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Zusammenfassung

Im täglichen Leben sind wir häufig dem Leiden anderer ausgesetzt. Die empathische Reaktion

für Schmerz und die zugehörigen Hirnareale sind bereits gut untersucht. Jedoch ist noch

unklar, wie und wann empathische Bottom-up und Top-down Prozesse interagieren. Daher

befasste sich die erste Forschungsfrage dieser Dissertation damit, wie wir Empathie erleben

und wie der zeitliche Verlauf der zugrunde liegenden Prozesse von der Stimulusenkodierung

über die Kategorisierung bis hin zur motorischen Antwort aussieht (Studie 1). Das Ziel

dieser Arbeit war es weiterhin, die Einflüsse des ethnischen Hintergrunds der Zielperson auf

die empathischen Prozesse zu bestimmen (Studie 2). Der zweite große Strang dieser Arbeit

befasste sich mit den motivationalen Auswirkungen von Empathie, da die bisherige Forschung

offen lässt, unter welchen Bedingungen Empathie in prosoziales Verhalten resultiert. Daher

wurde das Auftreten von Mitgefühl (Empathic Concern), das eine altruistische Motivation

mit sich bringt, und persönlicher Betroffenheit (Personal Distress), die mit einer egoistischen

Motivation in Verbindung gebracht wird, untersucht (Studie 3).

Um diese Fragen genauer zu untersuchen, wurden den Versuchspersonen in Studie 1

schmerzhafte oder neutrale Bilder von Körperteilen in Alltagssituationen gezeigt. Diese

bewerteten dann, ob es sich um eine schmerzhafte oder neutrale Situation handelte oder

zählten, wie viele Körperteile zu sehen waren. In der Zwischenzeit wurde das EEG und die

Kraft, mit der die Versuchspersonen die Antworttasten betätigten, aufgezeichnet. Studie 2

war der ersten sehr ähnlich, wobei auf den Bildern hell- und dunkelhäutige Hände zu sehen

waren und die Zählaufgabe durch die Aufgabe ersetzt wurde, die Hautfarbe zu beurteilen.
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In Studie 3 wurden die Versuchspersonen gebeten, den Fokus auf die andere Person zu

legen, während sie Bilder von Menschen mit physischem oder psychischem Leid präsentiert

bekamen. Das Mitgefühl und die persönliche Betroffenheit in einer spezifischen Situation

wurden gemessen und mit anderen Faktoren in Verbindung gebracht, wie dem Affekt und

der Disposition der Versuchspersonen, generell Mitgefühl und persönliche Betroffenheit zu

empfinden.

Studie 1 und 2 sprachen für empathische automatische Einflüsse auf die frühe

Enkodierungsstufe, spätere kontrollierte Einflüsse auf die Kategorisierungsstufe und zeigten

unterschiedliche Befunde in Bezug auf die motorischen Verarbeitungsstufen. Während

die Ergebnisse der Studie 1 eine Verstärkung der sensomotorischen Aktivität nach der

motorischen Reaktion nahelegten, sprach Studie 2 für eine Verstärkung der sensomotorischen

Aktivität vor und eine Inhibition nach der motorischen Antwort. Der ethnische Hintergrund

der Zielperson beeinflusste frühe, aber nicht späte Verarbeitungsstufen. Jedoch war der

Einfluss auf die späte Kategorisierungsstufe größer, je größer die individuelle implizite

Präferenz für die Eigengruppe war. Motorische Verarbeitungsstufen wurden vom kulturellen

Hintergrund nicht beeinflusst. Studie 3 zeigte, dass situationelle Faktoren wie die Art des

präsentierten Schmerzes oder dem Affekt des Beobachters eine größere Rolle spielen als

dispositionelle empathische Eigenschaften, wenn Mitgefühl und persönliche Betroffenheit

hervorgerufen werden sollen.

Insgesamt liefert diese Dissertation wichtige Einblicke in den zeitlichen Verlauf au-

tomatischer und kontrollierter Prozesse, die der empathischen Antwort zugrunde liegen,

ebenso wie neue Erkenntnisse bezüglich des Auftretens von Mitgefühl und persönlicher

Betroffenheit.







Abstract

Experiencing pain in others is a phenomenon which we encounter regularly in everyday-life.

The empathic response to pain and the involved brain regions are quite well investigated.

However, it is still unclear whether and when empathic bottom-up and top-down processes

influence information processing. Thus, the first research question of this dissertation thesis

was how do we experience empathy and what is the time course of the underlying processes

from stimulus encoding over categorization to motor execution (Study 1). A further aim was

to determine the influence of the target’s racial background on the empathy-related processes

(Study 2). The second main strand of this work concerned the motivational consequences

of empathy, because it is still an open question when empathy results in prosocial behavior.

Therefore, the occurrence of empathic concern and personal distress implying an altruistic

and an egoistic motivation, respectively, was investigated (Study 3).

In order to address these issues, in Study 1, participants were asked to judge the painful-

ness of pictures displaying body parts in painful or neutral situations or to count the displayed

body parts. Meanwhile, EEG and response force were recorded. Study 2 was very similar

to Study 1, but the pictures displayed fair- and dark-colored hands and the counting task

was replaced by a skin color judgment task. In Study 3, situational empathic concern and

personal distress to pictures of persons in physical and psychological pain were measured,

while participants were asked to maintain an other-focused perspective. Then, the situa-

tional measures were related to other factors like affect and the participant’s disposition to

experience empathic concern and personal distress.
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Study 1 and 2 indicated empathic automatic influences on the early encoding stage, later

controlled influences on the categorization stage, whereas the effects on the motor processing

stage varied. While the results of Study 1 revealed a facilitation of sensorimotor activity after

the response, Study 2 indicated a facilitation of sensorimotor activity before the response and

an inhibition after the response. The racial background of the target influenced early but not

late processing stages. However, the influence on the late categorization stage increased with

the individual implicit ingroup preferences. Motor processing stages were not influenced by

the racial background. Study 3, on the other hand, indicated that situational factors like the

type of the presented pain and the affect of the observer are substantial in evoking empathic

concern and personal distress, whereas the influence of dispositional empathic traits is of

less importance.

All in all, this dissertation thesis gives important insights into the time course of automatic

and controlled processes underlying empathic responses, as well as into the occurrence of

empathic concern and personal distress.







Table of contents

1 Introduction 1

1.1 Different concepts of empathy . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Theory-theory versus simulation theory . . . . . . . . . . . . . . . . . . . 5

1.2.1 Theory-theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.2 Simulation theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.3 Combined approaches . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 The time course of empathic processing . . . . . . . . . . . . . . . . . . . 13

1.3.1 Event-related brain potentials (ERPs) . . . . . . . . . . . . . . . . 14

1.3.2 EEG oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3.3 Modern mental chronometry . . . . . . . . . . . . . . . . . . . . . 17

1.3.4 EEG studies of empathy . . . . . . . . . . . . . . . . . . . . . . . 18

1.3.5 Modulating factors . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.3.6 Interim summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.4 Empathy and its link to prosocial behavior . . . . . . . . . . . . . . . . . . 26

1.5 Evoking and measuring empathic concern and personal distress . . . . . . . 28

1.6 Interim Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2 Aim of the present work 33

2.1 Empathic influences on perceptual and motor

processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34



xviii Table of contents

2.1.1 Approach and hypotheses of Study 1 . . . . . . . . . . . . . . . . . 34

2.2 The modulation by racial background . . . . . . . . . . . . . . . . . . . . 35

2.2.1 Approach and hypotheses of Study 2 . . . . . . . . . . . . . . . . . 35

2.3 Empathic concern and personal distress . . . . . . . . . . . . . . . . . . . 36

2.3.1 Approach and hypotheses of Study 3 . . . . . . . . . . . . . . . . . 36

2.4 Interim summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5 Declaration of contributions . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 Study 1: Empathy for pain influences perceptual and motor processing: Evi-

dence from response force, ERPs, and EEG oscillations 41

3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.1 Objectives of the current study . . . . . . . . . . . . . . . . . . . . 48

3.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.2 Materials and apparatus . . . . . . . . . . . . . . . . . . . . . . . 50

3.3.3 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3.4 Electrophysiological measures . . . . . . . . . . . . . . . . . . . . 52

3.3.5 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4.1 Ratings and questionnaires . . . . . . . . . . . . . . . . . . . . . . 54

3.4.2 Behavioral performance . . . . . . . . . . . . . . . . . . . . . . . 54

3.4.3 Event-related potentials . . . . . . . . . . . . . . . . . . . . . . . 56

3.4.4 Oscillatory EEG activity . . . . . . . . . . . . . . . . . . . . . . . 64

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.6 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73



Table of contents xix

4 Study 2: Racial bias in empathy: Do we process dark- and fair-colored hands

in pain differently? An EEG study 75

4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2.1 The current study . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.3.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.3.2 Materials and apparatus . . . . . . . . . . . . . . . . . . . . . . . 86

4.3.3 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.3.4 Implicit Association Test (IAT) . . . . . . . . . . . . . . . . . . . 89

4.3.5 Electrophysiological measures . . . . . . . . . . . . . . . . . . . . 89

4.3.6 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.4.1 Ratings and questionnaires . . . . . . . . . . . . . . . . . . . . . . 91

4.4.2 Behavioral performance . . . . . . . . . . . . . . . . . . . . . . . 93

4.4.3 Event-related brain potentials . . . . . . . . . . . . . . . . . . . . 95

4.4.4 Oscillatory EEG activity . . . . . . . . . . . . . . . . . . . . . . . 100

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.5.1 Empathy-unrelated task and skin color effects . . . . . . . . . . . . 106

4.5.2 Empathy-related effects . . . . . . . . . . . . . . . . . . . . . . . 107

4.5.3 Racial bias of empathy . . . . . . . . . . . . . . . . . . . . . . . . 110

4.5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.6 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5 Study 3: Empathic Concern and Personal Distress depend on situational but

not dispositional factors 115

5.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115



xx Table of contents

5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.2.1 Current Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.3.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.3.2 Apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.3.3 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.3.4 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.3.5 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.4.1 Response Behavior and Reaction Time . . . . . . . . . . . . . . . 131

5.4.2 Positive and Negative Affect . . . . . . . . . . . . . . . . . . . . . 131

5.4.3 Dispositional Empathy . . . . . . . . . . . . . . . . . . . . . . . . 131

5.4.4 Situational empathic Responses . . . . . . . . . . . . . . . . . . . 131

5.4.5 Type of Pain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.4.6 Prior Experience . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.6 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6 General Discussion 141

6.1 Empathic responses to pain . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.1.1 Findings of Study 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.1.2 Findings of Study 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.1.3 Locus of empathy-related influences on information processing . . 147

6.1.4 The influence of group affiliation . . . . . . . . . . . . . . . . . . 150

6.2 Empathic concern and personal distress . . . . . . . . . . . . . . . . . . . 151

6.2.1 Findings of Study 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.2.2 Situational and dispositional influences . . . . . . . . . . . . . . . 153



Table of contents xxi

6.3 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

References 159





Chapter 1

Introduction

In everyday-life, we are very commonly exposed to other humans in pain. But our responses

when witnessing others in physical or psychological pain vary immensely across different

situations: Sometimes we experience sorrow and concern for the targets and want to help

them, sometimes we feel stressed by witnessing their pain, sometimes we ignore it or distract

ourselves, and on other occasions it does not affect us at all. But what are the causes for

these differing responses? Is there anything similar in all empathic responses? When do

we experience empathy, when does it even lead to prosocial behavior? And when are we

numb to others’ pain? In order to understand these issues, it is important to understand how

our brain processes the information of witnessing another person in pain and how this is

influenced by specific characteristics of the target, the corresponding context information

and our own affective state.

Since it is essential for social interactions to comprehend another’s situation, this doctoral

thesis deals with the initial empathic processing, modulating factors influencing the empathic

outcome, and empathic emotions that follow the initial response. In the first chapter, the

theoretical background will be discussed, thereby introducing former studies concerned with

empathy. In Chapter two, the objectives of this doctoral thesis will be described. Chapters

three to five cover three studies concerned with the empathic influences on information
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processing, the modulation of these when the target’s racial background is changed, and

the two empathic emotions following the initial empathic processing: empathic concern

and personal distress. In the last chapter, the results of these studies will be discussed and

integrated into the current literature.

1.1 Different concepts of empathy

We experience empathy when we observe someone in pain, as well as when we observe a

more abstract cue like painful facial expressions or even when we are told of an event in

which someone was experiencing pain (McCall & Singer, 2013). Children start to show

empathic responding in their second year of life (Zahn-Waxler, Radke-Yarrow, & King, 1979)

and also nonhuman animals exhibit empathy (Meyza, Bartal, Monfils, Panksepp, & Knapska,

2002; Preston & de Waal, 2017). But what exactly is empathy?

According to Lamm and Majdandžić (2015), a major problem of empathy research is that

there are different definitions of it and researchers claiming to investigate empathy, are often

only looking at some aspects of empathy that may not be related to those investigated by other

scientists, leading to contradictory results and confusion. Therefore, when studying empathy,

the first important step is to recognize that there are various different definitions of empathy

and to specify which concept is looked at. Batson (2009) claimed that there are eight different

concepts known under the term empathy. The first concept Batson describes is the knowledge

of the internal state, including thoughts and feelings, of another person who has for instance

told you about a loss. The second psychological state one may experience in such a situation

is a matched behavioral or neural response. Facial mimicry is a good example for this state.

The matched neural response will be discussed in greater detail below. A third psychological

concept related to empathy is the same (Hoffman, 1987) or a very similar (Hoffman, 2001)

affective state compared to the other’s affective state. This mere copy of another’s affective

state is often defined as emotional contagion, like in mass panics or when babies start to cry
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because other babies are crying (e.g., Decety & Lamm, 2006; Hatfield, Cacioppo, & Rapson,

1994; Hatfield, Rapson, & Le, 2009). It is often called affective empathy (e.g., Zahn-Waxler

et al., 1992). Even though Batson did not focus on self-other differentiation when defining

the different concepts of empathy, various other authors stress self-other differentiation to

constitute the difference between emotional contagion and empathy (de Vignemont & Singer,

2006; McCall & Singer, 2013; Singer & Lamm, 2009). In other words, when experiencing

empathy, one is aware of the fact that the other person’s state was the source of the own

isomorphic affective state. Coming back to Batson, the counterpart of affective empathy

is cognitive empathy or perspective-taking, which can be subdivided into the fourth, fifth

and sixth concept of empathy: He differentiates between projecting oneself into another’s

situation (what would it be like to actually be the other person?), imagining how the other

is thinking and feeling (what must it be like for the other person to be in this situation?),

and imagining how oneself would think and feel in the other’s place (what would it be like

if you yourself were in the situation of the other?). The seventh and eighth concepts take

motivational consequences of the isomorphic affective state into account and are also known

under the terms personal distress and empathic concern (e.g., Bernhardt & Singer, 2012;

Eisenberg & Eggum, 2009). Too intensely experienced empathy, for example because of a

missing self-regulation, can result in personal distress, an aversive and self-oriented response,

which contains an egoistic motivation to reduce one’s own suffering (Eisenberg & Fabes,

1990; Eisenberg et al., 1996; McCall & Singer, 2013). An example is being anxious about

experiencing the same situation oneself in the future, or being overwhelmed by another’s

distress (Batson et al., 1991). The opposing concept, empathic concern, also known as

compassion or sympathy can result from empathy, if experienced above some threshold

(Eisenberg, Shea, Carlo, & Knight, 1991) and is characterized through other-oriented feelings

that promote a motivation to relieve the other from suffering (e.g., Batson et al., 1991; Singer
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& Lamm, 2009). This can then be transformed into prosocial behavior (Batson, Eklund,

Chermok, Hoyt, & Ortiz, 2007).

With these different concepts of empathy in mind, empathy seems to be a response of

similar feelings compared to another person in a specific affective state (Singer & Lamm,

2009). It is often preceded by mimicry or emotional contagion and followed by empathic

concern or personal distress, determining whether prosocial behavior is elicited (Singer

& Lamm, 2009). According to Batson (2009), empathy research can be subsumed under

two main questions to which the different concepts can be related: How do we get to

know the internal state of another and when do we respond with emotional care to others’

suffering? The concepts of empathic concern and personal distress are more relevant for

the latter question, whereas the remaining concepts are important for the former of the

two questions. Because Batson criticizes that many researchers try to answer one of these

questions without considering the other, I want to address both questions in this dissertation

thesis. First, it will be investigated how humans experience empathy. In doing so, it is

important to distinguish two main theories: the theory-theory and the simulation theory.

The theory-theory view assumes that we use our lay theories of the mind in order to draw

conclusions about the internal state of another person, similar to scientists. The simulation

theory holds that we simulate the state of others in ourselves in order to understand what they

are thinking and feeling (Batson, 2009). These theories will be discussed in the following

paragraphs. Then, I will introduce approaches combining bottom-up and top-down processes

and the methodology with which Study 1 and 2 aim at determining the answer to Batson’s

first question, that is, how we achieve the knowledge of thoughts and feelings of others

or in short, how we experience empathy. Thereafter, I will introduce the theory behind

Batson’s second question of what leads persons to respond with care to the suffering of others.

Again, scientists from different backgrounds like philosophy, social and developmental

psychology tried to solve this question, this time focussing on the actions that result from
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the empathic response (Batson, 2009). Introducing this issue, I will first relate empathy

to prosocial behavior, then focussing on the occurrence of empathic concern and personal

distress because previous research suggests that empathic concern, in contrast to personal

distress, leads to prosocial actions. Again, the methodology with which Study 3 tackled this

question will then be presented.

1.2 Theory-theory versus simulation theory

Two important theories regarding the way to understanding another person’s internal state

are the simulation theory and the theory-theory (Perry & Shamay-Tsoory, 2013; Samson

& Michel, 2013; Zaki & Ochsner, 2013). I will start with presenting the historically older

theory-theory, followed by the simulation theory, and more recent neuroscientific findings.

1.2.1 Theory-theory

The theory-theory assumes that in order to infer the internal state of others, people use lay

theories about the mind, similar to theories that scientists use in order to investigate an issue

(Batson, 2009). These theories can provide information about thoughts and feelings of people

in general or of persons with specific characteristics (Batson, 2009). Thus, the theory-theory

stresses theory of mind (ToM) abilities, also known under the term cognitive empathy, like

cognitively putting oneself in the shoes of someone else in order to understand this person’s

beliefs, intentions and emotions (e.g., Frith & Singer, 2008; Shamay-Tsoory, Aharon-Peret,

& Perry, 2009).

While the emotional part of empathy like emotional contagion can occur very early in

life, this cognitive mentalizing part of empathy has to develop during childhood (Johnson,

2003). Thus, on average, children can only solve the famous Sally-Anne test successfully

from the age of three or four years onwards (Baron-Cohen, Leslie, & Frith, 1985; Wimmer &
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Perner, 1983). This task tests the understanding that another person can have a belief that

oneself knows is erroneous: Sally leaves a toy at a certain location A and disappears from

the scene. Anne moves this toy to another location B. Participants are then asked where Sally

will look for her toy when she returns. Children who do not yet have acquired higher ToM

skills say that Sally will look for her toy at location B even though Sally could not have

noticed that Anne has changed the location. When children are able to differentiate between

the own and the other belief, they give the correct answer A. This cognitive component of

empathy can be further divided into reasoning about emotions or about beliefs, thus affective

and cognitive mentalizing (Brothers & Ring, 1992).

1.2.2 Simulation theory

The theory-theory views cognitive processes as isolated processes, whereas research of the

last decades suggests a tight interconnection between cognitive and sensorimotor processes

(Hesslow, 2002). In this vein, concepts like embodied cognition were introduced in the

1990s (Clark, 1997; Varela, Thompson, & Rosch, 1991). It was assumed that imagery was

not possible without sensory mechanisms and some problem-solving tasks were taken to

rely on motor structures (Hesslow, 2002). The simulation theory suggests that we simulate

actions and perception with our motor and sensory systems without actually moving or

perceiving anything. There are various findings of behavioral experiments that support this

assumption. For example, the time to solve a simple motor task in your imagination is

similar to the time it takes to execute the actual task (Decety, Jeannerod, & Prablanc, 1989).

Furthermore, evidence is provided by patients with unilateral neglect syndrome who can

describe only the features of one side of a square they imagine to stand in, but the other

side if they change their position in their mind to the opposite side of the square (Bisiach &

Luzzatti, 1978). According to this line of reasoning, we can also simulate the other’s internal

state in order to understand it and experience empathy (Singer & Lamm, 2009). There is
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neuroscientific evidence supporting a simulation theoretic account of empathy that will be

discussed below: First, I will discuss mirror neuron findings in macaques that fire when

observing and executing an action, followed by the introduction of shared neural networks in

humans that are active when observing or experiencing pain.

Mirror Neurons

The simulation theory received support from research on mirror neurons after their discovery

in the ventral premotor cortex of macaque monkeys in the 1990s (Gallese, Fadiga, Fogassi, &

Rizzolatti, 1996). Since then they have often been assumed to exist in humans as well. Mirror

neurons are neurons that are firing both when the monkey is grasping an object and when the

monkey observes someone else executing the same movement (Keysers, Thioux, & Gazzola,

2013). Based on the assumption that mirror neurons do exist in human brains, the perception-

action model claims that we understand movements of other persons by simulating them

in our brain (Preston & de Waal, 2002). In this respect, one promising study was able to

apply single cell recording in human epileptic patients during a procedure to localize the

origins of epileptic seizures (Mukamel, Ekstrom, Kaplan, Iacoboni, & Fried, 2010). They

determined neurons that fired while executing and observing an action, providing evidence

for the existence of mirror neurons in human brains. Although, it is hard to determine

whether mirror neurons exist in humans because single cell recording in healthy humans

is not possible, there is converging evidence from neuroscientific studies in humans. Long

before the discovery of mirror neurons in monkeys, Gastaut and Bert (1954) found that

mu rythms in the electroencephalogram (EEG) were blocked during the execution and the

observation of an action. fMRI results also suggest that similar brain regions are active in

action execution and observation (e.g., Keysers & Gazzola, 2009), even though they differ

from the mirror neuron regions in the macaque brain (Keysers et al., 2013). Despite this

evidence for the existence of mirror neurons in humans, the non-invasive brain imaging
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methods have several restrictions as will be outlined below, making it hard to draw definite

conclusions.

All non-invasive, indirect measures are correlative, meaning they measure brain responses

that occur simultaneously with empathy and not necessarily because of or in order to evoke

empathy (Lamm & Majdandžić, 2015). Additionally, only because fMRT regions overlap

when observing and executing an action, there are not necessarily the same processes

involved, given the low spatial resolution of these indirect measures in comparison to single

cell recordings. Each voxel is measuring the activity of thousands of neurons. Thus, from the

activation of the same brain regions in fMRI one cannot deduce that the same neurons are

firing (Lamm & Majdandžić, 2015).

Even if one assumes that mirror neurons exist in humans and we simulate others’ actions

in order to comprehend them, it still remains an open question whether mirror neurons play

also an important role in the observation and understanding of affective states, namely in

empathy (Preston & de Waal, 2002). Some evidence is provided by fMRI studies investigating

empathy for pain that will be discussed in the following section.

Shared neural networks

It is evident that purely motor simulations are not sufficient in explaining empathic responses

with its emotional aspects. The theory of shared neural networks assumes that we simulate

the other’s affective state in our brain by recruiting the same networks as if we would have

experienced it ourselves. This assumption has been supported by recent neuroscientific

studies, as will now be discussed in more detail.

Most of the time, these neuroscientific studies investigated empathy for pain (Bernhardt

& Singer, 2012) because, first, pain and empathy for pain are everyday phenomena, making

investigation easier, and second, the neural correlates of pain are quite well investigated

(McCall & Singer, 2013). Specifically, processing pain is related to activity in the anterior
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cingulate cortex, the insula, the thalamus and the primary somatosensory cortex, which

form the so-called pain matrix (Bushnell et al., 1999; Peyron et al., 1999; Treede, Kenshalo,

Gracely, & Jones, 1999).

In order to investigate neural empathic responses to pain, two prominent paradigms were

used in early fMRI studies: In the picture-based paradigm, participants were presented with

pictures or videos of body parts in painful or neutral daily-life situations like a hand being

cut by a knife (e.g., Jackson, Meltzoff, & Decety, 2005). In the cue-based paradigm, the

presented visual stimuli were not pictures but cues that indicated whether the participant

or another person was receiving a shock or a non-painful touch (e.g., Singer et al., 2004).

With these two paradigms, various fMRI-studies found that some of the brain regions active

during the own experience of pain (i.e., the pain matrix) were also active when watching

pain in others, especially the anterior insula (AI) and the anterior and midcingulate cortices

(ACC, MCC), reflecting the affective component of pain, and the primary and secondary

somatosensory cortices, reflecting the somatosensory processing of pain, although these

latter results were inconsistent across studies (e.g., Decety & Meyer, 2008; Gu & Han, 2007;

Jackson et al., 2005; Kanske et al., 2016; Singer et al., 2004; for a review, see Lamm, Decety,

& Singer, 2011). The assumption that somatosensory-motor representations are also involved

in empathy for pain, has been further supported by Avenanti, Bueti, Galati, and Aglioti

(2005), who investigated motor evoked potentials (MEPs) triggered by transcranial magnetic

stimulation that also allow to measure motor activity, but on a peripheral level. They found

a reduction of motor excitability for limbs that were observed to be painfully treated. The

authors suggested that the somatic resonance was a simple form of empathy, whereas the

affective component represents more complex forms. Among other things, this classification

will be discussed in Study 1.

The inferential problem of the studies supporting the simulation theory is that by using

fMRI, one is not able to determine the functional significance of the overlapping networks:
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Lamm and Majdandžić (2015) argued that one cannot distinguish whether the shared neural

networks are the route to experience similar emotions like the observed person or a mere

sign of this experience. Furthermore, one cannot even state that the same neurons are

active because various neuron activation patterns may lead to the same metabolic activity,

as measured by fMRI (Singer & Lamm, 2009). Thus, as pointed out above, the problem

is the low spatial resolution of fMRI and its correlational nature. Another problem is that

the focus of previous research was almost exclusively directed to the affective state of pain,

whereas we do not know whether the neural correlates of other emotions overlap when

experienced and observed. Results of one fMRI study suggested that empathy for happiness

is related to the activation of the vmPFC instead of the AI and the ACC (Morelli, Rameson,

& Lieberman 2012), but further research is necessary to draw conclusions about empathy

for other affective states than pain. Another limitation of previous studies is that it is not

clear which empathic emotion is measured, because emotional contagion, empathy, personal

distress, and empathic concern often occur simultaneously (Singer & Lamm, 2009). A hint

that AI and ACC activation represent empathy is provided by Klimecki, Leiberg, Ricard,

and Singer (2014), who found that empathy training enhances the activation of AI and ACC,

whereas empathic concern training enhances the activation of areas known to be related to

positive affect. Singer and Lamm (2009) stated a further more conceptual problem of the

simulation models: They only take sensory-driven bottom-up processes into account but not

top-down control and contextual appraisal, what appears necessary given the evidence for

top-down processes influencing empathy. That is, brain responses were found to be different

when additional information was given (e.g., anesthesized body parts, Lamm, Nusbaum,

Meltzoff, & Decety, 2007), when participants were physicians (Decety, Yang, & Cheng,

2010), the racial background differed between the target and the observer (e.g., Wang, Wu,

Liu, Wu, & Han, 2015), or when the perspective was modulated (imagine-self vs. imagine-

other, Jackson, Rainville, & Decety, 2006). In comparison to the simulation theory, the
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theory-theory acknowledges top-down processes but disregards bottom-up processes on the

other hand.

Interim summary

Until recently, the shared network hypothesis was the predominant approach in the field of

empathy research, assuming that people understand others’ feelings by recruiting the same

networks as if they experienced the same feelings themselves. While this approach focuses

on affective empathy and bottom-up processes, the theory-theory approach focuses solely

on cognitive empathy and top-down processes, because it assumes that we understand the

internal state of others through lay theories we have about people’s minds. In order to address

the problem that both theories disregard one aspect of empathic processing, in previous years,

combined approaches have gained attention in empathy research. These approaches will be

explained in greater detail in the next section.

1.2.3 Combined approaches

According to Lamm and Majdandžić (2015), empathy should not be divided into affective

and cognitive empathy, but these processes should be acknowledged as key mechanisms

in evoking empathic responses. Zaki and Ochsner (2013) also warn against considering

experience sharing and mental state attribution as two isolated systems. One combined

approach was suggested by Goubert, Craig, and Buysse (2009) who presume that affective

sharing might be elicited automatically, but can then be modulated by higher-order cognitive

factors like thoughts of the observer. Thus, Goubert et al. (2005) divide the observer’s

behavioral, affective and cognitive responses into bottom-up, top-down, contextual and

relational factors. Under bottom-up factors that determine empathic responses, they subsume

characteristics of the person in pain and pain cues. Those can be the severity of pain displayed

by the other through facial expression or cries. The existence of injuries or the event itself are
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further examples of bottom-up factors influencing the empathic response. Top-down factors

are those related to the observer, like beliefs and memory of prior experiences (Goubert

& Craig, 2009; Goubert et al., 2005). It was assumed that bottom-up processes occur

automatically, in the sense of not requiring attention to the pain cues, whereas the controlled

top-down processes should depend on attention (Fan & Han, 2008). Based on Bargh (1994),

Singer and Lamm (2009) suggested that, in contrast to controlled, automatic means without

conscious and effortful processing.

Regarding the interplay of bottom-up and top-down empathic processing, de Vignemont

and Singer (2006) suggested two different models: the late appraisal model and the early ap-

praisal model (see Figure 1.1). The late appraisal model assumes that empathic responses are

automatically elicited by emotional cues via a bottom-up pathway. The context is processed

in parallel, thereby allowing appraisal processes to modulate the primary empathic response,

representing the top-down pathway. This modulation can be an inhibition or an enhancement

of the initial empathic response. In contrast, the early appraisal model assumes that the

context is processed first, thereby determining whether an empathic response is elicited at all.

Thus, the main difference between the two models is whether the appraisal processes only

modulate the previously elicited empathic response or determine their occurrence in the first

place.

An fMRI-paradigm developed by Kanske, Böckler, Trautwein, Parianen Lesemann, and

Singer (2016) evokes affective and cognitive empathy within one experiment, making it

possible to determine specific brain regions involved in cognitive empathy (medial prefrontal

cortex, the temporoparietal junction, the posterior cingulate cortex, and the temporal poles)

or affective empathy (e.g., AI, ACC). However, in order to determine whether the early or

the late appraisal model is more accurate in describing empathic responses, fMRI is not the

measure of choice, given its low temporal resolution and the fact that the different processes

occur within hundreds of milliseconds. Thus, to test the two models with regard to the time
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empathize with primary emotions such as fear, happiness
or sadness than with secondary emotions such as jealousy.

Relationship between the empathizer and the target
In the study by Singer et al. [22], the empathic responses
were modulated by the affective link between the empathi-
zer and the person in pain. Other factors, such as similarity
[18], familiarity [19] between the two protagonists, how
much protection or care (e.g. nurturance [20]) the target
needs and whether the emotion is directed towards the
empathizer or not (the person in pain being angry or
jealous about the empathizer) might also be crucial.

Characteristics of the empathizer
The gender [25,26], personality, age [27] and past experi-
ences of the empathizer [28] might be relevant. An
empathizer who does not suffer from vertigo can hardly
empathize with a target who is frightened by the void
below him because he does not have the specific feeling
of vertigo in his repertoire. In such a case, the empathizer
might engage in cognitive perspective-taking rather than
empathizing.

Situative context
Could I share your joy if I knew that it was not justified?
Could I empathize with you if you suddenly started crying
for no apparent reason or would I be more surprised?
Empathizing can also become difficult if the empathizer
is simultaneously confronted with two or more targets if
the targets are expressing different emotions.

