Aus der Universitätsklinik
für Kinder- und Jugendmedizin Tübingen
Abteilung Kinderheilkunde IV
Schwerpunkt: Neonatologie, neonatologische Intensivmedizin

Untersuchung zum Körperfettanteil Neugeborener von Müttern mit Gestationsdiabetes mellitus sowie Neugeborener von Müttern ohne Nachweis eines Gestationsdiabetes mellitus

Eine prospektive, nicht-interventionelle, klinische Studie unter Verwendung der Air Displacement Plethysmography

Inaugural-Dissertation
zur Erlangung des Doktorgrades
der Medizin
der Medizinischen Fakultät
der Eberhard Karls Universität
tübingen

vorgelegt von

Lena Svenja Balles,
geb. Storz

2018
Dekan: Professor Dr. I. B. Autenrieth

1. Berichterstatter: Professor Dr. A. R. Franz

2. Berichterstatter: Professor Dr. A. Neu
Meinem Ehemann, meinen Eltern und meinen Schwestern
Inhaltsverzeichnis

Inhaltsverzeichnis .................................................................................................................. III
Abbildungsverzeichnis ......................................................................................................... IX
Tabellenverzeichnis ............................................................................................................... X
Abkürzungsverzeichnis ........................................................................................................ XII

1. Einleitung .......................................................................................................................... 1
   1.1. Gestationsdiabetes mellitus ............................................................................................. 1
       1.1.1. Definition .................................................................................................................. 1
       1.1.2. Pathophysiologie ..................................................................................................... 1
       1.1.3. Epidemiologie .......................................................................................................... 2
       1.1.4. Folgen für die Mutter .............................................................................................. 2
       1.1.5. Folgen für das Kind ................................................................................................. 3
       1.1.6. Screening und Diagnostik ......................................................................................... 5
       1.1.7. Therapie und Zielwerte ........................................................................................... 6
       1.1.8. Betreuung von Neugeborenen diabetischer Mütter ................................................. 7
   1.2. Körperzusammensetzung von Neugeborenen .............................................................. 8
       1.2.1. Methoden zur Bestimmung der Körperzusammensetzung ................................... 8
       1.2.2. Air Displacement Plethysmography ..................................................................... 9
   1.3. Fragestellungen ............................................................................................................ 9

2. Methoden .......................................................................................................................... 10
   2.1. Ethik und Registrierung ............................................................................................... 10
   2.2. Design, Fallzahl und Zielparameter ............................................................................. 10
   2.3. Neugeborene .................................................................................................................. 11
       2.3.1. Rekrutierung .............................................................................................................. 11
       2.3.2. Studienpopulation .................................................................................................. 11
       2.3.3. Einschlusskriterien Referenzgruppe ....................................................................... 11
       2.3.4. Einschlusskriterien Studiengruppe A ..................................................................... 12
2.3.5. Einschlusskriterien Studiengruppe B .................................................. 12
2.3.6. Ausschlusskriterien ................................................................................. 12
2.4. Studienablauf und Datenerhebung ............................................................. 12
  2.4.1. Studienablauf .......................................................................................... 12
  2.4.2. Fragebogen ............................................................................................. 13
  2.4.3. Durchführung der Messung ................................................................. 13
    2.4.3.1. Vorbereitung der Neugeborenen ...................................................... 13
    2.4.3.2. Kalibrierung des PEA POD® .......................................................... 13
    2.4.3.3. Messung des Körpergewichts ......................................................... 14
    2.4.3.4. Messung des Körpervolumens ....................................................... 14
    2.4.3.5. Messung der Körperlänge ............................................................... 15
    2.4.3.6. Abgebrochene Messungen ............................................................. 15
2.5. Methode ...................................................................................................... 15
  2.5.1. Physikalische Grundlagen zur Messung der Körperzusammensetzung mit dem PEA POD® ...................................................... 15
  2.5.2. Bestandteile des PEA POD® ................................................................. 16
    2.5.2.1. Software ............................................................................................ 16
  2.5.3. Ermittlung der einzelnen Messgrößen ................................................. 16
    2.5.3.1. Messung des Körpergewichts in Gramm durch den PEA POD® ......................................................................................... 16
    2.5.3.2. Messung des Körpervolumens in Litern durch den PEA POD® ......................................................................................... 17
  2.5.4. Kalibrierung des PEA POD® ................................................................. 17
  2.5.5. Sicherheit des Neugeborenen im PEA POD® ......................................... 19
  2.5.6. Das Ulmer Stadiometer zur Messung der Körperlänge in Zentimetern ......................................................................................... 19
2.5.7. Berechnung des Standard Deviation Scores für das Geburtsgewicht und Einteilung der Neugeborenen anhand ihres Geburtsgewichts

2.5.8. Messung des Blutzuckers bei Neugeborenen

2.5.9. Erhebung der Daten der mütterlichen Blutzucker-Selbstmessung während der Schwangerschaft

2.5.10. Berechnung der Area under the Curve der Werte des 75-g oralen Glukose-Toleranz-Tests

2.6. Statistische Auswertung und Aufbewahrung

3. Ergebnisse

3.1. Einteilung der Studienteilnehmer in Gruppen

3.2. Demographische und klinische Daten der Referenzgruppe bei Geburt

3.2.1. Häufigkeitsverteilung des Standard Deviation Score für das Geburtsgewicht

3.2.2. Schwangerschaftsbedingungen in der Referenzgruppe

3.3. Demographische und klinische Daten der Mütter der Neugeborenen in der Referenzgruppe

3.3.1. Durchführung des 50-g Glukose-Screeningtests und des 75-g oGTT bei Müttern der Referenzgruppe

3.4. Demographische und klinische Daten der Studiengruppen A und B

3.5. Demographische und klinische Daten der Mütter der Neugeborenen in den Studiengruppen A und B

3.5.1. Durchführung des 50-g Glukose-Screeningtests und des 75-g oGTT bei Müttern der Studiengruppe A (n=40)

3.5.2. Durchführung des 50-g Glukose-Screeningtests und des 75-g oGTT bei Müttern der Studiengruppen B (n=49)

3.5.3. Behandlung der Mütter der Studiengruppen A und B

3.6. Vergleich des Körperfettanteils in den drei Gruppen
3.6.1. Ergebnisse der Messung der Körperzusammensetzung in der Referenzgruppe ................................................................. 35

3.6.2. Ergebnisse der Messung der Körperzusammensetzung in Studiengruppe A ........................................................................ 36

3.6.3. Ergebnisse der Messung der Körperzusammensetzung in Studiengruppe B ........................................................................ 37

3.6.4. Unterschiede im Geburtsgewicht-SDS und Körperfettanteil zwischen Referenzgruppe und Studiengruppen .............................................. 37

3.6.5. Korrelation von Gestationsalter mit Geburtsgewicht-SDS bzw. Körperfettanteil ........................................................................ 39

3.6.5.1. Referenzgruppe: Korrelation von Gestationsalter mit Geburtsgewicht-SDS bzw. Körperfettanteil .................................................. 40

3.6.5.2. Studiengruppe A: Korrelation von Gestationsalter mit Geburtsgewicht-SDS bzw. Körperfettanteil .................................................. 42

3.6.5.3. Studiengruppe B: Korrelation von Gestationsalter mit Geburtsgewicht-SDS bzw. Körperfettanteil .................................................. 44

3.7. Area under the Curve der Ergebnisse des 75-g oGTT .................. 45

3.7.1. Studiengruppe A: Korrelation von AUC_75-g oGTT mit dem Geburtsgewicht-SDS der Neugeborenen ............................................. 46

3.7.2. Studiengruppe A: Korrelation zwischen der AUC des 75-g oGTT mit der Anzahl der Hypoglykämien der Neugeborenen ................. 47

3.7.3. Studiengruppe A: Korrelation von AUC_75-g oGTT mit Körperfettanteil der Neugeborenen ......................................................... 48

3.8. Auswertung der Blutzuckerselbstmessung der Mütter während der Schwangerschaft ................................................................. 49

3.8.1. Assoziation der mütterlichen postprandialen Blutglukosekonzentration während der Schwangerschaft mit dem postnatalen Blutglukosespiegel der Neugeborenen ........................................ 49

3.9. Hypoglykämien in den Studiengruppen A und B .............................................. 51


3.9.2. Studiengruppe B: Assoziation von Geburtsgewicht, Geburtsgewicht-SDS und Körperfettanteil mit dem Auftreten von postnatalen Hypoglykämien bei den Neugeborenen .............................................. 52

4. Diskussion ............................................................................................................ 54

4.1. Diskussion der in dieser Arbeit durchgeführten Analysen .............................. 55
  4.1.1. Assoziation eines maternalen GDM mit dem Körperfettanteil von Neugeborenen ........................................................................................................ 55

  4.1.2. Zusammenhang der AUC für den 75-g oGTT und der neonatalen Körperzusammensetzung ................................................................. 60

  4.1.3. Assoziation der maternalen BZ-Einstellung während der Schwangerschaft mit dem Geburtsgewicht, dem Geburtsgewicht-SDS und dem Körperfettanteil ................................................................. 61

  4.1.4. Assoziation der Körperzusammensetzung mit der Entwicklung postnataler Hypoglykämien ................................................................. 65

4.2. Methodenkritik ...................................................................................................... 66
  4.2.1. Validierung der Methode ............................................................................. 68

4.3. Studienplanung ................................................................................................... 72
  4.3.1. Einschlusskriterien ....................................................................................... 72

  4.3.2. Fallzahlplanung ........................................................................................... 72

  4.3.3. Weitere Faktoren, die den Körperfettanteil von Neugeborenen beeinflussen ................................................................................................. 73

4.4. Studienablauf ...................................................................................................... 74
Abbildungsverzeichnis

Abb. 1: Einteilung in Gruppen................................................................. 24
Abb. 2: Häufigkeitsverteilung Standard Deviation Score des Geburtsgewichts in
der Referenzgruppe .............................................................................. 26
Abb. 3: Boxplot Geburtsgewicht-SDS Referenz- vs. Studiengruppe A bzw. vs.
Studiengruppe B......................................................................................... 38
Abb. 4: Boxplot Körperfettanteil Referenz- vs. Studiengruppe A bzw. vs.
Studiengruppe B......................................................................................... 39
Abb. 5: Referenzgruppe Gestationsalter (SSW) vs. SDS Geburtsgewicht ...... 40
Abb. 6: Referenzgruppe Gestationsalter (SSW) vs. Körperfettanteil (%) ....... 41
Abb. 7: Studiengruppe A Gestationsalter (SSW) vs. SDS Geburtsgewicht ...... 42
Abb. 8: Studiengruppe A Gestationsalter (SSW) vs. Körperfettanteil (%) ...... 43
Abb. 9: Studiengruppe B Gestationsalter (SSW) vs. SDS Geburtsgewicht ...... 44
Abb. 10: Studiengruppe B Gestationsalter (SSW) vs. Körperfettanteil (%) ...... 45
Abb. 11: Streudiagramm AUC 75-g oGTT vs. SDS Geburtsgewicht in
Studiengruppe A......................................................................................... 46
Abb. 12: Streudiagramm AUC 75-g oGTT vs. Anzahl Hypoglykämien der
Neugeborenen in Studiengruppe A ......................................................... 47
Abb. 13: Streudiagramm AUC 75-g oGTT vs. Körperfettanteil (%) in
Studiengruppe A......................................................................................... 48
Tabellenverzeichnis

