle

<table>
<thead>
<tr>
<th>Level</th>
<th>Minimum</th>
<th>10%</th>
<th>25%</th>
<th>Median</th>
<th>75%</th>
<th>90%</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2011</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Tabelle 49: Mittelwert und Standardabweichung transferierte Embryonen 2001 und 2011 ohne missglückte Fälle

<table>
<thead>
<tr>
<th>Level</th>
<th>Number</th>
<th>Mean</th>
<th>Std Dev</th>
<th>Std Err Mean</th>
<th>Lower 95%</th>
<th>Upper 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>41</td>
<td>2.09756</td>
<td>2.96730</td>
<td>0.46341</td>
<td>0.10365</td>
<td>4.0915</td>
</tr>
<tr>
<td>2011</td>
<td>44</td>
<td>2.02273</td>
<td>3.08036</td>
<td>0.46438</td>
<td>0.02465</td>
<td>4.0208</td>
</tr>
</tbody>
</table>

Tabelle 50: T-Test für zwei unabhängige Stichproben zum Vergleich der transferierten Embryonen 2011 zu 2001 ohne missglückte Fälle

Difference	-0.0748	t Ratio	-0.11399		
Std Err Dif	0.6565	DF	4		
Upper CL Dif	1.7479	Prob >	t		0.9147
Lower CL Dif	-1.8975	Prob > t	0.5426		
Tabelle 51: Kreuztabelle transferierter Embryonen ohne missglückte Fälle 2001 und 2011

<table>
<thead>
<tr>
<th>Count</th>
<th>Row %</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>7</td>
<td>23</td>
<td>11</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17.07</td>
<td>56.10</td>
<td>26.83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>9</td>
<td>25</td>
<td>10</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20.45</td>
<td>56.82</td>
<td>22.73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gesamt</td>
<td>16</td>
<td>48</td>
<td>21</td>
<td>85</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 52: χ^2 Test nach Pearson zum Vergleich der transferierten Embryonen 2011 zu 2001 ohne missglückte Fälle

<table>
<thead>
<tr>
<th>Test</th>
<th>ChiSquare</th>
<th>Prob>ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Likelihood Ratio</td>
<td>0.276</td>
<td>0.8712</td>
</tr>
<tr>
<td>Pearson</td>
<td>0.275</td>
<td>0.8714</td>
</tr>
</tbody>
</table>

3.11 Methoden der IVF

Hier sollte überprüft werden, ob sich an der Methode zur künstlichen Befruchtung zwischen den Jahren 2001 und 2011 ein signifikanter Unterschied in der Häufigkeitsverteilung („klassische“ IVF vs. ICSI) zeigen lässt.

Tabelle 53: Graphische Darstellung Häufigkeit IVF/ICSI 2001 und 2011

Tabelle 54: Häufigkeitsverteilung IVF und ICSI 2001 zu 2011

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Methode</th>
<th>IVF</th>
<th>ICSI</th>
<th>Gesamtsumme</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>Anzahl</td>
<td>384</td>
<td>155</td>
<td>539</td>
</tr>
<tr>
<td></td>
<td>% in Jahr</td>
<td>71,2%</td>
<td>28,8%</td>
<td>100,0%</td>
</tr>
<tr>
<td>2011</td>
<td>Anzahl</td>
<td>108</td>
<td>133</td>
<td>241</td>
</tr>
<tr>
<td></td>
<td>% in Jahr</td>
<td>44,8%</td>
<td>55,2%</td>
<td>100,0%</td>
</tr>
<tr>
<td>Gesamtsumme</td>
<td>Anzahl</td>
<td>492</td>
<td>288</td>
<td>780</td>
</tr>
<tr>
<td></td>
<td>% in Jahr</td>
<td>63,1%</td>
<td>36,9%</td>
<td>100,0%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fisher's Exact Test</td>
<td>p < .01*</td>
</tr>
<tr>
<td>Cramers V-Test</td>
<td>V = 0,253</td>
</tr>
</tbody>
</table>

3.12 Schwangerschaftsraten

Tabelle 56: Kreuztabelle der Häufigkeitsverteilung der Schwangerschaftsraten 2001 zu 2011