Some of the modulatory factors can be partly explained
by the role they have in increasing or decreasing attention
to the emotion-eliciting stimulus (e.g. cue saliency and
intensity; empathizer’smood and level of arousal; empathi-
zer and target’s familiarity with and similarity to each
other; target’s intention to communicate that he wants the
empathizer to share his emotions). However, the modula-
tion of empathy cannot solely be explained by attention. In
the study by Singer et al. [22], for example, men paid as
much attention to fair as to unfair players, as shown by a
similar degree of brain activity at the sight of nonpainful
stimulation of both players. Future research will have to
determine the relative importance of these factors and
investigate their complex interplay inmodulating empathic
brain responses.

When does modulation occur?
The next question that arises is, at which stage of empathic
processing does this modulation occur? Do appraisal pro-
cesses take place before the onset of, or during an empathic
response? Figure 2 illustrates the two possible routes.

According to the late appraisal model, the empathic
response is directly and automatically activated by the
perception of an emotional cue. The default rule is that
there is always an empathic response. However, this model
does not prevent the prior empathic response from being
modulated or inhibited at a later stage. Information about
the general and personal context is processed in parallel.
The outcome of the contextual appraisal process leads to
the modulation of the empathic response. This modulation
can either be achieved by top-down inhibitory or excitatory
processes or by horizontal competition between different
motivational processes. For example, in the study by
Singer et al. [22], different motivational systems might
have competed and the men’s desire for revenge might
have won over the inclination to empathize with someone
feeling pain. Thus, in this model, there are two indepen-
dent systems working in parallel, empathic resonance and
appraisal processes.

According to the early appraisal model, the empathic
response is not directly and automatically activated by
the perception of an emotional cue. Rather, the
emotional cue is evaluated in the context of external
and internal information. Whether an empathic response
is elicited depends on the outcome of the contextual
appraisal process. Thus, the default rule is that an
empathic response is not automatically activated but
an empathic response might be elicited as the outcome
of the appraisal process (Jacob and Jeannerod [29] have
a similar view of mirror neurons).

Current neuroscientific studies on empathy cannot yet
distinguish between these two proposed routes. The
results of Singer et al. [4] provide an example of a case
in which contextual processing preceded the activation of
shared networks. Subjects had to decode a symbolic colored
cue indicating whether a painful or nonpainful stimulation
would be delivered to the other person. Only then could
they engage in empathy. In the future, additional studies
should be designed that distinguish between the two
routes proposed above (Box 3). One possibility would be
to use alternative techniques, such as electro- or

Figure 2. Schematic representation of the early and late appraisal model of empathy.
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Fig. 1.1 Graphical illustration of the early and late appraisal models by de Vignemont and
Singer (2006). Figure reprinted from Trends in Cognitive Sciences, 10, de Vignemont, F.
& Singer, T., The empathic brain: How, when and why?, 435-441, Copyright (2006), with
permission from Elsevier.

course of bottom-up and top-down processes in human empathy, a methodology with high

temporal resolution and the possibility to differentiate between automatic and controlled

processes is necessary. Therefore, the EEG, being a non-invasive measurement with relatively

high temporal resolution, appears best suited to investigate the interplay of bottom-up and

top-down processes of empathy, as will be outlined in the next sections (de Vignemont &

Singer, 2006).

1.3 The time course of empathic processing

Despite the fact that numerous studies are concerned with empathy, the time course of auto-

matic and controlled empathic processing stages from stimulus input to response output has

still not been thoroughly investigated. As mentioned above, de Vignemont and Singer (2006)

recommended using EEG because of its high temporal resolution in order to distinguish

between the early and late appraisal model of empathic influences on mental processing

stages. But also other authors like Zaki and Ochsner (2012) criticized that most of the fMRI
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studies did not relate brain activity to behavior and recommended focusing on other than

neuroimaging methods in order to explore the temporal dynamics of these processes and to

investigate links between brain and behavior. According to these authors, EEG is most suited

to investigate the mental chronometry of empathic processing (Zaki & Ochsner, 2012) for

two important reasons: On the one hand, EEG allows to differentiate between automatic and

controlled processes, as will be explained in more detail below. On the other hand, with EEG

one can reveal empathic influences on different processing stages over time.

The EEG reflects the ongoing electrical activity of the brain. There are two ways of

analysing EEG data, providing different kinds of information: event-related brain potentials

(ERPs) and EEG oscillations. In the next section, I will begin by explaining ERPs and their

significance for investigating the time course of empathic processing. Then, I will continue

with discussing EEG oscillations and their significance for examining the motor processing

stage, followed by a general introduction to models of information processing. Then, studies

that have already applied ERPs and EEG oscillations in order to investigate empathy will be

described.

1.3.1 Event-related brain potentials (ERPs)

ERPs are voltage changes that are time- and phase-locked to a sensory, cognitive, or motor

event and result from filtering and averaging procedures in order to enhance the signal-to-

noise-ratio (Fabiani, Gratton, & Coles, 2007). Thus, random background noise that is not

time- and phase-locked to the event is averaged out. ERPs are assumed to be generated by

postsynaptic potentials of thousands of similarly oriented neurons firing simultaneously. If

the orientation of different neurons is different, the electrical field potentials of neuronal

cell assemblies cancel each other. Therefore, most of the ERPs we can measure at the scalp

originate from cortical pyramidal cells that are oriented perpendicular to the skull (Luck,

2014).
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The voltage by time function typically shows various deflections of different polarity,

at different time points over specific electrodes. When segments of ERP waveforms are

influenced by experimental manipulation, they are represented by theoretical constructs called

ERP components. They can be defined by polarity, latency, and topography (Fabiani et al.,

2007). Thus, the components are often associated with specific deflections in the voltage by

time curve. There are modality-specific components that are triggered obligatorily, meaning

even if the attention is drawn away from the stimulus. These are sensory components like in

the visual modality the posterior P1 component, typically peaking between 100 to 130 ms

after stimulus onset, and the N1 component between 130 and 200 ms (Luck, 2014). They

reflect early visual processing being enlarged for attended than unattended stimuli (e.g.,

Hillyard & Anllo-Vento, 1998; Luck, 2014; Luck et al., 2000). Even the early posterior

negativity (EPN) from 200 to 300 ms, typically found over temporo-occipital electrodes

(left hemisphere: P5, P7, PO7, PO9’), can be subsumed under these components. The EPN

is typically enlarged for affectively-arousing compared to neutral stimuli (e.g., Olofsson,

Nordin, Sequeira, & Polich, 2008; Schupp, Junghöfer, Weike, & Hamm, 2004). Furthermore,

there also exist attention-dependent cognitive components like the P3 that is typically found

over centro-parietal regions between 300 and 800 ms after stimulus onset (e.g., Donchin,

1981; Polich, 2007). The P3 is enlarged for infrequent and salient stimuli if they are

relevant for the task. Emotional stimuli also elicit a larger P3 response, probably because

of their salience. This component is also sometimes called P3b in order to differentiate

it from the P3a, a frontally distributed component in the same time interval (Luck, 2014).

Verleger, Jaskowski, and Wauschkuhn (1994) found that the P3b was elicited by infrequent

but somehow expected stimuli, whereas the P3a was elicited by surprising stimuli. With the

different ERP components and their automatic versus controlled nature in mind, it is obvious

why ERPs are suitable to test the occurrence of bottom-up and top-down processes.
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Since not only the background noise but also important information that is not time- and

phase-locked to the event is cancelled out through the averaging procedure of ERPs, the time

frequency analyses provides additional information as described in the next section.

1.3.2 EEG oscillations

Compared to ERPs, which reflect the averaged EEG activity time- and phase-locked to an

event, power change values represent an increase or decrease in synchrony of the underlying

electrophysiological activity (Roach & Mathalon, 2008). Event-related synchronizations

(ERSs) or desynchronizations (ERDs) are obviously related to ERPs (Peng, Hu, Zhang, &

Hu, 2012; Sochurková, Brázdil, Jurák, & Rektor, 2006; Toledo, Manzano, Barela, & Kohn,

2016), but they complement each other because ERSs/ERDs measure oscillatory activity

that is not phase-locked to an event and therefore not cancelled out as in the averaging

process when calculating ERPs (Gomarus, Althaus, Wijers, & Minderaa, 2006; Pfurtscheller

& Da Silva, 1999). ERSs and ERDs represent power increases and decreases due to the

synchronized oscillation pattern, respectively. They result from changes in parameters that

control oscillatory processes in networks and are thus influenced by the dynamics of synaptic

processes, the feedback loops between different brain regions, and neurotransmitter changes

(Pfurtscheller & Da Silva, 1999).

One field of research, in which the analysis of EEG oscillations have been frequently

applied is motor processing. Thus, EEG oscillations over the sensorimotor cortex represent

its state of activation (Pfurtscheller, 1992): Decreases (ERDs) and increases (ERSs) in mu-

and beta-band power (less than 30 Hz) over the sensorimotor cortex represent its excitability

and inhibition, respectively. Evidence in support of this assumption has been provided, for

instance, by Fonken et al. (2016) who showed that beta-band power over the motor cortex

decreased during motor preparation, speaking for an increase in excitability of the motor

cortex, whereas beta-band power increased when participants stopped their action, reflecting
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an inhibition. Results of Takemi, Masakado, Liu, and Ushiba (2013) revealed that even ERDs

involved in a motor imagery task were associated with corticospinal excitability increases,

similar to ERDs during actual motor responses.

In sum, ERPs and EEG oscillations allow to investigate the time course of automatic

bottom-up and controlled top-down processes of empathy. Furthermore, in order to map

specific ERP components to specific neural processes, as well as to investigate empathic

influences on different cognitive and motor processing stages, it seems reasonable to apply

an established model of information processing. Such a model will be outlined in the next

section.

1.3.3 Modern mental chronometry

In cognitive psychology, parallel and serial models of information processing are distin-

guished (Meyer, Osman, Irwin, & Yantis, 1988). Whereas in a serial model, stages proceed in

a sequential order, the stages in a parallel model happen simultaneously (Leuthold, 1994). An

additional distinction is made between discrete and continuous models that assume a discrete

or continuous information transmission between contingent processing stages, respectively

(Leuthold, 1994).

The classical serial-discrete model assumes discrete transmission between the different

processing stages between stimulus input and response output: stimulus encoding, categoriza-

tion, response selection, and motor processing stages (cf. Sanders, 1990; Sternberg, 2004).

In addition, Sanders (1983) assumed that an overstimulation of the arousal system leads to

instant motor action without further cognitive consideration. Consequently, he proposed an

arousal pathway leading from the stimulus encoding stage directly to the motor processing

stage (cf. Figure 3.1).

While there exist alternatives to the serial-discrete stage model, like the cascade model

suggested by McClelland (1979), it is not the goal of this dissertation thesis to investigate the
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different models; rather will I focus on the serial-discrete stage model as a heuristic tool for

determining the potential locus of empathy-related influences on information processing.

Initially, mental chronometry used behavioral RT experiments, assuming that the RT is

the sum of the time needed for each processing stage (e.g., Broadbent & Gregory, 1965, but

see Eriksen & Schultz, 1979). Since it is difficult to tear the different stages apart with RTs,

modern mental chronometry research applied the analysis of ERPs, because specific ERP

components can be interpreted as representing different stages of information processing

(e.g., Leuthold, 1994). The encoding and categorization stages are represented by different

ERP components that either reflect their duration or extent.

For instance, the previously introduced sensory ERP components P1 and N1 can be

taken to reflect the early stimulus encoding stage. The EPN represents somewhat later

but still early differential processing of affective stimuli after their initial encoding. The

later categorization stage is typically assumed to be represented by the centroparietal P3

component. EEG oscillations and response force, on the other hand, measure influences on

the motor processing stage. In the next section, I will introduce studies that have already

investigated empathic processing with EEG.

1.3.4 EEG studies of empathy

Several studies investigating the time course of empathy for pain compared ERP amplitudes

of participants watching stimuli depicting body parts or faces in painful or neutral daily-life

situations. Table 1.1 provides an overview of these studies. One of the first ERP studies

on empathy for pain was conducted by Fan and Han (2008) who aimed at investigating the

influence of stimulus reality and attention toward the pain dimension on empathic processing.

Therefore, they presented cartoon and real pictures of body parts in painful situations, like

cutting a finger, and the neutral counterpart with the body parts in the exact same arrangement

but without the painful element (see Figure 1.2). Fan and Han asked their participants to judge
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the painfulness of the pictures or to count the body parts displayed, while recording EEG.

This task manipulation allowed to draw attention towards or away from the pain dimension,

respectively. After the EEG recording session, participants saw the painful pictures again

and rated their pain intensity and their own self-unpleasantness during watching. RT was

not significantly different between painful and neutral pictures, whereas response accuracy

was lower in the painful than neutral condition. This difference was furthermore enlarged in

the pain judgment compared to the counting task. Additionally, they found more positive

ERP amplitudes in the painful than the neutral condition in early time intervals (P180, N240)

over frontal electrodes, independent of the task but influenced by stimulus reality (cartoon

versus picture). P3 amplitudes were larger in the painful than the neutral condition after

380 ms over central-parietal regions. This difference was independent of stimulus reality,

but disappeared in the counting task, thus depending on the attention to the pain dimension.

ERP amplitudes in the painful condition and the pain judgment task in an early time window

(140-180 ms) were negatively correlated with pain intensity and self-unpleasantness ratings.

Fan and Han interpreted their ERP results as reflecting early automatic bottom-up and late

controlled top-down processes. Thus, in my view, these results support the late appraisal

model that assumes an early empathic bottom-up response that is later on modulated by

top-down mechanisms.

Subsequent ERP studies used a similar approach as Fan and Han (2008). However, as can

be seen in Table 1.1, the RT and accuracy results differ across the studies. Similarly, the ERP

results of Fan and Han (2008) regarding early automatic empathic processes have only been

replicated by some studies (e.g., Han, Fan, & Mao, 2008), whereas others found amplitude

differences in other time intervals (Decety, Yang, & Cheng, 2010; Mella, Studer, Gilet, &

Labouvie-Vief, 2012; Meng et al., 2012; Sessa, Meconi, Castelli, & Dell’Acqua, 2014) or

no early ERP difference at all (Lyu, Meng, & Jackson, 2014). The late controlled empathy

effect has been found quite consistently over the different studies (e.g., Cheng et al., 2014;
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Lyu et al., 2014). Thus, except for the late P3 difference, the studies revealed an inconsistent

pattern of results, not allowing to identify whether the early or late appraisal model is more

accurate in describing empathic responses.

Fig. 1.2 Fotographs and cartoons of body parts in painful and neutral situations used by Fan
and Han (2008). Figure reprinted from Neuropsychologia, 46, Fan, Y. & Han, S., Temporal
dynamic of neural mechanisms involved in empathy for pain: An event-related brain potential
study, 160-173, Copyright (2008), with permission from Elsevier.

Riečanský, Paul, Kölble, Stieger, and Lamm (2014) investigated EEG oscillations over the

sensorimotor cortex to empathy-evoking stimuli and found stronger ERDs of beta oscillations

(13-30 Hz) or of mu oscillations (7-12 Hz) during watching videos of hands in pain compared

to neutral situations or at the static end phase of the videos, respectively. Their results were

interpreted as an anticipatory sensorimotor activation, maybe in order to protect oneself from

possible danger, speaking for a facilitation of movements when experiencing empathy for

pain. In line with this assumption, Perry, Bentin, Bartal, Lamm, and Decety (2010) and

Whitmarsh, Nieuwenhuis, Barendregt, and Jensen (2011) found stronger mu suppression

over the sensorimotor cortex for painful than neutral stimuli. In contrast, other authors

(Avenanti et al., 2005; Avenanti, Sirigu, & Aglioti, 2010) investigating MEPs triggered by

transcranial magnetic stimulation found smaller MEP amplitudes to painful than neutral

video clips. This was interpreted as an inhibition of motor responses when observing pain.

Avenanti, Minio-Paluello, Sforza, and Aglioti (2009) clarified with their results that this
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Table 1.1 O

verview
 over ER

P studies of em
pathy 

 Study 
Participants 

Stim
uli 

T
ask 

E
m

pathy-related results 

D
ecety et al. (2010) 

33 participants 
Pictures of body parts penetrated by needle 
or Q

-tip 
Pain judgm

ent for som
e trials 

E
R

Ps 
N

110 [90-120 m
s]: painful > neutral 

P3 [360-400 m
s]: painful > neutral  

Fan and H
an (2008) 

26 participants 
Pictures of hands in painful or neutral daily-
life situations and cartoons displaying the 
sam

e scenes 

Pain judgm
ent + counting task 

E
R

Ps 
P180 [140-200 m

s]: painful > neutral, task-independent 
N

240 [200-280 m
s]: painful > neutral, task-independent 

P3 [380-500 m
s]: painful > neutral only in pain judgm

ent task 
R

T
 

no difference betw
een painful and neutral  

A
ccuracy 

neutral > painful, stronger in pain judgm
ent task 

H
an et al. (2008) 

26 participants 
Pictures of hands in painful or neutral daily-
life situations and cartoons displaying the 
sam

e scenes 

Pain judgm
ent + counting task 

E
R

Ps 
P180 [140-200 m

s]: painful > neutral, task-independent 
N

240 [200-280 m
s]: painful > neutral, task-independent 

P3 [380-500 m
s]: painful > neutral only in pain judgm

ent task 
R

T
 

O
nly m

ales: neutral > painful only in pain judgm
ent task 

A
ccuracy 

O
nly fem

ales: neutral > painful only in pain judgm
ent task 

Lyu et al. (2014) 
28 participants 

Pictures of body parts in painful or neutral 
daily-life situations 

Pain intensity rating 
E

R
Ps 

N
1 [100-140 m

s]: no difference betw
een painful and neutral  

P3 [360-500 m
s]: painful > neutral  

M
ella et al. (2012) 

 
16 adolescents + 16 
adults 

Pictures of hands in painful or neutral daily-
life situations and cartoons displaying the 
sam

e scenes 

Pain judgm
ent + counting task 

E
R

Ps 
N

110 [90-130 m
s]: neutral > painful in both tasks, but only in 

adolescents 
N

340 [340 m
s]: painful > neutral in both tasks 

P3 [360-800 m
s]: painful > neutral only in pain judgm

ent task 
R

T
 

neutral > painful only in pain judgm
ent task 

A
ccuracy 

no difference betw
een painful and neutral  

M
eng et al. (2012) 

20 participants 
Pictures of body parts in painful or neutral 
daily-life situations 

Pain intensity rating 
E

R
Ps 

N
1 [90-150 m

s]: painful > neutral 
P2 [200-250 m

s]: painful > neutral 
N

2 [230-300 m
s]: neutral > painful 

P3 [360-800 m
s]: painful > neutral  

R
T

 
painful > neutral (note: rating instead of pain judgm

ent task) 
Sessa et al. (2014) 
  

12 participants  
Pictures of faces penetrated by needle or Q

-
tip 

Pain judgm
ent 

E
R

Ps 
N

2-N
3 [280-340 m

s]: painful > neutral  
P3 [400-750 m

s]: painful > neutral  
R

T
 

no difference betw
een painful and neutral 

 N
ote. O

verview
 over studies investigating em

pathy w
ith ER

Ps (concerning ER
Ps ‘>’ m

eans ‘m
ore positive am

plitude’).         
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motor inhibition was limited to the left or right hand of the observer that corresponded to the

hand presented in the video. One can speculate that EEG oscillations measured a general

sensorimotor activation of larger muscle groups, whereas the specific muscle that is injured

in the video, is inhibited in the observer as suggested by the MEP results. Another possible

explanation for the differing oscillatory and MEP results is that the excitability and inhibition

of the sensorimotor system may vary over time. Thus, it remains an open issue whether

empathy inhibits or facilitates sensorimotor activation.

In sum, EEG studies investigating either empathic influences on affective and cognitive

processing or on motor processing, revealed inconsistent results. More specifically, behavioral

results differed across studies, revealing either no RT differences or shorter RTs for the neutral

and sometimes for the painful condition. The early ERP difference between the painful and

the neutral condition was found at different time intervals and sometimes not at all. The

only ERP difference that was consistently found was in the late P3 time interval. For the

painful condition, EEG oscillation and MEP results revealed a facilitation and an inhibition

of sensorimotor activity, respectively, making it difficult to come up with straightforward

conclusions.

1.3.5 Modulating factors

Considering empathic influences on information processing, it is further interesting to

compare the empathic responses towards in- and outgroup targets. As already mentioned, we

know key factors modulating the empathic response measured by EEG, like the profession

(Decety et al., 2010) or the age of the participants (Cheng, Chen, & Decety, 2014; Mella et

al.,2012), the relationship between the observer and the target (Leng & Zhou, 2010), or the

type of perspective-taking (Li & Han, 2010). The racial background of the target is another

modulating factor important for present purposes that is also viewed to be critical for the

relation of empathy and morality as will be discussed below (e.g., Chiao & Mathur, 2010;
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Cikara, Bruneau, & Saxe, 2011). To better understand the exact mechanisms underlying

the racial bias in empathy, it is again important to determine its time course and thus the

differences on the encoding, categorization and motor processing stages to be examined in

Study 1.

The existing literature again can be divided into studies investigating the influence of

racial background on information processing with ERPs and its influence on motor processing

with EEG oscillations or MEPs. An overview over the relevant studies is presented in Table

1.2. Sessa et al. (2014) measured EEG while White participants were judging the painfulness

of pictures of fair- or dark-colored faces penetrated by a needle (painful condition) or a

Q-tip (neutral condition). Afterwards, the implicit racial bias was assessed by the race

version of the Implicit Association Task (IAT), an experimental procedure to assess the

strength of automatic associations by measuring performance speed of two categorization

tasks (Greenwald, McGhee, & Schwartz, 1998; Greenwald, Nosek, & Banaji, 2003). Sessa et

al. did not find any RT difference between the painful and neutral condition, but ERP results

indicated more positive amplitudes for the painful than the neutral condition in the N2 - N3

time interval (280-340 ms), only for own race targets. The later P3 amplitudes were larger for

the painful than the neutral condition, independent of the racial background. Nevertheless,

P3 amplitudes for ingroup targets in pain over specific electrodes were associated to the IAT

scores, possibly reflecting a relation between an implicit ingroup preference and the extent

of the P3 response to pain. In sum, Sessa et al. assumed that the early empathic response

is influenced by the racial bias and therefore only present for the ingroup, whereas the later

controlled empathic response is present for both groups.

Several other studies that investigated this racial bias in empathy also found an influence

on early ERP time intervals, even though the exact intervals varied strongly (Contreras-

Huerta, Hielscher, Sherwell, Rens, & Cunnington, 2014; Li et al., 2015; Sessa et al., 2014;

Sheng, Du, & Han, 2017; Sheng, Liu, Zhou, Zhou, & Han, 2013). One critical issue is that
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Table 1.2 O

verview
 over studies of racial bias in em

pathy 
 Study 

Participants 
Stim

uli 
T

ask 
R

B
E

-related R
esults 

C
ontreras-H

uerta et 
al. (2014) 

21 C
aucasian-A

ustralian 
participants 

Pictures of A
sian and C

aucasian faces 
penetrated by needle or Q

-tip  
Pain judgm

ent 
E

R
Ps 

N
1 [80-140 m

s]: painful > neutral only for ingroup 
P3 [450-650 m

s]: painful > neutral for both groups 
Li et al. (2015) 

32 C
hinese participants 

Pictures of A
sian and C

aucasian faces w
ith 

neutral or painful expression 
Pain judgm

ent 
E

R
Ps 

P2 [128-188 m
s]: painful > neutral stronger for ingroup  

N
2 [200-300 m

s]: painful > neutral for both groups 
P3 [400-700 m

s]: painful > neutral stronger for ingroup, if m
ortality 

salience is prim
ed 

R
T

 
neutral > painful for both groups 

Sessa et al. (2014) 
12 w

hite-C
aucasian 

participants  
Pictures of black- and w

hite-colored faces 
penetrated by needle or Q

-tip 
Pain judgm

ent 
E

R
Ps 

N
2-N

3 [280-340 m
s]: painful > neutral only for ingroup  

P3 [400-750 m
s]: painful > neutral for both groups 

R
T

 
no difference betw

een painful and neutral 
Sheng et al. (2017) 

26 C
hinese participants 

Pictures of A
sian and C

aucasian faces w
ith 

neutral or painful expression 
Judgm

ent of orientation of 
filler item

s (scram
bled faces) 

E
R

Ps 
N

170 [128-188 m
s, occipitotem

poral]: no difference betw
een painful 

and neutral 
P2 [128-188 m

s, fronto-central]: painful > neutral only for ingroup 
Sheng and H

an 
(2012) 
  

48 C
hinese participants 

Pictures of A
sian and C

aucasian faces w
ith 

neutral or painful expression 
 

Study 1: race judgm
ent 

Study 2: race + pain 
judgm

ent 

E
R

Ps 
Study 1: 
P2 [128-188 m

s]: painful > neutral only for ingroup  
N

2 [200-300 m
s]: painful > neutral stronger for ingroup  

P3 [400-700 m
s]: no difference betw

een painful and neutral 
Study 2:  
Pain judgm

ent task elim
inated bias (attention for individual’s 

feelings) 
R

T
 

Study 1: 
painful > neutral only for ingroup 

Sheng et al. (2013) 
16 C

hinese participants 
Pictures of A

sian and C
aucasian faces w

ith 
neutral or painful expression 

R
ace judgm

ent 
E

R
Ps 

P2 [128-188 m
s]: painful > neutral stronger for ingroup  

N
2 [200-300 m

s]: neutral > painful for both groups 
P3 [400-700 m

s]: no difference betw
een painful and neutral 

R
T

 
painful > neutral for ingroup 
neutral > painful for outgroup 

Riečanský et al. 
(2015) 

69 w
hite-colored 

participants  
V

ideo clips of black-, w
hite- and purple-

colored hands penetrated by needle or Q
-tip 

-- 
E

E
G

 oscillations over sensorim
otor cortex 

beta ERD
 (m

oving stim
uli): painful > neutral only for ingroup 

m
u ERD

 (static endpoint): painful > neutral for both groups  
A

venanti et al. 
(2010) 

18 w
hite-C

aucasian + 18 
black-A

frican 
participants 

V
ideo clips of black-, w

hite- and purple-
colored hands penetrated by needle or Q

-tip 
A

fter each block: questions 
about videos 

M
otor-evoked potentials (M

E
Ps) 

neutral > painful only for ingroup  

 N
ote. O

verview
 over studies investigating the racial bias in em

pathy (R
BE) w

ith ER
Ps, EEG

 oscillations and M
EPs (concerning ER

Ps ‘>’ m
eans ‘m

ore positive am
plitude’). 
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the results change with the presented stimuli: On the one hand, pictures of faces with painful

compared to neutral facial expressions led to a larger frontocentral P2 amplitudes (128-188

ms), with this effect being increased or only present for own-race targets in a race judgment

task (Sheng et al., 2013; Sheng & Han, 2012), the pain judgment task (Li et al., 2015; but

see Sheng & Han, 2012) or without any stimulus-specific task (Sheng et al., 2017). On the

other hand, faces in painful compared to neutral situations with neutral facial expressions

evoked only for ingroup targets more positive amplitudes between 80 and 140 ms in the pain

judgment task of one study (Contreras-Huerta et al., 2014) and a somewhat later between

280 and 340 ms after stimulus onset over frontocentral electrodes in the study of Sessa et

al. (2014). Possibly, the neutral facial expression combined with the penetration of a needle

seemed unrealistic to participants because usually people show painful expressions if they

experience pain. Furthermore, one cannot rule out that other factors than racial background

like trustworthiness of the presented faces (e.g., Stanley, Sokol-Hessner, Banaji, & Phelps,

2011; Todorov, Said, & Verosky, 2011) interacted with empathy. Another problem of all the

presented studies except for one (Contreras-Huerta et al., 2014) that makes interpretation

of the inconsistent results more difficult was that they investigated only one racial group

of participants, most of the time Asians (see Table 1.2). Nevertheless, regarding the late

P3 influence, results were consistent: The late empathic response was not differentially

influenced by the target’s racial background (but see Li et al., 2015).

Concerning the influence on the motor processing stage, Riečanský et al. (2014) found

larger ERDs and thus greater sensorimotor activation in the beta band (13-30 Hz) to painful

compared to neutral video clip stimuli of hands only for ingroup targets, but no difference in

motor activation for painful stimuli depicting outgroup targets. In contrast, mu band (7-12

Hz) ERDs were larger for painful than neutral static pictorial stimuli for both skin colors,

speaking for an increase of sensorimotor activation for targets of both skin colors in pain.

Using MEPs, Avenanti, Sirigu, and Aglioti (2010) found an ingroup-specific motor effect,
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but in the opposite direction: Motor activation was inhibited for painful compared to neutral

stimuli.

1.3.6 Interim summary

In order to investigate automatic bottom-up and controlled top-down empathic processes,

the EEG seems to be especially suitable because of its high temporal resolution. ERPs

and EEG oscillations are complementary analysis approaches that reveal information about

empathic influences on the different stages of information processing. Recalling the two

questions formulated by Batson (2009), we have now looked into the existing literature and

the methodology in order to investigate the first question of how empathy arises. I then

introduced modulating factors of empathy like the racial background of the target in order

to bridge the gap between the first and the second question “When do people respond with

care to others’ suffering?”. On the one hand, one can investigate the influences of the racial

background on empathic processing and on the other hand, the results give hints as to why

prosocial behavior might be missing in some occasions. This will also be discussed in the

next section, where I will dive into the theoretical background of the second question. I will

start with the relationship between empathy and prosocial behavior, and then introduce the

concepts of empathic concern and personal distress, two phenomena that are believed to

determine whether prosocial behavior is shown or not.

1.4 Empathy and its link to prosocial behavior

Regarding Batson’s (2009) second question, that is, when we respond to others’ suffering with

care, it is obvious that empathy has often been related to prosocial behavior and altruism, like

for example in the empathy-altruism-hypothesis of Batson (1987). This hypothesis assumes

that the motivation to help other persons that results from empathy is purely altruistically
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driven. Evidence in favor of the empathy-altruism-hypothesis was provided by various studies

(Batson, Duncan, Ackerman, Buckley, & Birch, 1981; Toi & Batson, 1982) which found

that if the observers experience low levels of empathy and escape is easy, the probability

of helping the other is very low, whereas it is very high if they experience high levels of

empathy. These findings outrule the existence of an egoistic goal to reduce the own arousal

when experiencing empathy.

On the other hand, empathy can also be used to damage others, for example, in order

to hurt the other’s feelings effectively in a fight or in competitive environments like sports

(Lamm & Majdandžić, 2015; Singer & Lamm, 2009). Knowing the other’s internal state,

including thoughts and feelings, is obviously of use in these situations. Here, again, the

definitions of empathy are of great importance (Lamm, Rütgen, & Wagner, 2017). The

empathy-altruism hypothesis uses the term empathy referring to the concept of empathic

concern, that is an other-oriented emotional response of sympathy and sorrow that differs

from the target’s state (Eisenberg et al., 1991). Here it is important to note that empathic

concern should not be mixed up with the mere knowledge of another’s internal state that

can indeed be used to damage others (McCall & Singer, 2013). This is also evident when

considering the counterpart of empathic concern, that is personal distress: A self-focused

aversive response of unpleasantness similar to the target’s state (e.g., Batson, Fultz, &

Schoenrade, 1987). The main difference between personal distress and empathic concern lies

in their orientation to the self and the other, respectively, leading to different motivational

consequences: If observers experience more personal distress, they are eager to reduce their

own unpleasantness, whereas if they experience more empathic concern, they should be

motivated to reduce the target’s suffering (e.g., Batson, O’Quin, Fultz, Vanderplas, & Isen,

1983; Decety, 2010; Goubert et al., 2005; Singer & Lamm, 2009). Indeed, various studies

reported that empathic concern led to prosocial behavior (e.g., Batson & Ahmad, 2001;

Batson & Moran, 1999). For example, Weng, Fox, Hessenthaler, Stodola, and Davidson
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(2015) found that participants with greater empathic concern scores were more likely to

help an unfair-treated other, whereas there was no relation to punishment behavior towards

persons displaying the unfair behavior.