Tab. 1: Grenzwerte im venösen Plasma 75-g oGTT nach IADPSG Konsensus Empfehlungen [2] ........................................................................................................... 6
Tab. 3: Biometrische Daten Neugeborene Referenzgruppe (normalverteilt) .... 25
Tab. 4: Biometrische Daten Neugeborene Referenzgruppe (nicht normalverteilt) .................................................................................................................. 25
Tab. 5: Demographische und klinische Daten der Mütter der Referenzgruppe 27
Tab. 6: Durchführung 50-g Glukose-Screeningtest und 75-g oGTT Referenzgruppe ............................................................................................................. 28
Tab. 7: Biometrische Daten der Neugeborenen in der Studiengruppe A (normalverteilt) ........................................................................................................ 29
Tab. 8: Biometrische Daten der Neugeborenen in der Studiengruppe A (nicht normalverteilt) ........................................................................................................ 29
Tab. 9: Biometrische Daten der Neugeborenen in der Studiengruppe B (normalverteilt) ........................................................................................................ 30
Tab. 10: Biometrische Daten der Neugeborenen in der Studiengruppe B (nicht normalverteilt) ........................................................................................................ 30
Tab. 11: Demographische und klinische Daten der Mütter der Studiengruppe A ............................................................................................................. 31
Tab. 12: Demographische und klinische Daten der Mütter der Studiengruppe B ............................................................................................................. 32
Tab. 13: Durchführung des 50-g Glukose-Screeningtests und des 75-g oGTT bei Müttern der Studiengruppe A ................................................................. 33
Tab. 14: Durchführung des 50-g Glukose-Screeningtests und des 75-g oGTT bei den Müttern der Studiengruppe B ................................................................. 34
Tab. 15: Behandlung der Mütter der Studiengruppen A und B .................... 35
Tab. 16: Ergebnisse der Körperzusammensetzung in der Referenzgruppe .... 36
Tab. 17: Ergebnisse der Körperzusammensetzung in Studiengruppe A ....... 36
Tab. 18: Ergebnisse der Körperzusammensetzung in Studiengruppe B ....... 37
Tab. 19: Geburtsgewicht, Geburtsgewicht-SDS und Körperfettanteil der Neugeborenen, von deren Müttern die Ergebnisse der BZ-Selbstmessung während der Schwangerschaft vorlagen .......................................................... 50
Tab. 20: Studiengruppe A: Klinische Daten der Subgruppen mit 0 Hypoglykämien vs. ≥1 Hypoglykämien .......................................................... 52
Tab. 21: Studiengruppe B: Klinische Daten der Subgruppen mit 0 Hypoglykämien vs. ≥1 Hypoglykämien .......................................................... 53
**Abkürzungsverzeichnis**

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abb.</td>
<td>Abbildung</td>
</tr>
<tr>
<td>ADP</td>
<td>Air Displacement Plethysmography (Luftverdränungsplethysmographie)</td>
</tr>
<tr>
<td>APGAR</td>
<td>Punkteschema zur Einschätzung des klinischen Zustandes von Neugeborenen in den ersten zehn Minuten nach der Entbindung</td>
</tr>
<tr>
<td>AUC</td>
<td>Area under the curve (Fläche unter der Kurve)</td>
</tr>
<tr>
<td>AWMF</td>
<td>Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften</td>
</tr>
<tr>
<td>B</td>
<td>Body (Körper)</td>
</tr>
<tr>
<td>BMI</td>
<td>Body-Mass-Index (Körpermasseindex)</td>
</tr>
<tr>
<td>BM</td>
<td>Body Mass (Körpermasse)</td>
</tr>
<tr>
<td>BF</td>
<td>Body Fat (Körperfett)</td>
</tr>
<tr>
<td>BF%</td>
<td>Body Fat Percentage (Körperfett in Prozent, Körperfettanteil)</td>
</tr>
<tr>
<td>BIA</td>
<td>Bioelektrische Impedanz-Analyse</td>
</tr>
<tr>
<td>cm</td>
<td>Zentimeter</td>
</tr>
<tr>
<td>CO₂</td>
<td>Kohlenstoffdioxid</td>
</tr>
<tr>
<td>D</td>
<td>Density (Dichte)</td>
</tr>
<tr>
<td>DXA</td>
<td>Dual-Röntgen-Absorptiometrie</td>
</tr>
<tr>
<td>dl</td>
<td>Deziliter</td>
</tr>
<tr>
<td>F</td>
<td>Fat (Fett)</td>
</tr>
<tr>
<td>FFM</td>
<td>Fat Free Mass (Fettfreie Masse)</td>
</tr>
<tr>
<td>FM</td>
<td>Fat Mass (Fetttmasse)</td>
</tr>
<tr>
<td>g</td>
<td>Gramm</td>
</tr>
<tr>
<td>GA</td>
<td>Gestationsalter</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>GCT</td>
<td>Glucose Challenge Test (50-g Glukose Screening-Test)</td>
</tr>
<tr>
<td>GDM</td>
<td>Gestationsdiabetes mellitus</td>
</tr>
<tr>
<td>GG</td>
<td>Geburtsgewicht</td>
</tr>
<tr>
<td>h</td>
<td>Stunde</td>
</tr>
<tr>
<td>HAPO</td>
<td>Hyperglycemia and Adverse Pregnancy Outcome [4] (Hyperglykämie und ungünstige Folgen in der Schwangerschaft)</td>
</tr>
<tr>
<td>IADPSG</td>
<td>International Association of the Diabetes and Pregnancy Study Groups (Internationaler Verband der Diabetes und Schwangerschaft-Studiengruppen)</td>
</tr>
<tr>
<td>I.E.</td>
<td>Internationale Einheiten</td>
</tr>
<tr>
<td>ICD</td>
<td>International Statistical Classification of Disease and of Related Health Problems (Internationale statistische Klassifikation von Krankheit und verwandten Gesundheitsproblemen)</td>
</tr>
<tr>
<td>IGF</td>
<td>insulin-like growth factors (Insulin-ähnliche Wachstumsfaktoren)</td>
</tr>
<tr>
<td>kg</td>
<td>Kilogramm</td>
</tr>
<tr>
<td>KG</td>
<td>Körpergewicht</td>
</tr>
<tr>
<td>LBM</td>
<td>Lean Body Mass (Fettfreie Körpermasse)</td>
</tr>
<tr>
<td>LGA</td>
<td>Large for gestational age (schwer für das Gestationsalter)</td>
</tr>
<tr>
<td>M</td>
<td>Mass (Masse, Gewicht)</td>
</tr>
<tr>
<td>MW</td>
<td>Mittelwert</td>
</tr>
<tr>
<td>mg</td>
<td>Milligramm</td>
</tr>
<tr>
<td>MODY</td>
<td>Maturity Onset Diabetes of the Young (Diabetesform, die auf unterschiedlichen genetischen Mutationen beruht und typischerweise bei jungen Erwachsenen &lt;25 Jahre auftritt. [1])</td>
</tr>
<tr>
<td>n</td>
<td>Anzahl</td>
</tr>
<tr>
<td>NG</td>
<td>Neugeborene(s)</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Deutscher Begriff</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------</td>
</tr>
<tr>
<td>oGTT</td>
<td>Oral Glukosetoleranztest</td>
</tr>
<tr>
<td>P25</td>
<td>25. Perzentile</td>
</tr>
<tr>
<td>P75</td>
<td>75. Perzentile</td>
</tr>
<tr>
<td>SD</td>
<td>Standard Deviation (Standardabweichung)</td>
</tr>
<tr>
<td>SDS</td>
<td>Standard Deviation Score (Schema zur Darstellung eines Abstands, den ein Wert vom Mittelwert hat)</td>
</tr>
<tr>
<td>SDSgg</td>
<td>Standard Deviation Score für das Geburtsgewicht</td>
</tr>
<tr>
<td>SSW</td>
<td>Schwangerschaftswochen</td>
</tr>
<tr>
<td>Tab.</td>
<td>Tabelle</td>
</tr>
<tr>
<td>TOBEC</td>
<td>Total body electrical conductivity (Elektrische Ganzkörper-Leitfähigkeit)</td>
</tr>
<tr>
<td>T1DM</td>
<td>Typ 1 Diabetes mellitus</td>
</tr>
<tr>
<td>T2DM</td>
<td>Typ 2 Diabetes mellitus</td>
</tr>
<tr>
<td>UFK</td>
<td>Universitätsfrauenklinik Tübingen</td>
</tr>
<tr>
<td>UKT</td>
<td>Universitätsklinikum Tübingen</td>
</tr>
<tr>
<td>V</td>
<td>Volume (Volumen)</td>
</tr>
</tbody>
</table>
1. Einleitung

1.1. Gestationsdiabetes mellitus

1.1.1. Definition

Gestationsdiabetes mellitus (GDM, ICD-10: 024.4G) ist nach der AWMF-Leitlinie 057/088 der Deutschen Diabetes-Gesellschaft definiert als eine „Glukosetoleranzstörung, die erstmals in der Schwangerschaft mit einem 75-g oralen Glukosetoleranztest (oGTT) unter standardisierten Bedingungen und qualitätsgesicherter Glukosemessung aus venösem Plasma diagnostiziert wird. Die Diagnose ist bereits mit einem erhöhten Glukosewert möglich.“ [2]

Den diagnostischen Grenzwerten liegt eine internationale Konsensbildung durch Experten der International Association of Diabetes and Pregnancy Study Groups zugrunde. [3]

Diese Konsensbildung beruht auf Ergebnissen der HAPO-Studie [4], in der mütterliche und neonatale klinisch relevante Endpunkte von maternalen Hyperglykämien während der Schwangerschaft untersucht wurden.

1.1.2. Pathophysiologie

Die Pathophysiologie des GDM besteht aus mehreren verschiedenen Mechanismen, die im Einzelnen und in ihrer Wechselwirkung noch nicht vollständig geklärt sind. [5]

Sie entspricht größtenteils der Pathophysiologie des Typ 2 Diabetes mellitus (T2DM) und hängt ebenfalls auf der Basis genetischer Prädisposition von Faktoren wie Übergewicht, Ernährung und Bewegung ab. [2]

Außerdem spielen zwei Arten der Insulinresistenz eine wichtige Rolle.

Bei der ersten Form tritt gegen Ende der Schwangerschaft eine zunehmende physiologische Insulinresistenz auf, die auf schwangerschaftsinduzierte Faktoren wie zum Beispiel Plazenta-Wachstumshormone zurückgeführt wird. Die zweite
1. Einleitung

Form der Insulinresistenz ist chronischer Art und existiert bereits vor der Schwangerschaft. Sie wird von den physiologischen Veränderungen während der Schwangerschaft verstärkt.
Es ist zu vermuten, dass Frauen mit GDM eine Kombination aus chronischer und erworbener Insulinresistenz aufweisen und deshalb insgesamt insulinresistenter sind als Frauen ohne GDM. [5]
Der GDM entwickelt sich nach Kampmann et al. dann unter anderem deshalb, weil die Schwangere nicht mehr in der Lage ist, eine angemessene Menge Insulin zu produzieren, um die Insulinresistenz auszugleichen. [6]
Auch eine Dysfunktion der β-Zellen des Pankreas spielt wahrscheinlich eine Rolle für die mangelnde Kompensation der Insulinresistenz. [5]

1.1.3. Epidemiologie

Die Angaben zur Häufigkeit von GDM in Deutschland und weltweit sind sehr unterschiedlich und von mehreren Einflussfaktoren wie z.B. dem Zeitpunkt der Untersuchung, den vorgeschalteten Screeningverfahren oder den diagnostischen Grenzwerten abhängig.
Eine Untersuchung des Instituts für angewandte Qualitätsförderung und Forschung im Gesundheitswesen GmbH (AQUA) aus dem Jahr 2010 ergab eine relative Häufigkeit von 3,7% für GDM in Deutschland mit steigender Tendenz. [2]
Die Prävalenz von Hyperglykämien in der Schwangerschaft (GDM und Typ 2 Diabetes mellitus) wird weltweit auf 14,8% und europaweit auf 12,6% geschätzt. [8]

1.1.4. Folgen für die Mutter

GDM kann eine Reihe von akuten und langfristigen Folgen für die Mutter haben.
Im Vergleich zu Schwangeren mit normaler Glukosetoleranz können Frauen mit GDM vermehrt unter Harnwegs- und anderen Infektionen leiden und neigen eher
1. Einleitung

1.1.5. Folgen für das Kind
Ein Gestationsdiabetes mellitus der Mutter kann eine Vielzahl verschiedener Folgen für das Kind haben, wobei diese Arbeit sich auf die Auswirkungen auf den Metabolismus des Kindes konzentriert.
In den 1950er Jahren publizierte der Däne Jørgen Pedersen eine Hypothese, die ein mögliches Erklärungsmodell für den Zusammenhang zwischen mütterlicher Hyperglykämie (wie diese z.B. beim GDM auftritt) und fetaler Makrosomie bietet. Pedersen geht davon aus, dass maternale Hyperglykämie während der Schwangerschaft über die Plazenta zu fetaler Hyperglykämie führt. Infolge dessen wird das Pankreas des Fetus stimuliert und es kommt zu einem ‘fetalen Hyperinsulinismus’, woraufhin der Fetus vermehrt Glukose verwertet. (Zitiert in: [12, 13])
1. Einleitung

dem Anstieg der mütterlichen Glukosewerte im 75-g oGTT. Diese Studie zielte darauf ab, zu erkennen, ob mütterliche hohe BZ-Werte, die jedoch noch nicht den Kriterien eines pathologischen 75-g oGTT entsprachen, auch negative Auswirkungen auf die Neugeborenen hatten. [15]


Hinzu kommt, dass Insulin im gesamten fetalen Wachstum neben insulinähnlichen Wachstumsfaktoren (insulin-like growth factors, IGF) eine wichtige Rolle als Wachstumsfaktor spielt. [16]

Neben den Auswirkungen auf das Wachstum des Feten hat ein mütterlicher GDM noch eine Vielzahl weiterer Folgen, die hier kurz genannt werden sollen.