<table>
<thead>
<tr>
<th>Kreuztabelle Jahr*Schwangerschaft</th>
<th>Schwangerschaft</th>
<th>Anzahl</th>
<th>Nein</th>
<th>Gesamtsumme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jahr</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>Anzahl</td>
<td>449</td>
<td>90</td>
<td>539</td>
</tr>
<tr>
<td></td>
<td>% in Jahr</td>
<td>83,3%</td>
<td>16,7%</td>
<td>100,0%</td>
</tr>
<tr>
<td>2011</td>
<td>Anzahl</td>
<td>190</td>
<td>51</td>
<td>241</td>
</tr>
<tr>
<td></td>
<td>% in Jahr</td>
<td>78,8%</td>
<td>21,2%</td>
<td>100,0%</td>
</tr>
<tr>
<td>Gesamtsumme</td>
<td>Anzahl</td>
<td>639</td>
<td>141</td>
<td>780</td>
</tr>
<tr>
<td></td>
<td>% in Jahr</td>
<td>81,9%</td>
<td>18,1%</td>
<td>100,0%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fisher's Exact Test</td>
<td>$P = 0,158$</td>
</tr>
<tr>
<td>Cramers V Test</td>
<td>$V = 0,054$</td>
</tr>
</tbody>
</table>

3.13 Lebendgeburtenraten

Hier wurde untersucht, ob sich die Lebendgeburtenraten und Fehl-/bzw. Totgeburtenraten nach erfolgter IVF/ICSI 2001 und 2011 signifikant unterscheiden. Es konnten für diese Analyse alle aus der Datenbank des Kinderwunschzentrums der Universitätsklinik Tübingen durchgeführten IVF und ICSI Behandlungen (insgesamt 780 Fälle aus den

Der Fisher-Test wurde bei zweiseitiger Testung mit \(p \leq 0,509 \) nicht signifikant. Es ergab sich für das Effektstärkemaß Cramers \(V \) ein Wert von \(V = 0,023 \). Nach Cohen (1988) und Ellis (2010) liegt somit noch nicht einmal ein kleiner Effekt vor. Daher zeigten sich hier keine signifikanten Unterschiede zwischen den beiden Jahren.

Tabelle 58: Kreuztabelle Häufigkeitsverteilung von Lebend- und Todgeburten 2001 zu 2011

Kreuztabelle Jahr*Lebendgeburt	Lebendgeburten			
---	---			
Jahr	Ja	Nein	Gesamtsumme	
2001	Anzahl	491	48	539
	% in Jahr	91,1%	8,9%	100,0%
2011	Anzahl	216	25	241
	% in Jahr	89,6%	10,4%	100,0%
Gesamtsumme	Anzahl	707	73	780
	% in Jahr	90,6%	9,4%	100,0%

Tabelle 59: Fisher’s Exakter Test und Cramers V-Test zum Vergleich der Häufigkeitsverteilung Lebend- vs. Totgeburten 2001 und 2011

<table>
<thead>
<tr>
<th>Test</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fisher’s Exact Test</td>
<td>2-Tail</td>
</tr>
<tr>
<td>Cramers V Test</td>
<td>(V = 0,023)</td>
</tr>
</tbody>
</table>
4 Diskussion

Einer der Hauptgründe für diesen Trend ist auch das höhere Alter der Elternpaare, vor allem das der Mütter. Das mittlere Alter der behandelten Frauen stieg sowohl an der UFK Tübingen (von 33,7 Jahren 2001 auf 36,3 2011), als auch in Deutschland signifikant an, und zwar bundesweit im Mittel von 32,6 Jahren 1997 auf 35,2 Jahre 2014. Im gleichen Zeitraum fand sich in Deutschland auch ein Altersanstieg der Männer von 35,2 auf 38,6 Jahre (Deutsches IVF-Register 2014).

Es hat sich hier gezeigt, dass die Tendenz der Indikationsstellung in Richtung rein weibliche Fertilitätsstörung geht - mit einem deutlichen Anstieg von erhöhtem mütterlichem Alter als Indikation zur IVF. Auch die sekundäre Sterilität, bei der schon in der Vorgeschichte eine Form der Schwangerschaft vorgelegen hat, hat zugenommen. Allerdings ist retrospektiv unklar, was die genauen Ursachen für die sekundäre Sterilität der Frau sind. Mögliche Gründe können hier ebenfalls eine verminderte ovarielle Reserve bei erhöhtem Alter oder Pathologien der Tuben sein. Wie schon in den Anfängen der IVF ist die Umgebung funktionell veränderter Tuben und des Uterus ein wichtiger Aspekt. So waren die meisten Fälle weiblicher Indikation 2001 und 2011 nach wie vor Tubenpathologien, was sich in etwa mit den Daten des DIR deckt, das 2012 die Häufigkeit von...
Tubenpathologien als eine der häufigsten weiblichen Indikationen zur IVF (ohne ICSI) darstellte. Die Indikation „Erhöhtes mütterliches Alter“ ist nicht einzeln im DIR oder ESHRE Report aufgeführt, weswegen man dahingehend keinen direkten Vergleich anstellen kann.