The relation between empathic concern and prosocial behavior is widely acknowledged.

In order to answer the second question of Batson (2009), it is now important to investigate

empathic concern and its counterpart personal distress in more detail and inquire when people

experience which of the two emotional responses.

1.5 Evoking and measuring empathic concern and personal

distress

As described in the previous paragraph, the experience of empathic concern and personal

distress is an important determinant for the occurrence of helping behavior when witnessing

another person in pain (e.g., Eisenberg, Shea, Carlo, & Knight, 1991). That is, empathic

concern is related to an altruistic motivation to reduce the other’s suffering, whereas personal

distress is assumed to lead to an egoistic motivation in order to reduce one’s own suffering

(e.g., Batson et al., 1983; Decety, 2010). It is not yet clear, however, under which specific

conditions these two emotional responses are occurring. Therefore, variables that influence

their occurrence will be described in this section.

In this respect, one critical issue concerns the fact that the dispositions to experience

empathic concern and personal distress differ between individuals. Furthermore, which

phenomenon is present in a specific situation is not solely determined by the individual’s

empathic traits (Batson et al., 1987). It still remains an open question how, dispositional and

situational empathic concern and personal distress are related, as will be discussed below.

First, the measurements of dispositional traits and situational responses will be introduced.

Dispositional empathic traits can be measured by the Interpersonal Reactivity Index (IRI,
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Davis, 1983b), a questionnaire with four scales of four items each: fantasy, perspective

taking, personal distress and empathic concern. An item of the empathic concern scale is

for example “I often have tender, concerned feelings for people less fortunate than me”. “I

sometimes feel helpless when I am in the middle of a very emotional situation” is an item

for personal distress. The Empathic Response Scale, on the other hand, measures situational

empathic concern and personal distress by asking participants how much they experience

certain affective states, like “compassionate”, “moved”, “worried”, “distressed” in a given

situation (e.g., Batson et al., 1997; Batson, McDavis, Felix, Goering, & Goldman, 1976).

According to Decety and Lamm (2006), dispositional empathic traits, as well as the

emotional background of the observer, but also situational factors like the context, the emotion

and the level of arousal should influence the experience of the two empathic emotions. There

are few studies that investigated the relationship between situational empathic concern and

personal distress and these other variables. Davis (1983a) assessed dispositional traits with

the IRI and situational empathic concern and personal distress with the Empathic Response

Scale. He found only a small correlation between situational and dispositional measures (see

also, Eisenberg et al., 1994; Light et al., 2015). In contrast, Eisenberg et al. (1994) found

promising correlations between dispositional affect measured by the Positive and Negative

Affect Schedule (PANAS, Watson, Clark, & Tellegen, 1988) and situational personal distress

as measured with the Empathic Response Scale.

Decety and Lamm (2006) view self-other differentiation as the key feature in determining

whether empathic concern or personal distress arises from empathy. Thus, too much self-

other overlap results in personal distress. In this respect, an important factor seems to be the

type of pain experienced by the target: Batson, Early, and Salvarani (1997) proposed that

physical pain should evoke more personal distress than empathic concern in the observer,

irrespective of the self-other differentiation. In contrast, for psychological pain, the focus

on the own versus the other’s feelings plays an important role (e.g., Batson et al., 1997;
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Decety & Lamm, 2006; Goubert et al., 2006; Wondra & Ellsworth, 2015). More specifically,

if the observer is focusing on the own feelings, personal distress is evoked; if the focus

lies on the target’s situation, empathic concern is the result (Batson et al., 1997). Batson

et al. (1997) found that when listening to a dramatic story of a girl who lost her parents,

the perspective-taking instructions that direct the focus either toward the own or the other

feelings determine whether more personal distress or empathic concern is evoked.

Eisenberg et al. (1996) assume that high levels of empathy are likely to lead to high

levels of empathic concern if the observer is well-regulated (see also, Eisenberg et al.,

1994). However, according to Eisenberg and Eggum (2009), if individuals experience intense

emotions and have difficulties in self-regulation, they are prone to experience personal

distress because of overarousal. Thus, self-regulation abilities are a key point in preventing

high levels of arousal from resulting in personal distress (Decety & Jackson, 2004). In other

words, there seems to exist a stronger link from arousal to personal distress than to empathic

concern (for a review, see Eisenberg, Valiente, & Champion, 2004). Since arousal is known

to speed up responses, it may be observable in RTs (Sanders, 1983).

There are few studies investigating the occurrence of empathic concern and personal

distress, always using few trials and often not taking important variables like perspective

and affect into account. This is the reason why Study 3 of this dissertation project aimed

at manipulating their occurrence with the aid of pictures of persons in psychological and

physical pain in a randomized controlled study and measure their relation to situational and

dispositional factors.

1.6 Interim Summary

There is now substantial evidence for the assumption that specific brain regions are active

during the experience of pain and the observation of pain in others. Importantly, however,

the time course of empathic processing is not that well investigated. It is still not clear
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whether there is an early automatic empathic influence on information processing, whereas

the results of the late controlled component of empathy seem to be quite stable. Other studies

investigating empathic influences on motor processing did not agree on whether empathy

leads to an inhibition or a facilitation of motor responses.

Another open issue concerns differences in empathic influences for racial in- and out-

group targets on information processing. Regarding the two empathic emotions empathic

concern and personal distress that follow the initial empathic response, it is an open question

which factors influence situational empathy and how empathic concern and personal distress

influence motor responses. The main goal of this doctoral thesis is to address these open

questions as will be discussed in the following paragraphs.





Chapter 2

Aim of the present work

Given the different meanings of empathy (cf. Batson, 2009), it is important to clarify that

in the present thesis, I will stick to the definition of empathy by de Vignemont and Singer

(2006). According to these authors, empathy is an affective state isomorphic to and elicited

by another person’s affective state, with the knowledge about the source of the own state.

This doctoral thesis aimed at contributing answers to the following questions (Batson,

2009): How can we get to know another’s internal state and when do we respond with care

to another’s suffering. In the review of previous studies (Chapter 1), I identified various

research gaps that will be addressed in this work. Thus, the main aims can be defined as

the following: On the one hand, the time course of the immediate automatic and controlled

empathic response to another person in pain shall be investigated regarding early encoding,

late categorization and motor processing stages. Then, influences of the target’s racial

background on empathic responses shall be determined, including their time point and

automatic or controlled manner. On the other hand, I wanted to examine the occurrence of

empathic concern and personal distress following the initial empathic reaction. The specific

studies will be outlined in more detail in the following paragraphs.
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2.1 Empathic influences on perceptual and motor

processing

Currently it remains unclear at which stages of information processing empathic influences

can be observed. Nevertheless, previous studies provide hints that early processing stages

are influenced automatically, whereas later stages are influenced in a controlled manner.

Moreover, it is unclear whether empathy-evoking stimuli inhibit or facilitate motor processing.

Study 1 aimed at investigating automatic and controlled influences on empathic processing on

the encoding, categorization and motor processing stages in a single experiment. Until now,

at least to my knowledge, no study has comprehensively investigated empathic influences on

the different stages of information processing in a single experiment. The empathic influences

were investigated with the aid of ERPs and oscillatory EEG activity while participants were

watching empathy-evoking and neutral stimuli: Early ERP components like P1, N1 and EPN

reflect the early encoding stage, the late P3 component represents the later categorization

stage and EEG power changes over the sensorimotor cortex reflect motor activation. In

response to the critique of Zaki and Ochsner (2012) regarding the missing link between brain

activity and behavior in previous studies, the first and second study assessed RT and response

force in a pain judgment and a counting task as behavioral measurements.

2.1.1 Approach and hypotheses of Study 1

In Study 1, 124 pictures of body parts in neutral or painful daily-life situations (Meng, Hu

et al., 2012) were presented on a computer screen. A painful picture was for example a

hand that was accidently cut while slicing a cucumber. The neutral pendant showed the

same arrangement of hands and objects without the painful element. Participants judged the

pictures according to their painfulness (painful vs. neutral) or the amount of presented body

parts (one vs. two or more), while RT, response force, and EEG were recorded. The aim of
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the different tasks was to direct the attention either toward or away from the pain dimension

in order to determine controlled and automatic processes.

If automatic empathic influences on the early encoding stage exist, the early ERP compo-

nents (P1, N1, EPN) should differ between painful and neutral stimuli in both tasks. Later

controlled influences on the categorization stage, reflected by P3 amplitudes, should depend

on the attention to pain. If empathic influences on the motor processing stages manifest them-

selves in motor inhibition, EEG oscillations over the sensorimotor cortex should synchronize.

If empathy leads to motor facilitation, they should desynchronize.

2.2 The modulation of empathic processing by racial

background

Study 2 was designed to measure whether these empathic influences on information process-

ing change when the target’s racial background is changed. Previous studies investigating

mainly face stimuli of different racial backgrounds revealed contradictory results. Neverthe-

less, there are hints that empathic processing differs for other and own racial backgrounds in

early but not later time intervals and that the motor facilitation or inhibition to painful stimuli

is larger for targets with the same racial background (Avenanti et al., 2010; Riečanský et al.,

2014; Sessa et al., 2014). Because of the potential limitations of face stimuli outlined above

(Chapter 1.3.5), it seemed reasonable to examine empathic responses to outgroup targets

with newly created and prerated, less complex hand stimuli.

2.2.1 Approach and hypotheses of Study 2

Pictures of dark- and fair-colored hands in neutral and painful daily-life-situations were

generated. Caucasian participants judged the painfulness of the situation or the skin color

of the presented hands, while RT, response force, and EEG were recorded. At the end of
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the experiment, participants completed the race IAT (Greenwald et al., 1998, 2003) in order

to assess implicit ingroup preferences. After the EEG recording sessions in Study 1 and 2,

participants also rated the painfulness they perceived on the painful pictures and their own

self-unpleasantness during watching them, as well as their empathic dispositions.

In line with the literature, it was hypothesized that the automatic empathic influence on

the early encoding stage should only be present for targets with the same skin color like the

participant, whereas the influence on the late categorization stage should be present for both

skin colors. Motor processing stages, again, should be subject to the racial bias in empathy.

2.3 Empathic concern and personal distress

Study 3 examined the empathic emotions that follow the initial empathic response investigated

in the other two studies of this doctoral thesis. The aim was to determine how important

dispositional empathic traits and situational variables are in evoking empathic concern and

personal distress. Situational variables are for example affect experienced by the observer and

the type of pain experienced by the target. Situational affect, empathic concern, and personal

distress experienced by the participant as well as dispositional empathic traits were assessed.

Based on the literature, a stronger relationship between the situational empathic responses

and situational factors (type of pain, affect) was expected compared to dispositional empathic

traits. It was further expected that observers experience more arousal with increasing levels

of personal distress, leading to increasingly faster motor responses than if they experience

empathic concern.

2.3.1 Approach and hypotheses of Study 3

Pretested pictures of persons in psychological pain (because of the death of the mother) or

physical pain (because of a heart attack) or no pain in the control condition were presented
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on a computer screen, together with descriptions of situations that promoted an other-focused

instead of a self-focused state (e.g., “Imagine yourself to be on a street facing a stranger

who is obviously not feeling well. You ask him/her what has happened. He/she answers

that he/she has just found out that his/her mother has died all of a sudden.”, “Imagine that

you meet a new colleague at your office. All of a sudden, he/she complains about violent

pain at the thoracic regions.”). After blocks of six pictures, participants rated their empathic

responses on the adjusted version of the Empathic Response Scale (e.g., Batson et al., 1997;

Batson et al., 1976). Participants performed an approach-avoidance task, moving a slider

device either towards or away from their body depending on the pitch of a tone presented

1000 ms after picture onset. In order to direct the attention of the participants onto the

pictures despite their irrelevance for the response, after each block, they were asked whether

they remembered a specific person whose picture could have been presented in the preceding

block. Dispositional empathic traits (IRI, Davis, 1983b) and positive as well as negative

affect (PANAS, Watson et al., 1988) were assessed.

In line with the literature (Eisenberg et al., 1994), negative and positive affect before the

experiment were assumed to predict personal distress and empathic concern, respectively,

whereas dispositional empathy should not play an important role in predicting situational

empathic concern and personal distress. Together with the other-focused state, physical pain

should evoke personal distress and psychological pain should evoke empathic concern. Motor

responses were expected to be faster for personal distress than empathic concern because of

higher levels of arousal.

2.4 Interim summary

In sum, in order to understand empathy, it seemed helpful to investigate empathic influences

on information processing, how these vary with racial group dependency of the target, and

what determines the occurence of the resulting empathic emotions empathic concern and
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personal distress. In the following chapters the three studies, including their results, are

presented. They are written as separately readable manuscripts. This results in overlapping

contents to this introduction, the general discussion, and between the empirical chapters.
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3.1 Abstract

The present study investigated the nature and chronometry of empathy for pain influences

on perceptual and motor processes. Thus, event-related brain potentials (ERPs), response

force (RF) and oscillatory electroencephalography (EEG) activity were measured while

participants were presented with pictures of body parts in painful or neutral situations.

Their task consisted in either judging the painfulness of the stimuli or counting the body

parts displayed. ERP results supported the assumption of an early automatic component

of empathy for pain, as reflected by the early posterior negativity (EPN), and of a late

controlled component, as reflected by the late posterior positivity (P3). RF indicated that

empathy-evoking stimuli facilitate motor responses if attention is directed towards the pain

dimension, whereas EEG oscillations in the mu-and beta-band revealed, independent of

the task, an enhanced activation of the sensorimotor cortex after the response to painful

compared to neutral stimuli. In conclusion, present findings indicate that empathy-evoking

stimuli produce automatic and controlled effects on both perceptual and motor processing.

3.2 Introduction

Observing another person suffering from physical or psychological pain changes our own

feelings accordingly. This ability to share the feelings of another person, and at the same time

knowing that the other is the source of ones own, is referred to as empathy (e.g., de Vignemont

& Singer, 2006). It is evident that empathy plays a crucial role in our everyday social life.

Therefore, it is not surprising that empathy, especially for pain, has been extensively studied

recently. Specifically, functional magnetic resonance imaging (fMRI) studies revealed the

neural substrates underlying empathy for pain, with brain regions forming the so-called

pain matrix (anterior insula, anterior cingulate cortex) being activated while experiencing

pain oneself, as well as while watching others experiencing pain (e.g., Decety & Meyer,
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2008; Gu & Han 2007; Singer et al., 2004; for a review see Lamm, Decety, & Singer,

2011). Yet, it is still an unresolved issue which processes in the course of stimulus-response

(S-R) processing are selectively influenced by empathy for pain, and whether empathy-

related effects automatically modulate early perceptual as well as late motor processing

stages. Therefore, it is the main objective of this study to investigate the time course of

empathic influences on the various information processing stages by analyzing oscillatory

electroencephalographic (EEG) activity, event-related brain potentials (ERPs), reaction time

(RT), and response force (RF).

Different models have been proposed with regard to the time course and automaticity of

empathic processes (e.g., de Vignemont & Singer, 2006), however, our understanding about

these issues is still limited as will become clear later. For instance, de Vignemont and Singer

(2006) suggested on the one hand a late appraisal model, according to which emotional cues

automatically elicit empathy, while the emotional context is processed in parallel (see also,

Preston & de Waal, 2002). Appraisal processes then modulate the automatically elicited

empathic response. On the other hand, their early appraisal model understands the empathic

response as a mere result of the appraisal processes elicited by the emotional cue and its

context. That is, the outcome of the contextual appraisal process determines whether or not

an empathic response is triggered. The critical difference between the two models is that in

the late appraisal model, the empathic response happens automatically and is only modulated

by the cognitive appraisal, whereas in the early appraisal model it is triggered in a controlled

way dependent on the outcome of the appraisal process.

As concerns the automaticity assumption, fMRI studies have provided mixed results, for

instance, showing activation of the neural pain matrix only in a task that required attention

to pain (rating pain intensity), but not in a task in which pain was task-irrelevant (Gu &

Han, 2007), whereas others found an activation pattern of pain matrix brain regions even

if participants were informed that the hands in painful situations were anesthetized (e.g.,
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Decety & Lamm, 2006; Lamm, Nusbaum, Meltzoff & Decety, 2007). Furthermore, because

of the low temporal resolution of fMRI, it is difficult to draw definite conclusions concerning

the time course of empathic processes on the basis of the above reviewed studies (cf. Zaki

& Ochsner, 2012). Therefore, it has been recommended to use methods with high temporal

resolution, such as EEG and ERPs, to investigate the mental chronometry of empathy-related

automatic and controlled processing (e.g., de Vignemont & Singer, 2006; Zaki & Ochsner,

2012).

To guide such time course inferences, we propose to consider a model of information

processing that consists of a sequence of distinct stages between stimulus input and response

output, including stimulus encoding, categorization, response selection, and motor processing

(cf. Sternberg, 2004; Sanders, 1990; cf. Figure 3.1). Since specific ERP components are

known to sensitively reflect either the duration or extent of automatic and controlled mental

processes, ERPs seem ideally suited to investigate the locus of empathic influences within

information processing (for a review, see Olofsson, Nordin, Sequeira, & Polich, 2008). Thus,

positively and negatively valenced stimuli (e.g., pictures, faces) have been shown to trigger

larger visual ERP amplitudes than neutral stimuli between 100 and 300 ms after stimulus

onset over occipito-temporal sites (P1, N1). The posterior P1 component is associated

with early activity in the extrastriate cortex and known to be enhanced for attended than

unattended stimuli (e.g., Hillyard & Anllo-Vento, 1998; Luck & Hillyard, 1994). The

subsequent posterior negativity (N1) is elicited between 130 to 200 ms after the onset of

visual stimuli, reflecting higher-order visual processes while also being sensitive to attention.

It is worth noting that other researchers (e.g., Eimer & Holmes, 2002) found an earlier

peaking anterior negativity (120 ms) to be smaller for attention-capturing, salient emotional

than neutral stimuli that undergo automatic processing (e.g., Oehman, 2002). Also the

early posterior negativity (EPN) between 200 and 300 ms after stimulus onset reflects such

automatic emotion-related influences on information processing (e.g., Schupp, Junghöfer,
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Weike, & Hamm, 2004; Olofsson et al., 2008). In addition, emotional stimuli have also been

found to elicit an augmented, centroparietally distributed late posterior positivity (P3) that is

taken to reflect task-dependent stimulus classification processes (e.g., Donchin, 1981; Polich,

2007).

Encoding

P1/N1 EPN

Categorization

P3

Response
Selection

Motor
Processing

RT RF

EEG-Oscillations

Stimulus

Arousal

Fig. 3.1 Model of information processing including encoding, categorization, response
selection, and motor processing stages as well as an energetic arousal pathway. See main
text for further details.

A prominent ERP study addressing the time course of empathic processing was conducted

by Fan and Han (2008). They presented pictures showing one or two hands in neutral or

painful situations (e.g. cutting vegetables / cutting oneself). Participants were instructed to

either judge the pictures as neutral versus painful or to count the number of hands displayed in

the pictures. In the pain judgment task, they found more positive ERP amplitudes for painful

than neutral stimuli in an early and a late time interval. More specifically, the ERP waveform

between 140-200 ms (P180) and 200-280 ms (N240) over fronto-central regions reflected the

task-independent, early pain effect. By contrast, the centroparietal P3 component (360-800

ms) indicated the task-dependent, late pain effect, that is, P3 amplitude was influenced by

painful versus neutral stimuli only in the pain judgment but not the counting task. These

findings indicate that distinct early-automatic and late-controlled processes contribute to

empathy for pain, hence providing evidence for the late appraisal model of de Vignemont
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and Singer (2006). However, as will be outlined next, subsequent ERP-studies using similar

stimulus materials and tasks revealed discrepant results.

For instance, using different stimuli and tasks, Meng, Hu et al. (2012) and Decety, Yang,

and Cheng (2010) found early (N1, P2) and late (P3) ERP components to be influenced

by empathy as in Fan and Han’s (2008) study. However, other studies could only replicate

the empathy for pain influence on the P3 component (Lyu, Meng, & Jackson, 2014; Sessa,

Meconi, Castelli, & Dell’Acqua, 2014). Interestingly, using Fan and Han’s (2008) stimuli

and tasks, Mella, Studer, Gilet, and Labouvie-Vief (2012) found an early ERP effect only in

adolescents but not adults, and it was opposite in direction to that reported by Fan and Han

(2008).

Empathy-related influences on sensorimotor and late motor processes have been examined

in studies analyzing either oscillatory EEG activity or motor evoked potentials (MEPs)

triggered by transcranial magnetic stimulation (TMS). Thus, in a study of Valentini, Liang,

Aglioti, and Iannetti (2012) participants watched video clips of hands while receiving

simultaneous nociceptive stimulation. EEG time-frequency analysis showed for painful

compared to neutral video clips reduced event-related desynchronizations (ERDs) in the beta-

band (21.5-26.5 Hz) over central and frontal electrodes contralateral to the stimulated hand.

The authors suggest that experiencing the pain of others reduces the sensorimotor cortex

activity in the observer, triggered by nociceptive stimulation. Regarding late motor-related

influences of empathy, Riečanský, Paul, Kölble, Stieger, and Lamm (2014) found that video

clips depicting needle injections into hands compared to hands touched by a cotton swab

triggered stronger ERDs of beta oscillations (13-30 Hz) over the sensorimotor cortex while

watching the dynamic stimuli, and of mu oscillations (7-12 Hz) during the static phase at

the end of the video. They interpreted these findings in terms of increased motor readiness.

It is worth mentioning, however, that Avenanti and colleagues (Avenanti, Bueti, Galati, &

Aglioti, 2005; Avenanti, Sirigu, & Aglioti, 2010) reported smaller MEP amplitudes when
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participants attended video clips presenting needle injections compared to touches with a

cotton swab, suggesting motor inhibition in line with the beta-band ERD findings of Valentini

et al. (2012). Crucially, Avenanti, Minio-Paluello, Sforza, and Aglioti (2009) found that

corticospinal inhibition of motor activity was limited to the hand being penetrated, whereas

corticospinal excitability was increased for the other hand, as indicated by larger MEPs when

TMS-stimulation was applied to the motor cortex ipsilateral to the hand shown in the video.

Taken together, previous research concerned with the effects of empathy on information

processing produced mixed results, for which it is difficult to come up with a straightforward

explanation, because the reviewed studies differ with regard to tasks (e.g., behavioral RT

task, pain judgment, pain intensity rating), stimuli (e.g., hands, faces, experience of own

pain), ERP analysis approach and empathy measures used. With regard to the latter point, it

is worth noting that some studies reported situational empathy, as measured via pain intensity

and self-unpleasantness ratings, to underpin the relation of ERP effects to empathy (e.g.,

Decety et al., 2010; Fan & Han, 2008), whereas it is less clear whether dispositional empathy,

as assessed with the aid of established questionnaires, shows a similar relation (e.g. Mella

et al., 2012; Sessa et al., 2014). Also, some studies did not report behavioral effects (e.g.,

Decety et al., 2010; Riečanský et al., 2014) or did not test for the automaticity of the observed

empathy-related effects (e.g., Meng, Hu et al. 2012; Lyu et al., 2014; Sessa et al., 2014),

limiting the interpretation of EEG/ERP results. Additionally, at least to our knowledge, the

studies reporting evidence in favor of automatic empathic processes, as indicated by the

modulation of early anterior ERP waveforms, did not explicitly check for (pictorial) arousal

effects on sensory processing (e.g., Decety et al., 2010; Fan & Han, 2008; Meng, Hu et al.,

2012). Finally, the nature and time course of changes in the state of the motor system are not

well understood, as well as whether these changes are elicited automatically in response to

empathy-evoking stimuli.
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3.2.1 Objectives of the current study

It was the main aim to extend previous studies by investigating in the same experiment

the chronometry of automatic and controlled perceptual and motor processes underlying

empathy for pain, as well as their relationship to dispositional empathy. To this end, we

recorded the EEG while participants were watching pictures of hands or feet in painful or

neutral situations. Like in the study of Fan and Han (2008), participants were either judging

the pain (painful vs. neutral) or counting the body parts displayed in the pictures (one vs.

two or more) in order to determine whether empathy for pain depends on attention to pain

cues. Various studies (Toledo, Manzano, Barela, & Kohn, 2016; Peng, Hu, Zhang, & Hu,

2012; Sochurková, Brázdil, Jurák, & Rektor, 2006) implied an association between specific

ERP components and event-related desynchronization or synchronization (ERD/ERS) in

specific frequency bands. Yet, ERPs and ERD/ERS might reflect different neurophysiological

phenomena. That is, ERPs are taken to mainly indicate the averaged postsynaptic potential

activity that is strictly time-locked to a sensory, motor, or cognitive event, whereas ERD/ERS

represents a decrease/increase in synchrony of the underlying electrophysiological activity

(cf. Roach & Mathalon, 2008). Thus, ERD/ERS captures oscillatory brain activity that is not

strictly phase-locked to a specific event, and hence eliminated by the averaging procedure

involved in calculating ERPs (Gomarus, Althaus, Wijers, & Minderaa, 2006; Pfurtscheller &

Lopes da Silva, 1999). Therefore, ERPs and ERD/ERS complement each other in measuring

ongoing brain activity. Specifically, concerning the measurement of the empathy-related

facilitative or inhibitory influences on the motor system, ERD/ERS is suitable because it

can be interpreted as an electrophysiological correlate of activated cortical areas involved in

the production of motor behavior (Pfurtscheller, 1992). We additionally assessed behavioral

variables, namely RT and RF, to measure motor changes and their relation to brain activity.

Finally, since the experience of situational empathy of persons appears to depend on their

individual empathic dispositions (e.g., Eisenberg & Fabes, 1990), we obtained dispositional
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empathy measures in addition to situational ratings of perceived pain and self-unpleasantness

for every picture.

In agreement with former studies, we expected differential ERP amplitudes in the painful

than the neutral condition in early (before 300 ms; N1, P1, and EPN) and late (after 300

ms; P3) time intervals (cf. Figure 3.1). The early ERP effects should be independent of task

demands if triggered by automatic empathic processes, whereas the late ERP effects should

be present only in the pain judgment task if reflecting the controlled evaluation processes

underlying empathy for pain. In addition, if painful situations inhibit the motor system (e.g.,

Avenanti et al., 2005; Valentini et al., 2012) contingent on the categorization of the situation,

we would predict less forceful key presses and reduced ERDs in the mu- and beta-band to

painful than neutral stimuli in the pain judgment task. Alternatively, if painful situations

activate the motor system (e.g., Riečanský et al., 2014), this higher preparedness should lead

to stronger RF and ERDs in the mu- and beta-band in comparison to neutral situations. Of

course, it is conceivable that empathy-related activation of the motor system is produced by

arousal, for instance, via a direct pathway from perceptual to motor processes (e.g., Miller,

Franz, & Ulrich, 1999; cf. Figure 3.1). In this case, EEG and RF patterns should be present

in both the pain judgment and the counting task. Finally, if situational and dispositional

empathy are related to the way painful pictures are processed, we would expect early and late

ERP amplitudes as well as EEG power changes triggered by painful stimuli to increase with

the scores of perceived pain and self-unpleasantness, and with dispositional empathy scores.

3.3 Method

3.3.1 Participants

19 students from the University of Tübingen participated voluntarily for payment (8 Euros

per hour) or course credits. Two participants were excluded because of technical problems
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with the EEG recording; another did not appropriately operate the force-sensitive keys. The

remaining 16 participants (seven females; 14 right-handed; mean age = 26.81 years) entered

data analysis.

3.3.2 Materials and apparatus

Stimuli consisted of Meng, Hu et al.’s (2012) 124 digital color pictures, shot from first-person

perspective. The pictures displayed body parts (hands, forearms or feet) in harmful or neutral

(62 pictures each) daily life situations; otherwise the pictures were almost identical. Painful

pictures included scenes like a hand being cut by a knife or a foot being pricked by a needle,

whereas the non-painful pictures showed the same arrangement of body parts except for

the harmful component. That is, there were 62 picture pairs consisting of a painful and

its corresponding non-painful picture, matched for their luminance, contrast and color. 62

pictures displayed one and 62 pictures two or more body parts.

Participants were tested in an electrically shielded, low-noise booth with ambient light

at low level. Instructions, stimuli, and feedback were presented on a 1100 MB Samsung

SyncMaster screen with a resolution of 1280 x 960 pixels and a refresh rate of 60 Hz. A

fixed chin rest guaranteed a constant viewing distance of 60 cm and helped to minimize

head movements. Dimensions of the stimuli were 354 x 266 pixels. Stimulus presentation

and response recording were controlled by a Mac Mini (Apple Inc.) running a MATLAB

(The Math Works, Inc., Version R2014b) program using the Psychophysics Toolbox 3.0.12

(Brainard, 1997; Kleiner et al., 2007).

3.3.3 Procedure

Participants were informed about the experiment and the EEG procedure before giving their

informed consent. In the pain judgment task, they were asked to decide whether the stimulus

depicted a painful or a neutral scene and in the counting task whether one or more body parts
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were displayed. The experiment consisted of four blocks of 62 stimuli each. Half of the

participants performed the pain judgment task in the first two blocks and the counting task in

the last two blocks, whereas the other half received the reverse task order. Each stimulus was

presented once per task in randomized order, with the constraint that pictures of the same

picture pair were shown in different blocks. The mapping of left and right keys changed

after every block and was balanced across participants. In order to get participants used to

the task and the S-R mapping, every experimental block was preceded by 20 practice trials.

Participants were free to take a short break after each block.

Each individual trial started with the presentation of a fixation cross for 800 ms, followed

by the display of the pictorial stimulus for 200 ms. Participants were to respond to this

stimulus within 1500 ms following its onset. After the response, and in the case of an

incorrect, too fast (RT < 200 ms) or too slow (RT > 1500 ms) trial, feedback was shown at

the center of the screen for 1000 ms. A blank screen of 1000 ms followed. If the response

was correct, feedback was only shown in the practice trials; in the experimental blocks a

blank inter-stimulus-interval of 2000 ms followed the correct response.

RT was recorded using force-sensitive keys, which allowed continuously measuring RF

with a sampling rate of 512 Hz for the index fingers of both hands (for details, see Leuthold,

Sommer & Ulrich, 1996). Participants pressed this key with the left or right index finger; the

forearm rested comfortably on a supporting panel. RT was measured as the interval between

the onset of the stimulus and the point in time when RF displayed a change of about 100 cN

relative to the mean baseline activity within the preceding 100 ms.

After the EEG recording all painful stimuli were presented again. Participants were asked

to rate on a 6-point scale (1 = very low, 6 = very high) the intensity of the pain supposedly

experienced by the person in the picture and their own self-unpleasantness while watching

the pictures. Then, as measures of dispositional empathy, participants completed a German

version (de Haen, 2006) of the Empathy Quotient (EQ, Baron-Cohen & Wheelwright, 2004)
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and the German version of the Interpersonal Reactivity Index (IRI, Davis, 1983) that is called

the Saarbrücker Persönlichkeitsfragebogen (SPF, Paulus, 2009).

3.3.4 Electrophysiological measures

EEG activity was recorded continuously with a sampling rate of 256 Hz from 72 Ag-AgCl

electrodes using a BIOSEMI Active-Two amplifier system (for details, see Filik, Leuthold,

Wallington & Page, 2014). Using a procedure similar to that described by Nolan, Whelan,

and Reilly (2010), all EEG channels were recalculated off-line to an average reference,

(ocular) artifacts were removed and EEG data were corrected and high-pass filtered (0.1 Hz,

36 dB/oct) (for details, see Filik et al., 2014). Following this procedure and after removing

trials with incorrect response, there remained on average 51.14 trials (out of 62; range =

37-61, median = 49-56) per condition.