Bei NG von Müttern mit GDM ist die Fehlbildungsrate (Diabetische Embryopathie) im Gegensatz zu NG von Müttern mit präkonzeptionell existierendem T1DM oder T2DM nicht erhöht, da die Glukosetoleranzstörung bei GDM in der Regel erst nach der Organogenese des Feten auftritt. Bei unbehandeltem GDM ist das Risiko für einen intrauteren Fruchttod erhöht. [17]

Die quantitativ bedeutsamste akute Folge eines maternalen GDM für das Kind sind postnatale Hypoglykämien [2], die sich durch die fetal gesteigerte Insulinsekretion und das plötzliche Ende der Glukosezufuhr über die Plazenta erklären lassen.
Weitere, wenn auch deutlich seltenere, Folgen können respiratorische Anpassungsstörungen beziehungsweise ein Atemnotsyndrom oder eine Hyperbilirubinämie sein. [17]

Der Zusammenhang zwischen maternalem GDM und kindlichem Übergewicht bei Geburt ist komplex und wird sowohl von genetischen Faktoren als auch von den mütterlichen Ernährungs- und Bewegungsgewohnheiten beeinflusst. [2]

1.1.6. Screening und Diagnostik

Die Deutsche Diabetes-Gesellschaft und die Deutsche Gesellschaft für Gynäkologie und Geburtshilfe empfehlen ein zweistufiges Vorgehen mit einem 50-g Glukose-Screeningtest (Glucose Challenge Test, GCT) und einem 75-g oralen Glukosetoleranz-Test (75-g oGTT).

Jede Schwangere soll zwischen der 25. und 28. SSW (24+0 – 27+6/7 SSW) einen GCT erhalten. Das Screening fällt positiv auf, sobald der Blutglukose-Grenzwert von 135 mg/dl erreicht oder überschritten wird. In diesem Fall sollte ebenfalls zwischen 25. und 28. SSW ein 75-g oGTT als Bestätigungstest erfolgen. Falls das Zeitfenster überschritten wird, kann der Test noch bis 32+0 SSW durchgeführt werden.

Der 75-g oGTT ist der „Goldstandard“ in der GDM-Diagnostik und muss im Gegensatz zum GCT unter standardisierten Bedingungen morgens nüchtern durchgeführt werden. Hierzu wird direkt vor Testbeginn die Blutglukose der Schwangeren gemessen. Dann soll sie 300ml Wasser, in dem 75g Glukose gelöst sind, trinken.

Im Abstand von einer und zwei Stunden nach Trinken der Lösung wird erneut die Blutglukosekonzentration gemessen.
Die Diagnose GDM kann gestellt werden, sobald einer der Grenzwerte, die von der IADPSG festgelegt wurden (siehe Tabelle 1), erreicht oder überschritten wird. [2]

Tab. 1: Grenzwerte im venösen Plasma 75-g oGTT nach IADPSG Konsensus Empfehlungen [2]

<table>
<thead>
<tr>
<th>Grenzwerte IADPSG venöses Plasma (mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>nüchtern</td>
</tr>
<tr>
<td>92</td>
</tr>
<tr>
<td>nach 1 Stunde</td>
</tr>
<tr>
<td>180</td>
</tr>
<tr>
<td>nach 2 Stunden</td>
</tr>
<tr>
<td>153</td>
</tr>
</tbody>
</table>

Nachdem eine GDM-Diagnose gestellt wurde, sollte sich der behandelnde Arzt die Zeit nehmen und die Schwangere über die Diagnose, mögliche Therapieformen und –ziele, sowie die Blutglukose-Selbstkontrolle informieren. [2]

1.1.7. Therapie und Zielwerte


Die Schwangere wird aufgefordert, ihre Blutzuckerkonzentration zu bestimmten Tageszeiten mit einem Selbstmessgerät zu messen und zu dokumentieren. Die Zielwerte laut AWMF-Leitlinie für die Therapie des GDM sind in Tabelle 2 dargestellt.
1. Einleitung

Tab. 2: Blutglukose-Einstellungsziele nach Selbstmessungen [2]

<table>
<thead>
<tr>
<th>Zeitpunkt</th>
<th>Plasma-Aquivalent (mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>nüchtern, präprandial</td>
<td>65-95</td>
</tr>
<tr>
<td>1 h postprandial</td>
<td>&lt;140</td>
</tr>
<tr>
<td>2 h postprandial</td>
<td>&lt;120</td>
</tr>
</tbody>
</table>

Können die Blutglukose-Einstellungsziele nicht erreicht werden, soll innerhalb von zwei Wochen nach Beginn der Basistherapie mit Ernährungsumstellung und körperlicher Bewegung unter Berücksichtigung weiterer Parameter, z.B. des fetalen Abdominalumfangs, die Indikation zur Insulintherapie gestellt werden. Bei nüchtern-Blutglukosewerten >110 mg/dl sollte die Indikation sofort gestellt werden. [2]

Es wird eine Insulintherapie nach dem Basis-Bolus-Prinzip empfohlen, bei der die Schwangere ein- bis zweimal täglich subkutane Injektionen mit Verzögerungsinsulin und zu den Mahlzeiten mit Humaninsulin durchführt. Als Anhaltspunkt gilt eine Dosis von 0,4-0,7 I.E./kg KG/Tag, wobei beachtet werden muss, dass der Insulinbedarf gegen Ende der Schwangerschaft aufgrund der zunehmenden Insulinresistenz bis auf das Doppelte ansteigen kann. Auch hier gelten die Blutglukose-Zielwerte, die in Tabelle 2 aufgeführt sind. Können diese nicht erreicht werden, muss ggf. die Insulindosis angepasst werden. [9]

1.1.8. Betreuung von Neugeborenen diabetischer Mütter

In der AWMF-Leitlinie 024/006 wird eine besondere Betreuung für Neugeborene diabetischer Mütter empfohlen, die bei der Wahl des Geburtsortes beginnt. So sollen Schwangere mit diabetischer Stoffwechsellage in einem Krankenhaus entbinden, in dem sowohl eine neonatologische Überwachung als auch eine intravenöse Glukosebehandlung des NG ohne Verlegung in ein anderes Haus möglich sind. Ist die Mutter schon vor der Schwangerschaft an einem Diabetes erkrankt oder während der Schwangerschaft mit Insulin behandelt worden, so sollte die Entbindung in einem Perinatalzentrum Level I oder II stattfinden. [21]
Nach der Geburt sollte das Kind innerhalb von 30 min an die Brust angelegt werden oder Frühfütterung erhalten, da dies die kindliche Blutglukosekonzentration stabilisiert und die Hypoglykämie-Rate signifikant senkt. [22]


Grundsätzlich sollte das Stillen konsequent gefördert werden. [21]

1.2. Körperzusammensetzung von Neugeborenen

1.2.1. Methoden zur Bestimmung der Körperzusammensetzung

Es existieren verschiedene Methoden zur Bestimmung der menschlichen Körperzusammensetzung. Die Verfahren unterscheiden sich in ihren Vor- und Nachteilen, wie z.B. in ihrer Verfügbarkeit oder der Anwendungsmöglichkeit vor allem bei Kindern unterschiedlicher Altersstufen.

Ein weit verbreitetes und gut verfügbares Mittel zur Abschätzung des Körperfettanteils ist die Erhebung anthropometrischer Daten wie dem Körpergewicht und insbesondere der Hautfaltendicke. Des Weiteren existieren Formeln (z.B. von Deierlein et al [23] oder Catalano et al [24]) zur Berechnung des Körperfetts (g) mithilfe von Bestimmung der Hautfaltendicke an vorgegebenen Körperstellen (z.B. Trizeps, Oberschenkel, subskapular). Technisch aufwendigere Verfahren sind Dilutionsmethoden, die Bioelektrische Impedanzanalyse (BIA), die Messung der elektrischen Gesamtkörperleitfähigkeit (TOBEC), die Dual-Röntgen-Absorptionsmetrie (DXA) und die Air Displacement Plethysmography (ADP), die auch Body Plethysmography genannt wird.
Einleitung

1.2.2. Air Displacement Plethysmography


1.3. Fragestellungen

1. Haben Neugeborene von Müttern mit der Diagnose Gestationsdiabetes mellitus oder einer anderen diabetischen Stoffwechselslage einen höheren Körperfettanteil als Neugeborene von Müttern ohne Nachweis eines GDM?

2. Wirkt sich die Anzahl der mütterlichen Hyperglykämien während der Schwangerschaft mit einem BZ ≥140mg/dl 1h postprandial auf den Geburtsgewicht-SDS, den Körperfettanteil oder die Anzahl der Hypoglykämien der Neugeborenen in den ersten 24h nach der Geburt aus?

3. Gibt es eine Assoziation zwischen der Area under the Curve für den 75-g oGTT der diabetischen Mütter mit dem Geburtsgewicht-SDS, dem Körperfettanteil und der Anzahl der Hypoglykämien <45mg/dl der Neugeborenen?

4. Unterscheiden sich diejenigen Neugeborenen von Müttern mit GDM, bei denen innerhalb von 24h postnatal keine Hypoglykämie <45mg/dl gemessen wurde, bezüglich GG, SDS_GG oder BF% signifikant von denjenigen Neugeborenen von Müttern mit GDM, bei denen innerhalb von 24h postnatal ≥1 Hypoglykämie <45mg/dl festgestellt wurde?
2. Methoden

2.1. Ethik und Registrierung
Am 05.05.2014 erteilte die Ethikkommission ihr Votum und gab die Zustimmung zur Durchführung der Studie mit der Projektnummer 034/2014BO1 (siehe Anhang).
Die Eltern der Neugeborenen wurden mündlich und schriftlich mit der „Elterninformation GDM_NEO_01 – Version 2.0 vom 27.03.2014“ (siehe Anhang) über die Studie aufgeklärt und unterschrieben als Voraussetzung zur Studienteilnahme die „Einwilligungserklärung zur Studienteilnahme und Erklärung zum Datenschutz GDM_Neo_01 (Einwilligungserklärung V2.0 vom 27.03.2014)“ (siehe Anhang).