Für die zunehmende Verwendung des Antagonisten-Protokolls gibt es mehrere Gründe: Im Vergleich zu den GnRH-Agonisten, bei denen schon im Vorzyklus mit der Downregulation begonnen werden muss, entfällt der als belastend empfundene Hormonabfall mit dem Auftreten von klimakterischen Beschwerden. Außerdem ist die Stimulation besser steuerbar, was gerade bei Risikopatientinnen (PCO-Syndrom) das Risiko für das Auftreten eines OHSS beim Antagonistenprotokoll deutlich verringert.

Es besteht ein signifikanter Unterschied in der Verwendung der Medikamente zur ovariellen Stimulation 2011 gegenüber zehn Jahre zuvor durch eine Abnahme der Verwendung des von rFSH und einer stärkeren Verwendung von hMG-Präparaten.

In einigen Studien hat sich gezeigt, dass hMG bessere Lebendgeburtenraten aufweist als rekombinantes FSH, bei gleichem Risiko eines OHSS (Coomarasamy et al. 2008), was einer der Gründe für den gestiegenen Gebrauch von diesem Präparat erklären kann. Ein weiterer Grund ist in der Zunahme des Anteils der „älteren“ Kinderwunschpatientinnen am Gesamtkollektiv der Patientinnen, denn häufig wird für Patientinnen über einem Alter von 35 Jahren hMG bevorzugt als Stimulationsmedikament verwendet.

Nimmt man bei den hier erhobenen Daten wie in der DIR Statistik die Fälle, in denen kein Embryo transferiert werden konnte, heraus, ergibt sich hier für 2011 eine mittlere Anzahl von 2,0 transferierten Embryonen 2011 (2001 waren es 2,1). Dies deckt sich fast mit den durchschnittlich in Deutschland transferierten Embryonen (gemäß DIR 2011 waren es bundesweit durchschnittlich 1,99 transferierte Embryonen). Sieht man sich den
deutschlandweiten Trend an, so sanken die Zahlen transferierter Embryonen seit Anfang der Erfassung im DIR 1997 von 2,49 auf 1,84 im Jahr 2012.

Die Anzahl der transferierten Embryonen ist eine individuelle Entscheidung der Patientin und des betreuenden Arztes, die nach ausführlicher Abwägung der individuellen Faktoren wie Alter der Patientin, Qualität der Embryonen und Anzahl von vorausgegangenen fehlgeschlagenen IVF-Behandlungen getroffen wird.

5 Fazit

Als Fazit aus den vorliegenden Daten kann gezogen werden, dass bei steigendem Alter und zunehmender weiblicher Indikation, bei welcher jenes gestiegene Alter eine ursächliche Rolle spielt, im Jahr 2011 verglichen mit 10 Jahren zuvor, die Stimulationsprotokolle vom Agonistenprotokoll auf das Antagonistenprotokoll und bei den Medikamenten von rFSH vermehrt HCG zur Stimulation verwendet wurde. Auch kam es zu einem signifikanten Anstieg von ICSI-Behandlungen, was eine verbesserte Fertilisationsrate der gewonnenen Eizellen trotz deutlich gestiegenem Alter der Patientinnen zur Folge hatte. Es zeigt sich auch, dass bei kleineren Stimulationsdosen und verkürzter Behandlungsduer durch Umstellung auf das Antagonistenprotokoll eine zahlenmäßig gleich gebliebene Ausbeute an für die IVF und ICSI gewonnenen und befruchteten Eizellen (bei aber insgesamt höherer Rate an befruchteten Eizellen pro gewonnenen Eizellen), sowie an transferierten Embryonen besteht. Es kann also gesagt werden, dass auch mit niedrigeren und damit verträglicheren Stimulationsdosen und Umstellung auf das Nebenwirkungsärmeren Antagonistenprotokoll in 2011 die gleichen Resultate an gewonnenen Eizellen, aber mit gestiegener Fertilisationsrate, erzielt wurden wie 2001.