3.3.5 Data analysis

Peak force (PF) for the responding hand was determined in each correct trial at the time point

where RF was maximal within a 200-1500 ms time interval after stimulus onset.

Separately for each experimental condition, ERPs were averaged for the analysis epoch

that started 200 ms prior to stimulus onset and lasted for 1,400 ms. The averaged ERPs

were low-pass filtered (40 Hz, 36 dB/oct) and aligned to a 200 ms pre-stimulus baseline.

Mean ERP amplitudes were measured in ERP waveforms within time intervals during which

specific ERP deflections were found to be most pronounced, similar to previous studies

(e.g., Fan & Han, 2008): 90-130 ms (P1), 140-180 ms (N1), 200-300 ms (N240, EPN), and

300-500 ms (rising P3) and 500-800 ms (P3) relative to stimulus onset.

ERP amplitudes at midline and lateral electrode sites were separately analyzed. Lateral

electrodes were pooled to form eight regions of interest (ROIs), divided along left-right,

anterior-posterior, and dorsal-ventral dimensions. The four ROIs over the left hemisphere
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were defined as follows: left-anterior-ventral (AF7, F5, F7, FT7, FC5, C5, T7, F9), left-

anterior-dorsal (AF3, F1, F3, FC1, FC3, C1, C3), left-posterior-ventral (TP7, CP5, P5,

P7, PO9’, PO7, O9’), left-posterior-dorsal (CP3, CP1, P1, P3, PO3, O1). Four analogous

ROIs were defined for homolog electrodes located over the right hemisphere. Additionally,

analyses were calculated for frontal (Fz, FCz, F3, F4, FC3, FC4) and central ROIs (Cz, CPz,

C3, C4, CP3, CP4) as defined by Fan and Han (2008). EPN amplitudes were determined for

two ROIs (left hemisphere: P5, P7, PO7, PO9’, right hemisphere: homolog sites) (cf. Scott,

O’Donnell, Leuthold & Sereno, 2009).

Oscillatory brain activity was analyzed to reveal decreases versus increases in the syn-

chrony of oscillatory brain activity that is not strongly phase-locked to a specific sensory

or motor event, and hence might not be reflected by averaged ERPs (cf. Tallon-Baudry

& Bertrand, 1999; Roach & Mathalon, 2008). The analysis epoch started 500 ms prior to

the stimulus and lasted until 1500 ms after stimulus onset. Power was analyzed from 4 to

30 Hz in 1-Hz frequency steps during the analysis epoch for successive 50-ms time steps.

For the time-frequency decomposition, we used Morlet wavelets with a five-cycle width

(e.g., Tallon-Baudry & Bertrand, 1999). The averaged power values in the analysis windows

between 300 and 600 ms and between 700 and 1500 ms were subsequently converted to a

percentage change scale relative to a pre-stimulus baseline from -200 to 0 ms within mu

(7-12 Hz) and beta (13-18 Hz) frequency bands for left- and right-hemispheric ROIs over the

somatosensory cortex (left hemisphere: C1, FC1, C3, CP1, right hemisphere: homolog sites)

(cf. Riečanský et al., 2014).

Statistical analyses were performed by means of repeated measures analysis of variance

(ANOVA). Bonferroni-adjusted planned comparisons were performed in order to decompose

the interaction effect of condition and task. The specific ANOVA designs will be described

in the respective result sections.
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3.4 Results

3.4.1 Ratings and questionnaires

Across participants, ratings of perceived pain (M = 3.99) and self-unpleasantness (M = 3.58)

correlated positively as indicated by the Kendall rank coefficient, τ = .73, p < .001. SPF

scores ranged from 33 to 52 (M = 43.4) and EQ scores from 31 to 63 (M = 42.5). Internal

consistency was good for the EQ (Cronbach’s α = .86) and the different subscales of the

SPF: Cronbach’s α = .82 (Empathic Concern), .87 (Perspective Taking), .82 (Fantasy), .89

(Personal Distress).

3.4.2 Behavioral performance

For accuracy, RT, and PF, repeated measures ANOVAs with variables condition (neutral,

painful) and task (pain judgment, counting) were conducted.

Accuracy

The ANOVA showed a main effect of condition, F (1, 15) = 5.55, MSE = 9.50, p < .05, and a

significant Task x Condition interaction, F (1, 15) = 94.03, MSE = 4.20, p < .001. Response

accuracy was higher for painful than neutral stimuli in the pain judgment task (89.11 vs.

85.99 %), F (1, 15) = 8.59, MSE = 9.10, p < .05, but lower in the counting task (79.64 vs.

86.39 %), F (1, 15) = 80.26, MSE = 4.50, p < .001 (cf. Figure 3.2).

Reaction time

Responses were faster in the counting than the pain judgment task (652 vs. 723 ms), F (1,

15) = 11.68, MSE = 6911.00, p < .01, and for painful than neutral stimuli (681 vs. 694 ms),

F (1, 15) = 5.73, MSE = 454.60, p < .05. The Task x Condition interaction was significant,

F (1, 15) = 46.39, MSE = 834.00, p < .001, indicating shorter RTs to painful than neutral
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Fig. 3.2 Mean accuracy (upper panel), reaction time (middle panel), and peak force (lower
panel) as a function of stimulus condition (painful vs. neutral) and task (pain judgment vs.
counting).
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stimuli in the pain judgment task (695 vs. 751 ms), F (1, 15) = 36.59, MSE = 691.00, p <

.001, but longer RTs in the counting task (667 vs. 636 ms), F (1, 15) = 12.64, MSE = 597.00,

p < .01 (cf. Figure 3.2).

Response force

The ANOVA of PF revealed a significant Condition x Task interaction, F (1, 15) = 6.78, MSE

= 2102.00, p < .05. Further tests indicated higher PF in the painful than the neutral condition

of the pain judgment task (787 vs. 733 cN), F (1, 15) = 7.91, MSE = 2954.00, p < .05, but

not the counting task (840 vs. 845 cN), F (1, 15) = 0.09, MSE = 2915.60, p = .77 (cf. Figure

3.2).

3.4.3 Event-related potentials

As can be seen in Figure 3.3, the ERP waveform was characterized over posterior-ventral

ROIs by a first positive deflection (P1), peaking at about 120 ms, followed by a negative

deflection (N1) maximal at about 160 ms. After 200 ms a rising positivity appeared, leading

to the P3, which was most pronounced over posterior midline sites between 300 and 700

ms and larger in the pain judgment task for painful stimuli in comparison to the three other

conditions.

ERP amplitudes measured at midline electrode sites were subjected to an ANOVA with

variables condition (neutral, painful), task (pain judgment, counting) and electrode (AFz, Fz,

FCz, Cz, CPz, Pz, POz, Oz). ERP data from lateral electrodes were submitted to an ANOVA

with variables condition (neutral, painful), task (pain judgment, counting), hemisphere (left,

right), anterior-posterior (anterior, posterior), and laterality (ventral, dorsal). Additionally,

like Fan and Han (2008), ERP amplitudes over frontal and central ROIs and in time intervals

up to 300 ms were subjected to an ANOVA with variables condition (neutral, painful), task

(pain judgment, counting), and ROI (frontal, central). For the EPN, an ANOVA with variables



3.4 Results 57

-200ms 800ms

-4µV

+4µV

Neutral - Pain Judgment

Painful - Pain Judgment

Neutral - Counting

Painful - Counting

Left Anterior Fz Right Anterior

Cz

Left Posterior Pz Right Posterior

Fig. 3.3 Grand average ERP waveforms recorded over different ROIs (left anterior, Fz, right
anterior, Cz, left posterior, Pz, right posterior) time-locked to the presentation of the stimuli as
a function of stimulus condition (painful vs. neutral) and task (pain judgment vs. counting).
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condition (neutral, painful), task (pain judgment, counting), and hemisphere (left, right) was

conducted.

Time interval 90-130 ms (P1)

The lateral ROI analysis of this time window yielded a significant Condition x Hemisphere x

Anterior-Posterior x Laterality interaction, F (1, 15) = 10.06, MSE = 0.05, p < .01. Separate

tests for the different ROIs only revealed a significant Condition x Hemisphere x Anterior-

Posterior interaction over ventral ROIs, F (1, 15) = 9.24, MSE = 0.11, p < .01, but further

tests did not produce any significant main effect of condition, Condition x Hemisphere, or

Condition x Anterior-Posterior interaction, all Fs ≤ 4.65, ps > .05.

The analysis including only frontal and central ROIs analogously to Fan and Han (2008)

revealed no significant main effects or Condition x Task interaction, all Fs ≤ 1.63, ps > .22.

Time interval 140-180 ms (N1)

The lateral ROI analysis revealed a significant main effect of task, F (1, 15) = 9.54, MSE

= 0.09, p < .01, and a reliable Task x Anterior-Posterior interaction, F (1, 15) = 6.51, MSE

= 2.34, p < .05, indicating more positive ERP amplitudes for the pain judgment than the

counting task over posterior ROIs (0.64 vs. 0.21 µV), F (1, 15) = 7.37, MSE = 1.57, p <

.05, but not over anterior ROIs (-0.57 vs. -0.30 µV), F (1, 15) = 5.23, MSE = 0.86, p =

.04 (Bonferroni-corrected -level = .025). Additionally, the Task x Condition x Hemisphere

interaction was significant, F (1, 15) = 5.5, MSE = 0.34, p < .05. Separate tests for the two

tasks did not reveal any significant main effect or Condition x Hemisphere interaction, all Fs

≤ 3.53, ps > .08.

The Fan and Han (2008) analysis revealed a significant difference between the pain

judgment and the counting task (-0.56 vs. -0.30 µV), F (1, 15) = 5.5, MSE = 0.42, p < .05,

but no significant condition or interaction effects, all Fs ≤ 2.90, ps > .11.
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Time interval 200-300 ms (N240, EPN)

The midline analysis of this time window did not produce significant main effects or a reliable

Task x Condition interaction, all Fs ≤ 1.84, ps > .20. The lateral analysis yielded a significant

Condition x Anterior-Posterior x Laterality interaction, F (1, 15) = 5.35, MSE = 0.10, p <

.05, but subsequent tests revealed no significant condition effect, all Fs ≤ 5.11, ps > .04

(Bonferroni-corrected -level = .0125). Further analyses of the Task x Laterality interaction,

F (1, 15) = 4.71, MSE = 1.74, p < .05, revealed no significant task effects over ventral and

dorsal ROI, all Fs ≤ 5.11, ps > .04 (Bonferroni-corrected -level = .025). Likewise, follow-up

analyses for the significant Task x Hemisphere x Anterior-Posterior interaction, F (1, 15) =

4.62, MSE = 0.28, p < .05, did not reveal any significant task effect, all Fs ≤ 1.16, ps > .30.

The same held true for the Condition x Anterior-Posterior x Laterality interaction, F (1, 15)

= 5.35, MSE = 0.10, p < .05, for which further tests did not reveal any significant condition

effects, all Fs ≤ 5.11, ps > .04 (Bonferroni-corrected -level = .0125). In line, the analysis of

frontal and central ROIs revealed no effect of condition or task, all Fs ≤ 2.16, ps > .16.

By contrast, the analysis of EPN amplitudes produced a significant main effect of

condition, F (1, 15) = 9.02, p < .01, indicating more negative-going EPN amplitudes in the

painful than the neutral condition over posterior ROIs for both tasks (6.2 vs. 6.6 µV), as can

be seen in Figure 3.4.

Time interval 300-500 ms (Rising P3)

The analysis of ERP amplitudes in the rising P3 time range over midline electrodes revealed a

significant main effect of condition, F (1, 15) = 7.02, MSE = 3.32, p < .05, due to larger ERP

amplitudes in the painful than the neutral condition (0.94 vs. 0.51 µV). In addition, the Task

x Condition interaction, F (1, 15) = 26.55, MSE = 1.16, p < .001, and the Task x Condition

x Electrode interaction were significant, F (7, 105) = 3.22, MSE = 1.01, p < .01. Further

analyses for the pain judgment task showed a significant main effect of condition, F (1, 15) =
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-200ms 800ms

-4µV

+4µV

EPN

Neutral - Pain Judgment
Painful - Pain Judgment
Neutral - Counting
Painful - Counting

Fig. 3.4 Grand average ERP waveforms recorded over posterior-ventral electrode sites (EPN)
time-locked to the presentation of the stimuli as a function of stimulus condition (painful vs.
neutral) and task (pain judgment vs. counting), reflecting the early posterior negativity.
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28.59, MSE = 1.88, p < .001, due to larger amplitudes of the rising P3 in the painful than

the neutral condition (1.34 vs. 0.42 µV), and a Condition x Electrode interaction, F (7, 105)

= 4.83, MSE = 0.93, p < .001, indicating this condition effect to be most pronounced over

parietal electrodes. By contrast, analyses of the counting task did not reveal any significant

main effect of condition (0.53 vs. 0.60 µV) or Condition x Electrode interaction, all Fs ≤

0.57, ps > 0.78.

The lateral analysis corroborated the midline findings as indicated by the significant Task

x Condition x Anterior-Posterior interaction, F (1, 15) = 7.97, MSE = 1.72, p < .05. Separate

tests for the pain judgment task indicated larger amplitudes in the painful than the neutral

condition over posterior ROIs (4.23 vs. 3.66 µV), F (1, 15) = 8.03, MSE = 1.27, p < .05, but

no significant reverse effect over anterior ROIs (-2.86 vs. -2.53 µV), F (1, 15) = 7.30, MSE

= 0.49, p = .02 (Bonferroni-corrected -level = .0125). No reliable condition effects were

found in the counting task (0.57 vs. 0.57 µV), all Fs ≤ 1.65, ps > .22. In addition, there was

a significant Task x Condition x Laterality interaction, F (1, 15) = 20.02, MSE = 0.32, p <

.001, indicating in the pain judgment task a numerically more pronounced condition effect

over dorsal ROIs (painful vs. neutral = 1.49 vs. 0.88 µV), F (1, 15) = 16.89, MSE = 0.70, p

< .001, as compared to ventral ROIs (-0.12 vs. 0.25 µV), F (1, 15) = 16.46, MSE = 0.28, p <

.01. The condition effect was not reliable in the counting task, all Fs ≤ 0.24, ps > .63.

Time interval 500-800 ms (P3)

The midline analysis in this time window yielded a significant main effect of condition, F

(1, 15) = 7.62, MSE = 3.66, p < .05, due to larger ERP amplitudes in the painful than the

neutral condition (M = 1.09 vs. 0.63 µV). Furthermore, the Task x Condition interaction was

significant, F (1, 15) = 9.51, MSE = 1.14, p < .01. Separate tests for the tasks implied larger

amplitudes in the painful than the neutral condition in the pain judgment task (M = 1.56 vs.

0.80 µV), F (1, 15) = 14.72, MSE = 2.50, p < .01, but not in the counting task (M = 0.63
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vs. 0.45 µV), F (1, 15) = 0.86, MSE = 2.31, p = .37. The condition effect and the Task x

Condition interaction were further qualified by electrode, F (7, 105) = 3.66, MSE = 1.79, p

< .01 and F (7, 105) = 4.84, MSE =1.49, p < .001, respectively, indicating the previously

reported effects to be maximal over Pz. The significant main effect of task, F (1, 15) = 5.53,

MSE = 9.41, p < .05, indicated larger amplitudes for the pain judgment than for the counting

task (M = 1.18 vs. 0.54 µV).

The lateral analysis corroborated the midline findings by revealing a significant Task

x Condition interaction, F (1, 15) = 10.37, MSE = 0.19, p < .01, indicating for the pain

judgment task larger ERP amplitudes in the painful than the neutral condition (M = 0.82 vs.

0.54 µV), F (1, 15) = 20.04, MSE = 0.24, p < .001, whereas there was no such difference in

amplitudes in the counting task (M = 0.52 vs. 0.50 µV), F (1, 15) = 0.18, MSE = 0.18, p =

.68. The Task x Condition interaction was further qualified by Anterior-Posterior, F (1, 15) =

10.49, MSE = 3.12, p < .01, and Laterality, F (1, 15) = 6.32, MSE = 0.45, p < .05.

Separate analyses revealed that over anterior ROIs, no condition effect was found, neither

in the pain judgment, F (1, 15) = 8.02, MSE = 1.00, p = .013, nor in the counting task, F (1,

15) = 1.86, MSE = 1.18, p = .19, whereas over posterior ROIs, ERP amplitudes were more

positive in the painful than the neutral condition for the pain judgment task (M = 3.10 vs.

2.06 µV), F (1, 15) = 14.62, MSE = 2.39, p < .01, but not for the counting task (M = 1.94 vs.

2.15 µV), F (1, 15) = 0.85, MSE = 1.77, p = .37. Over dorsal ROIs, ERP amplitudes were

larger in the painful than the neutral condition for the pain judgment task (M = 1.95 vs. 1.16

µV), F (1, 15) = 22.57, MSE = 0.88, p < .001, but not for the counting task (M = 1.10 vs. 0.85

µV), F (1, 15) = 1.69, MSE = 2.71, p = .21, whereas there was no significant main effect or

Task x Condition interaction over ventral ROIs, all Fs ≤ 5.04, ps = .04 (Bonferroni-corrected

α-level = .025).

The significant main effect of task, F (1, 15) = 10.93, MSE = 0.34, p < .01, was due

to larger amplitudes in the pain judgment than the counting task (M = 0.68 vs. 0.51 µV).
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Furthermore, there were significant interactions of Task x Anterior-Posterior, F (1, 15) =

4.55, MSE = 3.72, p < .05, Task x Laterality, F (1, 15) = 6.63, MSE = 3.39, p < .05, and Task

x Anterior-Posterior x Laterality, F (1, 15) = 6.07, MSE = 0.48, p < .05. Further analyses

revealed that there was no task effect over anterior ROIs (M = -1.21 vs. -1.02 µV), F (1, 15)

= 1.52, MSE = 1.56, p = .24, but over posterior ROIs, amplitudes of the pain judgment task

were larger than those of the counting task (M = 2.58 vs. 2.04 µV), F (1, 15) = 7.30, MSE =

2.51, p < .05. A significant main effect of task was further found over dorsal (M = 1.56 vs.

0.97 µV), F (1, 15) = 9.11, MSE = 2.45, p < .01, but not over ventral ROIs, F (1, 15) = 5.04,

MSE = 0.61, p = .04 (Bonferroni-corrected α-level = .025).

Correlational analyses

We performed correlational analyses to test the relation between mean ERP amplitudes

measured in different time intervals for the painful condition of the pain judgment task

and scores of perceived pain, self-unpleasantness and the dispositional empathy scores of

the EQ and the SPF. ERP amplitudes for ROIs where ERP components were found to be

most pronounced in previous studies were entered into the correlational analyses: ventral-

posterior ROIs for time intervals 90-130 ms and 140-180 ms, fronto-central (N240) and

lateral-posterior ROIs (EPN) for the 200-300 ms interval, and centro-parietal ROIs for the

P3 time ranges (300-500 ms and 500-800 ms). Similarly, correlational tests were calculated

between EQ scores and mu- and beta-band power change values over the left and right

somatosensory cortex of the painful condition. The same correlational tests were conducted

for the neutral condition to reveal empathy-unspecific correlations. The significance level

(alpha) was Bonferroni adjusted in order to control for the problem of multiple comparisons.

There were no significant correlations between scores of perceived pain or self-unpleasantness

and ERP amplitudes of the painful condition, -.39 < r < .23, all ps ≥ .14. The correlations

between the SPF empathy score and ERP amplitudes of the painful condition were not
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significant either, -.33 < r < .06, all ps ≥ .21.1 Concerning EQ scores (cf. Figure 3.5), we

found a negative correlation with P1 amplitudes at left posterior-ventral ROIs of the painful

condition, r = -.62, p < .05, and of the neutral condition, r = -.61, p < .05. N1 amplitudes of

painful and neutral conditions did not significantly correlate with EQ scores, -.38 < r < -.11,

all ps ≥ .14. ERP amplitudes at FCz between 200 and 300 ms (N240) correlated positively

with EQ scores for the painful condition, r = .57, p < .05 (cf. Figure 3.5), but not for the

neutral condition, r = .50, p = .05 (Bonferroni-corrected -level = .025), whereas there were no

significant correlations for posterior ROIs (EPN), -.49 < r < -.42, all ps ≥ .05. Additionally,

amplitudes of the rising P3 at Pz between 300 and 500 ms did not significantly correlate with

EQ scores neither in the painful condition, r = -.55, p = .027 (Bonferroni-corrected -level =

.025), nor in the neutral condition, r = -.53, p = .03. Between 500 and 800 ms, there was a

correlation between EQ scores and the P3 amplitudes of the painful condition, r = -.59, p <

.05, as well as the neutral condition, r = -.72, p < .01 (cf. Figure 3.5).

3.4.4 Oscillatory EEG activity

Percentage power change values were subjected to an ANOVA with variables condition

(neutral, painful), task (pain judgment, counting), and hemisphere (left, right).

Time interval 300-600 ms

The analysis of mu-band (7-12 Hz) power in this time window revealed an ERD (-7.43 %)

that was not significantly different from zero, t (15) = -1.06, p = .31, and did not produce any

significant effects including the factors task or condition, all Fs ≤ 2.29, ps > .15. In contrast,

the analysis of beta-band (13-18 Hz) power in the time interval from 300 to 600 ms after

stimulus presentation revealed an ERD (-25.70 %) significantly different from zero, t (15) =

1Correlational analyses of ERP amplitudes of the painful condition and all subscales of the SPF only
revealed one significant correlation between the subscale Personal Distress and ERP amplitudes over left
posterior ventral ROIs from 90 to 130 ms, r = .58, p = .017.
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Fig. 3.5 Correlations between ERP amplitudes or power change values in the painful condition
of the pain judgment task and EQ scores. Upper left panel: P1 amplitudes over left posterior-
ventral ROIs. Upper right panel: N240 amplitudes at FCz. Lower left panel: P3 (500-800 ms)
amplitudes at Pz. Lower right panel: Mu-ERD (700-1500 ms) over the right somatosensory
cortex.
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-7.77, p < .001, but did not reveal any significant main effect or Task x Condition interaction,

all Fs ≤ 1.57, ps > .23 (cf. Figure 3.6).

Fig. 3.6 Grand average percentage-change values relative to the baseline power over left
and right sensorimotor cortex as a function of time and frequency. Upper panels: Painful
condition. Middle panels: Neutral condition. Lower panels: Difference values for the painful
minus the neutral condition; note the difference in scaling for this plot.

Time interval 700-1500 ms

The analysis of mu-band (7-12 Hz) power yielded an overall ERD (-10.15 %) significantly

different from zero, t (15) = -2.15, p < .05, a main effect of condition, F (1, 15) = 11.15, MSE

= 273.90, p < .01, due to larger ERDs in the painful than the neutral condition (-15.04 vs.

-5.27 %) (Figure 3.6), and a main effect of task, F (1, 15) = 5.50, MSE = 550.70, p < .05, due

to larger ERDs in the pain judgment than the counting task (-15.02 vs. -5.29 %).

The overall ERD (-1.61 %) of beta-band (13-18 Hz) power in this time interval did not

significantly differ from zero, t (15) = -0.29, p = .78, but the analysis yielded a significant

main effect of condition, F (1, 15) = 15.92, MSE = 180.80, p < .01, indicating a decrease in
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power in the painful compared to the neutral condition (-6.36 vs. 3.13 %) (Figure 3.6). The

main effect of task, F (1, 15) = 6.37, MSE = 518.00, p < .05, indicated decreased power in

the pain judgment compared to the counting task (-6.69 vs. 3.46 %). The reliable Condition

x Task x Hemisphere interaction, F (1, 15) = 4.94, MSE = 32.71, p < .05, reflected a decrease

in power in the painful compared to the neutral condition in the counting task (-2.57 vs. 9.50

%), F (1, 15) = 11.23, MSE = 207.40, p < .01, and a Condition x Hemisphere interaction in

the pain judgment task, F (1, 15) = 6.88, MSE = 30.87, p < .05. Further tests for the pain

judgment task revealed a numerically larger, but non-significant condition effect over the left

hemisphere (-7.46 vs. 3.09 %), F (1, 15) = 5.88, MSE = 151.50, p = .03 (Bonferroni-corrected

-level = .0125), compared to the right hemisphere (-12.83 vs. -9.56 %), F (1, 15) = 1.15, MSE

= 73.91, p = .30.

Correlational analyses

There were no significant correlations between EQ or SPF scores and power change values in

the mu- or beta-band for the 300-600 ms time interval, -.15 < r < .48, all ps ≥ .06. However,

for the mu-band we found a significant correlation between EQ scores and power change

values between 700 and 1500 ms for the painful condition over the right, r = .58 p < .05,

but not the left sensorimotor cortex, r = .50 p = .05 (Figure 3.5), whereas those for the

neutral condition were not significant, r = .40, p = .12 and r = .31, p = .25. There were no

significant correlations between SPF scores and power change values in the mu-band in this

time interval, .22 < r < .41, all ps ≥ .11.

The correlational analyses of beta-band oscillations over the left and right somatosensory

cortex in the late time interval did not reveal any significant correlation between EQ scores

and power change values of the two conditions, .21 < r < .39, all ps ≥ .13. For the SPF score,

there were no reliable correlations with power change values in the beta-band either, .27 < r

< .46, all ps ≥ .07.
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3.5 Discussion

In this study, compared to similar others, we used a more comprehensive set of behavioral

and brain-based measures to investigate the time course of empathy-related influences on

information processing (cf. Figure 3.1). The main novel findings of this study concerned (a)

the EPN, which indicated an early automatic component of empathy for pain, (b) empathy-

related and task-dependent facilitation of the motor system by painful stimuli, and (c) that

motor readiness was generally increased for both tasks after the response to painful stimuli.

In the following, these and other findings will be discussed in more detail.

First, it is worth noting that the present experiment produced the expected behavioral

effects. Thus, the relatively high scores in ratings of perceived pain and self-unpleasantness,

as well as the positive correlation between the two measures, suggest that painful stimuli

indeed influenced participants’ affective state. In addition, response accuracy was generally

high in both tasks and for all participants. More specifically, responses were more accurate for

painful than neutral stimuli when pain judgments were required, most likely indicating that

painful stimuli automatically capture attention in contrast to neutral stimuli. This assumption

is also supported by the finding that for the counting task, responses to neutral stimuli were

more accurate than to painful stimuli. Here, attention is attracted by task-irrelevant pain-

related stimulus features, away from task-relevant ones, thereby obstructing processing of

painful stimuli in the counting task. The latter conjecture is corroborated by faster responses

to painful than neutral stimuli in the pain judgment task and a reverse RT effect in the

counting task.

Second, and more importantly, present results provide novel insights regarding the time

course of automatic and controlled processes of empathy for pain. In the following, we

discuss key findings with regard to the information processing model depicted in Figure

3.1. Concerning early perceptual processes, it is instructive that painful compared to neutral

stimuli did not differentially influence P1 and N1 amplitudes over lateral posterior regions,
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speaking against the possibility that pictorial (physical) differences influence information

processing. Moreover, it is worth noting that, despite the fact that we used the same picture

set, we could not replicate the early fronto-central empathy-related ERP effect of Meng, Hu

and colleagues (2012) who reported more positive-going ERP amplitudes to painful than

neutral stimuli like others (Decety et al., 2010; Fan & Han, 2008). However, the present

absence of early empathy-related effects over fronto-central ROIs accords with similar zero

effects reported previously (Lyu et al., 2014; Mella et al., 2012; Sessa et al., 2014). In

the 200-300 ms time interval, again, we did not find any empathy-related ERP amplitude

effects over fronto-central regions, in contrast to some previous reports (Fan & Han, 2008;

Meng, Hu et al., 2012). Unfortunately, we do not have a straightforward explanation for

these discrepancies, except that our study differed from others with regard to the sample

(e.g., young Asian vs. slightly older German participants), task (e.g., pain intensity rating

vs. pain judgment), and the EEG recording (e.g., right mastoid reference vs. average

reference).2 Future studies should test participants with different cultural background and

age using the same stimulus, task, EEG recording and analysis procedures to reveal potential

causes underlying the varied ERP amplitude findings across studies. Also, it should be

examined whether possible attentional influences on early perceptual processing as indicated

by early posterior ERP components are related to fronto-central empathy-related ERP effects.

Furthermore, a final limitation of our study concerns the sample size, since we tested only 16

participants, which might limit the statistical power of the present study.

Crucially, in line with the assumption of an automatic empathic response within infor-

mation processing, we found painful compared to neutral stimuli to trigger a more negative,

task-independent EPN component. We take this finding to reflect the selective processing of

affectively arousing stimuli (cf. Olofsson et al., 2008), following initial perceptual encoding

as reflected by P1 and N1. Given the fact that the EPN is triggered by salient emotional stim-

2After re-referencing to the right mastoid as reference, we did not find any early fronto-central ERP condition
effect either.
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uli (cf. Olofsson et al, 2008), we assume that the influence of painful stimuli on information

processing is of affective but empathy-unspecific nature.

In line with previous studies (e.g., Fan & Han, 2008; Mella et al., 2012), P3 amplitudes

over posterior regions were larger for painful than neutral stimuli in the pain judgment task

but not in the counting task. We take this P3 amplitude effect to reflect a late empathic

influence on the categorization stage (Donchin, 1981; for a review, see Polich, 2007). More

specifically, like Fan and Han (2008) we interpret the P3 effect in our study as reflecting

the controlled, top-down empathic response on information processing. Together, present

EPN and P3 amplitude findings provide converging evidence for the late appraisal model (de

Vignemont & Singer, 2006), which assumes that empathic cues influence processing before

their cognitive appraisal, the latter only modulating late empathic responses as indicated by

the P3 component.

Importantly, the present study offers novel insights regarding empathic influences on late

motor processing stages (cf. Figure 3.1). Thus, the analysis of RF showed that participants

responded more forcefully to painful than neutral stimuli in the pain judgment but not the

counting task. This finding supports the idea that motor responses are facilitated when

watching others experiencing pain, contingent on the controlled categorization stage because

of the task-dependence. The faster responses to painful than neutral stimuli when attending

the pain dimension can also be explained by motor facilitation. Thus, in line with the RT

results of Meng, Shen et al. (2012) and Grecucci, Koch and Rumiati (2011), we assume

that the readiness of a reactive movement is increased by the task-relevant observation of

another individual in pain, leading to both faster and more forceful reactions. Due to this

task-specific empathic effect, we can also exclude the possibility that the influence of painful

stimuli on the motor system were simply produced by arousal, for instance leading to larger

PF amplitudes via a direct energetic pathway from perceptual to motor stages (cf. Miller et

al., 1999).
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Somewhat surprisingly, though, we did not find these motor system changes being

reflected by mu- and beta-band power ERD in the time interval close to the response (300-

600 ms). In this respect, our ERD results contrast with those of Riečanský et al. (2014), who

found increased beta ERD when participants were watching videos of moving needles and

increased mu ERD when participants were watching the static endpoint of the painful video.

A possible explanation for the discrepant results is that participants watched dynamic painful

vs. neutral stimuli in the study of Riečanský and colleagues, whereas in the current study

participants performed a choice response task to static stimuli. Static stimuli may exert a

weaker influence on the motor system than dynamic stimuli, as indicated by Riečanský et

al.’s finding of smaller beta-band ERD effects during the static treatment-endpoint of the

videos. Since overt responses are preceded by large beta-ERDs (e.g., Androulidakis et al.,

2007; Neuper & Pfurtscheller, 2001), as observed here too, it is further conceivable that

present strong choice response-related ERD effects masked the much smaller differential

beta-ERDs induced by static painful versus neutral stimuli which become visible in a passive

viewing task. Future studies should examine whether the nature of stimulation, response

demands, or both factors play a role in producing the beta-ERD effects, and further test

for condition-specific mu-ERD effects, which were absent in the present study. Also, since

Avenanti et al. (2009) found that the muscle of the hand corresponding to the one penetrated

in the stimuli was inhibited, whereas the corticospinal excitability of the muscles of the other

hand was increased, future studies should separately measure RF of participants responding

to painful and neutral stimuli that depict the corresponding finger versus a finger of the

opposite hand.