2.2. Design, Fallzahl und Zielparameter
Das Studiendesign war eine prospektive Beobachtungsstudie, in der nach Rekrutierung der Studienteilnehmer die Messung des Körperfettanteils der Neugeborenen erfolgte. Die Zuteilung in die Referenzgruppe oder in eine der Studiengruppen erfolgte anhand der mütterlichen 75-g oGTT-Werte und der Diagnosen der behandelnden Frauenärzte, die auch im Geburtsbericht dokumentiert waren.
Da diese Dissertation eine hypothesengenerierende Arbeit ist und es zu Beginn der Messungen noch kein deutsches Vergleichskollektiv gab, wurde keine klassische Fallzahlberechnung durchgeführt. Der Zeitraum für die Messungen des Körperfettanteils der Neugeborenen war auf ein Jahr angesetzt. Erfahrungswerte aus vorangegangenen Studien ließen darauf schließen, dass ca. 10-20% der Eltern von Neugeborenen einer Studienteilnahme zustimmen würden. Ziel war es
2. Methoden
deshalb, ca. 10-20% der ca. 2700 Neugeborenen, die jährlich in der UFK Tübingen zur Welt kommen, zu rekrutieren.
Die Zielparameter waren das Körpengewicht (BM) in g, das Körperfett (FM) in g und die fettfreie Körpermasse (LBM) in g, sowie der Körperfettanteil (BF%) in % und der Anteil der fettfreien Körpermasse (LBM) in %. Ein weiterer Zielparameter war die Anzahl n der nachgewiesenen Hypoglykämien mit kapillären Blutzuckerkwerten <45mg/dl der Neugeborenen von Müttern mit GDM oder einer anderen diabetischen Stoffwechsellage.

2.3. Neugeborene

2.3.1. Rekrutierung

2.3.2. Studienpopulation
Die Studienpopulation umfasste gesunde NG mit einem Gestationsalter ≥36+0/7 SSW, die zum Zeitpunkt der Messung nicht älter als 96h waren. Die NG kamen alle in der Universitätsfrauenklinik Tübingen zur Welt und wurden mit ihren Müttern auf den Wöchnerinnenstationen versorgt.

2.3.3. Einschlusskriterien Referenzgruppe
- Gesunde NG von Müttern ohne oder mit unauffälligem 75-g oGTT während der Schwangerschaft
2. Methoden

2.3.4. Einschlusskriterien Studiengruppe A
- Gesunde NG von Müttern mit pathologischen Werten im 75-g oGTT während der Schwangerschaft

2.3.5. Einschlusskriterien Studiengruppe B
Voraussetzung für den Einschluss in die Studiengruppe B war das Zutreffen einer der drei folgenden Kriterien:
- Teilnehmer der Studiengruppe A
- Gesunde NG von Müttern, bei denen kein 75-g oGTT durchgeführt oder keine pathologischen Blutzucker-Werte gemessen worden waren und die dennoch aus verschiedenen Gründen (z.B. aktuell erhöhte Blutzuckerwerte bei GDM in einer vorangegangenen Schwangerschaft) von ihrem betreuenden Gynäkologen oder Endokrinologen die Diagnose GDM erhalten hatten
- Gesunde NG von Müttern mit präkonzeptionell diabetischer Stoffwechselsellage

2.3.6. Ausschlusskriterien
Zu den Ausschlusskriterien zählten Mehrlingsschwangerschaft, Frühgeburt <36 SSW, postnatales Alter der NG zum Messzeitpunkt >96h und fehlende schriftliche Einwilligung der Eltern.

2.4. Studienablauf und Datenerhebung

2.4.1. Studienablauf
Nach Einwilligung der Eltern zur Teilnahme wurden ein Termin für die Messung vereinbart und ein Fragebogen zur Erhebung relevanter Daten des NG und der Mutter (siehe Kapitel 2.4.2.) ausgehändigt, den die Eltern ausgefüllt zur Messung mitbringen sollten. Fehlende Angaben wurden aus den Patientenakten durch die Mitarbeiter des PEA POD®-Teams ergänzt.
Am Messstermin wurde den Eltern der Messablauf am PEA POD®-Gerät noch einmal genau erklärt.
2. Methoden

2.4.2. Fragebogen

Auf einem Fragebogen für die Eltern (s. Anhang) wurden unter anderem Geburtsdatum, Körpergröße, Gewicht und Vorerkrankungen der Mutter erfragt, sowie die Ergebnisse des Glukose Challenge Tests und des 75-g oGTT, soweit diese erfolgt waren. Außerdem sollten Geburtsdatum und –uhrzeit des Kindes, Geburtsgewicht und Körperlänge bei Geburt, Uhrzeit der letzten Fütterung vor der Messung und, falls gemessen, die postnatal bestimmten Blutzuckerwerte des Kindes eingetragen werden.

2.4.3. Durchführung der Messung

Die Bestimmung des Körperfettanteils erfolgte mit dem PEA POD® (Infant Body Composition System, COSMED USA, Concord, CA, USA) und einem Ulmer Stadiometer (Busse Design + Engineering, Elchingen, Deutschland). Der PEA POD® ist ein Gerät zur Bestimmung des Körperfettanteils eines Kindes mit einem Körpergewicht zwischen 1 kg und 8 kg mittels Air Displacement Plethysmography.

2.4.3.1. Vorbereitung der Neugeborenen


2.4.3.2. Kalibrierung des PEA POD®

Hierzu wurde eine Stoffwindel, sowie im Fall einer Nabelklemme am Nabelstumpf des Probanden, dasselbe Modell der Nabelklemme auf die Waage gelegt.

2.4.3.3. **Messung des Körpergewichts**


2.4.3.4. **Messung des Körpervolumens**

2.4.3.5. **Messung der Körperlänge**


Nach der Messung der Körperlänge kleideten die Eltern den Probanden wieder unter der Wärmelampe an.

2.4.3.6. **Abgebrochene Messungen**

Ein Abbruch der Messung war jederzeit möglich, wenn die Eltern dies wünschten oder die Unruhe des Probanden zu groß war. Dies erfolgte über das Anklicken des entsprechenden Feldes auf dem Steuerbildschirm.

2.5. **Methode**

Die Inhalte der Kapitel 2.5.1. bis 2.5.5. sind sinngemäß dem Benutzerhandbuch für den PEA POD® [25] entnommen.

2.5.1. **Physikalische Grundlagen zur Messung der Körperzusammensetzung mit dem PEA POD®**

Die Körperzusammensetzung des Kindes wurde über eine Körperfettmasse (Densiometrie) mit Hilfe des PEA POD® ermittelt. Als Grundlage für die Körperdichtemessung diente das Zwei-Kompartiment-Modell, das den Körper in zwei Hauptbestandteile teilt: Fettmasse und fettfreie Masse. Zu Letzterer gehören Wasser, Proteine, Glykogen und Mineralien. Für die Körperdichtemessung wurde das Körpergewicht ($M_B$) und –volumen ($V_B$) gemessen und die Körperschicht ($D_B$) mit der Gleichung

\[ D_B = \frac{V_B}{M_B} \]
2. Methoden

\[ D_B = \frac{M_B}{V_B} \]

errechnet. Das thorakale Gasvolumen wurde über Gleichungen abgeschätzt und mit dem Körpervolumen verrechnet. Auch der Oberflächenartefakt (Luftvolumen in unmittelbarer Nähe zur Körperoberfläche des Probanden) wurde in die Volumenbestimmung miteinbezogen.

Aus der ermittelten Körperdichte wurden die relativen Anteile von Körperfett und fettfreier Masse errechnet. Dies geschah mithilfe standardisierter Werte für die Dichte von Körperfett (\(D_F\)) und fettfreier Körpermasse (\(D_{FFM}\)). Die zur Ermittlung des Fettanteils verwendete Formel lautete:

\[ Fettanteil = \left[ \frac{D_F D_{FFM}}{D_B (D_{FFM} - D_F)} - \frac{D_F}{D_{FFM} - D_F} \right] * 100\% \]

2.5.2. Bestandteile des PEA POD®

Der PEA POD® besteht aus einer Hochpräzisionswaage, einer Messkammer und einer im Gerät befindlichen Referenzkammer, sowie einem Computer, auf dem die PEA POD®-Software aufgespielt ist, und einem auf dem Gerät angebrachten Bildschirm. Zwischen der Messkammer und der Referenzkammer, die beide das gleiche Leervolumen besitzen, ist eine Memran aufgespannt, die ausgelenkt werden kann.

2.5.2.1. Software

Auf dem Computer war die Software „PEA POD Version: 3.3.0“ installiert, mit der die Messungen durchgeführt und die Ergebnisse berechnet wurden.

2.5.3. Ermittlung der einzelnen Messgrößen

2.5.3.1. Messung des Körpergewichts in Gramm durch den PEA POD®

Die Messung des Körpergewichts erfolgte auf der im Gerät integrierten Hochpräzisionswaage. Vor und nach der Gewichtsmessung musste die Waage tariert werden, indem die am Neugeborenen befindlichen Gegenstände (Nabelklemme
oder Armband) auf der Waage platziert wurden. Danach erfolgte die Messung des Körpergewichts in Gramm. Hierzu wurde der Proband für einige Sekunden auf die Waage gelegt, bis die Software das Ende der Messung angab.

2.5.3.2. **Messung des Körpervolumens in Litern durch den PEA POD®**


Direkt vor der Volumenmessung eines Probanden erfolgte die Messung des Leervolumens der Messkammer (Kalibrierung). Lag der Proband in der Messkammer, wurde das verbleibende Luftvolumen gemessen und nach der Messung vom Leervolumen abgezogen. Unter Berücksichtigung des thorakalen Gasvolumens und des Oberflächenartefaktes wurde aus diesem Wert dann das Körpervolumen des Probanden ermittelt.

Trug der Proband eine Nabelklemme oder ein Armband an sich, so wurden diese Gegenstände zur Kalibrierung in die Kammer gelegt.

2.5.4. **Kalibrierung des PEA POD®**


1. **Schritt – Hardware-Analyse:** Die Integrität der Hauptbestandteile des Geräts wurde geprüft. Dazu gehörten auch die Kabelverbindungen und
2. Methoden

Sensoren, der Bildschirm und der elektrische Magnet an der Tür der Testkammer. Erschien als Testergebnis ein „Bestanden“, konnte der nächste Schritt durchgeführt werden.


3. **Schritt – Waage überprüfen:** Dieser Test wurde an jedem Anwendungstag durchgeführt und diente dazu, die Leistung der Waage zu überprüfen. Das Kalibriergewicht wurde nach Anweisung der Software in der Mitte der Waagschale platziert und entfernt. Bei bestandenem Test wurde der nächste Schritt durchgeführt.


5. **Schritt – Volumen:** Dieser Test diente zur Bewertung der Genauigkeit und Präzision der Volumenmessungen. Zuerst erfolgte eine Volumenkalibrierung, daraufhin drei Volumenmessungen mit dem vom Hersteller mitgelieferten Volumenphantom und zuletzt eine weitere Volumenkalibrierung. Zwischen den einzelnen Messungen wurde der Magnet an der Tür zur Testkammer entriegelt und musste in der Folge vom Versuchsleiter wieder geschlossen werden, um die nächste Messung zu starten. Mit bestandenem Test war die tägliche Kalibrierung beendet.
2. Methoden

2.5.5. Sicherheit des Neugeborenen im PEA POD®

Am PEA POD® befinden sich mehrere Einrichtungen, um die Sicherheit der Neugeborenen zu gewährleisten. Die NG können während der Messung durch ein Fenster an der Messkammer beobachtet werden.

War die Unruhe des Kindes zu groß, konnte die Messung auf drei Wegen abgebrochen werden:
1. Anklicken der Schaltfläche „Abbrechen“ am Bildschirm.
2. Drücken des entsprechenden Knopfes an der Tür der Messkammer, der den elektromagnetischen Verschluss der Tür entriegelt.
3. Bedienung des Not-Aus Schalters am Gerät, mit dem eine Messung beendet und der PEA POD® ausgeschaltet wird, was automatisch zum Öffnen des Türverschlusses führt.