Tabelle 60: Zusammenfassung der Ergebnisse mit Hinblick auf die Signifikanz

<table>
<thead>
<tr>
<th>Untersuchtes Merkmal</th>
<th>Signifikanz beim Unterschied der Häufigkeiten 2001 zu 2011 ($\alpha=0,05$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alter der Frau</td>
<td>ja</td>
</tr>
<tr>
<td>Indikationen gesamt</td>
<td>nein</td>
</tr>
<tr>
<td>Indikationen Frau</td>
<td>ja</td>
</tr>
<tr>
<td>Indikationen Mann</td>
<td>nein</td>
</tr>
<tr>
<td>Stimulationsplan</td>
<td>ja</td>
</tr>
<tr>
<td>Medikamente</td>
<td>ja</td>
</tr>
<tr>
<td>Stimulationsdosis</td>
<td>ja</td>
</tr>
<tr>
<td>Stimulationsdauer</td>
<td>nein</td>
</tr>
<tr>
<td>Gewonnene Eizellen</td>
<td>nein</td>
</tr>
<tr>
<td>Befruchtete Eizellen</td>
<td>nein</td>
</tr>
<tr>
<td>Befruchtete EZ/Gewonnene EZ</td>
<td>ja</td>
</tr>
<tr>
<td>----------------------------</td>
<td>----</td>
</tr>
<tr>
<td>Für ICSI gewonnene Eizellen</td>
<td>nein</td>
</tr>
<tr>
<td>Für ICSI verwendete Eizellen</td>
<td>nein</td>
</tr>
<tr>
<td>Anzahl transferierter Embryonen</td>
<td>nein</td>
</tr>
<tr>
<td>Methoden der IVF</td>
<td>ja</td>
</tr>
<tr>
<td>Zurückgegebene Embryonen</td>
<td>nein</td>
</tr>
<tr>
<td>Schwangerschaftsraten</td>
<td>nein</td>
</tr>
<tr>
<td>Lebendgeburtenraten</td>
<td>nein</td>
</tr>
</tbody>
</table>
6 Erklärung zum Eigenanteil

Die Arbeit wurde in der Universitäts-Frauenklinik Tübingen, Kinderwunschzentrum unter Betreuung von Frau Prof. Dr. Tanja Fehm und Frau PD Dr. Barbara Lawrenz durchgeführt.

Frau Prof. Fehm, Frau Dr. Barbara Lawrenz und Frau Dr. Melanie Henes (Leitende Oberärztin Kinderwunsch/Endokrinologie) von der Universitäts-Frauenklinik Tübingen waren an der Konzeption der Studie beteiligt.

Die Daten wurden von Frau Dr. Henes und Frau Dr. Lawrenz zur Verfügung gestellt.

Die Auswertung der statistischen Daten erfolgte nach Beratung von Herr Dr. Gunnar Blumenstock vom Institut für Biometrie der Universitätsklinik Tübingen und nach Anleitung von Herrn Ralf Grünwald durch mich.

Ich versichere, das Manuskript selbstständig verfasst zu haben und keine weiteren als die von mir genannten Quellen verwendet zu haben.
7 Danksagung

Ich danke

Frau Dr. Barbara Lawrenz
Frau Dr. Melanie Henes

den Mitarbeiterinnen des Kinderwunschzentrums der UFK Tübingen

sowie Herrn Dr. Gunnar Blumenstock
und Herrn Ralf Grünwald

für ihre fachliche Begleitung und zielführende Unterstützung meiner Arbeit

und meinen Eltern,

die mich auf meinem Weg gestärkt und motiviert haben.
8 Literaturverzeichnis

Literaturverzeichnis

Kaarouch, Ismail; Bouamoud, Nouzha; Madkour, Aicha; Louanjli, Noureddine; Saadani, Brahim; Assou, Said et al. (2018): Paternal age. Negative impact on sperm genome decays and
IVF outcomes after 40 years. In: Molecular reproduction and development. DOI: 10.1002/mrd.22963.

Statistisches Bundesamt (2013b): Jede fünfte Frau zwischen 40 und 44 Jahren ist kinderlos. Online verfügbar unter