In contrast to ERDs in the response-related analysis interval, we observed larger ERDs

in the painful than the neutral condition in the mu- and beta-band in the late time interval

preceding the presentation of the next stimulus (700-1500 ms). Since this ERD effect was

found for both the pain judgment and the counting task, it appears to reflect an automatic
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activation of the motor system following the response to empathy-evoking stimuli, thereby

increasing motor readiness to forthcoming events. Similarly, the larger ERD in the pain

judgment than the counting task in the late time interval indicates an enhanced preparedness

for processing the forthcoming stimulus. Since tasks changed between blocks, participants

might be more attentive in processing the pain-related than the counting-related stimulus

dimension. In line with this attentional account, N1 amplitudes were more positive in the

pain judgment than the counting task, too.

Finally, concerning the relationship between individual empathic dispositions and brain-

based measures of situational-empathic influences on information processing (e.g., Decety,

Lewis & Cowell, 2015), we obtained some unexpected results. Before discussing these

results in more detail, it is first worth noting that both SPF and EQ showed high internal

consistency and were therefore considered as reliable measures of dispositional empathy.

Whereas the SPF scores did not reliably correlate with ERP amplitudes or changes in the

power of oscillatory brain activity, we found a negative correlation between EQ scores

and P1 amplitudes over left posterior-ventral regions, as well as P3 amplitudes over Pz for

painful stimuli in the pain judgment task, such that participants with increasing trait empathy

showed increasingly smaller P1 and P3 amplitudes. Of course, it must also be mentioned

that neutral stimuli produced similar correlations, suggesting a stimulus-unspecific effect.

In line with Ikezawa, Corbera, and Wexler (2014), one possible account for the direction

of the correlation is that persons with high trait empathy down-regulate the sensory and

affective processing of incoming stimuli in order to avoid being overwhelmed by their

empathic feelings in the case of painful stimuli. As a result of such emotion regulation, P3

amplitudes would decrease (see also Hajcak, MacNamara & Olvet, 2010). In line with

this assumption, Decety et al. (2010) found smaller P3 amplitudes in physicians who have

to regulate their empathic responses in their everyday working life. Additionally, there

were positive correlations between EQ scores and N240 amplitudes over FCz in the painful
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but not the neutral condition. Crucially, the positive correlations between EQ scores and

mu-band activity over the right somatosensory cortex in the post-response interval (700-1500

ms) were specific for painful stimuli, supporting the relation between late motor changes

and empathy-evoking stimuli. Again, the direction of the correlation might indicate the

down-regulation of the motor system with increasing dispositional empathy.

In conclusion, the present study extended our understanding of empathy for pain influ-

ences on perception, decision, and motor processing by the combined recording and analysis

of RT, RF, ERPs, and oscillatory brain activity (ERD). Thus, the EPN component demon-

strated the automatic and enhanced perceptual processing of empathy-evoking stimuli. In line

with previous reports, the subsequent P3 component indicated top-down controlled empathic

influences on stimulus categorization. RF and RT findings suggested that the observation of

others in pain activates the motor system, an effect that was task-dependent and not medi-

ated by arousal. Finally, empathy-evoking stimuli differentially influenced oscillatory EEG

activity following response execution, indexing increased motor readiness. Taken together,

while being generally in line with the late appraisal model of empathy (de Vignemont &

Singer, 2006), our findings also indicate that empathy-provoking stimuli produce automatic

and controlled effects within the motor system at different time points.
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Study 2: Racial bias in empathy: Do we

process dark- and fair-colored hands in

pain differently? An EEG study
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4.1 Abstract

The aim of this study was to identify racial bias influences on empathic processing from

early stimulus encoding, over categorization until late motor processing stages by comparing
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brain responses (electroencephalogram) to pictures of fair- and dark-colored hands in painful

or neutral daily-life situations. Participants performed a pain judgment task and a skin

color judgment task. Event-related brain potentials (ERPs) substantiated former findings

of automatic empathic influences on stimulus encoding, reflected by the early posterior

negativity (EPN), and late controlled influences on the stimulus categorization, as reflected

by the late posterior positivity (P3b). Concerning the racial bias in empathy (RBE) effect,

more positive amplitudes in the 280-340 ms time window over frontocentral electrodes in

the painful than the neutral condition for fair- but not dark-colored hands speak for an early

influence of racial bias. This was further supported by correlations with empathic concern

scores for fair- but not dark-colored stimuli. Additionally, P3b amplitude differences between

fair- and dark-colored hands to painful stimuli increased with the implicit racial attitude

of participants, suggesting that the categorization stage is not completely immune to racial

bias. Regarding the motor processing stages, power change values in the upper beta-band

(19-30 Hz) revealed for painful compared to neutral stimuli larger facilitation of sensorimotor

activity before the response and larger inhibition after the response, independent of skin

color. In conclusion, present findings speak for an influence of the RBE on early perceptual

encoding but also on the late categorization stage that depends on the participant’s implicit

attitude towards racial outgroups.

4.2 Introduction

Empathy has been defined as the ability to share the feelings of another person, whilst

knowing that the other person is the source of one’s own affective state (de Vignemont &

Singer, 2006). There is wide agreement that empathy matters in many aspects of human

social life, for instance, influencing whether we identify with others or respond altruistically

to others in need. In this respect, it is a key research finding that empathy, at least for pain,

appears not to be universal but rather modulated by group membership (Cikara, Bruneau, &
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Saxe, 2011, Eres & Molenberghs, 2013). Thus, diminished empathy towards racial outgroups

might have adverse consequences for them in everyday social life. In order to alleviate such

negative consequences, it is therefore crucial to better understand the boundary conditions

and signatures of this racial bias in empathy (RBE) as well as its underlying processing

mechanisms. Using an electrophysiological approach, the aim of the current study is to

contribute to this goal by presenting empathy-evoking fair- versus dark-colored hands to

white-Caucasian participants in order to determine the influence of racial bias on the different

stages of empathic processing.

Functional magnetic resonance imaging (fMRI) studies have provided important insights

regarding the brain areas that are functionally involved in empathy for pain processing and the

RBE. For instance, using a pain judgment task, Xu, Zuo, Wang, and Han (2009) were first in

showing an RBE effect in anterior cingulate cortex (ACC) activity. That is, when displaying

video clips of Caucasian and Asian faces where the cheeks were penetrated by a needle

or touched by a Q-tip, only painful compared to neutral Asian ingroup stimuli triggered

larger ACC activity. Moreover, using static Caucasian and Asian faces displaying either a

neutral versus painful expression, Sheng, Liu, Li, Fang, and Han (2014) (see also, Mathur,

Harada, Lipke, & Chiao, 2012) found larger ACC and anterior insula (AI) activity to painful

than neutral expression faces when participants judged race but not pain. Importantly, this

empathy for pain effect was limited to racial ingroup stimuli (Asian faces), demonstrating an

RBE in brain areas of the pain matrix (AI, ACC). More directly relevant for present purposes,

Gu and Han (2007) showed that the activation of similar brain areas by empathy-evoking

static hand stimuli was modulated by task. That is, ACC, insular, and frontal cortex activity

was increased when making pain ratings of painful hand stimuli compared to counting the

number of hands depicted, whereas brain activity did not differ when counting the number

of hands in painful versus neutral pictures. Crucially, when Azevedo et al. (2013) asked

white-Caucasians and black-Africans to attend to video clips displaying fair-, dark-, and
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violet-colored hands in painful (needle) versus neutral conditions (Q-tip), they observed AI

activity to indicate enhanced empathic processing of pain only for racial ingroup but not

outgroup stimuli. Moreover, the size of the RBE in left AI activity increased with individual

racial bias scores as measured with the race version of the implicit association test (IAT;

Greenwald, McGhee, & Schwartz, 1998; Greenwald, Nosek, & Banaji, 2003), suggesting

that the brain’s intergroup empathic processing of pain is modulated by implicit attitudes

towards one’s own versus other race.

Whereas it is evident from the above studies that the fMRI approach is perfectly suited

to reveal RBE-related brain areas, this approach is subject to certain constraints when it

comes to determining the chronometric locus of the RBE within information processing.

Thus, Sessa, Meconi, Castelli, and Dell’Acqua (2015) argued that RBE effects demonstrated

with the presentation of video clips (e.g., Azevedo et al., 2013; Xu et al., 2009), and hence

long stimulus exposures, are likely to reflect top-down or controlled aspects of empathic

processing in the brain. But even when static stimuli are used (e.g., Sheng et al, 2014; Gu

& Han, 2007), given the limited temporal resolution of fMRI, it is difficult to determine

whether the empathy for pain effect and the RBE are localized within early automatic

versus later controlled processes. For this reason, Zaki and Ochsner (2012) proposed to use

electroencephalographic (EEG) measures in order to investigate more precisely the time

course of empathic processing.

The analysis of event-related brain potentials (ERPs) has been demonstrated to be par-

ticularly beneficial to investigate the cognitive architecture of information processing (see

Coles, Smid, Scheffers, & Otten, 1995, for a review). Thus, it is traditonally assumed that

information processing between stimulus input and motor output proceeds in a sequence of

functionally distinct stages, such as stimulus encoding and categorization, response selection,

and motor execution (Sanders, 1990; Sternberg, 1969; see also Figure 3.1). Crucially, irre-

spective of whether these functionally distinct stages temporally overlap or not, if different
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mental processes manifest themselves in distinct ERP components, it becomes possible to

determine the specific locus or loci of experimental effects within information processing.

Thus, visual-sensory ERP components such as the posterior P1 and N1 are taken to reflect

early perceptual processing and its attentional modulation (e.g., Hillyard & Anllo-Vento,

1998; Luck & Hillyard, 1994). Moreover, an early posterior negativity (EPN) between 200

and 300 ms (e.g., Schupp, Junghöfer, Weike, & Hamm, 2004) has been found to be enhanced

after the onset of emotionally arousing compared to neutral stimuli. These ERP components

are suited to reveal automatic influences on perceptual processing as elicited by salient or

motivationally relevant stimuli. Subsequently, a centroparietal positivity that peaks later than

300 ms after stimulus onset (P3b) provides an electrophysiological marker of the cognitive

categorization of task-relevant stimuli (Donchin & Coles, 1988, increasing in amplitude with

the significance of stimulus input (e.g., Johnson, 1988). Thus, the P3b component can be

used as a marker of late controlled cognitive processing.

Previous ERP studies comparing electrophysiological responses to static pictures of body

parts like hands in painful (e.g., hands being cut by a knife) and neutral situations revealed

influences of empathy on early ERP components, irrespective of whether the task demanded

the attentive processing of the pain dimension of the stimulus or of another pain-unrelated

stimulus dimension (e.g., number of body parts depicted) (e.g., Fabi & Leuthold, 2017; Fan

& Han, 2008). More specifically, an early automatic empathy for pain-related influence was

suggested by a frontocentral N1 peaking at about 100-120 ms after stimulus onset (Fan &

Han, 2008; Gonzalez-Liencres, Breidenstein, Wolf, & Brüne, 2016; Meng et al., 2012) and

by the EPN between 200 and 300 ms (Fabi & Leuthold, 2017). Moreover, these studies

showed that P3b amplitude was enlarged for painful than neutral stimuli only in the pain

judgment task, that is, when attention was directed towards the pain dimension (e.g., Fabi

& Leuthold, 2017; Fan & Han, 2008), indicating a late empathic influence on controlled

information processing. Thus, these ERP findings suggest that distinct early-automatic and
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late-controlled processes contribute to empathy for pain, in accord with a more general

two-component model of empathy (e.g., Preston & de Waal, 2002).

Crucially, there are now several ERP studies providing preliminary evidence for the

assumption that racial bias influences early (automatic) but not late (controlled) processing

stages. Thus, using a pain judgment task, Contreras-Huerta et al. (2014) found a larger

amplitude of the frontocentral N1 (80-140 ms) to painful (needle) versus neutral (Q-tip)

pictures of own-race (Caucasian) but not other-race (Asian) faces, whereas the P3b component

was larger for painful than neutral pictures irrespective of race. However, demanding pain

judgments to similar white and black face stimuli, Sessa et al. (2014) found for their white-

Caucasian participants the RBE to be reflected by a later (280-340 ms) frontocentral positive

shift for painful than neutral white face stimuli only, which was found to originate in the

left inferior frontal gyrus (left IFG). Whereas P3b amplitudes were larger to both own- and

other-race painful versus neutral stimuli (static faces) as in Contreras-Huerta et al. (2014), the

neural sources underlying these empathy for pain effects differed. That is, a P3b source was

found in the left middle frontal gyrus for ingroup face stimuli but in the left temporo-parietal

junction for outgroup face stimuli. In line with a differential RBE in P3b amplitude, the P3b

pain effect increased at electrode position P3 with the implicit racial bias score as measured

with the race IAT, but only for own-race but not other-race targets (see Meconi, Vaes, &

Sessa, 2015, for a discussion of the link between ERP empathic responses and individual

ingroup preferences). Finally, studies presenting a set of facial expression stimuli found for

own- compared to other-race faces a larger enhancement of the frontocentral P2 amplitude

(128-188 ms) to painful than neutral expressions in a race judgment task (Sheng et al., 2013;

Sheng & Han, 2012), in a pain judgment task (Li et al., 2015; but see Sheng & Han, 2012),

and when only filler items were judged for their orientation (Sheng, Du, & Han, 2017). In

addition, Li et al. (2015) found RBE-related P3b amplitude differences if mortality salience

was primed and participants judged the facial expression as painful versus neutral.



4.2 Introduction 81

It is apparent that the different types of face stimuli used in the studies described above

pattern with the early RBE effects on frontocentral N1 versus P2 amplitudes, respectively.

Thus, it is possible that neutral expression faces penetrated by a needle as compared to a

Q-tip provide low-level perceptual cues that rapidly elicit the process of emotional sharing,

whereas this process might be triggered later due to the more time-consuming decoding of

painful facial expressions (e.g., Contreras-Huerta et al., 2014). Yet, the interpretation of

the RBE effect for face stimuli might also be complicated by the potential impact of other

than empathy for pain-related influences. For instance, it is conceivable that own- versus

other-race faces might be differentially categorized according to other face-related variables

such as trustworthiness (e.g., Stanley, Sokol-Hessner, Banaji, & Phelps, 2011; Todorov, Said,

& Verosky, 2011), making it more difficult to draw straightforward inferences with regard

to a direct influence of racial group on empathic processing. That first impressions of faces

modulate brain responses to empathy-evoking stimuli was shown in the study of Sessa and

Meconi (2015) where the empathic P3b difference was strongly reduced when faces were

categorized as untrustworthy.

Given these issues, ERP-based inferences regarding the influence of racial group on

empathic processing would be much strengthened if other, less complex stimuli than faces

would give rise to similar RBE effects. One promising alternative way to examine the locus

of the RBE effect within information processing is the presentation of hands. The practicality

of this approach is illustrated by the fact that when showing video clips of own-race and other-

race hands in painful and neutral situations, differences in cross-racial empathic responses

have been demonstrated using fMRI (Azevedo et al., 2013), motor-related EEG oscillations

(Riečanský et al., 2014), and motor evoked potentials (MEPs, Avenanti, Sirigu, and Aglioti,

2010). Of course, due to the long duration of the video clips and also the specific dependent

measures employed, these studies do not allow a localization of the RBE effect at early

automatic versus late controlled stages of empathic processing. To investigate the potential
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impact of racial bias on the different stages involved in empathic processing, it appears most

promising to present static hand stimuli and hence to build on the results of empathy for pain

ERP-research described above (e.g., Fabi & Leuthold, 2017; Fan & Han, 2008; Meng et al.,

2012).

Moreover, Fabi and Leuthold (2017) also investigated mu- and beta-band EEG oscillations

and revealed a larger post-response activation of the sensorimotor cortex to painful than

neutral stimuli This led them to assume that motor readiness is increased following the

response to an empathy-evoking pain stimulus, independent of the task. Yet, their analysis

of response force (RF), defined as the force with which participants pressed response keys,

indicated motor facilitation to painful stimuli only when attending to the pain dimension,

thereby arguing against an automatic impact of empathy or one of arousal by a direct pathway

from the perceptual to the motor stage (e.g., Miller, Franz, & Ulrich, 1999; cf. Figure 3.1).

However, an automatic empathy effect on the motor system should not be excluded too

early. Thus, when presenting video clips of Asian face stimuli, Han et al. (2017) found that

participants applied larger response force (RF) to painful than neutral stimuli when asked to

press a button from the start of the video clip until 1s after its end. Interestingly, in their fMRI

experiment, empathy-related brain activity (middle cingulate cortex, supplementary motor

cortex, bilateral second somatosensory and inferior frontal cortex) was reduced in this button

press condition compared to a passive viewing condition, which led Han and colleagues to

propose that there is a motivational link between empathy for pain and motor actions.

In this respect, it is also noteworthy that Riečanský et al. (2014) found an RBE effect on

oscillatory sensorimotor activity in the brain. In this study, video clips of hands with dark

and fair skin colors in painful and neutral situations (needle versus Q-tip) were presented.

For own-race hand stimuli, event-related desynchronization (ERD) of the beta-band (13-30

Hz) over the sensorimotor cortex was stronger from 300-1500 ms after the onset of painful

than neutral video clips, whereas there was no difference for other-race hand stimuli. Since
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decreases in beta-band power are generally viewed as representing motor cortex excitability,

whereas increases are interpreted as motor inhibition (e.g., Fonken et al., 2016; Takemi,

Masakado, Liu, & Ushiba, 2013), Riečanský and colleagues took their results to indicate

greater sensorimotor activation only when watching an ingroup target in pain compared to a

neutral situation. However, it must be mentioned that Avenanti et al. (2010) found smaller

motor evoked potentials for own-race hands in painful than neutral situations, suggesting

an inhibitory effect on motor activation, whereas there was no difference for other-race

hands. Noteworthy, the RBE in MEP difference amplitudes between in- and outgroup’s pain

increased with a bias towards ingroup targets as measured with the race IAT. Whereas the

different methodologies make it difficult to reconcile the discrepant findings of Avenanti et

al. (2010) and Riečanský et al. (2014), it is conceivable that ERD reflects the facilitation of

larger muscle groups rather than only that of an isolated finger muscle. Another possibility

is that ERD and MEP effects mirror the differential time course of initial motor resonance

when watching others in pain and the later inhibition of this effect.

In summary, previous studies investigated influences of the RBE only on single (e.g.,

motoric) or some (perceptual and cognitive) stages potentially involved in empathic pro-

cessing. Moreover, these studies differed with regard to the stimuli used (dynamic versus

static face stimuli), producing sometimes mixed results concerning the time course and the

task-dependency of the RBE (e.g., Contreras-Huerta et al. 2014; Sessa et al, 2014; Sheng and

Han, 2012). Crucially, the case for an RBE effect on early automatic processing would be

much strengthened if demonstrated for empathy-evoking, static hand instead of face stimuli.

4.2.1 The current study

It is the main objective of the current study to address this issue by examining empathy for

pain and racial bias influences on information processing using a combined behavioral and

electrophysiological approach. As outlined earlier, to investigate the cognitive architecture
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of information processing, it is beneficial to map ERP components and EEG oscillations of

interest to specific stages within information processing (cf. Figure 3.1). Thus, we recorded

EEG and RF while Caucasian participants were watching pictures of dark- or fair-colored

hands in painful or neutral situations. In order to manipulate attention to the pain dimension,

participants either judged the painfulness of the situation or the skin color of the hands.

ERP amplitudes were analyzed in order to assess the locus of the RBE within information

processing (cf. Figure 3.1), that is on early (automatic) encoding and perceptual stages

(posterior P1 and N1, EPN) versus late (controlled) categorization processing stages (P3b).

Furthermore, we analyzed specific ERP components that were sensitively indicating an RBE

in previous studies. To investigate the influence of the RBE on motor processing, EEG

oscillations, RF amplitudes and the time from force onset to force peak (time-to-peak, TTP)

were analyzed.

In line with studies investigating racial group influences (e.g., Contreras-Huerta et al.,

2014; Sheng et al., 2017) and the study of Fabi and Leuthold (2017), we expected early ERP

components reflecting automatic empathic processing (e.g., posterior P1 and N1, EPN) to

differ in amplitude irrespective of the task for painful than neutral racial ingroup but not

outgroup stimuli. In contrast, we predicted the P3b component as a marker of the task-

relevant categorization process to be enlarged in amplitude by painful than neutral stimuli in

the pain judgment but not the skin color judgment task. Crucially, based on previous findings

(e.g., Contreras-Huerta et al., 2014; Sessa et al., 2014; Sheng et al., 2017), we expected this

P3b amplitude effect to be independent of racial group. As regards motor processing, like

Riečanský et al. (2014), the analysis of EEG oscillatory activity was predicted to reveal,

independent of the task, larger ERDs in the beta-band in response to painful than neutral own-

race but not other-race hand stimuli. Similar to Fabi and Leuthold (2017), we expected to

find such an empathic influence not only before but also after response execution. Moreover,

following the RF findings of Fabi and Leuthold (2017), we predicted RF amplitudes to be
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larger and TTPs and RTs to be shorter in the painful than the neutral condition for fair- but

not dark-colored hands in the pain judgment task only.

To assess the potential functional relationship between specific ERP components and

empathic processing as well as the RBE, we also assessed the subjective perception of stimuli

(perceived pain and self-unpleasantness) and participants’ dispositional empathy. Thus, after

the main experimental blocks, like in previous studies (e.g., Fan & Han, 2008; Li & Han,

2010; Mella, Studer, Gilet, & Labouvie-Vief, 2012), each participant rated perceived pain

and self-unpleasantness for each picture. Moreover, dispositional empathy was assessed by

standard questionnaires. Like Fan and Han (2008; see also Fabi & Leuthold, 2017; Han,

Fan, & Mao, 2008; Li & Han, 2010; Mella et al., 2012), we correlated ERP amplitudes and

EEG power change values in the painful condition of the pain judgment task with ratings

of perceived pain and self-unpleasantness and furthermore, with dispositional questionnaire

scores. In line with previous ERP studies, we expected a correlation between the early ERP

components and the subjective ratings for fair-colored hand stimuli (Fan & Han, 2008; Li &

Han, 2010; Mella et al., 2012; Sessa et al., 2014) but not for dark-colored hand stimuli (Sessa

et al., 2014). Based on Fabi and Leuthold (2017), we also predicted negative correlations

between empathic dispositions and P1 as well as P3b amplitudes, and a positive correlation

with mu oscillations over the sensorimotor cortex in a late time interval after the motor

response. Finally, participants completed the race version of the IAT (Greenwald et al.,

1998, 2003) in order to measure their implicit attitude towards racial outgroups and to reveal

potential relations to the RBE as in previous studies (Sessa et al., 2014; see also Azevedo et

al., 2013). Thus, in line with the procedure of Avenanti et al. (2010), we assessed whether

the difference in amplitudes toward fair- and dark-colored hands was related to participants’

implicit ingroup preference.
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4.3 Method

4.3.1 Participants

Sample size was determined based on the study of Fabi and Leuthold (2017) and studies

reporting RBE effects on the ERP waveform (M = 24.17). All 24 participants voluntarily

taking part in the experiment for payment (8 Euros per hour) or course credits were white-

Caucasian students of the University of Tübingen. One participant was excluded because of

too noisy EEG data. Of the remaining 23 participants 14 were female, 21 right-handed and

the average age was 23.09 years (SD = 2.00).

4.3.2 Materials and apparatus

We used 120 digital color pictures (cf. Figure 4.1) that displayed hands with dark or fair skin

color in painful or neutral situations (30 pictures per condition) with painful stimuli depicting,

for instance, hands that are hurt by a household tool like a hammer or scissors. Neutral

pictures depicted the same arrangement of hands but without the painful component. We

matched the luminance of the background in the pictures, however, because fair- and dark-

colored hands differ naturally regarding luminance, color and contrast, it was not possible

to control for all low-level physical features. Stimuli were selected based on the results of

a pilot study, in which 68 Caucasian participants performed a discrimination task between

painful and neutral stimuli and rated pain intensity and self-unpleasantness of the painful

pictures of 33 situations; none of these participants took part in the present EEG experiment.

Two situations were excluded because pain intensity differences between fair- and dark-

colored pain stimuli exceeded two standard deviations from zero; a third one because of

obvious differences in the spatial arrangement of hands. The remaining 30 situations did not

significantly differ between dark- and fair-colored hands with regard to the pain intensity

rating (M = 3.75 vs. 3.72), t(58) = 0.17, p = .87, or the self-unpleasantness rating (M = 3.38
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vs. 3.31), t(58) = 0.39, p = .70, and also not regarding reaction times (M = 876 vs. 887 ms),

t(58) = 0.59, p = .56, and accuracy of the discrimination task (M = 81.99 vs. 81.13 %), t(58)

= 0.32, p = .75.
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Fig. 4.1 Stimuli of dark- and fair-colored hands in painful and neutral daily-life situations.

Participants were tested in an electrically shielded, low-noise booth with ambient light

at low level. They sat in front of a 1100 MB Samsung SyncMaster screen with a resolution

of 1280 x 960 pixels and a refresh rate of 60 Hz, on which all materials were presented on

black background. A constant viewing distance of 60 cm was guaranteed by a chin rest.

Dimensions of the stimuli were 18.5 x 14 cm. A Mac Mini (Apple Inc.) controlled stimulus

presentation and response recording running a MATLAB (The Math Works, Inc., Version

R2015b) program using the Psychophysics Toolbox 3.0.12 (Brainard, 1997; Kleiner et al.,

2007) together with custom MATLAB routines. In order to judge the stimuli, participants

pressed force-sensitive keys with their left or right index finger in order to measure peak force
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(PF) amplitudes and latencies (sampling rate = 512 Hz, for details, see Leuthold, Sommer, &

Ulrich, 1996).

4.3.3 Procedure

After being informed about the procedure and giving informed consent, participants were

asked to judge pictures of dark- or fair-colored hands in painful or neutral situations regarding

their painfulness or the skin color of the hands, while EEG was recorded simultaneously.

Tasks changed after every two blocks, consisting of 60 stimuli each, with task order being

balanced across participants. In the first four blocks, each stimulus was presented once per

task in randomized order, with the constraint that pictures of the same painful-neutral picture

pair were shown in different blocks. The first four blocks were repeated. Every task change

was preceded by 9 practice trials. The mapping of painful/neutral and fair/dark judgments to

left and right keys was balanced across participants.

Individual trials consisted of a fixation cross (800 ms), followed by the stimulus presented

for 400 ms and the participants’ response. In case of an incorrect, too fast (RT < 200 ms) or

too slow (RT > 1500 ms) response, feedback was provided (1000 ms), followed by a blank

screen (1000 ms). Except for practice trials, feedback was not shown if the response was

correct. On average, trials with correct responses lasted for a duration of 2866 ms. After

the choice-response experiment, participants rated for all stimuli the intensity of the pain

felt by the person in the picture and their own self-unpleasantness on a 6-point scale (1 =

very low, 6 = very high). Then, participants completed two questionnaires of dispositional

empathy: the German version (de Haen, 2006) of the Empathy Quotient (EQ, Baron-Cohen &

Wheelwright, 2004) and the German version of the Interpersonal Reactivity Index (IRI, Davis,

1983), the Saarbrücker Persönlichkeitsfragebogen (SPF, Paulus, 2009). Finally, participants

performed the race IAT in order to measure their implicit attitudes toward racial in- versus

outgroup members.
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4.3.4 Implicit Association Test (IAT)

We applied the standard race IAT following the procedures of Greenwald et al. (2003, cf.

Table 1). As depicted in Table 1, the race IAT consisted of 7 blocks, with only the fourth and

the seventh block being test blocks. The remaining blocks were practice blocks, in which

participants practiced the different stimulus-key mappings. In the first block, participants

learned the mapping between response keys and pictures of fair-/dark-colored faces. In the

next block, participants learned the mapping between the same keys and positive/negative

words. The third block consisted of pictures and words. Then, a test block followed, in which

RTs to pictures and words were measured. In the next block, only pictures were presented

and participants practiced the new (reversed) mapping of fair-/dark-colored faces to response

keys. In the sixth block, pictures and words were presented, and in the seventh block RTs to

pictures and words were measured. The IATd score was determined by subtracting the RTs

of the fourth from the seventh block and dividing this result by the total standard deviation.

Positive scores then represent a preference towards fair-colored faces and negative scores

towards dark-colored faces.

4.3.5 Electrophysiological measures

Using a BIOSEMI Active-Two amplifier system, EEG activity was recorded continuously

with a sampling rate of 256 Hz from 72 Ag-AgCl electrodes (for details, see Dudschig,

Mackenzie, Strozyk, Kaup, & Leuthold, 2016). All EEG/ERP analyses were performed

using available MATLAB toolboxes (FieldTrip: Oostenveld, Fries, Maris, & Schoffelen,

2011) and custom MATLAB scripts. EEG data preprocessing followed a procedure similar

to Nolan, Whelan, and Reilly (2010). As described in detail by Dudschig et al. (2016),

after recalculating EEG channels to an average reference and high-pass filtering (0.1 Hz,

12 dB/oct), a spatial independent components analysis (ICA) based on the infomax algo-

rithm (Bell & Sejnowski, 1995) was performed. Ocular artifacts (blinks and horizontal eye
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movements) were eliminated by removing from the EEG data set those ICA components

that reflected ocular activity. This was followed by a correction of noisy EEG channels.

After this procedure and excluding incorrect trials, 87.87 % of all trials entered analysis.

For each condition and participant, minimally 53 to 68 % and maximally 98 to 100 % of

the trials entered analyses. The mean number of trials remaining (M = 50 out of 45 to 60;

range = 28-59, median = 52) per condition was not reliably different across the different

combinations of conditions, p = .77.

4.3.6 Data analysis

At the time point where RF was maximal within a 200-1500 ms time interval after stimulus

onset, PF was determined in correct trials. When RF exceeded a threshold of 30 centinewton

(cN) relative to the mean baseline activity within the preceding 200 ms, RT was recorded.

The time between force onset and force peak defined TTP.

Within an analysis window of 200 ms before stimulus presentation until 1200 ms after

stimulus onset, ERPs were averaged separately for each experimental condition using the

corrected, average-reference EEG data set. The averaged ERPs were low-pass filtered (30

Hz, 36 dB/oct) and aligned to a 200 ms pre-stimulus baseline. Time intervals for analyzing

the early ERP amplitudes were selected based on the empathy effects of Fabi and Leuthold

(2017): 90-130 ms (P1), 140-180 ms (N1), and 200-300 ms (EPN) relative to stimulus onset.

P1, N1, and EPN amplitudes were analyzed over posterior ventral electrodes (left hemisphere:

P5, P7, PO7, PO9’, right hemisphere: homolog sites), where they are typically maximal (Fabi

& Leuthold, 2017, Schupp et al., 2004). The time interval and the electrodes for the P3b

analyses were selected in accordance with the most commonly used intervals and electrodes

of former RBE studies (e.g., Sessa et al., 2014, Sheng et al., 2017): 400 to 700 ms after

stimulus onset at Pz, P3, and P4 electrodes. In addition, we further analyzed mean ERP

amplitudes for those time intervals and electrodes for which former studies reported an RBE
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(Contreras-Huerta et al., 2014; Li et al., 2015; Sessa et al., 2014, Sheng et al., 2017; Sheng et

al., 2013; Sheng and Han, 2012), as will be outlined in more detail in the respective results

section.