In der thermoneutralen Kammer selbst wurde konstant eine Temperatur von ca. 32°C aufrechterhalten, was am Bildschirm abzulesen war. Ein Überschreiten der Temperatur führte zum automatischen Abbruch der Messung. Außerdem befand sich in der Messkammer ein CO₂-Sensor, der bei Überschreiten eines Grenzwertes automatisch das Öffnen der Tür auslösen konnte.

2.5.6. Das Ulmer Stadiometer zur Messung der Körperlänge in Zentimetern


2.5.7. Berechnung des Standard Deviation Scores für das Geburtsgewicht und Einteilung der Neugeborenen anhand ihres Geburtsgewichts

Um die Geburtsgewichte der Kinder mit unterschiedlichem Gestationsalter miteinander vergleichbar zu machen, wurde der Standard Deviation Score für das Geburtsgewicht mithilfe der LMSgrowth Software (Version 2.14;
2. Methoden


2.5.8. Messung des Blutzuckers bei Neugeborenen


2.5.9. Erhebung der Daten der mütterlichen Blutzucker-Selbstmessung während der Schwangerschaft

2. Methoden

2.5.10. Berechnung der Area under the Curve der Werte des 75-g oralen Glukose-Toleranz-Testes

Das Ergebnis des 75-g oGTTs, den die Mütter beim Frauenarzt durchgeführt hatten, wurde in eine Excel-Tabelle eingetragen und der Flächeninhalt zwischen der Verbindung der drei gemessenen Blutzuckerwerte (nüchtern, 60 Minuten, 120 Minuten) und der x-Achse berechnet. Die Area under the curve wurde in mg/dl*min angegeben.

2.6. Statistische Auswertung und Aufbewahrung

Die erhobenen Daten wurden mit dem PC-Programm „Microsoft Office Excel 2010“ (Microsoft Corporation, Redmond, USA) verwaltet und mit der Analyse- und Statistiksoftware „IBM SPSS Statistics 23.0“ (IBM Corporation, New York, USA) ausgewertet.


Zur graphischen Darstellung der Merkmale wurden Histogramme, Boxplots, und Streudiagramme verwendet.

Da die entsprechenden Daten nicht normalverteilt waren, wurde die Korrelation zwischen zwei Merkmalen mit dem Korrelationskoeffizient $p$ nach Spearman berechnet. Ein p-Wert $<$0,05 wurde als statistisch signifikant betrachtet.

Der Mann-Whitney-U-Test wurde zur Ermittlung eines Unterschiedes zwischen den Verteilungen zweier stetiger Merkmale eingesetzt, wenn die Merkmalsausprägungen nicht normalverteilt waren. Ein p-Wert $<$0,05 wurde als statistisch signifikant betrachtet.
3. Ergebnisse

3.1. Einteilung der Studienteilnehmer in Gruppen

Die Neugeborenen wurden wie in Abbildung 1 gezeigt in eine Referenzgruppe und zwei Studiengruppen (A und B) eingeteilt.


Aus Zeitgründen konnte bei n=133 NG, für die eine Einwilligung vorlag, keine Messung erfolgen, weil die Mutter mit dem NG beim nächsten möglichen Messzeitpunkt schon entlassen worden war.

Bei n=365 NG fand eine Bestimmung des Körperfettanteils statt. Von diesen Messungen mussten allerdings n=39 aus verschiedenen Gründen von der Auswertung ausgeschlossen werden: Zu Beginn der Studie wurden noch ein Tuch oder ein Schnuller mit in die Messschale gegeben, um es den Kindern angenehmer zu machen. Es stellte sich heraus, dass die Messergebnisse ungenau waren, weshalb die Messungen von da an ohne die zusätzlichen Utensilien stattfanden. Aus diesem Grund mussten 14 NG aus der Auswertung ausgeschlossen werden. Bei drei NG wurde die Messung wegen zu großer Unruhe des NG abgebrochen und auf Bitte der Eltern nicht wiederholt. Ein Kind wurde ausgeschlossen, weil sich im Nachhinein herausstellte, dass sein Gestationsalter \(<36\) SSW war und ein Kind erfüllte als Mehrling die Einschlusskriterien zur Studie nicht. In n=20 Fällen fand die Messung bei einem Kindesalter von \(>96\)h statt, weshalb die Messergebnisse von der Auswertung ausgeschlossen wurden.

Insgesamt konnten die Messungen von n=326 NG in die Auswertung eingeschlossen werden. In der Referenzgruppe befanden sich n=277 NG, bei deren
3. Ergebnisse

Mütter kein 75-g oGTT durchgeführt wurde oder dessen Ergebnisse die Grenzwerte laut der AWMF-Leitlinie 057/008 Gestationsdiabetes mellitus [2] nicht erreichten oder überschritten. Da die Diagnosefindung eines GDM durch die behandelnden niedergelassenen Frauenärzte nicht einheitlich erfolgte, wurden zwei Studiengruppen gebildet.

In Studiengruppe A befanden sich n=40 NG, deren Mütter im 75-g oGTT mindes tens einen pathologischen Wert im Sinne der AWMF-Leitlinie 057/008 Gestationsdiabetes mellitus erreicht hatten. Darunter befanden sich auch eine Mutter mit vorbestehendem T2DM und eine Mutter, bei der während der Schwangerschaft der Verdacht auf T1DM aufgetreten war.

Zu Studiengruppe B zählten alle NG der Studiengruppe A und n=9 weitere NG, bei deren Müttern ohne Durchführung eines 75-g oGTT (n=4) oder ohne gemäß der AWMF-Leitlinie 057/008 Gestationsdiabetes mellitus pathologische Ergebnisse im 75-g oGTT (n=4) die Diagnose GDM aus anderen Gründen gestellt worden war. Diese Mütter wurden mit Ernährungsumstellung oder Insulin therapiert und der GDM im Geburtsbericht dokumentiert.

Außerdem enthält Studiengruppe B n=1 NG, dessen Mutter einen präkonzeption nellen MODY-Diabetes hatte.
3. Ergebnisse

Abb. 1: Einteilung in Gruppen
3. Ergebnisse

3.2. Demographische und klinische Daten der Referenzgruppe bei Geburt

In den Tabellen 3 und 4 sind die demographischen und klinischen Parameter der Referenzgruppe aufgelistet.

Tab. 3: Biometrische Daten Neugeborene Referenzgruppe (normalverteilt)

<table>
<thead>
<tr>
<th>Geschlecht</th>
<th>Anzahl</th>
<th>MW±SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>männlich [n(%)]</td>
<td>120 (43%)</td>
<td></td>
</tr>
<tr>
<td>weiblich [n(%)]</td>
<td>157 (57%)</td>
<td></td>
</tr>
</tbody>
</table>

Geburtsgewicht (g) 3375,5±448,4

Geburtsgewicht-SDS -0,06±0,88

<table>
<thead>
<tr>
<th>Hypotroph [n(%)]</th>
<th>25 (9%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eutroph [n(%)]</td>
<td>237 (86%)</td>
</tr>
<tr>
<td>Hypertroph [n(%)]</td>
<td>15 (5%)</td>
</tr>
</tbody>
</table>

Tab. 4: Biometrische Daten Neugeborene Referenzgruppe (nicht normalverteilt)

<table>
<thead>
<tr>
<th>Gestationsalter (SSW)</th>
<th>Median</th>
<th>P 25</th>
<th>P 75</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>39,9</td>
<td>38,9</td>
<td>40,4</td>
<td>36</td>
<td>42,3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Körperlänge (cm)</th>
<th>51</th>
<th>50</th>
<th>52</th>
<th>43</th>
<th>58</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kopfumfang (cm)</td>
<td>35</td>
<td>34</td>
<td>36</td>
<td>31</td>
<td>38</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>APGAR</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5 Minuten</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>10 Minuten</td>
<td>10</td>
<td>9</td>
<td>10</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>Nabelarterien-pH</td>
<td>7,25</td>
<td>7,21</td>
<td>7,3</td>
<td>6,99</td>
<td>7,45</td>
</tr>
</tbody>
</table>
3. Ergebnisse

3.2.1. Häufigkeitsverteilung des Standard Deviation Score für das Geburtsgewicht


![Häufigkeitsverteilung Standard Deviation Score des Geburtsgewichts in der Referenzgruppe](image)

Abb. 2: Häufigkeitsverteilung Standard Deviation Score des Geburtsgewichts in der Referenzgruppe

3.2.2. Schwangerschaftsbedingungen in der Referenzgruppe

In der Referenzgruppe waren n=25 (9,0%) Kinder mit einem SDS\(_{\text{GG}}\) < -1,282 bzw. mit ihrem GG unter der 10. Perzentile und somit hypotroph. Zu den eutrophen Kindern mit einem GG zwischen der 10. Und 90. Perzentile gehörten n=237 (86,6%). N=15 (5,4%) Neugeborene lagen mit ihrem SDS\(_{\text{GG}}\) >1,282 bzw. mit ihrem GG über der 90. Perzentile und wurden somit als hypertroph beschrieben. Die Aufnahme der hypo- und hypertrophen NG in die Referenzgruppe erfolgte aufgrund der Tatsache, dass deren Anteil jeweils <10% war und die Verteilung des Geburtsgewicht-SDS somit einer normalen Verteilung für NG entsprach. Die Vermutung, dass an einer Universitätsklinik der Anteil von Kindern mit niedrigem oder erhöhtem Geburtsgewicht höher sein könnte als in der Normalbevölkerung,
spiegelte sich in der Referenzgruppe nicht wider. Dies hängt möglicherweise damit zusammen, dass das UKT auch das Kreiskrankenhaus für den Landkreis Tübingen und die UFK hier die einzige Geburtsklinik ist.

3.3. Demographische und klinische Daten der Mütter der Neugeborenen in der Referenzgruppe


Tab. 5: Demographische und klinische Daten der Mütter der Referenzgruppe

<table>
<thead>
<tr>
<th></th>
<th>Median</th>
<th>P 25</th>
<th>P 75</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alter bei Geburt des</td>
<td>32,5</td>
<td>29,2</td>
<td>36</td>
<td>16,6</td>
<td>48</td>
</tr>
<tr>
<td>Kindes (Jahre)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n=277</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Körpergewicht vor der</td>
<td>62</td>
<td>57</td>
<td>72</td>
<td>36</td>
<td>114</td>
</tr>
<tr>
<td>Schwangerschaft (kg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n=276</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI vor der Schwangerschaft (kg/m²)</td>
<td>22,4</td>
<td>20,5</td>
<td>25,2</td>
<td>16,0</td>
<td>41,6</td>
</tr>
<tr>
<td>n=276</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gewichtszunahme während Schwangerschaft (kg)</td>
<td>14</td>
<td>11</td>
<td>18</td>
<td>-0,8</td>
<td>38</td>
</tr>
<tr>
<td>n=272</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3. Ergebnisse

3.3.1. Durchführung des 50-g Glukose-Screeningtests und des 75-g oGTT bei Müttern der Referenzgruppe

In Tabelle 6 sind die Angaben der Mütter (n=277) aus dem Fragebogen bezüglich der Durchführung des 50-g Glukose-Screeningtests und des 75-g oGTT aufgeführt.

**Tab. 6: Durchführung 50-g Glukose-Screeningtest und 75-g oGTT Referenzgruppe**

<table>
<thead>
<tr>
<th>50-g Glukose-Screeningtest</th>
<th>75-g oGTT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nicht durchgeführt</td>
<td>n=76</td>
</tr>
<tr>
<td>Test durchgeführt</td>
<td>n=187</td>
</tr>
<tr>
<td>unauffällig</td>
<td>n=170</td>
</tr>
<tr>
<td>auffällig</td>
<td>n=8</td>
</tr>
<tr>
<td>Ergebnis unbekannt</td>
<td>n=9</td>
</tr>
<tr>
<td>Keine Angabe</td>
<td>n=14</td>
</tr>
</tbody>
</table>

In n=8 der 187 Fälle, in denen der 50-g Glukose-Screeningtest durchgeführt wurde, wurden Werte über dem Grenzwert von ≥135mg/dl gemessen. Der darauf folgende 75-g oGTT war jedoch unauffällig, sodass kein GDM diagnostiziert wurde.