The analysis epoch for the oscillatory brain activity started 500 ms prior to the stimulus

and lasted for 2000 ms. Power was analyzed from 4 to 30 Hz in 1-Hz frequency steps during

the analysis epoch for successive 50-ms time steps. Morlet wavelets with a five-cycle width

were applied for the time-frequency decomposition (e.g., Tallon-Baudry & Bertrand, 1999).

We selected mu- (7-12 Hz), lower beta- (13-18 Hz) and upper beta-frequency bands (19-30

Hz) for left- and right-hemispheric ROIs over the somatosensory cortex (left hemisphere: C1,

FC1, C3, CP1, right hemisphere: homolog sites). As in the previous study (Fabi & Leuthold,

2017), power values in the analysis windows between 300 and 600 ms and between 700 and

1500 ms were averaged and subsequently converted to a percentage change scale relative to a

pre-stimulus baseline of 200 ms. Since participants executed their response on average 595

ms after stimulus onset, the early and late time interval are interpreted as before and after

motor responses, respectively.

We analyzed data with repeated measures analyses of variance (ANOVAs), which are

specified in the following corresponding sections, combined with Bonferroni-adjusted com-

parisons.

4.4 Results

4.4.1 Ratings and questionnaires

For the ratings, we performed ANOVAs with factors condition (painful, neutral) and skin

color (dark, fair). The ANOVA of perceived pain revealed larger scores in the painful than

the neutral condition (M = 3.81 vs. 1.06), F(1, 22) = 636.20, MSE = 0.27, p < .001, and a

marginally significant Condition x Skin Color interaction, F(1, 22) = 3.52, MSE = 0.02, p



92 Study 2: Racial bias in empathy

= .07. Further tests did not reveal any significant skin color difference in the painful or the

neutral condition, all Fs ≤ 3.15, ps ≥ .09. For self-unpleasantness, we found larger scores in

the painful than the neutral condition as well (M = 3.36 vs. 1.26), F(1, 22) = 195.00, MSE =

0.52, p < .001, and a significant Condition x Skin Color interaction, F(1, 22) = 6.80, MSE =

0.01, p < .05. Post-hoc tests revealed that dark- compared to fair-colored hands in the painful

condition were rated as marginally more self-unpleasant (M = 3.41 vs. 3.31), F(1, 22) = 4.35,

MSE = 0.03, p = .05 (Bonferroni-corrected α-level = .025), whereas there was no difference

in the neutral condition (M = 1.24 vs. 1.27), F(1, 22) = 1.39, MSE = 0.01, p = .25. Because

rating scores for the neutral pictures showed little variability for perceived pain (range = 1 to

1.1) and self-unpleasantness (range = 1 to 1.5), they were excluded from further correlation

analysis. The correlation between the ratings of perceived pain and self-unpleasantness were

only marginally significant for both fair- and dark-colored hands, r = .36, p = .09 and r = .38,

p = .08, respectively.

Concerning the questionnaires of dispositional empathy, SPF empathy scores ranged from

31 to 56 (M = 42.87) and EQ scores from 19 to 64 (M = 45.96). Two participants showed

EQ scores smaller than 30, the cut-off value for autism spectrum disorders1 (Baron-Cohen &

Wheelwright, 2004). Internal consistency was good for the EQ (Cronbach’s α = .82) and

good or even excellent for the different subscales of the SPF: Cronbach’s α = .88 (Empathic

Concern), .93 (Perspective Taking), .88 (Fantasy), .90 (Personal Distress).

IATd scores ranged from -0.69 to 1.16, with negative scores revealing an implicit prefer-

ence of the racial outgroup and positive scores indicating a preference for the racial ingroup.

Across all participants, the mean IATd score was 0.20, which was significantly different form

zero, t(22) = 2.24, p < .05.

1Exclusion of the two participants with EQ scores smaller than 30 did not change the key findings.
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4.4.2 Behavioral performance

For accuracy, RT, TTP, and PF, repeated measures ANOVAs with variables condition (neu-

tral, painful), skin color (dark, fair), and task (pain judgment, skin color judgment) were

conducted.

Accuracy

The ANOVA for accuracy showed a main effect of task, F(1, 22) = 24.9, MSE < 0.01, p <

.001, which was due to lower accuracy in the pain judgment than the skin color judgment

task (M = 92.4 % vs. 97.2 %).

Reaction time

Responses were faster for the skin color judgment than the pain judgment task (M = 507 vs.

684 ms), F(1, 22) = 280.40, MSE = 5098.00, p < .001. There were significant interactions of

Task x Condition, F(1, 22) = 9.85, MSE = 737.00, p < .01, and of Task x Skin Color, F(1,

22) = 17.22, MSE = 427.00, p < .001. Post-hoc tests revealed that in the pain judgment task,

RTs were shorter for painful than neutral stimuli (M = 673 vs. 695 ms), F(1, 22) = 9.08,

MSE = 1216.00, p = .006, and for dark- than fair-colored hands (M = 674 vs. 693 ms), F(1,

22) = 23.90, MSE = 332.00, p < .001, whereas there were no differences in the skin color

judgment task, all Fs < 1.31, all ps > .26 (cf. Figure 4.2). The Task x Condition x Skin Color

interaction was significant, F(1, 22) = 7.24, MSE = 551.00, p < .05, but further tests of dark-

and fair-colored hands in both tasks did not reveal significant differences between the painful

and the neutral condition, all Fs < 4.81, all ps > .04 (Bonferroni-corrected α-level = .0125).

Time-to-peak latency

The analysis of the time between force onset and PF did not reveal any significant main or

interaction effect, all Fs < 1.93, all ps > .18 (cf. Figure 4.3).
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Fig. 4.2 Mean accuracy and reaction time as a function of stimulus condition (painful vs.
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Peak force amplitude

The ANOVA of PF revealed a significant main effect of task, F(1, 22) = 5.43, MSE =

10661.00, p < .05, which was due to higher PF amplitudes in the pain judgment task than the

skin color judgment task (M = 368 vs. 333 cN). No other effects were significant, all Fs ≤

1.61, ps ≥ .22.

4.4.3 Event-related brain potentials

ERP waveforms over posterior-ventral ROIs were composed of a first positive deflection

(P1), maximal at about 120 ms, a negative deflection (N1), peaking at about 160 ms, and a

posterior positivity peaking at about 230 ms. Subsequently, there was a late positivity (P3b),

which was maximal over posterior midline electrodes between 400 and 550 ms for the skin

color judgment task and between 450 and 650 ms for the pain judgment task (cf. Figure 4.4).

For mean P1, N1, and EPN amplitudes, we calculated ANOVAs with variables hemisphere

(left, right), condition (neutral, painful), skin color (dark, fair), and task (pain judgment,

skin color judgment). Mean P3b amplitudes were analyzed by an ANOVA with variables

condition (neutral, painful), skin color (dark, fair), and task (pain judgment, skin color

judgment).

P1 (90-130 ms)

The ANOVA for P1 amplitudes revealed a main effect of skin color, F(1, 22) = 9.03, MSE =

1.08, p < .01, which was due to larger P1 amplitudes for fair than dark-colored hands (M =

3.41 vs. 3.08 µV). We found a significant Condition x Skin Color x Hemisphere interaction,

F(1, 22) = 5.33, MSE = 0.30, p < .05. Separate tests for the left and right hemisphere did not

reveal any significant Condition x Skin Color interaction, all Fs < 2.94, ps > .10.
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N1 (140-180 ms)

The N1 ANOVA revealed a significant main effect of skin color, F(1, 22) = 14.86, MSE =

1.57, p < .001, indicating more positive amplitudes for fair- than dark-colored hands (0.77 vs.

0.27 µV). The main effect of task, F(1, 22) = 7.63, MSE = 1.32, p < .05, was due to more

positive N1 amplitudes for the pain than the skin color judgment task (M = 0.69 vs. 0.36

µV).

EPN (200-300 ms)

The analysis of EPN amplitudes (cf. Figure 4.5) produced a significant main effect of

condition, F(1, 22) = 38.94, MSE = 1.78, p < .001, indicating more negative-going amplitudes

in the painful than the neutral condition (M = 4.00 vs. 4.86 µV). Furthermore, EPN

amplitudes were more negative-going for dark than fair hands (M = 4.11 vs. 4.75 µV),

F(1, 22) = 35.82, MSE = 1.03, p < .001, but this effect was modulated by task as indicated by

the significant Task x Skin Color interaction, F(1, 22) = 9.54, MSE = 0.65, p < .01. The skin

color effect on EPN amplitude was larger in the skin color judgment task (M = 3.93 vs. 4.82

µV), F(1, 22) = 33.21, MSE = 1.10, p < .001, than in the pain judgment task (M = 4.30 vs.

4.67 µV), F(1, 22) = 11.21, MSE = 0.57, p = .003.

Fig. 4.5 Topoplots of P1, EPN and P3b amplitude differences for the painful minus the neutral
condition in the pain judgment and the skin color judgment task, for dark- and fair-colored
hands. Note the changed scaling for the P1.
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P3b (400-700 ms)

The analysis of mean P3b amplitude in the 400-700 ms time window revealed main effects

of condition, F(1, 22) = 15.92, MSE = 2.12, p < .001, and task, F(1, 22) = 9.06, MSE = 6.83,

p < .01, due to larger P3b amplitudes in the painful than the neutral condition (M = 6.29 vs.

5.43 µV), and for the pain judgment than the skin color judgment task (M = 6.44 vs. 5.28

µV). The Task x Condition interaction was significant, F(1, 22) = 17.44, MSE = 1.08, p <

.001, indicating significantly larger P3b amplitudes for the painful than neutral condition in

the pain judgment task (M = 7.19 vs. 5.69 µV), F(1, 22) = 21.48, MSE = 2.40, p < .001, but

not in the skin color judgment task (M = 5.39 vs. 5.17 µV), F(1, 22) = 1.34, MSE = 0.80, p

= .26.

Correlation analyses

Correlations between mean ERP amplitudes for dark- and fair-colored hands measured in

different time intervals for the painful condition of the pain judgment task and scores of

perceived pain and self-unpleasantness for painful pictures, and the dispositional empathy

scores of the EQ and the SPF, were tested for significance.2 The same correlation tests were

conducted for ERP amplitudes of the neutral condition in order to reveal empathy-unspecific

correlations. However, this was possible only for correlations with the EQ and SPF, whereas

the restricted variability of perceived pain and self-unpleasantness scores for neutral pictures

mentioned above did not permit such correlation tests for the neutral condition. Besides,

correlations between IATd scores and difference scores for amplitudes for fair- minus dark-

colored hands in the painful and the neutral condition of the pain judgment task were tested.

The significance level (alpha) was Bonferroni-adjusted.

2Some other authors investigating correlations between empathy questionnaires, ratings, and ERP amplitudes
used the amplitude difference between painful and neutral conditions. In a likewise analysis for the early ERP
components (P1, N1, EPN), we did not find any significant correlations, -.31 < rs < .41, all ps >.05. After
Bonferroni correction, the correlations between P3b difference amplitudes and rating or questionnaire scores
were not significant, -.22 < rs < .47, all ps >.03.
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Scores of perceived pain correlated positively with amplitudes for both dark- and fair-

colored hands in the painful condition in both P1, r = .71, p < .001 and r = .67, p < .001,

N1, r = .51, p = .01 and r = .48, p < .05, and EPN time intervals, r = .68, p < .001 and r =

.65, p < .001. P3b amplitudes did not show any significant correlations with perceived pain,

self-unpleasantness, or dispositional empathy, .14 < r < .33, all ps ≥ .12. Crucially, IATd

scores correlated positively with P3b amplitude differences (fair minus dark) for painful

stimuli, r = .52, p = .01, but not with amplitude differences for neutral stimuli, r = -.01, p =

.97 (cf. Figure 4.6).
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Fig. 4.6 Correlations between IATd scores and difference scores of P3b amplitudes for fair-
minus dark-colored hands in the painful and the neutral condition.

Analyses according to previous RBE studies

In an ERP analysis of average reference data identical to Contreras-Huerta et al. (2014),

there was a significant Condition x Skin Color interaction for mean ERP amplitudes between

80-140 ms at frontal electrodes (Fz, and FCz), F(1, 22) = 5.18, MSE = 0.37, p < .05. This

interaction was due to a trend for a larger negativity for painful than neutral fair-colored

hand stimuli, F(1, 22) = 3.23, p = .086, but not for dark-colored hand stimuli, F < 1, p =

.53. Since most ERP studies investigating the RBE found an RBE in mean amplitudes over
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frontal-central electrodes with EEG signals referenced to mastoids (Li et al., 2015; Sheng et

al., 2017; Sheng et al., 2013; Sheng & Han, 2012; Sessa et al., 2014), we also analyzed the

present ERP data in an analogous manner. In ERP amplitude analyses adopting the specific

procedures of Li et al. (2015), Sheng et al. (2013, 2017), and Sheng and Han (2012), there

were no significant Condition x Skin Color interactions, all Fs(1, 22) < 2.95, ps > .10. Finally,

in an analysis identical to those of Sessa et al. (2014), mean ERP amplitudes (280-340 ms)

over frontal electrodes (AF3/AF4, AF7/AF8, Fz, FCz, F1/F2, F3/F4, F5/F6, F7/F8, FC1/FC2,

FC3/FC4, FC5/FC6, FT7/FT8) produced a trend for the Condition x Skin Color interaction

F(1, 22) = 3.00, MSE = 5.13, p = .098. For fair-colored hands, ERP amplitudes were less

negative for painful than neutral stimuli (M = -0.47 vs. -1.78 µV), F(1, 22) = 8.51, MSE =

4.63, p < .01, but not for dark-colored hands (M = 0.24 vs. 0.08 µV), F(1,22) < 1, p = .73.

The Condition x Skin Color interaction was significant over central electrodes (Cz, C1/C2,

C3/C4, and C5/C6), F(1, 22) = 4.38, MSE = 3.99, p < .05, due to larger ERP amplitudes

for painful than neutral fair-colored hand stimuli (M = 2.67 vs. 1.23 µV), F(1, 22) = 9.70,

MSE = 4.86, p < .01, but not dark-colored hand stimuli (M = 3.31 vs. 311 µV), F(1, 22)

< 1, p = .61 (cf. Figure 4.7). Similar to those of Sessa et al., the correlational analyses

revealed significant correlations between the IRI subscale “empathic concern” and the mean

ERP amplitude difference (pain minus neutral; 280-340 ms) at the F3 and FC5 electrodes to

fair-colored, r = .47 and r = .49, ps = .02, but not to dark-colored hands, -.06 < r < .12, all ps

≥ .57 (Figure 4.8).

4.4.4 Oscillatory EEG activity

Percentage power change values were subjected to an ANOVA with variables condition

(neutral, painful), skin color (dark, fair), task (pain judgment, skin color judgment) and

hemisphere (left, right).
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Fig. 4.7 Amplitudes (in µV) at FCz, rereferenced to the mastoid electrodes, as a function
of stimulus condition (painful vs. neutral) and skin color (dark vs. fair) with the analysis
window of Sessa et al. (2014) and associated topoplots of the amplitude difference for the
painful minus the neutral condition.

Time interval 300-600 ms

The analysis of mu-band (7-12 Hz) power in this time window revealed an ERD (-13.75 %)

that was significantly different from zero, t(22) = -2.30, p < .05. The main effect of task was

significant, F(1, 22) = 7.94, MSE = 356.70, p < .05, due to larger ERDs in the pain judgment

than the skin color judgment task (M = -16.53 % vs. -10.98 %).

The analysis of lower beta-band (13-18 Hz) power in this time interval also revealed an

ERD (M = -27.51 %) significantly different from zero, t(22) = -7.94, p < .001, and a main

effect of task, F(1, 22) = 12.96, MSE = 256.00, p < .01, due to larger ERDs in the pain

judgment than the skin color judgment task (M = -30.51 % vs. -24.50 %).

Upper beta-band (19-30 Hz) power analysis revealed a significant ERD as well (M =

-25.42 %), t(22) = -10.44, p < .001. Furthermore, the Condition x Task interaction was

significant, F(1, 22) = 17.65, MSE = 21.30, p < .001, which was due to larger ERDs in the

painful than the neutral condition in the pain judgment task (M = -27.21 % vs. -24.98 %),

F(1, 22) = 7.12, MSE = 32.34, p = .01, and smaller ERDs in the painful than the neutral

condition in the skin color judgment task (M = -23.85 % vs. -25.66 %), F(1, 22) = 6.10, MSE
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Fig. 4.8 Correlations between empathic concern and difference scores of ERP amplitudes
(280-340 ms) for painful minus neutral conditions (over electrodes F3 and FC5), separately
for both skin colors.
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= 24.71, p = .02. Post-hoc tests of the Condition x Skin Color x Hemisphere interaction, F(1,

22) = 5.61, MSE = 12.52, p < .05, did not reveal any significant effect, all Fs ≤ 2.34, ps ≥

.14 (cf. Figure 4.9).

Fig. 4.9 Grand average percentage-change values over lateral sensorimotor cortex (averaged
across left and right electrodes: FC1, FC2, C1, C2, C3, C4, CP1, CP2) relative to a 200
ms pre-stimulus baseline as a function of time and frequency. Power changes are displayed
for the pain judgment and the skin color judgment task, and the painful, the neutral and the
difference between the painful minus neutral conditions. Note the difference in scaling in the
lower panels.

Time interval 700-1500 ms

The analysis of mu-band (7-12 Hz) power yielded an overall ERD (M = -2.24 %) that was

not significantly different from zero, t(22) = -0.48, p = .64. The main effect of task was

significant, F(1, 22) = 6.67, MSE = 700.00, p < .05, indicating a decrease in power in the

pain judgment compared to the skin color judgment task (M = -5.81 % vs. 1.32 %).
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The overall lower beta-band (13-18 Hz) power change (M = 15.35 %) in this time interval

was significantly different from zero, t(22) = 2.97, p < .01. Again, we found a significant

main effect of task, F(1, 22) = 29.94, MSE = 486.00, p < .001, due to smaller increases in

power in the pain judgment compared to the skin color judgment task (M = 9.06 % vs. 21.64

%).

In this late time interval, the overall numerical increase in upper beta-band (19-30 Hz)

power (M = 6.65 %) was not significantly different from zero, t(22) = 1.41, p = .17. However,

there was a larger upper beta-band power increase for painful than neutral stimuli (M = 8.98

% vs. 4.31 %), F(1, 22) = 13.12, MSE = 152.90, p < .01, and for the skin color judgment task

compared to the pain judgment task (M = 13.66 % vs. -0.36 %), F(1, 22) = 29.54, MSE =

612.00, p < .001.

Correlation analyses

Correlation analyses between scores of perceived pain, self-unpleasantness, EQ or SPF, and

power change values for both skin colors in the painful condition of the pain judgment task

and between IATd scores and difference scores of power change values for dark- and fair-

colored hands were calculated. In order to control for unspecific effects, the same analyses

were calculated for the neutral condition, except for perceived pain and self-unpleasantness

as mentioned earlier.

There were no significant correlations between the various rating scores and the power

change values for the mu-band (7-12 Hz) as well as the upper beta-band (19-30 Hz) in the

painful condition or between the IATd scores and the difference amplitudes, -.42 < r < .24,

all ps ≥ .05. However, self-unpleasantness scores correlated significantly with power change

values in the lower beta-band (13-18 Hz) for the 300-600 ms time interval in the painful

condition for fair-colored hands, r = -.57, p < .01 (Bonferroni-corrected α-level = .025), and
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marginally for dark-colored hands, r = -.45, p = .03 (Figure 4.10), whereas there were no

significant correlations for the 700-1500 ms time interval, -.40 < r < .17, all ps ≥ .05.
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Fig. 4.10 Correlations between self-unpleasantness and lower beta power change values
(13-18 Hz, 300-600 ms), separately for both skin colors.

4.5 Discussion

The main aim of this study was to investigate differences in empathic responses for racial in-

and outgroup targets analyzing ERPs, EEG oscillations, RT and RF in response to simple

pictures of fair- and dark-colored hands in painful and neutral situations. The key findings

will be discussed with regard to early perceptual encoding, late cognitive categorization,

and motor-related processing stages. Following initial perceptual encoding as reflected by

posterior P1 and N1 components, we found a task- and skin color-independent EPN difference

(200-300 ms) between empathy-evoking and neutral stimuli which we take to indicate the

selective processing of affectively arousing stimuli (cf. Olofsson, Nordin, Sequeira, &

Polich, 2008). Whereas no reliable RBE was obtained in the early ERP waveform (< 280

ms), like in Sessa et al. (2014), there was an RBE over frontocentral electrodes in the

280-340 ms time window. Moreover, the analysis of P3b amplitude showed that the cognitive
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categorization stage was influenced by empathy-evoking stimuli if attention was directed

towards the pain dimension and that this influence depended on participants’ implicit ingroup

preference. Finally, motor-related EEG oscillations suggested an empathic influence before

(larger facilitation) and after response execution (larger inhibition), but no RBE.

4.5.1 Empathy-unrelated task and skin color effects

Concerning the speeded choice-response task, participants showed accurate performance

in both judgment tasks. The higher accuracy and shorter reaction times for the skin color

than the pain judgment task indicate that the skin color judgment was slightly easier to

accomplish, presumably because only one prominent visual characteristic (color) had to

be discriminated. By contrast, in order to appropriately perform the pain judgment task,

participants had to capture and evaluate the whole situation. This conjecture appears to be

supported by the finding that N1 amplitudes revealed task-related effects on early visual

processing. Furthermore, larger P3b amplitudes in the pain judgment than the skin color

judgment task further indicate that the former task received more cognitive processing

resources (Kok, 2001; Polich, 2007). Together, behavioral and ERP findings are consistent

with the view that skin color judgments included the processing of a single prominent

visual stimulus feature, whereas pain judgments required the attentionally more demanding

processing of the whole scene.

Regarding motor processing, we found in the time interval before response onset, larger

ERDs for the pain judgment than the skin color judgment task in the mu- and lower beta-band

and in the time interval after response onset additionally in the upper beta-band, suggesting

larger sensorimotor activation in the pain judgment than the skin color judgment task. This

effect on sensorimotor activation is corroborated by the larger PF amplitudes in the pain

judgement than the skin color judgment task.
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Regarding skin color-related effects, responses were faster to dark than fair stimuli

in the pain judgment but not the skin color judgment task, possibly because the visual

discriminability was higher for dark than fair-colored hands. The more positive P1 amplitude

for fair- than dark-colored hands over posterior ROIs, an amplitude effect that propagated to

the N1 and EPN time interval, might be attributed to the fact that dark- and fair-colored hand

stimuli differed in low-level perceptual features like their luminance and color. These ERP

findings contrast with those of studies investigating facial skin color effects on ERPs (Ito &

Urland, 2003; Kubota & Ito, 2007; for a review, see Ito & Bartholow, (2009)). These studies

found larger amplitudes in the early N1 component (at Cz) for outgroup than ingroup targets,

which was ascribed to the attention-capturing nature of racial outgroup targets. We can only

speculate regarding the potential reasons for the divergent ERP results compared to our study.

Thus, it is conceivable that the use of black and white yearbook stimuli as compared to hand

stimuli together with the different cultural background of participants (e.g., higher relevance

of race issues for US citizens) differentially influenced ERPs. Moreover, since the stimuli

were presented on black background, it is possible that fair-colored hands captured attention

more easily than dark-colored hands.

4.5.2 Empathy-related effects

Higher ratings of perceived pain and self-unpleasantness for painful than neutral stimuli

indicate that pictures of painful situations successfully elicited empathic responses in the

observer.

Early perceptual processing

Like in the study of Fabi and Leuthold (2017), P1 and N1 amplitudes did not differ for painful

versus neutral stimuli, whereas EPN amplitudes were more negative-going in the painful

than the neutral condition, and this empathy effect was independent of the task. We take this
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particular finding to indicate that painful stimuli automatically capture attention and undergo

further selective processing following their initial encoding. Crucially, the empathy-related

EPN amplitude difference was neither modulated by task nor by skin color, indicating an

automatic influence during selective perceptual processing. Whereas some previous studies

reported such a task-independent (automatic) empathy effect to occur even earlier during

information processing, as indicated by frontocentral N1 amplitudes (e.g., Fan & Han, 2008;

Han, Luo, & Han, 2016; Meng et al., 2012), other studies failed to replicate this N1 effect

(e.g., Fabi & Leuthold, 2017; Mella et al., 2012; Sessa et al., 2014). With regard to the

mixed results, it is noteworthy that Cui, Zhu, Luo (2017) found that the empathy-related

difference in frontocentral N1 amplitude (110-160 ms) was only present in a threatening

but not a friendly social context as induced by a facial prime stimulus, whereas the later P3

effect was only present in the friendly context. Thus, future ERP studies might benefit from

controlling the social context within which the experiment is conducted.

Still, ERP components earlier than the EPN might be related to empathy effects as

indicated by the present results of the correlational analyses. Thus, mean P1 amplitude

in the painful condition increased with the intensity of the subjective pain rating for both

fair- and dark-colored hand stimuli, and this correlational effect propagated to the N1 and

EPN time range. It therefore appears that early perceptual processes are influenced at the

inter-individual level by the pain an observer subjectively perceives, potentially reflecting the

attention-capturing effect of personally salient stimuli.

Late cognitive categorization

Importantly, concerning empathic influences on the duration of information processing, RTs

were shorter to painful than neutral stimuli in the pain judgment task, whereas there was

no such RT difference in the skin color judgment task. This finding might suggest that a

task-dependent processing stage following task-independent perceptual encoding is generally
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shortened in its duration by empathy-evoking stimuli. In agreement with previous studies

(e.g., Fabi & Leuthold, 2017; Fan & Han, 2008), we found larger P3b amplitudes for painful

than neutral stimuli in the pain judgment but not the skin color judgment task. Therefore, we

assume that painful compared to neutral stimuli receive more processing resources at the late

categorization stage, thereby being processed faster as indicated by RT results.

Motor processing

Concerning the analysis of oscillatory brain activity, ERDs in the mu-, lower beta- and upper

beta-band before response onset indicate sensorimotor activation prior to the motor response

as in previous studies (e.g., Pfurtscheller, 1989). Crucially, however, upper beta-band-ERD

was larger in the painful than the neutral condition for the pain judgment and smaller for

the skin color judgment task, irrespective of skin color. This particular finding suggests that

sensorimotor activation is enhanced for painful targets if attention is directed towards the

pain dimension, also potentially shortening the duration of motor processing before response

onset.

After response onset, the finding of a power increase (ERS) in the lower beta-band

indicated an inhibition of sensorimotor reactivity (cf. Pfurtscheller, Zalaudek, & Neuper,

1998), as often observed after the onset of speeded responses (e.g., Pfurtscheller, Stancak, &

Neuper, 1996). In contrast to the results of Fabi and Leuthold (2017), we found no lower

beta-band evidence for larger facilitation of sensorimotor activity after the response for

painful than neutral stimuli. Rather, there was a larger increase of upper beta-band power

to painful than neutral stimuli irrespective of task and skin color, implying a larger and

task-independent inhibition of motor reactions for empathy-evoking stimuli. It is worth

noting that a similar increase of beta-band power to painful stimuli was reported in a study

of Valentini, Liang, Aglioti and Iannetti (2012; see also MEP amplitude findings of Avenanti,

Bueti, Galati, & Aglioti, 2005), in which participants performed no motor response but



110 Study 2: Racial bias in empathy

merely attended to video clips showing fair-colored hands in painful and neutral situations.

Together, present findings accord with the view that empathy for pain is motivationally linked

to motor actions (see also Han et al., 2017), as indicated by the stronger facilitating influence

of empathy-evoking stimuli during the early pre-response phase, which might subsequently

lead to a stronger motor inhibition during the post-response phase.

4.5.3 Racial bias of empathy

Fair- and dark-colored hands did not differ in participants’ perceived pain, but unlike the

results from the pilot rating study, dark-colored hands in pain were judged as more self-

unpleasant than fair-colored hands.

RBE and early perceptual processing

The analyses of the posterior P1, N1, and EPN amplitudes did not reveal any RBE effect.

However, similar to Contreras-Huerta et al. (2014), frontocentral N1 amplitudes (80-140 ms)

were more negative-going for painful than neutral ingroup but not outgroup hand stimuli,

but this RBE effect remained a statistical trend. Moreover, replicating the results of Sessa et

al. (2014) with hand instead of face stimuli, there was a positive shift of frontal and central

ERP amplitudes in the 280-340 ms time window in the painful than the neutral condition

for fair-colored but not for dark-colored hands. Thus, early perceptual processing before

stimulus categorization does indeed seem to be influenced by the RBE. Extending previous

studies that used either pain or race judgment tasks (Contreras-Huerta et al. 2014; Li et

al., 2015; Sessa et al. 2014; Sheng & Han, 2012; Sheng et al., 2013), our results are first

in demonstrating such an early RBE effect independent of the judgment task (pain versus

skin-colour). In line with the view of bottom-up emotional sharing, this result suggests that

the racial background influences early perceptual processing in an automatic manner. Similar

to the correlational results of Sessa et al. (2014) and also in line with an early RBE effect,
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we found a significant positive correlation of the ERP amplitude difference for fair-colored

hands with the IRI subscale “empathic concern”, whereas the correlation with amplitude

differences for dark-colored hands were not significant. In line with the findings of Sessa

et al., we speculate that the present RBE effect might originate in the left IFG (see also

Vachon-Presseau et al., 2012, reflecting the automatic component of empathic sharing.

RBE and late cognitive categorization

Importantly, in line with previous studies investigating the RBE with face stimuli (e.g.,

Contreras-Huerta et al., 2014; Sheng et al., 2017; Sheng et al., 2013), the P3b empathy

effect was not modulated by skin color. Thus, we cautiously infer from this zero effect at

the group level that the racial background of the target, at least on average, has no impact on

controlled stimulus categorization. Because of different studies revealing the importance of

individual implicit ingroup preferences, we also applied the race IAT. Azevedo et al. (2013),

for example, found that the higher a person’s implicit ingroup preferences was, the larger

was the difference in the empathy effect between in- and outgroup targets represented by

the differential left AI activity between painful and neutral stimuli. Thus, they assumed that

IATd scores were able to predict affective-motivational neural responses to racial in- and

outgroup targets’ pain. Most interestingly, we found a positive correlation between IATd

scores and P3b differences between fair- and dark-colored hands for painful but not neutral

stimuli. This result is in line with Sessa et al. (2014), who reported a positive correlation

between IATd scores and the P3b amplitude difference (400-750 ms) for fair- but not dark-

colored faces. Our finding suggests that the categorization of empathy-evoking stimuli of

dark- and fair-colored hands is not immune to racial biases but differentially influenced

by the individual’s implicit preferences towards own-race stimuli. That is, the larger the

own-race preference was, the larger was the difference in evaluating empathy-evoking stimuli

for dark- and fair-colored hands, whereas the difference in evaluating neutral stimuli was
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independent of implicit preferences. In contrast, it has been previously assumed in this

research domain that the empathic influence on the categorization stage, as indicated by the

late P3b, is insensitive to racial biases (e.g., Contreras-Huerta et al., 2014; Sheng & Han,

2012). However, these ERP studies did not differentiate between persons with low and high

implicit racial bias. Certainly, there is a need to further examine the boundary conditions

under which the stimulus categorization stage, as indicated by the P3b component, is subject

to influences of racial bias (see also Li et al., 2015).

RBE influences on motor processing

Our oscillatory results that did not show any influence of skin color on empathy-related motor

processing stand in contrast to those of Riečanský et al. (2014) who found stronger activation

of sensorimotor activity for ingroup than outgroup targets in pain. Given the procedural

differences across studies, it is difficult to come up with a straightforward explanation for

these mixed results concerning an RBE effect on late motor processing. Thus, our participants

performed speeded choice-responses to static stimuli, whereas those of Riečanský et al.

(2014) passively watched video clips.

Like for perceptual and cognitive ERP components, also motor-related EEG signatures

might be sensitive to RBE influences as indicated by correlational analyses. The more

self-unpleasant a participant rated a stimulus, the larger was the mean lower beta-band-ERD

to fair-colored painful stimuli, whereas this correlation was only marginally significant for

dark-colored ones. Thus, one might speculate that motor behavior is facilitated more strongly

in participants with high sensitivity for self-unpleasantness when confronted with others’

pain. This relation seems to be larger for ingroup than outgroup targets, an effect that should

be replicated in future studies before taking it seriously.
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4.5.4 Conclusion

In summary, this study reveals to our knowledge for the first time an influence of racial

bias on an early (automatic) perceptual processing stage for static hand stimuli. Moreover,

there was a further RBE influence on the late (controlled) stimulus categorization stage that

depended on participants’ individual ingroup preference. In contrast, late motor processing

stages were hardly influenced by racial bias, despite the fact that empathic responses were

evident in a way that sensorimotor activity was more strongly facilitated before and more

strongly inhibited after the motor response. Together, the present study should be viewed

as an important first step in demonstrating the practicality of approaching the mechanisms

underlying the RBE by presenting static hand stimuli rather than the commonly employed,

more complex racial face stimuli. As highlighted by Decety and Cowell (2014), such

knowledge would seem important to promote moral progress by overcoming RBE effects

and expanding empathy from close persons to humanity in general.
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5.1 Abstract

Empathic concern and personal distress are empathic emotions that result from the initial

empathic response when observing someone in pain. Even though these empathic responses

have received lots of attention in past research, it is still unclear which conditions contribute

to their respective experience. Hence, the main goal of this study was to examine if dis-

positional empathic traits or rather situational variables are more likely to evoke empathic



116 Study 3: Empathic Concern and Personal Distress

concern and personal distress and how the two empathic emotions influence motor responses.

We presented pictures of persons in psychological, physical, or no pain and matching de-

scriptions of situations that promoted an other-focused perspective. Participants responded to

a subsequent tone. Regression analysis revealed that situational factors, like the type of pain

and the affect experienced by the participants before the experiment, but not dispositional

empathic traits predicted the two empathic emotions. In addition, personal distress led to

faster motor responses compared to empathic concern, presumably reflecting an effect of

arousal. In conclusion, this study extends previous research by revealing that when partici-

pants adopted an other-focused perspective, psychological and physical pain stimuli lead to

empathic concern and personal distress, respectively, whereas dispositional empathic traits

do not systematically contribute to these situational empathic responses.

5.2 Introduction

Empathy is often defined as the similarity between the emotional states of the observer and a

target person, with the observer knowing that the target is the source of her or his own feelings

(Decety & Jackson, 2004; Eisenberg & Eggum, 2009). The experience of empathy can result

in at least two qualitatively distinct emotional responses, namely empathic concern and

personal distress (cf. Batson, Early, & Salvarani, 1997; Batson, Fultz, & Schoenrade, 1987).

Empathic concern, often also called sympathy, is taken to reflect an emotional response of

sorrow or concern that results from the comprehension of the target’s emotional state but

differs from it (Eisenberg, Shea, Carlo, & Knight, 1991). Personal distress is viewed as a

self-focused aversive response that results from the apprehension of another’s distress and is

similar to the target’s state (e.g., Batson et al., 1987). Importantly, the observer’s experience of

such a specific emotional response is assumed to have certain motivational consequences on

behaviour. For instance, it is assumed that empathic concern leads to an altruistic motivation

and helping behaviour in order to reduce the other’s suffering, whereas personal distress
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leads to an egoistic motivation to reduce the own unpleasant feelings (e.g., Batson, O’Quin,

Fultz, Vanderplas, & Isen, 1983; Decety, 2010). Still, there is much to learn about how these

two empathic responses are differentially influenced by dispositional empathy and situational

factors like type of pain of the target person and the affect experienced by the observer when

encountering a person in pain, and also in which way the resulting altruistic and egoistic

motivations influence motor behaviour. It is the aim of the present study to investigate these

issues.

In order to measure situational emotional responses, researchers have frequently used

rating scales including various adjectives that are either typically associated with empathic

concern (warm, tender, moved, compassionate, sympathetic, soft-hearted) or personal distress

(alarmed, upset, worried, disturbed, distressed, troubled, perturbed, grieved) (e.g., Batson et

al., 1997; Batson, McDavis, Felix, Goering, & Goldman, 1976). In the following, we refer

to these rating scales as Empathic Response Scale. Individual differences in trait empathy,

namely the general disposition to feel empathic concern or personal distress for persons in

pain, are typically measured by questionnaires like the Interpersonal Reactivity Index (IRI)

of Davis (1983a).

Of course, as already highlighted by Batson et al. (1987), which specific empathic

emotion is experienced by an observer in a given situation (situational empathy) is not

necessarily strongly related to his or her general tendency to empathise with others in a

specific way (dispositional empathy). More recently, Decety and Lamm (2009) proposed

that individual factors such as empathic traits, but also abilities of emotion regulation, the

emotional background of the observer (i.e. depressive mood) in interaction with situational

factors, like the context, the emotion and the level of arousal induced by the situation,

determine whether the observation of another in need leads to empathic concern or personal

distress. The few studies that have investigated the relationship between dispositional and

situational empathic responses indicated only modest correlations. Thus, Davis (1983b)
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assessed dispositional empathic concern with the aid of the IRI and situational empathic

concern with the aid of the Empathic Response Scale in response to the Katie Banks vignette,

a story about a girl who had lost her parents and was responsible for her younger siblings

(e.g., Coke, Batson & McDavis, 1978). The correlation between dispositional and situational

measures was moderate (r = .28). Eisenberg et al. (1994) applied the same instruments and a

single videotape about deprived children to induce empathy. Again, their results revealed

no strong correlations between situational and dispositional measures (empathic concern:

r = .35, personal distress: r = .11). Finally, using seven sad excerpts of a TV show that

participants rated with regard to their empathic concern, Light et al. (2015) found a similarly

moderate correlation between dispositional and situational empathic concern (r = .26).

Whereas the above reported results suggest that individual differences in dispositional

empathy relate somewhat to situational empathic responses, it is also clear that other factors

contribute to situational emotional responses as well. According to many authors, self-other

overlap is a key factor that determines the type of situational empathic response (e.g., Decety

& Lamm, 2009; Wondra & Ellsworth, 2015). Thus, the cognitive projection of oneself into

the situation (self-focus) has been proposed to lead to higher personal distress and that of

focusing onto the target’s reaction (other-focus) to higher levels of empathic concern (e.g.,

Batson, Early & Salvarani, 1997; Lamm, Nusbaum, Meltzoff & Decety, 2007; López-Pérez,

Carrera, Ambrona & Oceja, 2014). In support of this former assumption, studies that induced

psychological pain by presenting participants short stories like that about Katie Banks found

higher situational personal distress scores under the instruction to maintain a self-focused

state and increased situational empathic concern scores under the instruction to imagine the

perspective of the other (e.g., Jackson, Brunet, Meltzoff & Decety, 2006; Lamm, Nusbaum,

Meltzoff & Decety, 2007). It is worth mentioning, however, that Batson et al. (1997) assumed

that this perspective-dependent, empathic response pattern holds only for psychological pain,
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whereas physical pain should evoke personal distress in the observer irrespective of his or

her perspective (see Figure 5.1).

Another person in	
discomfort

Psychological	pain Self-focus:	PD

Other-focus:	EC

Physical pain

PD

Fig. 5.1 Empathic concern (EC) and personal distress (PD) as a result of physical and
psychological pain combined with the focus of the observer (upper picture: © K.- P.
Adler/fotolia.com, lower picture: © WavebreakmediaMicro/fotolia.com).

In the light of these observations, it is worthwhile to consider potential reasons for the

moderate correlations between situational and dispositional empathy reported previously.

Thus, the above reported studies that investigated the relation between dispositional and

situational empathic responses (Davis, 1983b; Eisenberg et al., 1994; Light et al., 2015)

did not explicitly control for the perspective participants adopted during the experiment.

Consequently, it cannot be excluded that the perspective adopted by participants varied,

thereby influencing measures of situational empathic concern and personal distress. Moreover,

to our knowledge, only Eisenberg et al. (1994) assessed the general tendency for positive

and negative affect with the Positive and Negative Affective Schedule (PANAS, Watson,

Clark & Tellegen, 1988), even though according to Decety and Lamm (2009), emotions

and the arousal induced by a given situation play an important role in triggering empathic

responses. For instance, Eisenberg et al. (1994) found that participants’ personal distress
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score during the experiment increased with their general tendency to experience negative

affect. The tendency to experience positive affect, on the other hand, correlated negatively

with personal distress. Moreover, most studies relied on the spontaneous occurrence of

situational empathic concern and personal distress in individuals following the presentation

of only a single vignette or video (Davis, 1983b; Eisenberg et al., 1994) or just a few video

excerpts (Light et al., 2015). Given that situational empathy was assessed on so few occasions,

it is also possible that the observed correlations are bound by potentially low reliability of the

situational empathy score. Relatedly, it remains unclear whether the observed results would

generalise to other scenarios that are presented to participants in the form of static pictorial

stimuli. Together, it appears that the relationship between situational empathic responses

and dispositional empathy is in need of further investigation, specifically by manipulating

situational empathic responses more systematically, by obtaining more reliable situational

empathy scores, and by using a wide range of pictorial stimuli.

By employing a larger number of empathy-evoking pictures, it will also become possible

to investigate if situational empathic responses influence motor behaviour. According to

Eisenberg et al. (1996), personal distress is accompanied by higher levels of physiological

arousal than empathic concern. Since arousal is a variable known to influence response speed,

these two empathic responses might influence RT differentially. Previous studies concerned

with the general impact of empathy on information processing found shorter reaction times

(RTs) for empathy-inducing than control stimuli (e.g., Fabi & Leuthold, 2017, 2018; Hu,

Fan, & He, 2015; Mella, Studer, Gilet, & Labouvie-Vief, 2012; but see Sheng & Han, 2012).

Moreover, as outlined earlier, empathic concern might lead to an altruistic motivation to

reduce the target’s suffering, whereas personal distress might result in an egoistic motivation

to reduce one’s own suffering by withdrawing from the situation (Batson et al., 1983; Decety,

2010). We assume that these motivations manifest themselves in motor predispositions for

approach or avoidance movements, respectively. In accord with this assumption, Morrison,
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Poliakoff, Gordon, and Downing (2007) found faster withdrawal (key release) and slower

approach movements (key press) to a visual go-/nogo-signal after observing another person

in pain, which presumably induced personal distress. Until now, at least to our knowledge,

there is no study that investigated whether and how empathic concern and personal distress

influence approach-avoidance motor behaviour.

5.2.1 Current Study

To address the above-mentioned limitations of previous research, in the current study, we

controlled perspective and more systematically manipulated situational empathic concern

and personal distress. To control for possible effects of perspective taking in the present

experiment, participants received a description of the situation (heart attack vs. death of the

mother) that promoted an other-focused state before watching a block of empathy-inducing

pictures. Since Batson et al. (1997) claimed that psychological pain leads to empathic

concern if the observer is in an other-focused state, whereas physical pain leads to personal

distress independent of the focus, we presented pictures of persons apparently suffering from

physical and psychological pain. In a rating study, we affirmed that in combination with the

respective description of the situation, the stimuli of persons in physical emergencies (heart

attack) provoked more personal distress in the observer, whereas persons in psychological

pain (death of the mother) provoked more empathic concern.

A primary aim of the study was to advance our understanding of the variables that

influence the situational empathic responses, like dispositional empathic traits or situational

affect, which is why we applied the IRI (Davis, 1983a) and the PANAS (Watson, Clark

& Tellegen, 1988), respectively. More specifically, we tested to what extent the general

ability to experience empathic concern or personal distress influences the actual experience

of empathic concern or personal distress in a specific situation, respectively. Additionally,

we hypothesised that positive affect before the experiment would predict empathic concern,
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whereas negative affect would be related to personal distress, as implied by the results of

Eisenberg et al. (1994).

In addition, it was a second aim to investigate empathy-related influences on motor

performance. To this end, we combined the processing of the empathy-evoking stimuli with

a variant of the approach-avoidance task (AAT). This task has been shown to sensitively

reveal the relationship between positively or negatively valenced items and specific approach

vs. avoidance responses (cf. Krieglmeyer, De Houwer & Deutsch, 2013). Using this task,

previous studies have shown that emotional stimuli automatically activate valence-dependent

approach versus avoidance tendencies (e.g., Krieglmeyer, Deutsch, De Houwer & De Raedt,

2010). We hypothesised that the altruistic approach motivation ascribed to empathic concern

and the egoistic avoidance motivation related to personal distress (Batson et al., 1983; Decety,

2010) biases the motor system in an automatic manner. Hence, RTs should be faster for

physical than psychological pain in general. Moreover, approach movements to the tone

should be faster in the psychological than the physical pain condition, whereas RTs for

avoidance movements should be faster in the physical than the psychological pain condition.

5.3 Method

5.3.1 Participants

58 students from the University of Tübingen (M(age) = 24.47 years; 44 females and 49

right-handed participants) voluntarily participated for payment (8 Euros per hour) or course

credits.

5.3.2 Apparatus

Stimulus presentation and response recording were controlled by a Mac Mini (Apple Inc.)

running a MATLAB (The Math Works, Inc., Version R2015a) program using the Psy-
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chophysics Toolbox 3.0.12 (Brainard, 1997; Kleiner, Brainard, Pelli, Ingling, Murray &

Broussard, 2007) together with custom MATLAB routines. Participants sat in an electrically

shielded, low-noise booth with ambient light at low level. A chin rest guaranteed a constant

distance to the 1100 MB Samsung SyncMaster screen, on which materials were presented,

with a resolution of 1280 x 960 pixels and a refresh rate of 60 Hz. Dimensions of the

stimuli were 318 x 424 pixels at the beginning of each trial, but changed with movement.

The response device consisted of a self-constructed metal box (“slider device”) measuring

approximately 10 cm in height, 25 cm in width and 50 cm in length. The internals of the

slider device consisted of rails along which a handle could be pushed/pulled (lengthwise with

a total movement distance of 38 cm). A potentiometer was attached to the internal rails in

such a way that the voltage output varied according to handle position. A software-based

calibration routine converted the output voltage to cm and was calibrated such that 0 cm was

the middle position, with values ranging from -18 to +18 cm. The internals of the device also

contained an electromagnet that could be controlled online via software to prevent the handle

from being moved. A force of approximately 150 cN was required to initiate the movement

of the handle when the magnet was not active.

5.3.3 Materials

Auditory stimuli were sine waves of 400 and 800 Hz with a volume of 60 dB that were

presented via headphones (Sennheiser, PX-100-II). Pictorial stimuli consisted of 117 pictures

depicting persons in either emotionally neutral situations, and in situations in which they

seemed to grieve or appeared to be haunted by strong pain in the chest (39 pictures for each

type of pain: no pain, psychological pain, physical pain). Additionally, written descriptions

of the situation were provided, which promoted an other-focus perspective followed by

a statement that another person is sad because of the death of his or her mother or that

the person experiences a strong pain in the chest (e.g., “Imagine yourself to be on a street
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facing a stranger who is obviously not feeling well. You ask him/her what has happened.

He/she answers that he/she has just found out that his/her mother has died all of a sudden.”,

“Imagine that you meet a new colleague at your office. All of a sudden, he/she complains

about violent pain at the thoracic regions.”). Pictures with physical pain and some of them

with psychological pain were purchased from Fotolia (https://de.fotolia.com), a commercial

picture platform. Further stimuli of sad persons were selected from the picture set used by

Morelli and Lieberman (2013). The remaining pictures were selected from the International

Affective Picture System (Lang, Bradley & Cuthbert, 1999). The picture set will be provided

upon request by the authors.

We performed a web-based rating study of the stimuli, with 275 members of the University

of Tübingen participating. The picture items and their corresponding descriptions were

presented together and were arranged in six stimulus lists. Each of the four 19-20 item lists

consisted of three blocks of six pictures, with each list being rated by about 45 participants.

Participants rated the following dimensions for each picture:

• Experienced empathic concern as the mean rating of six items of Batson et al. (1997):

1 (not at all) to 8 (very much)

• Experienced personal distress as the mean rating of eight items of Batson et al. (1997):

1 (not at all) to 8 (very much)

• Arousal while watching the picture: 1 (not at all) to 8 (very much)

• State of the person depicted in the picture: 1 (fine) to 8 (extremely bad)

• Realism of the picture: 1 (absolutely unrealistic) to 8 (absolutely realistic)

• Fit between description of the situation and picture: 1 (not at all) to 5 (very good)

• Facilitation of imagining the situation by the description: 1 (not at all) to 5 (very good)
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Mean rating scores are provided in Table 5.1. Analyses of variance (ANOVAs) were

calculated across all pictures with the three-level factor type of pain (no pain, psychological

pain, physical pain). ANOVAs of all dependent variables revealed significant main effects,

all Fs > 4.15, all ps < .02. To investigate the direction of the significant main effects, we

performed post hoc Tukey tests that are reported next.

Table 5.1. Results of the Rating Study 

 

 Psychological 
pain 

Physical      
pain 

No pain 

State of observer    

empathic concern 4.71 3.75 2.24 

personal distress 3.02 4.01 1.63 

arousal 4.75 5.16 2.81 

    

Pictorial stimuli    

state of depicted person 6.50 6.23 3.10 

realism 6.12 5.72 5.58 

    

Description of situation    

fit of description 3.80 3.57 3.06 

facilitation of perspective taking by description 3.89 3.62 3.35 

Note. Mean rating scores on different dimensions for the three types of pain. 
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Concerning the state of the participant, less empathic concern was provoked by the

no-pain compared to the physical pain condition, p < .001, and by these two conditions

compared to the psychological pain condition, ps < .001. Personal distress revealed lower

values for the no-pain than the psychological pain condition, p < .001, and for these two

conditions compared to the physical pain condition, ps < .001. Significantly lower arousal

values were reported for the no-pain than the psychological pain condition, p < .001, which

both differed from the physical pain condition, ps < .05, for which the arousal value was

highest.

Regarding picture-related factors, the state of the depicted persons was rated as more

positive in the no-pain than the psychological pain condition, p < .001, and the physical pain

condition, p < .001, whereas scores in the psychological and the physical pain conditions did

not differ, p = .37. Post-hoc tests of realism of the pictures showed that pictures of persons

without pain were rated as less realistic than those of persons with psychological pain, p

< .05, whereas there was no difference between the psychological and the physical pain

conditions, p = .11.

Concerning the description of the situation, the match between description and situation

was rated worst in the no-pain condition, ps < .001, whereas pictures depicting persons

suffering from psychological and physical pain did not differ in terms of fit of the description

of the situation, p = .19. The facilitation of perspective taking with the aid of the description

was larger in the psychological pain than the physical pain condition, p < .05, and both

conditions showed larger values than the no-pain condition, ps < .05.

In conclusion, pictures were suited to provoke empathic concern and personal distress

differentially. Physical pain pictures were given the highest arousal ratings in line with

the assumption of Eisenberg et al. (1996) who claimed that personal distress goes along

with more arousal than empathic concern. Ratings of the state of the person displayed

and the realism of the pictures were satisfactory, because they did not differ between the
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psychological and the physical pain condition but only with the no-pain condition. We

therefore decided to use all picture stimuli, except for three pictures that were outliers

on some dimensions and therefore selected to become filler items for the memory task.

Descriptions of the situation did not differ in their fit to the pictures of the physical and the

psychological pain condition.

5.3.4 Procedure

Before giving their informed consent, participants were informed about the experiment.

After two practice blocks of six trials, the experimental picture stimuli were presented in

18 blocks, each block consisting of a description of a situation and six pictures of the same

category. In the current AAT version, participants produced approach-avoidance movements

to an affect-neutral auditory stimulus by pushing or pulling a lever depending on the tone’s

pitch. A novel dynamic display arrangement was employed. Here, visual stimulus size was

determined by the extent of the participant’s movement parameter. That is, when participants

were to perform a pushing movement away from their body, the perceived depth position

of the picture within a 3-D graphics scene moved away from the participant. Alternatively,

when a pulling movement was required, the picture within the same scene appeared to move

towards the participant. In contrast to static paradigms, this experimental setup allows one to

disambiguate between the action and the outcome of this action. Specifically, within static

paradigms, a movement away from one’s body can be internalized as either a push-away or a

reach-to type of action.

The sequence of events within a single block is depicted in Figure 5.2. At the beginning

of each block, participants were given a description of the situation, in which they were either

meeting someone who was experiencing strong pain in the chest, who was grieving because

of the death of the mother, or who was in an emotionally neutral situation. This was followed

by the presentation of the six experimental picture trials. After each block, participants were
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asked to rate their empathic responses on an adjusted version of the Empathic Response Scale

(Batson et al., 1997). This translated German version contained the following adjectives:

“mitfühlend” (compassionate), “bewegt” (moved), “berührt” (tender) for empathic concern

and “beunruhigt” (worried), “alarmiert” (alarmed), “ängstlich” (distressed) for personal

distress. Average values of the ratings were separately calculated for empathic concern and

personal distress. Afterwards, they were shown a familiar or unfamiliar picture and asked if

it was part of the preceding block in order to direct their attention during the block onto the

pictures.

Participants determined the start of each trial by bringing the slider into its start position.

This position corresponded to +/-1cm from the middle position as visually indicated on the

stimulus display; once the slider was inside this region, the brake was applied. 1000 ms after

bringing the slider to this position, a trial started with the presentation of a fixation cross

for 1500 ms, followed by the display of the pictorial stimulus, thereby releasing the brake.

After 1000 ms the tone was presented for 200 ms. Participants were to respond to the tone

within 2000 ms following its onset. 500 ms after movement offset the picture disappeared

and feedback was shown for correct, incorrect, too fast (movement onset < 200 ms) or too

slow (movement onset > 2000 ms) responses at the centre of the screen for 1000 ms. A blank

screen of 1000 ms followed. RT was defined as the time interval from picture onset to the

time point when the slider reached a position 0.2 cm away from the actual starting point.

The order of physical pain, psychological pain, and no-pain conditions was randomised

across participants with the constraint that for each picture approach and avoidance move-

ments occurred equally often and that two consecutive blocks were always of the same type

of pain. The mapping of tone pitch to movement direction (push/pull) was balanced across

participants. In half of the blocks, the memory task consisted of a picture of the previous

block, in the other half a new picture was presented.
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Fig. 5.2 Schema of the procedure of one block: Presentation of the description of a situ-
ation, followed by six trials consisting of the start screen (1000 ms), fixation cross (1500
ms), presentation of picture, tone presentation 1000 ms after picture onset, approach vs.
avoidance movement (up to 2000 ms) leading to an increase or decrease of the picture and
500 ms after movement offset, feedback presentation (1000 ms). At the end of the block,
participants completed the Empathic Response Scale and the memory task (left picture: ©
Boggy/fotolia.com, right picture: © Johan Larson/fotolia.com).



130 Study 3: Empathic Concern and Personal Distress

At the beginning and at the end of the experiment, we asked participants to complete

a German version (Krohne, Egloff & Kohlmann, 1996) of the PANAS (Watson, Clark &

Tellegen, 1988). At the end of the experiment, participants were additionally asked if

they had ever experienced a loss of a close relative or a heart attack of a close person.

Furthermore, they completed the German version of the IRI (Davis, 1983a), the Saarbrücker

Persönlichkeitsfragebogen (SPF, Paulus, 2009), as a measure of dispositional empathy.

5.3.5 Data analysis

We analysed the influence of the different variables on empathic concern and personal distress

scores using linear mixed-effects modelling (Baayen, Davidson & Bates, 2008) with the

aid of R and the lme4 package (Bates, Maechler, Bolker & Walker, 2014). As random

effects, we entered random intercepts for subjects and items and a by-subject random slope

for type of pain. For empathic concern, we included in the full model as fixed effects

dispositional empathic concern, type of pain, and positive affect before the experiment and

excluded them in a stepwise manner. For personal distress, the full model included as fixed

effects dispositional personal distress, type of pain, and negative affect before the experiment,

excluding them in a stepwise manner. After every step, models were compared in order to

determine the best-fitting model. In order to further determine the influence of type of pain

on the two empathic responses, repeated-measures ANOVAs including the factor type of

pain with levels no pain, psychological, and physical pain were conducted.

For RT, the factors movement direction (push vs. pull) and type of pain (psychological

vs. physical) were included in a repeated-measures ANOVA.

The significance level was set to alpha = .05 and post-hoc tests were conducted with

Bonferroni correction for factors with two levels and sphericity correction for factors with

three levels.
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5.4 Results

5.4.1 Response Behavior and Reaction Time

Response accuracy to the tone trials was high, since 98.12 % of the 6264 trials were an-

swered correctly. For RT data analyses, we excluded all incorrect response trials, trials with

movement onset times shorter than 200 ms or movement offsets longer than 2000 ms (1.88

%), as well as all partial error trials, in which slider movements started in the wrong direction

but ended at the correct end point (3.77 %). Participants also followed the instructions to

process the pictures as indicated by the high accuracy in the memory task (94.44 %).

The ANOVA of RT revealed shorter RTs in the physical than the psychological pain

condition (522 vs. 534 ms, 95 % CIs [503, 541], [514, 555]), F (1, 57) = 4.0, p < .05, η2

= .07. The main effect of response direction and the Movement Direction x Type of Pain

interaction were not significant, all Fs < 0.03, all ps >.85.

5.4.2 Positive and Negative Affect

As compared to the start of the experiment, values on the positive affect scale decreased after

the experiment (27.74 vs. 25.18), t (57) = 4.27, p < .001, and increased on the negative affect

scale (11.90 vs. 13.36), t (57) = -4.98, p < .001.

5.4.3 Dispositional Empathy

Dispositional empathy, as measured by the SPF, ranged from 32 to 58 (M = 43.58), with a

mean dispositional empathic concern value of 15.03 and a personal distress score of 11.74.

5.4.4 Situational empathic Responses

Measurements of situational empathic responses via an adjusted version of the Empathic

Response Scales (Batson et al., 1987) showed excellent internal consistencies (empathic
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concern: Cronbach’s α = .98, personal distress: Cronbach’s α = .92). Values for both

situational empathic concern (M = 3.28) and personal distress (M = 2.63) ranged between 1

and 8. The two empathic responses were highly correlated, r = .78, p < .001.

In the following, the results of the linear mixed-effects analysis are outlined. For empathic

concern, the best-fitting model with type of pain and positive affect as fixed effects is

presented in Table 5.2. Excluding dispositional empathic concern from the full model did

not deteriorate the model fit, χ2 (1) = 0.96, p = .33. In contrast, further exclusion of type of

pain or positive affect reduced the model fit significantly, χ2 (2) = 73.60, p < .001 and χ2

(1) = 6.88, p < .01, respectively. For personal distress, the best-fitting model with type of

pain and negative effect as fixed effects is presented in Table 5.3. The fit of this model was

equivalent to that of the full model, χ2 (1) = 0.52, p = .47. Further exclusion of type of pain

and negative affect deteriorated model fit, χ2 (2) = 61.30, p < .001 and χ2 (1) = 9.27, p < .01,

respectively.

5.4.5 Type of Pain

The ANOVA of situational empathic concern (Figure 5.3) revealed a significant influence of

type of pain, F (2, 114) = 108.3, p < .001, η2 = .66, with the psychological pain condition

provoking the highest values of empathic concern, followed by the physical pain condition,

F (1, 57) = 29.2, p < .001, which in turn provoked higher empathic concern than the no-pain

condition, F (1, 57) = 105.9, p < .001 (4.34 vs. 3.61 vs. 1.87, 95 % CIs [3.88, 4.80], [3.19,

4.03], [1.63, 2.12]). Also, the ANOVA for situational personal distress revealed a main effect

of type of pain, F (2, 114) = 79.8, p < .001, η2 = .58. The psychological pain condition

provoked less personal distress than the physical pain condition, F (1, 57) = 53.5, p < .001,

but more than the no-pain condition, F (1, 57) = 56.4, p < .001 (2.51 vs. 3.88 vs. 1.48, 95 %

CIs [2.18, 2.83], [3.40, 4.36], [1.31, 1.66]).
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Table 5.2. Best-fitting Model for Empathic Concern 

 

Empathic Concern ~ Type of Pain + Positive Affect + (1 + Type of Pain|Subject) + (1|Item) 

Fixed effects Estimate  (Std. Error) 

Intercept 0.28          (0.56) 

Psychological pain 2.47 ***   (0.21) 

Physical pain 1.74 ***   (0.17) 

Positive affect 0.06 **     (0.02) 

  

Random effects Explained variance  (Std. Dev.) 

Items 0.02          (0.13) 

Subjects 

       Psychological pain 

       Physical pain 

0.79          (0.89) 

2.40      (1.55) 

1.61      (1.27) 

Note. Linear mixed-effects model with type of pain and positive affect before the experiment 

as fixed effects and random intercepts for subjects and items as well as by-subject random 

slope for type of pain as random effects. 
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Table 5.3. Best-fitting Model for Personal Distress 

Personal Distress ~ Type of Pain + Negative Affect + (1 + Type of Pain|Subject) + (1|Item) 

Fixed effects Estimate  (Std. Error) 

Intercept 0.07          (0.45) 

Psychological pain 1.02 ***   (0.14) 

Physical pain 2.39 ***   (0.23) 

Negative affect 0.12 **     (0.04) 

  

Random effects Explained variance  (Std. Dev.) 

Items 0.01          (0.11) 

Subjects 

       Psychological pain 

       Physical pain 

0.38          (0.61) 

1.03      (1.02) 

3.10      (1.76) 

Note. Linear mixed-effects model with type of pain and negative affect before the experiment 

as fixed effects and random intercepts for subjects and items as well as by-subject random 

slope for type of pain as random effects. 
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Fig. 5.3 Situational empathic concern and personal distress scores as a function of type of
pain.
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5.4.6 Prior Experience

45 of the participants had already experienced a loss of a close relative, whereas only 13

had experienced a heart attack of a close person. Those who had already experienced a loss

reported less situational personal distress during the experiment than those who had not (2.49

vs. 3.08), t (25.91) = -2.09, p < .05, η2 = .07, 95 % CIs [2.16, 2.82], [2.59, 3.59].

5.5 Discussion

The aim of this study was to examine whether situational variables like type of pain (psycho-

logical/physical) and affect influence empathic concern and personal distress, as well as how

strongly these empathic responses are related to dispositional empathic traits. Furthermore,

the motivational consequences of the two empathic responses and their implications on motor

responses were investigated.

Most importantly, the present experiment succeeded in systematically manipulating

the occurrence of the two situational empathic responses by varying the type of pain. As

predicted, our results show that persons in psychological pain, because of the death of

a close person, provoked significantly greater situational empathic concern than persons

with physical chest pain, like during a heart attack. On the other hand, the physical pain

condition provoked higher personal distress than the psychological or the no-pain condition.

These results are in line with the assumption of Batson et al. (1997) that physical pain

evokes personal distress in the observer, whereas psychological pain in combination with an

other-focused state provokes empathic concern.

It is further important to note that the acceptable internal consistency for the shortened

and translated version of the Empathic Response Scale (Batson et al., 1987) suggests that this

scale is a reliable instrument to measure situational empathic concern and personal distress.

Furthermore, the individual values on both scales ranged between the lowest and highest
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possible value, implying that the current experiment was able to provoke variable empathic

responses across participants. In general, participants experienced less personal distress than

empathic concern. Moreover, like Eisenberg et al. (1994), we found that the two responses

were not independent but highly correlated. It therefore appears that the stronger people

experience one situational empathic emotion, the stronger they experience the other as well.

A second key finding concerns the affect-related influence of the empathic responses,

with affect being measured before and after the experiment. That is, there was a positive

influence of positive affect on empathic concern and of negative affect on personal distress.

Accordingly, even though these effects were not as pronounced as for type of pain, positive

affect indeed predicted empathic concern, as suggested by Eisenberg et al. (1994). Negative

affect before the experiment promoted personal distress, corroborating the assumption of

Eisenberg et al. that persons with negative affect experience more personal distress.