3.4. Demographische und klinische Daten der Studiengruppen A und B

Ähnlich wie in der Referenzgruppe waren auch in den Studiengruppen A und B einige Merkmale nicht normalverteilt, sodass die Darstellung dieser Daten als Median, Quartilen (P25 - P75) und Minimum und Maximum gewählt wurde. Normalverteilte Daten wurden als Mittelwert und Standardabweichung dargestellt. Tabelle 7 und Tabelle 8 zeigen die biometrischen Daten der Neugeborenen in Studiengruppe A.
Tab. 7: Biometrische Daten der Neugeborenen in der Studiengruppe A (normalverteilt)

Abk.: MW – Mittelwert, SD – Standardabweichung, SDS – Standard Deviation Score

<table>
<thead>
<tr>
<th>Anzahl</th>
<th>MW ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geschlecht</td>
<td></td>
</tr>
<tr>
<td>männlich [n(%)]</td>
<td>18 (45%)</td>
</tr>
<tr>
<td>weiblich [n(%)]</td>
<td>22 (55%)</td>
</tr>
<tr>
<td>Geburtsgewicht (g)</td>
<td>3490 ± 503,7</td>
</tr>
<tr>
<td>Geburtsgewicht SDS</td>
<td>0,27 ± 0,97</td>
</tr>
<tr>
<td>Hypotroph [n(%)]</td>
<td>3 (7,5%)</td>
</tr>
<tr>
<td>Eutroph [n(%)]</td>
<td>32 (80%)</td>
</tr>
<tr>
<td>Hypertroph [n(%)]</td>
<td>5 (12,5%)</td>
</tr>
</tbody>
</table>

Tab. 8: Biometrische Daten der Neugeborenen in der Studiengruppe A (nicht normalverteilt)


<table>
<thead>
<tr>
<th>Median</th>
<th>P 25</th>
<th>P 75</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gestationsalter (SSW)</td>
<td>39,7</td>
<td>38,6</td>
<td>40,3</td>
<td>37</td>
</tr>
<tr>
<td>Körperlänge (cm)</td>
<td>51,5</td>
<td>50</td>
<td>53</td>
<td>40</td>
</tr>
<tr>
<td>Kopfumfang (cm)</td>
<td>35</td>
<td>34</td>
<td>36,4</td>
<td>32,5</td>
</tr>
<tr>
<td>APGAR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Minuten</td>
<td>9</td>
<td>9</td>
<td>9,75</td>
<td>5</td>
</tr>
<tr>
<td>10 Minuten</td>
<td>10</td>
<td>9</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>Nabelarterien-pH</td>
<td>7,26</td>
<td>7,22</td>
<td>7,29</td>
<td>7,1</td>
</tr>
</tbody>
</table>

In den Tabellen 9 und 10 sind die biometrischen und klinischen Parameter der Studiengruppe B aufgeführt. Analog zu Studiengruppe A wurden auch normalverteilte Daten als Mittelwert (Standardabweichung) und nicht normalverteilte Daten als Median (P25 - P75) angegeben.
3. Ergebnisse

Tab. 9: Biometrische Daten der Neugeborenen in der Studiengruppe B (normalverteilt)

**Abk.:** MW – Mittelwert, SD – Standardabweichung, SDS – Standard Deviation Score

<table>
<thead>
<tr>
<th>Anzahl n</th>
<th>MW±SD</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Geschlecht</strong></td>
<td></td>
</tr>
<tr>
<td>männlich [n(%)]</td>
<td>21 (43%)</td>
</tr>
<tr>
<td>weiblich [n(%)]</td>
<td>28 (57%)</td>
</tr>
<tr>
<td><strong>Geburtsgewicht (g)</strong></td>
<td>3453±495,8</td>
</tr>
<tr>
<td><strong>Geburtsgewicht SDS</strong></td>
<td>0,27±1,0</td>
</tr>
<tr>
<td>Hypotroph [n(%)]</td>
<td>4 (8%)</td>
</tr>
<tr>
<td>Eutroph [n(%)]</td>
<td>38 (78%)</td>
</tr>
<tr>
<td>Hypertroph [n(%)]</td>
<td>7 (14%)</td>
</tr>
</tbody>
</table>

Tab. 10: Biometrische Daten der Neugeborenen in der Studiengruppe B (nicht normalverteilt)


<table>
<thead>
<tr>
<th>Median</th>
<th>P 25</th>
<th>P 75</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Gestationsalter (SSW)</strong></td>
<td>39,6</td>
<td>38,4</td>
<td>40,3</td>
<td>37</td>
</tr>
<tr>
<td><strong>Körperlänge (cm)</strong></td>
<td>51</td>
<td>50</td>
<td>53</td>
<td>40</td>
</tr>
<tr>
<td><strong>Kopfumfang (cm)</strong></td>
<td>35</td>
<td>34</td>
<td>36</td>
<td>32,5</td>
</tr>
<tr>
<td><strong>APGAR</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Minuten</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>10 Minuten</td>
<td>10</td>
<td>9</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td><strong>Nabelarterien-pH</strong></td>
<td>7,26</td>
<td>7,22</td>
<td>7,3</td>
<td>7,1</td>
</tr>
</tbody>
</table>
3. Ergebnisse

3.5. Demographische und klinische Daten der Mütter der Neugeborenen in den Studiengruppen A und B

In Tabelle 11 und 12 sind die demographischen und klinischen Daten der Mütter der Studiengruppen A (n=40) und B (n=49) als Median und Quartilen dargestellt, da die Merkmale nicht normalverteilt waren. Falls die jeweiligen Daten nicht von allen Müttern erhoben werden konnten, ist dies mit einer abweichenden Anzahl n vermerkt.

Tab. 11: Demographische und klinische Daten der Mütter der Studiengruppe A

Abk.: SD – Standardabweichung, Min – Minimum, Max – Maximum, n – Anzahl

<table>
<thead>
<tr>
<th></th>
<th>Median</th>
<th>P25</th>
<th>P75</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alter bei Geburt des Kindes (Jahre)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n=40</td>
<td>33,9</td>
<td>29</td>
<td>38,8</td>
<td>20,9</td>
<td>42</td>
</tr>
<tr>
<td>Körpergewicht vor der Schwangerschaft (kg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n=39</td>
<td>75</td>
<td>65</td>
<td>85</td>
<td>48</td>
<td>111</td>
</tr>
<tr>
<td>BMI vor der Schwangerschaft (kg/m²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n=39</td>
<td>26,5</td>
<td>23,7</td>
<td>31,7</td>
<td>18,0</td>
<td>42,5</td>
</tr>
<tr>
<td>Gewichtszunahme während Schwangerschaft (kg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n=39</td>
<td>12,0</td>
<td>8,0</td>
<td>17,6</td>
<td>1,0</td>
<td>30,6</td>
</tr>
</tbody>
</table>
3. Ergebnisse

Tab. 12: Demographische und klinische Daten der Mütter der Studiengruppe B

<table>
<thead>
<tr>
<th></th>
<th>Median</th>
<th>P25</th>
<th>P75</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alter bei Geburt des</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kindes (Jahre)</td>
<td>33,9</td>
<td>29,0</td>
<td>38,6</td>
<td>20,9</td>
<td>42,0</td>
</tr>
<tr>
<td>n=49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Körpergewicht vor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>der Schwangerschaft</td>
<td>75,0</td>
<td>63,5</td>
<td>83,7</td>
<td>47,9</td>
<td>111,0</td>
</tr>
<tr>
<td>(kg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n=48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI vor der Schwang-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>erschaft (kg/m²)</td>
<td>26,7</td>
<td>23,7</td>
<td>31,1</td>
<td>18,0</td>
<td>42,5</td>
</tr>
<tr>
<td>n=48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gewichtszunahme</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>während Schwangere-</td>
<td>12,3</td>
<td>8,2</td>
<td>17,5</td>
<td>1,0</td>
<td>30,6</td>
</tr>
<tr>
<td>schaft (kg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n=48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.5.1. Durchführung des 50-g Glukose-Screeningtests und des 75-g oGTT bei Müttern der Studiengruppe A (n=40)

Tabelle 13 zeigt die Angaben, die die Mütter der Studiengruppe A bezüglich der Durchführung des 50-g Glukose-Screeningtests und des 75-g oGTT machten.
3. Ergebnisse

Tab. 13: Durchführung des 50-g Glukose-Screeningtests und des 75-g oGTT bei Müttern der Studiengruppe A

<table>
<thead>
<tr>
<th></th>
<th>50-g Glukose-Screeningtest</th>
<th>75-g oGTT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nicht durchgeführt</td>
<td>n=32</td>
<td>n=0</td>
</tr>
<tr>
<td>Test durchgeführt</td>
<td>n=8</td>
<td>n=40</td>
</tr>
<tr>
<td>unauffällig</td>
<td>n=2</td>
<td>n=0</td>
</tr>
<tr>
<td>auffällig</td>
<td>n=4</td>
<td>n=40</td>
</tr>
<tr>
<td>Ergebnis nicht bekannt</td>
<td>n=2</td>
<td>n=0</td>
</tr>
<tr>
<td>Keine Angabe</td>
<td>n=0</td>
<td>n=0</td>
</tr>
</tbody>
</table>

Bei n=32 Müttern wurde ein 50-g Glukose-Screeningtest nicht durchgeführt, sondern es erfolgte direkt ein 75-g oGTT. Von den n=8 Frauen, die einen 50-g Glukose-Screeningtest erhielten, fielen n=4 mit einem positiven Testergebnis auf. Definitionsgemäß bestätigte sich bei allen im 75-g oGTT die Diagnose GDM. Bei n=2 Müttern, die einen unauffälligen 50-g Glukose-Screeningtest hatten, wurde trotzdem ein 75-g oGTT durchgeführt, welcher pathologische Werte ergab und somit zur Diagnose GDM führte.

N=6 Mütter erfüllten mit ihren Glukosewerten im 75-g oGTT zwar die Diagnosekriterien für einen GDM, die Diagnose selbst wurde jedoch nicht gestellt. Die Gründe hierfür waren nicht in allen Fällen klar eruierbar. Vermutlich hing dies damit zusammen, dass die Blutglukosewerte den Grenzwert für die nüchtern-Blutglukose nach AWMF-Leitlinie nur leicht überschritten hatten. Diese Frauen erhielten folglich auch keine Behandlung, wurden aber aufgrund der Testergebnisse im Rahmen der Studie dennoch in die Studiengruppe A mit den Müttern, die pathologische 75-g oGTT-Werte aufwiesen, aufgenommen.

3.5.2. Durchführung des 50-g Glukose-Screeningtests und des 75-g oGTT bei Müttern der Studiengruppen B (n=49)

Tabelle 14 stellt die Angaben dar, die die Mütter der Studiengruppe B bezüglich des 50-g Glukose-Screeningtests und des 75-g oGTT machten.
3. Ergebnisse

Tab. 14: Durchführung des 50-g Glukose-Screeningtests und des 75-g oGTT bei den Müttern der Studiengruppe B

<table>
<thead>
<tr>
<th></th>
<th>50-g Glukose-Screeningtest</th>
<th>75-g oGTT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nicht durchgeführt</td>
<td>n=40</td>
<td>n=3</td>
</tr>
<tr>
<td>Test durchgeführt</td>
<td>n=9</td>
<td>n=46</td>
</tr>
<tr>
<td>unauffällig</td>
<td>n=2</td>
<td>n=4</td>
</tr>
<tr>
<td>auffällig</td>
<td>n=4</td>
<td>n=40</td>
</tr>
<tr>
<td>Ergebnis unbekannt</td>
<td>n=3</td>
<td>n=2</td>
</tr>
<tr>
<td>Keine Angabe</td>
<td>n=0</td>
<td>n=0</td>
</tr>
</tbody>
</table>

Wie in Tabelle 14 gezeigt, war bei n=40 Müttern der 50-g Glukose-Screeningtest nicht durchgeführt worden. Bei den n=9 Frauen, die den Test erhielten, waren die Ergebnisse in n=4 Fällen positiv. Es handelt sich hierbei um dieselben Frauen wie in Studiengruppe A, bei denen die Diagnose GDM dann mit einem 75-g oGTT bestätigt wurde.