A third major finding relates to the fact that dispositional empathic concern and personal

distress did not reliably contribute to the explanation of the experience of situational empathic

concern and personal distress, respectively. This outcome by and large accords with previous

studies demonstrating no reliable or only moderate correlations between dispositional and

situational empathy measures. We therefore assume that aspects of the situation like the type

of pain and the person’s mood are far more relevant to predict the occurrence of empathic

concern and personal distress than individual differences in empathic traits. This particular

insight has important implications regarding the examination of empathic responses more

generally. For instance, recent studies concerned with the behavioural and neural correlates

of empathic responses mainly focused on individual differences in dispositional empathic

concern and personal distress (e.g., Cheetham, Pedroni, Angus, Slater & Jäncke, 2009;

FeldmanHall, Dalgleish, Evans & Mobbs, 2015; Hu, Fan & He, 2015). However, they did

not assess whether the empathy-evoking stimuli triggered individually different situational

empathic responses, presumably because it is often implicitly assumed that dispositional
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empathy traits and situational empathic responses are strongly related to each other. At least

in the light of the present data, this assumption is questionable and hence the above studies

might provide a biased picture with regard to the neural correlates associated with empathic

responses. Thus, future research should be concerned about this problem and measure

situational empathic emotions instead of dispositional empathic traits when investigating

neural and behavioural correlates of situational empathy.

A further relevant finding concerns prior experience of participants. The general as-

sumption is that empathy should be influenced by the observer’s experience (cf. Eklund,

Andersson-Straberg & Hansen, 2009; Melloni, Lopez & Ibanez, 2014; Preston & Hofelich,

2012). Our results show that participants, who had already experienced the loss of a close

relative, felt less situational personal distress during the experiment than participants who

had not. This could be due to the knowledge that coping with difficult situations is possible.

Having established that physical pain leads to higher situational personal distress and

psychological pain to higher empathic concern, we investigated whether the two emotions

differentially influence motor processing. The finding of faster responses in the physical

compared to the psychological pain condition corroborates the assumption of Eisenberg et al.

(1996) that personal distress leads to higher levels of arousal than empathic concern. It is also

consistent with the evaluation of the arousal value of the pictures in our rating study. We did

not find any differential influence of picture type on RT for approach (pull) versus avoidance

(push) movements. The fact that the empathy-evoking stimuli were task-irrelevant, that is,

movement direction depended on the pitch of a tone, might have produced an attenuated

effect on motor processing as compared to a situation where such stimuli were task-relevant

(cf. Krieglmeyer, De Houwer, & Deutsch, 2013). Furthermore, it must be noted that the

tone was presented 1000 ms after the onset of the picture. Hence, it is possible that motor

activations triggered by the empathy-evoking but response-irrelevant pictures might have

already decayed at the time of tone onset. In this case, the present procedure would not have
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allowed to sensitively assess immediate automatic effects of the pictures on motor behaviour.

Thus, future studies should use shorter time intervals between picture and tone onset when

determining the automatic motor consequences of the two empathic responses.

To conclude, this study shows that pictures of persons in physical versus psychological

pain together with written descriptions of the situation were well-suited to elicit personal

distress and empathic concern from an other-focused perspective. Crucially, at least under

these conditions, personal distress and empathic concern are mainly driven by situational

factors like affect and type of pain rather than by dispositional empathic traits. In addition, it

appears that situations of personal distress are more arousing compared to those of empathic

concern, thereby facilitating information processing. Together, the present study advances

our understanding of the commonalities and differences between empathic concern and

personal distress.
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Chapter 6

General Discussion

This doctoral thesis was concerned with the following two questions regarding empathy

for pain (Batson, 2009): How do we get to know the other’s internal state and when do

we respond with care to other’s suffering. In order to investigate these issues, it was first

important to examine general empathic responses to another person in pain with regard to

their locus within information processing. A serial model of information processing was

adopted, which identifies early stimulus encoding stages, later categorization stages and

motor processing stages. Which processing stages are influenced by empathy was not clear

from previous literature, even though various ERP studies suggested an early automatic and

a late controlled empathic influence (e.g., Fan & Han, 2008). Moreover, research results

regarding influences on the motor processing stage do not provide a consistent picture: Motor

processing seems to be influenced by empathy, but it is not clear whether via inhibition

or facilitation (Avenanti et al., 2010 vs. Riečanský et al., 2014). Another related issue

concerns modulating influences on empathic responding. Specifically, this dissertation thesis

aimed at determining the differences between empathic responding to racial in- and outgroup

targets. Previous studies determined a racial bias in empathy suggesting that empathy is

diminished if the target in pain belongs to the racial outgroup (e.g., Sessa et al., 2014; Sheng

et al, 2017). How the different stages of the model of information processing are exactly
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influenced by the racial bias in empathy remains unclear, but former studies suggested that

the early automatic empathic influence depends on the racial bias, whereas the controlled

influence is independent of the target’s racial background (e.g., Sessa et al., 2014). The

motor processing stage seems to be influenced by the racial bias in empathy, even though

the literature does not agree in which direction. The third study of this dissertation thesis

was concerned with Batson’s second research question: What leads us to respond with care

to the other’s distress? Empathic concern is assumed to result in an altruistic motivation to

reduce the other’s suffering, whereas personal distress should lead to an egoistic motivation

to reduce the own suffering. Until now, it is not yet clear under which conditions empathic

concern and personal distress arise. The few studies investigating these types of empathic

emotions suggest that situational empathic concern and personal distress are not strongly

related to dispositional empathic traits but more to situational factors like the affect of the

observer or the type of pain combined with the focus of the observer.

Together, the aim of this dissertation thesis was to determine empathic influences on

information processing, to find out how these influences change when the target is no longer

part of the racial ingroup, and to identify under which conditions empathic concern and

personal distress arise. In the following paragraphs, the findings regarding the initial empathic

responses to others in pain and the empathic emotions empathic concern and personal distress

will be summarized and integrated into the existing literature.

6.1 Empathic responses to pain

6.1.1 Findings of Study 1

The main goal of the first study was to determine the empathic influences on the different

processing stages of the model of information processing. Pictures of body parts in painful

or neutral situations were presented and EEG, RT, and response force were recorded. Partic-



6.1 Empathic responses to pain 143

ipants’ task was to either judge the painfulness of the situation or to count the body parts

in order to determine which empathic influences are dependent on attention to the pain

dimension.

The two tasks were successful in directing the attention towards or away from the pain

dimension as observable in the accuracy and RT results: In the pain judgment task, accuracy

was higher and RTs were shorter in the painful than the neutral condition because of the

higher saliency of painful stimuli. If participants were asked to direct their attention away

from the pain dimension by the counting task, accuracies were lower and RTs longer in

the painful compared to the neutral condition. In general, the counting task was easier to

accomplish, indicated by shorter RTs compared to the pain judgment task.

Regarding empathic influences on information processing, Study 1 revealed influences

on the selective perceptual processing of affectively arousing stimuli (Olofsson et al., 2008)

following initial perceptual encoding, as reflected by larger EPN amplitudes in the painful

than the neutral condition, independent of the task. This new finding extends the results of

former studies that have not investigated EPN amplitudes. In contrast to what one would

expect from these prior studies (e.g., Decety et al., 2010; Fan & Han, 2008; Meng, Hu et

al., 2012), P1 and N1 amplitudes did not differ between the two conditions (cf. Lyu et al.,

2014; Mella et al., 2012; Sessa et al., 2014). These early zero-effects will be discussed in

more detail below. Another interesting finding concerned the P3 amplitudes, which were

larger for the painful than the neutral stimuli only in the pain judgment task (cf. Fan & Han,

2008; Mella et al., 2012). Thus, this late controlled categorization stage was influenced by

empathy-evoking stimuli if attention was directed towards the pain dimension.

With respect to the motor processing stage, response force results showed that participants

pressed the keys more forcefully in the painful than the neutral condition, but only in the

pain judgment task, speaking for an attention-dependent sensorimotor activation during

the response. The faster responses to painful than neutral stimuli are in line with the
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assumption of sensorimotor facilitation. Since these behavioral differences between the

painful and neutral condition were only present in the pain judgment task, this cannot simply

be explained by a direct arousal-driven path from stimulus input to motor processing that

would be independent of task requirements (cf. Figure 3.1). In contrast to the response force

results, EEG power change values did not differ for the two conditions or tasks in the time

interval before the response (300-600 ms). In the time interval from 700 to 1500 ms, ERDs

in the mu (7-12 Hz) and lower beta band (13-18 Hz) over the sensorimotor cortex were larger

in the painful than the neutral condition and in the pain judgment than the counting task. This

was interpreted as larger sensorimotor activation to painful than neutral stimuli and in the

pain judgment compared to the counting task, possibly in order to enhance preparedness for

processing forthcoming events. The results regarding empathic influences on motor activity

differed across Study 1 and 2 and also in comparison with previous findings, as will be

discussed below.

In summary, Study 1 assessed empathic influences on perceptual and motor processing

in a single experiment. Painful compared to neutral pictures elicited more negative EPN

amplitudes that reflect early automatic empathic influences on information processing and

more positive P3 amplitudes that is interpreted as the late controlled influence. Further-

more, painful compared to neutral stimuli elicited faster and more forceful key presses if

attention was directed towards the pain dimension and in the post-response time interval,

sensorimotor activity was facilitated for empathy-evoking stimuli, independent of the task.

So, empathy-evoking stimuli have automatic and controlled effects at different time points

during information processing, that is, they influence separate stages from encoding over

categorization to motor processing stages.
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6.1.2 Findings of Study 2

The second study was designed to additionally investigate how these empathic influences

change if the target has another skin color than the observer. It was based on Study 1,

applying pictures of fair- and dark-colored hands in painful and neutral situations. EEG,

RT, and response force were recorded while white Caucasian participants performed a pain

judgment or skin color judgment task.

Results of the second study revealed faster responses to painful than neutral stimuli in

the pain judgment task, but not the skin color judgment task. Thus, cognitive processes that

require attention seem to be influenced by empathy-evoking stimuli, thereby again speaking

against the view that painful stimuli trigger an arousal response mediated by a direct pathway

from stimulus encoding to motor response (cf. Figure 3.1).

Concerning early automatic effects of empathy for pain, EPN-results of the first study

could be replicated for both skin colors: EPN amplitudes were larger in the painful than

the neutral condition, independent of the task. Interestingly, the ERP analysis according

to Sessa et al. (2014) revealed larger amplitudes between 280 and 340 ms after stimulus

onset over frontocentral electrodes in the painful than the neutral condition, but only for

fair-colored hand stimuli. Furthermore, these frontocentral ERP amplitudes were positively

correlated with the empathic concern scores of the IRI questionnaires. Hence, this early,

task-independent influence on information processing seems to depend on the skin color of

the target. In line with the results of Study 1, P3 amplitudes were larger in the painful than the

neutral condition of the pain judgment task, but not the skin color judgment task, reflecting

empathic influences on the late categorization processes that require attention. Neither

the RT- nor the P3-differences between the painful and neutral condition were modulated

by skin color, thereby suggesting that the late categorization stage was not influenced by

the racial background of the target in pain consistent with previous studies (cf. Table 1.1;

Contreras-Huerta et al., 2014; Sheng et al., 2017; Sheng et al., 2013). However, there was
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also a significant positive correlation between participants’ implicit ingroup preference as

measured by the IAT and the difference between P3 amplitudes to fair- and dark-colored

hands in pain, whereas the correlation was not significant for hands in neutral situations.

Hence, whether the late categorization stage of empathic processing is modulated by skin

color seems to depend on the implicit ingroup preference: The larger the ingroup preference

was, the larger was the difference in P3 amplitudes between skin colors for painful but not

neutral stimuli.

Concerning the motor processing stage, participants pressed the keys more forcefully

in the pain judgment than the skin color judgment task, whereas the painful and neutral

condition did not differ in applied force. Regarding the oscillatory analyses, the results

differed from those of Study 1. The two tasks seemed to be more potent in evoking differing

sensorimotor activation because the ERDs in the mu (7-12 Hz) and beta band (13-18 Hz,

19-30 Hz) over the sensorimotor cortex were larger in the pain judgment than the skin

color judgment task in the early and late time interval. This speaks for larger sensorimotor

activation, if the attention was directed towards the pain dimension. Differences in power

change values were only found in the upper beta band (19-30 Hz): Before the response,

ERDs were larger in the painful than the neutral condition but only in the pain judgment task,

speaking for an attention-dependent sensorimotor facilitation before the response. After the

response, ERSs were larger to painful than neutral pictures, independent of the task, speaking

for larger sensorimotor inhibition for empathy-evoking stimuli. Possible explanations for

these differing results will be discoursed below.

To sum up, Study 2 addressed the modulation of empathic influences on information

processing by the target’s racial background with simple hand stimuli. The early automatic

influence on ERP amplitudes (280-340 ms) was present for fair- but not dark-colored hands,

speaking for an early influence of racial background on the encoding stage. The automatic

EPN effect from Study 1 and the late controlled categorization difference, represented by P3
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amplitudes, could be replicated for both skin colors, but the late categorization stage seemed

to be modulated by skin color for individuals with high implicit ingroup preferences. This

latter finding extends former studies that did not find any racial bias influence on the P3 (e.g.,

Contreras-Huerta et al., 2014; Sheng & Han, 2012, see Table 1.1). The motor processing

stage was not influenced by skin color, but revealed a larger facilitation before and a larger

inhibition after the response.

In short, Study 1 provided new insights into the temporal dynamics of automatic and

controlled processes underlying empathy for pain by investigating perceptual, cognitive and

motor processing in a single study. Study 2, on the other hand, extended previous research

findings by investigating the empathic response to targets of the racial outgroup within the

model of information processing as well, thereby applying new hand stimuli that have several

advantages over the previously applied complex face stimuli. In the following paragraphs,

the significance of these results are discussed in the light of the current state of empathy

research.

6.1.3 Locus of empathy-related influences on information processing

Since the shared network hypothesis focused only on the affective component of empathy, and

the theory-theory only on the cognitive part, various authors suggested to combine the bottom-

up and top-down processes into one model and examine their interplay (e.g., de Vignemont

& Singer, 2006). Building on an established model of human information processing in

combination with the analysis of electrophysiological markers of mental processes, it was

possible to investigate bottom-up and top-down empathic processing, as well as empathic

influences on motor processes. The results of Study 1 and 2 speak for an early automatic

influence and a later controlled cognitive influence of empathy on information processing,

thereby providing evidence for the late appraisal model of de Vignemont and Singer (2006).

This model assumes that an empathic response is elicited automatically by an empathy-
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evoking stimuli and later on diminished or enhanced by the cognitive appraisal of the context.

At first sight, the EPN and P3 findings of Study 1 and 2 are in line with former studies, but

the early empathic influence differs concerning the exact time interval and the topography,

ranging from early N1 (e.g., Decety et al., 2010; Fan & Han, 2008; Meng, Hu et al., 2012),

P180, and N240 (e.g., Fan & Han, 2008; Han et al., 2008) time intervals over frontocentral

electrodes in previous studies (cf. Table 1.1) to the somewhat later interval between 280 and

340 ms over frontocentral electordes (Sessa et al., 2014) and the EPN intervals (200-300 ms)

over posterior electrodes in present studies. Possible reasons for the inconsistent findings are

the differences in the study design: In Study 1 and 2 of this dissertation thesis, participants

were German, whereas in most other studies, they were Asians and slightly younger (20

vs. 23 vs. 26 years) than the German samples. The tasks as well as the EEG recording and

the analyses procedures were different across studies, making it difficult to come up with a

straightforward explanation for the different results across studies. Nevertheless, one could

speculate that there exist two encoding pathways: One reflected by early frontocentral ERP

activity and one by early posterior ERP activity (EPN). Until now, there does not exist a

model for two different early encoding pathways, but further research should definitely have

a closer look at these components. In sum, the studies provided evidence for the assumption

of an early automatic empathic sharing that is later on modulated by top-down processes as

suggested by Goubert and Craig (2009) and de Vignemont and Singer (2006) in their late

appraisal model.

Regarding motor behavior, Study 1 revealed stronger responses to painful than neutral

stimuli in the pain judgment task, whereas EEG oscillations did not reveal a corresponding fa-

cilitation of sensorimotor activation before the response. Study 2, on the other hand, revealed

no difference in response force but found that before the response, sensorimotor activation

was more strongly facilitated by painful than neutral stimuli if attention was directed towards

the pain dimension, in line with shorter RTs in this condition. An interesting conclusion that
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can be drawn from these results is that empathic influences on motor processing do not seem

to solely reflect simple motor resonance as suggested by Avenanti et al. (2005), because they

depended on the task and were not automatically elicited via a direct arousal pathway from

stimulus input to motor processing (see Figure 3.1).

The results concerning the sensorimotor activation after the response are somewhat

inconsistent: Study 1 implied a facilitation of sensorimotor activation after the response by

empathy-evoking stimuli, independent of the attention to pain. The results of Study 2, in

contrast, indicated a stronger inhibition in the painful than the neutral condition, independent

of task. Moreover, the results of Study 2 stand in contrast to those of Riečanský et al. (2014),

who found sensorimotor facilitation when participants watched empathy-evoking videos.

These studies differed in two important ways: Whereas Riečanský et al. applied dynamic

stimuli and no task, in Study 1 and 2 static pictorial stimuli were used and participants

were asked to perform a motor task what could have led to stronger response-related power

changes that mask the smaller difference induced by the pictures (cf. Androulidakis et al.,

2007; Neuper & Pfurtscheller, 2001). It can only be speculated about possible reasons

for the discrepant results between the two studies of this doctoral thesis. The new stimuli,

the larger sample size, the different tasks, or that stimuli were presented for 400 instead

of 200 ms in the second study could be responsible for the different result patterns. What

can be concluded from the results of Study 1 and 2 is that these empathic influences on

motor processing stages after the actual motor response seem to be less stable than those on

the pre-response and cognitive processing stages and need to be clarified in future studies.

However, Study 1 and 2 were the first in investigating empathic influences on the different

stages from stimulus input to response output in one study. They provide strong evidence

for the late appraisal model combining early bottom-up and later top-down processes and

therefore filling the gap between the shared network hypothesis, that disregarded top-down

processing and the theory-theory that neglected bottom-up processes. One factor strongly
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modulating the empathic response is the racial background and thus the group dependence of

the target in pain, as will be discussed in the next section.

6.1.4 The influence of group affiliation

People tend to care about others and experience empathy for them as long as they belong to

their social or racial ingroup but do not experience the same empathic response for persons

of the outgroup (Cikara et al., 2011; Lamm & Majdandžić, 2015). Thus, it is an important

question how the empathic influences change when the target is no longer part of the racial

ingroup. Concerning the cognitive processing stages, results of Study 2 revealed an influence

of the target’s racial background between 280 and 340 ms over frontocentral electrodes,

where amplitudes were larger for painful compared to neutral stimuli for fair- but not dark-

colored hands. This finding accords with those of Sessa et al. (2014) and is similar to other

previous studies that investigated face stimuli and found an influence of racial background,

but on earlier time intervals (80-140 ms, Contreras-Huerta et al., 2014; 128-188 ms, Li et

al., 2015; Sheng et al., 2017; Sheng & Han, 2012). Even though there was no interaction

between skin color and condition for the P3 amplitudes, a positive correlation between the

implicit ingroup-preference and P3 amplitudes in the painful but not the neutral condition

indicated that the late categorization stage may be influenced by skin color for persons with

a dominant ingroup-preference. Study 2 did not find an influence of the racial background of

the target on the motor processing stage contrasting the results of Riečanský et al. (2014).

Possible reasons have already been outlined above. In sum, the skin color and thus the group

affiliation of the target influences the empathic response of the observer on a very early stage

in that way that the early automatic response is only present for ingroup targets.

It is hard to come up with a straightforward explanation for the fact that the time interval

between 280 and 340 ms over frontocentral electrodes was influenced by the racial bias

in empathy whereas the EPN was not, showing an empathy effect for both skin colors.
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Nevertheless, this again speaks for two separate automatic early encoding pathways. The one

reflected by early frontocentral ERP amplitudes was influenced by the target’s background,

whereas the one reflected by early posterior ERP amplitudes remained uninfluenced. Fur-

thermore, at first sight, P3 results are in line with former studies (e.g., Contreras-Huerta et

al., 2014, Sheng & Han, 2012), because in Study 2, there was no direct influence of racial

background on the controlled categorization stage. But the results suggest that the higher the

observer’s implicit ingroup over outgroup preference was, the larger was the P3 amplitude

difference between the two skin colors in the painful but not the neutral situations. This

implies that for individuals with dominant implicit ingroup preference, the racial bias in

empathy might indeed influence the controlled categorization stage. The correlation findings

extend previous findings of a positive correlation between IATd scores and the P3 amplitude

difference (painful minus neutral) for racial in- but not outgroup targets provided by Sessa et

al. (2014). In the second study, the empathic influence on the motor processing stage was

independent of skin color what contrasts with the the results of Study 1 and Riečanský et al.

(2014). Therefore, it should be investigated more specifically in future research.

6.2 Empathic concern and personal distress

6.2.1 Findings of Study 3

In the next step of my dissertation project, I addressed the question when we respond with

care to another’s suffering by investigating the occurrence of empathic concern and personal

distress. To this end, Study 3 assessed dispositional empathic traits, positive and negative

affect before the experiment and personal distress and empathic concern after watching

pictures of persons in psychological or physical pain together with a description of the

situation that promoted an other-focused view.
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Results showed that the psychological pain condition evoked highest levels of situational

empathic concern, followed by the physical pain and then the no-pain condition. On the

other hand, in the physical pain condition the personal distress scores were largest, followed

by the psychological and then the no-pain condition. The type of pain together with positive

affect before the experiment predicted situational empathic concern, with dispositional

empathic concern not revealing any further information. A similar pattern was found for

situational personal distress, which was explained by type of pain and negative affect before

the experiment. Dispositional personal distress did not further improve the prediction of

situational personal distress. These results show that situational variables are far more

important than dispositional empathic traits in provoking situational empathic emotions.

Motor responses were faster in the physical than the psychological pain condition, what is

probably due to higher levels of arousal coming along with personal distress compared to

empathic concern, as found in a rating study preceding the actual experiment.

In sum, in Study 3 the experience of empathic concern and personal distress was manipu-

lated by applying different types of pain and the influence of further variables like affect and

dispositional empathy were investigated. Results revealed that dispositional empathic traits

are not significantly related to the actual empathic emotion in a specific situation, but that

together with an other-focused state, psychological pain evokes higher levels of empathic

concern and physical pain higher levels of personal distress. In line with the literature,

positive affect before the experiment is predictive for empathic concern and negative affect

for personal distress (cf. Eisenberg et al., 1994). In addition, motor responses were faster in

the physical pain condition probably because personal distress was accompanied by higher

levels of arousal.

In the following section, the results of the third study will be discussed in detail and

embedded into the existing literature.
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6.2.2 Situational and dispositional influences

An important issue regarding the question whether empathy leads to prosocial behavior is the

differentiation between empathic concern and personal distress, because they are assumed to

be related to altruistic and egoistic motivations, respectively (e.g., Batson et al., 1987). Still,

it remains an open issue under which conditions the two empathic emotions arise and how

they can be manipulated. Study 3 revealed that when participants adopted an other-focus,

psychological pain led to higher levels of empathic concern as measured by the Empathic

Response Scale, whereas physical pain led to higher levels of personal distress, thereby

supporting the assumption of Batson et al. (1997). Furthermore, positive and negative affect

also predicted empathic concern and personal distress, respectively, whereas dispositional

empathic traits were not able to further explain the occurrence of the two empathic emotions.

Thus, in a specific situation, it is not important whether participants generally feel more

empathic concern or personal distress, but whether they experience positive or negative

affect at the moment and whether the pain is of psychological or physical nature. Moreover,

RTs to an empathy-unspecific tone were faster in the condition that evoked more personal

distress than empathic concern, a finding that could be explained by higher levels of arousal

accompanying personal distress. This is in line with the hypothesis that persons with low

self-regulation face problems in regulating empathic overarousal, leading to higher levels of

personal distress (Decety & Jackson, 2004). One may speculate that the contradictory RT

results of the studies presented in Table 1.1 and 1.2 could be explained by the different levels

of arousal coming along with empathic concern and personal distress, thereby influencing

response speed. Thus, future studies investigating behavioral correlates of empathy like RT

should take other arousal-sensitive measures, like response force, electrodermal activity, and

ERPs, into account.

Empathic concern is considered to lead to helping behavior, whereas personal distress

leads to an egoistic motivation to reduce the own suffering, possibly resulting in withdrawal
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behavior (cf. Batson et al., 1983; Decety, 2010; Goubert et al., 2005; Singer & Lamm, 2009).

Therefore, the new results regarding their occurrence might be relevant regarding public

discussions about emergency situations, in which people do not necessarily help the victims.

That is, this (missing) helping behavior seems to be more closely related to the characteristics

of the situation than to traits of the observer. It is also of great relevance for the research

because until now, numerous studies investigated the relation between brain responses and

empathic emotions with dispositional measures (e.g., Cheetham et al., 2009; FeldmanHall

et al., 2015; Hu, Strang, & Weber, 2015) that are not significantly related to the situational

response as has been shown in this study.

6.3 Perspectives

To sum up, this dissertation thesis reveals important insights into the empathic influences

on information processing, how they vary with the racial background of the target, and

the occurrence of empathic concern and personal distress. In the following paragraphs, I

will discuss the limitations of the three studies individually and suggest further research in

order to support the findings, followed by general perspectives and limitations of all studies

combined.

The first important findings revealed early automatic and late controlled empathic in-

fluences on information processing. The motor processing stage was also influenced by

empathy-evoking stimuli. These findings are especially interesting because they indicate

that it is possible to investigate empathic influences on different processing stages within

one single experiment by applying an established model of information processing. Thus,

it is not only clear that this model can be applied in future research investigating empathic

processing but that with the aid of EEG, it is possible to distinguish between automatic and

controlled processes. This extends previous fMRI studies that failed to distinguish bottom-up

and top-down processes (e.g., Jackson et al., 2005; Singer et al., 2004). The current studies
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revealed new findings of the EPN, a component that has not been investigated in earlier

empathy research and should be taken into account in future studies, especially regarding the

assumption that EPN amplitudes might represent another encoding pathway than the early

frontocentral ERP amplitudes.

This dissertation project aimed at addressing another limitation mentioned by Zaki and

Ochsner (2012), namely the missing link between brain responses and behavior. Therefore,

the response force of the participants was measured, indicating more forceful key presses to

painful than neutral stimuli, only when attention was directed towards the pain dimension.

These results were not stable across studies, which is why future studies should measure

response force to empathy-evoking and neutral stimuli as well. Additionally, since the results

regarding motor behavior differed across the methodology used in this dissertation project

and former studies (e.g., Avenanti et al., 2005; Riečanský et al., 2014), it would be helpful to

measure response force, EEG oscillations over the sensorimotor cortex, and MEPs triggered

by transcranial magnetic stimulation in the same experiment. Some of the variance between

the findings of oscillations and MEPs could possibly be explained by the fact that one cannot

distinguish between specific muscle activations from oscillations over the sensorimotor

cortex, whereas MEPs are measured specifically at the corresponding muscles. In the present

study, the signal to left and right presented hands was collapsed across hemispheres in order

to achieve a reasonable signal-to-noise ratio, but it would be a further important step to

measure the activity over the contralateral hemisphere to the presented hand in pain.

Further important findings of this dissertation thesis concerned the racial bias in empathy.

Results showed that the empathic response is different for outgroup targets at an early pro-

cessing stage and for persons with high implicit racial bias possibly also at a late processing

stage, whereas the late motor processing stage was not influenced by the target’s racial

background. Especially important in this regard is that empathic responses were measured

to hand instead of complex face stimuli, as done in previous studies (e.g., Contreras-Huerta
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et al., 2014; Sessa et al., 2014). Additionally, the study design was very similar to the first

study making results comparable and allowing them to be integrated into the established

model of information processing. In order to draw more confident conclusions, the late P3

results should be reinvestigated with a group of participants displaying high levels of implicit

ingroup preference.

Previous research that most of the time tested Asian participants (cf. Table 1.2) was

extended by fair-colored Caucasian participants. Nevertheless, studies with cross over

designs, testing two groups of different racial background, would be necessary in order

to generalize the results and to rule out effects that were solely driven by this specific

experimental procedure, including stimuli and tasks.

More generally, the difference of empathy towards in- and outgroup targets is a key

issue that should not be ignored when trying to enhance empathy. The current findings give

important insights into the relationship between empathy and morality. Further research can

build on this knowledge and look for possibilities to diminish this racial bias in empathy

instead of looking for initiatives to enhance general empathy, since this would only enhance

empathy toward the social ingroup and thereby enlarge the gap between different groups

(Cikara et al., 2011; Lamm & Majdandžić, 2015).

Moreover, regarding the third main topic of this dissertation project, it can be concluded

that whether empathic concern or personal distress are experienced in a situation is not

related to dispositional empathic traits. The type of pain of the target, combined with an

other-focused view, and the affect experienced by the observer when witnessing someone

in pain seem to be more relevant in this regard. Future investigations should build on the

possibility to manipulate the occurrence of empathic concern and personal distress.

A further step would be to test the assumed relation between personal distress or empathic

concern and egoistic or altruistic motivations and thus the occurrence of prosocial behavior.

Experiments in naturalistic settings like the one of Bethlehem et al. (2017), who investigated
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the relation of empathic dispositions to helping behavior in a cycling accident should be

conducted more frequently in future research. Since dispositional traits do not automatically

lead to the corresponding situational empathic emotion, the relation between situational

empathic concern and prosocial behavior should be investigated. Of course, it is a challenge

to measure prosocial behavior authentically, but instead of offering participants the possibility

to donate different amounts of money, as done in previous studies (e.g., Happ, Melzer, &

Steffgen, 2015), the participants could be given the possibility to work voluntarily for

different amounts of time.

In the following paragraphs, I will present limitations and perspectives that concern all

three studies and their results. They were conducted in the lab with participants sitting in

front of computer screens presenting pictures of hands or persons in pain. Of course, these

settings differ enormously from real-life encounters of others in pain, which is why the

generalization of the results is questionable. Additionally, participants were asked to perform

judgment tasks, making the situation even more artificial. Additionally, it cannot be ruled

out that the tasks led the focus away from an empathic response towards the accuracy of

the performance. In the future, empathy for pain should be investigated with more natural

and realistic stimuli. After having determined the empathic responses to basic stimuli in

this dissertation project, in a next step, it should be examined how these empathic responses

change when the observer is presented with images or videos of more realistic settings. Then,

in a further step, new technology like virtual reality goggles should be applied. Participants

could experience an empathy-evoking situation in virtual reality, having the sensation of

being part of the presented situation.

Furthermore, it remains unclear from the current empathy research, how empathy devel-

ops during lifespan, whether it is based on genetic disposition or acquired by experience (e.g.,

Lamm et al., 2017). Since there are some hints for differences in empathy between different
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age groups (e.g., Mella et al., 2012), it would be very interesting to execute a longitudinal

developmental study investigating children’s empathic responses during their development.

Even though the social neuroscience of empathy is a quite young research field, it is

necessary that the focus is broadened towards other emotions than pain. Empathy can differ

a lot across different situations but until now, almost all we know about empathy is deduced

from empathy for pain research. More studies like the one of Morelli et al. (2012) who

investigated empathy for happiness should follow.

All in all, this dissertation thesis marks an important step towards a better understanding

of empathy. This is especially true for the understanding of automatic and controlled empathic

influences on information processing, the differences of processing empathy-evoking stimuli

of in- and outgroup targets, and the relationship between situational variables, dispositional

empathic traits, and the two empathic emotions empathic concern and personal distress.
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