In Tabelle 14 spiegelt sich die von der AWMF-Leitlinie 057/008 abweichende Diagnosefindung der Frauenärzte für GDM wider.

Die Studiengruppe B enthält die n=40 Neugeborenen der Studiengruppe A. Außerdem befinden sich darin alle anderen Frauen (n=9), deren Neugeborene in die Studie eingeschlossen wurden und die die Diagnose einer diabetischen Stoffwechselschädigung ohne Durchführung eines 75-g oGTT erhalten hatten oder ohne, dass dieser pathologische Werte ergeben hatte (siehe Kapitel 3.1).

In n=2 Fällen wurde der Test nach Angaben der Mütter durchgeführt, das Ergebnis war jedoch nicht bekannt. Sie hatten jedoch aus rückwirkend nicht mehr eruierbaren Gründen die Diagnose GDM von ihrem Frauenarzt erhalten. Die Mutter, die schon vor der Schwangerschaft an einem MODY-Diabetes erkrankt war, hatte keinen oGTT durchführen lassen.
3. Ergebnisse

3.5.3. Behandlung der Mütter der Studiengruppen A und B

Die Mütter der Studiengruppen A und B erhielten entweder keine Behandlung, weil die Diagnose GDM trotz pathologischer 75-g oGTT Werte nicht gestellt wurde, eine Behandlung mit Ernährungsumstellung (Diät) oder eine Insulin-Behandlung. Tabelle 15 zeigt die Verteilung der Behandlung in den einzelnen Studiengruppen.

Tab. 15: Behandlung der Mütter der Studiengruppen A und B

<table>
<thead>
<tr>
<th>Studiengruppe A</th>
<th>Studiengruppe B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keine Behandlung</td>
<td>6</td>
</tr>
<tr>
<td>Diät</td>
<td>20</td>
</tr>
<tr>
<td>Diät und Insulin</td>
<td>8</td>
</tr>
<tr>
<td>Insulin</td>
<td>6</td>
</tr>
</tbody>
</table>

3.6. Vergleich des Körperfettanteils in den drei Gruppen

3.6.1. Ergebnisse der Messung der Körperzusammensetzung in der Referenzgruppe


In der Referenzgruppe betrug der Körperfettanteil der NG im Median 10,8% (7,7% – 13,4%).
3. Ergebnisse

Tab. 16: Ergebnisse der Körperzusammensetzung in der Referenzgruppe


<table>
<thead>
<tr>
<th></th>
<th>Median</th>
<th>P25</th>
<th>P75</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gestationsalter (SSW)</td>
<td>39,86</td>
<td>38,86</td>
<td>40,42</td>
<td>36,0</td>
<td>42,28</td>
</tr>
<tr>
<td>Geburtsgewicht (g)</td>
<td>3410</td>
<td>3020</td>
<td>3670</td>
<td>2200</td>
<td>4840</td>
</tr>
<tr>
<td>SDSGG</td>
<td>-0,04</td>
<td>-0,62</td>
<td>0,62</td>
<td>-2,25</td>
<td>2,71</td>
</tr>
<tr>
<td>BM (g)</td>
<td>3213</td>
<td>2868</td>
<td>3481</td>
<td>2136</td>
<td>4629</td>
</tr>
<tr>
<td>BF (%)</td>
<td>10,8</td>
<td>7,7</td>
<td>13,4</td>
<td>1,0</td>
<td>21,9</td>
</tr>
<tr>
<td>LBM (%)</td>
<td>89,2</td>
<td>86,6</td>
<td>92,3</td>
<td>78,1</td>
<td>99,0</td>
</tr>
<tr>
<td>BF (g)</td>
<td>333</td>
<td>226</td>
<td>443</td>
<td>24</td>
<td>894</td>
</tr>
<tr>
<td>LBM (g)</td>
<td>2840</td>
<td>2589</td>
<td>3097</td>
<td>1813</td>
<td>4062</td>
</tr>
</tbody>
</table>

3.6.2. Ergebnisse der Messung der Körperzusammensetzung in Studiengruppe A

Der Körperfettanteil der NG in Studiengruppe A betrug im Median 11,4% (9,5% - 15,1%).

Tab. 17: Ergebnisse der Körperzusammensetzung in Studiengruppe A


<table>
<thead>
<tr>
<th></th>
<th>Median</th>
<th>P25</th>
<th>P75</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gestationsalter (SSW)</td>
<td>39,7</td>
<td>38,57</td>
<td>40,28</td>
<td>37,0</td>
<td>41,28</td>
</tr>
<tr>
<td>Geburtsgewicht (g)</td>
<td>3520</td>
<td>3183</td>
<td>3780</td>
<td>2470</td>
<td>4740</td>
</tr>
<tr>
<td>SDSGG</td>
<td>0,24</td>
<td>-0,29</td>
<td>0,92</td>
<td>-1,84</td>
<td>3,12</td>
</tr>
<tr>
<td>BM (g)</td>
<td>3332</td>
<td>3034</td>
<td>3626</td>
<td>2409</td>
<td>4553</td>
</tr>
<tr>
<td>BF (%)</td>
<td>11,4</td>
<td>9,5</td>
<td>15,1</td>
<td>5,6</td>
<td>19,8</td>
</tr>
<tr>
<td>LBM (%)</td>
<td>88,6</td>
<td>84,9</td>
<td>90,5</td>
<td>80,2</td>
<td>94,4</td>
</tr>
<tr>
<td>BF (g)</td>
<td>370</td>
<td>285</td>
<td>548</td>
<td>147</td>
<td>764</td>
</tr>
<tr>
<td>LBM (g)</td>
<td>2909</td>
<td>2651</td>
<td>3171</td>
<td>2186</td>
<td>3846</td>
</tr>
</tbody>
</table>
3.6.3. Ergebnisse der Messung der Körperzusammensetzung in Studiengruppe B

In der Studiengruppe B war der Körperfettanteil der NG im Median 11,3% (9,6% - 15,3%).

Tab. 18: Ergebnisse der Körperzusammensetzung in Studiengruppe B

<table>
<thead>
<tr>
<th></th>
<th>Median</th>
<th>P25</th>
<th>P75</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gestationsalter (SSW)</td>
<td>39,57</td>
<td>38,42</td>
<td>40,28</td>
<td>37,0</td>
<td>41,28</td>
</tr>
<tr>
<td>Geburtsgewicht (g)</td>
<td>3450</td>
<td>3100</td>
<td>3770</td>
<td>2470</td>
<td>4740</td>
</tr>
<tr>
<td>SDSGG</td>
<td>0,25</td>
<td>-0,33</td>
<td>0,9</td>
<td>-1,89</td>
<td>3,12</td>
</tr>
<tr>
<td>BM (g)</td>
<td>3296</td>
<td>2947</td>
<td>3623</td>
<td>2409</td>
<td>4553</td>
</tr>
<tr>
<td>BF (%)</td>
<td>11,3</td>
<td>9,6</td>
<td>15,3</td>
<td>5,6</td>
<td>19,9</td>
</tr>
<tr>
<td>LBM (%)</td>
<td>88,7</td>
<td>84,7</td>
<td>90,4</td>
<td>80,1</td>
<td>94,4</td>
</tr>
<tr>
<td>BF (g)</td>
<td>377</td>
<td>285</td>
<td>567</td>
<td>144</td>
<td>764</td>
</tr>
<tr>
<td>LBM (g)</td>
<td>2892</td>
<td>2552</td>
<td>3134</td>
<td>2186</td>
<td>3846</td>
</tr>
</tbody>
</table>

3.6.4. Unterschiede im Geburtsgewicht-SDS und Körperfettanteil zwischen Referenzgruppe und Studiengruppen

Zur Gegenüberstellung des Geburtsgewicht-SDS der Studiengruppen A und B und der Referenzgruppe wurde ein Boxplot (Abb. 3) erstellt. Das Merkmal war zwar in allen drei Gruppen normalverteilt, allerdings wurde ein einheitliches Vorgehen bei der Gegenüberstellung von Geburtsgewicht-SDS und Körperfettanteil (nicht normalverteilt) in den drei verschiedenen Gruppen bevorzugt.

Für das Merkmal Geburtsgewicht-SDS ergab der Mann-Whitney-U-Test in der Gegenüberstellung von Referenzgruppe und Studiengruppe A, dass der Unterschied der Verteilungen mit p=0,049 statistisch signifikant ist.

Auch zwischen der Studiengruppe B und der Referenzgruppe ergab der Mann-Whitney-U-Test für das Merkmal Geburtsgewicht-SDS einen statistisch signifikanten Unterschied der Verteilungen (p=0,029).
3. Ergebnisse

Abbildung 4 zeigt die Boxplots der Studiengruppen A und B und der Referenzgruppe bezüglich des Körperfettanteils. Auch hier wurden Mann-Whitney-U-Tests durchgeführt. Das Ergebnis des Rangsummenvergleichs zwischen Studiengruppe A und Referenzgruppe ergab mit p=0,033 einen statistisch signifikanten Unterschied der Verteilungen. Auch für die Referenzgruppe und die Studiengruppe B wurde ein statistisch signifikanter Unterschied der Rangsummen (p=0,014) ermittelt.
3. Ergebnisse

Abb. 4: Boxplot Körperfettanteil Referenz- vs. Studiengruppe A bzw. vs. Studiengruppe B

3.6.5. Korrelation von Gestationsalter mit Geburtsgewicht-SDS bzw. Körperfettanteil

Da der Fetus seine Fettdärmen erst im dritten Trimenon der Schwangerschaft progredient aufbaut, wurde geprüft, ob und in welchem Ausmaß das Gestationsalter der Säuglinge mit ihrem Geburtsgewicht-SDS bzw. ihrem Körperfettanteil korrelierte. Hierfür wurden für die drei Gruppen Streudiagramme (Abbildungen 5 bis 13) erstellt. Die Korrelation wurde mit dem Korrelationskoeffizienten $\rho$ nach Spearman berechnet, um eine einheitliche Darstellung zu erreichen, da die Merkmale in den Studiengruppen A und B nicht normalverteilt waren.
3.6.5.1. Referenzgruppe: Korrelation von Gestationsalter mit Geburtsgewicht-SDS bzw. Körperfettanteil

Abbildung 5 zeigt ein Streudiagramm, das das Gestationsalter (SSW) und den Geburtsgewicht-SDS der NG der Referenzgruppe darstellt.

Zwischen dem Gestationsalter (SSW) und dem Geburtsgewicht-SDS der Referenzgruppe besteht eine geringe, aber statistisch signifikante Korrelation ($\rho = -0,142$ und $p = 0,018$), die im Streudiagramm nicht erkennbar ist und der klinisch keine Bedeutung beigemessen werden kann.
3. Ergebnisse

Abbildung 6 zeigt ein Streudiagramm, in dem das Gestationsalter (SSW) und der Körperfettanteil (%) der NG der Referenzgruppe dargestellt werden.

Für das Gestationsalter (SSW) und den Körperfettanteil (%) der Referenzgruppe ($\rho = 0,013$ und $p= 0,834$) besteht keine Korrelation.
3. Ergebnisse

3.6.5.2. **Studiengruppe A: Korrelation von Gestationsalter mit Geburtsgewicht-SDS bzw. Körperfettanteil**

Abbildung 7 zeigt ein Streudiagramm, das das Gestationsalter (SSW) und den Geburtsgewicht-SDS der NG der Studiengruppe A darstellt.

Das Gestationsalter (SSW) der Studiengruppe A korreliert nicht mit dem SDS des Geburtsgewichts ($\rho = -0,081$ und $p = 0,619$).
3. Ergebnisse

Abbildung 8 zeigt ein Streudiagramm, in dem das Gestationsalter (SSW) und der Körperfettanteil (%) der NG der Studiengruppe A dargestellt werden.

Auch für das Gestationsalter und den Körperfettanteil ergab sich in der Studiengruppe A keine Korrelation ($\rho = 0,138$ und $p = 0,397$).
3. Ergebnisse

3.6.5.3. Studiengruppe B: Korrelation von Gestationsalter mit Geburtsgewicht-SDS bzw. Körperfettanteil

Abbildung 9 zeigt ein Streudiagramm, in dem das Gestationsalter (SSW) und der Geburtsgewicht-SDS der NG der Studiengruppe B zur Darstellung kommen.

In Studiengruppe B korreliert das Gestationsalter (SSW) nicht mit dem Geburtsgewicht-SDS ($\rho = -0,147$ und $p= 0,314$).
Abbildung 10 zeigt ein Streudiagramm, das das Gestationsalter (SSW) und den Körperfettanteil (%) der NG aus Studiengruppe B darstellt.

Auch zwischen dem Gestationsalter (SSW) und dem Körperfettanteil der NG konnte keine Korrelation gezeigt werden \((\rho = -0,019 \text{ und } p = 0,898)\).

3.7. Area under the Curve der Ergebnisse des 75-g oGTT

In Studiengruppe A wurde bei allen \(n=40\) Schwangeren ein 75-g oGTT durchgeführt. Im Folgenden wurde untersucht, ob es eine Korrelation zwischen der AUC des 75-g oGTT und dem SDS$_{GG}$, der Anzahl der kindlichen postnatalen Hypoglykämien \((n)\) und dem Körperfettanteil (%) gab. Es waren nur die Werte für die AUC$_{75}$-g oGTT und den SDS$_{GG}$ normalverteilt, sodass zur einheitlichen Darstellung in allen drei Fällen der Korrelationskoeffizient \(\rho\) nach Spearman berechnet wurde.
3. Ergebnisse

3.7.1. Studiengruppe A: Korrelation von AUC\(_{75}\)-g oGTT mit dem Geburtsgewicht-SDS der Neugeborenen

Die Werte der Area under the Curve des 75-g oGTT und der Geburtsgewicht-SDS der NG sind stetige Merkmale.

Um zu prüfen, ob die Ergebnisse des mütterlichen 75-g oGTT (dargestellt als Area under the Curve, AUC\(_{75}\)-g oGTT) mit dem Geburtsgewicht-SDS der NG (SDS\(_{GG}\)) assoziiert waren, wurde ein Streudiagramm erstellt (Abbildung 11).

Abb. 11: Streudiagramm AUC 75-g oGTT vs. SDS Geburtsgewicht in Studiengruppe A

Die Berechnung des Korrelationskoeffizienten $\rho$ nach Spearman ergab keine Korrelation der AUC des 75-g oGTT der Mütter mit dem SDS des Geburtsgewichts ($\rho = -0,113$ und $p = 0,487$).
3.7.2. Studiengruppe A: Korrelation zwischen der AUC des 75-g oGTT mit der Anzahl der Hypoglykämien der Neugeborenen

Um zu prüfen, ob erhöhte mütterliche Werte im 75-g oGTT eine Auswirkung auf den kindlichen Blutzuckerspiegel nach der Geburt hatten, wurde die Korrelation zwischen der AUC des 75-g oGTT und der Anzahl der Hypoglykämien <45mg/dl berechnet und ein Streudiagramm erstellt (Abbildung 12). Von den n=40 NG der Studiengruppe A wurde nur bei n=35 Kindern der Blutzucker bestimmt. Dies hing damit zusammen, dass sich in Studiengruppe A auch diejenigen Kinder befanden, deren Mütter zwar erhöhte 75-g oGTT-Werte hatten, die Diagnose GDM aber nicht gestellt wurde und somit postnatal die eigentlich erforderliche routinemäßige Blutzuckerbestimmung bei den NG nicht erfolgte.
3. Ergebnisse

Der Korrelationskoeffizient ρ nach Spearman ergab mit ρ= 0,011 und p= 0,95 keine Korrelation zwischen der AUC des 75-g oGTT der Mütter und der Anzahl der kindlichen postnatalen Hypoglykämien.

3.7.3. Studiengruppe A: Korrelation von AUC_75-g oGTT mit Körperfettanteil der Neugeborenen

Auch zur Prüfung einer möglichen Korrelation zwischen der AUC des 75-g oGTT und dem Körperfettanteil der NG wurde ein Streudiagramm (Abbildung 13) erstellt und die Korrelation nach Spearman berechnet.

![Streudiagramm AUC 75-g oGTT vs. Körperfettanteil (%) in Studiengruppe A](image)

Der Korrelationskoeffizient ρ= 0,014 (p= 0,934) zeigt, dass es keine Korrelation zwischen der AUC des 75-g oGTT der Mütter und dem Körperfettanteil der NG gab.
3.8. Auswertung der Blutzuckerselbstmessung der Mütter während der Schwangerschaft

In der Studiengruppe B war es möglich, von n=15 Müttern die Ergebnisse der Blutzuckerselbstmessung auszuwerten. Im Median betrug der Anteil aus den 1h postprandial gemessenen BZ-Werten ≥140mg/dl an der Gesamtzahl der 1h postprandial aufgezeichneten Werte 13%. Das Minimum des Quotienten betrug null, das Maximum 33,7%.

Der Median dieser Quotienten wurde als Grenzwert für eine Einteilung der Frauen in zwei Gruppen festgesetzt. In Gruppe 1 befinden sich jene Frauen, die in weniger als 13% der Blutzucker-Messungen den Grenzwert von 140 mg/dl 1h postprandial erreicht hatten. In Gruppe 2 befinden sich die Frauen, die in mehr als 13% der Messungen den Grenzwert von 140 mg/dl 1h postprandial erreicht oder überschritten hatten.

Mithilfe dieser Dichotomisierung sollte geprüft werden, ob der mütterliche Blutglukosespiegel während der Schwangerschaft eine Auswirkung auf die postnatale Blutzuckerspiegelung, sowie den Geburtsgewicht-SDS und den Körperfettanteil der NG hatte.

3.8.1. Assoziation der mütterlichen postprandialen Blutglukosekonzentration während der Schwangerschaft mit dem postnatalen Blutglukosespiegel der Neugeborenen

Auch die NG der Mütter, deren Blutzuckerspiegel aufgezeichnet wurden, wurden in zwei Gruppen aufgeteilt. Gruppe 1 enthielt n=8 NG, bei denen keine postnatale Hypoglykämie <45mg/dl gemessen wurde. In Gruppe 2 befanden sich n=6 Kinder, die postnatal eine Hypoglykämie <45mg/dl hatten, sowie n=1 NG, bei dem drei Hypoglykämien auftraten. Um zu prüfen, ob die mütterliche Blutglukosekonzentration während der Schwangerschaft mit der Anzahl der postnatalen Hypoglykämien (0 oder ≥1) assoziiert war, wurde der Fisher’s Exact Test (zweiseitig) durchgeführt.

Mit einem p=0,619 konnte kein signifikanter Unterschied zwischen den Gruppen >13% und <13% der Blutzucker-Werte ≥140 mg/dl in Bezug auf das Auftreten von postnatalen Hypoglykämien gezeigt werden.
3. Ergebnisse


In Tabelle 19 sind das Geburtsgewicht, der Geburtsgewicht-SDS und der Körperfettanteil der n=15 Kinder abgebildet, deren Mütter Ergebnisse der Blutglukoseselbstmessung während der Schwangerschaft vorgelegt hatten. Gruppe 1 enthält die n=8 NG, deren Mütter weniger als 13% der Blutglukosewerte über ≥140mg/dl gemessen hatten. In Gruppe 2 befinden sich jene Kinder, deren Mütter in mehr als 13% der Messungen Blutglukosewerte ≥140 mg/dl erreicht hatten.

Tab. 19: Geburtsgewicht, Geburtsgewicht-SDS und Körperfettanteil der Neugeborenen, von deren Müttern die Ergebnisse der BZ-Selbstmessung während der Schwangerschaft vorlagen

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Geburtsgewicht (g)</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gruppe 1 (n=8)</td>
<td>3685</td>
<td>3433</td>
<td>3888</td>
<td>2810</td>
<td>4120</td>
</tr>
<tr>
<td>Gruppe 2 (n=7)</td>
<td>3350</td>
<td>2890</td>
<td>3840</td>
<td>2700</td>
<td>4070</td>
</tr>
<tr>
<td><strong>Geburtsgewicht-SDS</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gruppe 1 (n=8)</td>
<td>0,73</td>
<td>-0,16</td>
<td>1,14</td>
<td>-0,44</td>
<td>1,37</td>
</tr>
<tr>
<td>Gruppe 2 (n=7)</td>
<td>0,03</td>
<td>-1,01</td>
<td>1,53</td>
<td>-1,3</td>
<td>2,1</td>
</tr>
<tr>
<td><strong>Körperfettanteil (%)</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gruppe 1 (n=8)</td>
<td>12,1</td>
<td>9,1</td>
<td>17,3</td>
<td>6,6</td>
<td>19,4</td>
</tr>
<tr>
<td>Gruppe 2 (n=7)</td>
<td>11,3</td>
<td>9,1</td>
<td>12,1</td>
<td>9,0</td>
<td>17,9</td>
</tr>
</tbody>
</table>

Da die Merkmale nicht normalverteilt waren, wurde ein Mann-Whitney-U-Test zur Prüfung eines signifikanten Unterschieds der Verteilung durchgeführt. Auf einem Signifikanzniveau von 5% ergab sich für keines der Merkmale ein signifikanter Unterschied in der Verteilung (Geburtsgewicht p=0,247, Geburtsgewicht-SDS p=0,355, Körperfettanteil p=0,817) zwischen Gruppe 1 und Gruppe 2.
In diesen n=15 Fällen konnte demnach keine Assoziation der aufgezeichneten mütterlichen postprandialen Blutglukosekonzentration während der Schwangerschaft mit dem Geburtsgewicht, dem Geburtsgewicht-SDS und dem Körperfettanteil der NG gezeigt werden.

3.9. Hypoglykämien in den Studiengruppen A und B
Um zu prüfen, ob das Geburtsgewicht, der Geburtsgewicht-SDS oder der Körperfettanteil der Neugeborenen mit dem Auftreten von postnatalen Hypoglykämien <45mg/dl assoziiert war, wurde in den Studiengruppen A und B die Anzahl der Hypoglykämien gezählt und auf dieser Basis wurden zwei Gruppen (Anzahl Hypoglykämien n=0 vs. Anzahl Hypoglykämien ≥ 1) gebildet. Die beiden Gruppen wurden mithilfe eines Mann-Whitney-U-Tests auf die Unterschiede bezüglich der genannten Merkmale hin untersucht, da die Merkmale nicht normalverteilt waren.

Von den n=40 Neugeborenen der Studiengruppe A wurde bei n=35 eine Bestimmung der Blutglukosekonzentration in den ersten 24h nach der Geburt durchgeführt. Die n=5 Neugeborenen, bei denen keine Blutglukosebestimmung erfolgte, waren die Kinder jener Mütter, bei denen trotz pathologischer Werte im 75-g oGTT die Diagnose GDM nicht gestellt worden war, und die Kinder somit keine postnatale Blutzuckerüberwachung erhielten.
Bei n=17 Neugeborenen war die Blutglukosekonzentration mindestens einmal <45mg/dl. Bei n=18 Kindern wurde keine Hypoglykämie erfasst.
Tabelle 20 zeigt das Geburtsgewicht, den Geburtsgewicht-SDS und den Körperfettanteil für die beiden Gruppen.
3. Ergebnisse

Tab. 20: Studiengruppe A: Klinische Daten der Subgruppen mit 0 Hypoglykämien vs. ≥1 Hypoglykämien


<table>
<thead>
<tr>
<th>Merkmal</th>
<th>Median</th>
<th>P25</th>
<th>P75</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Hypoglykämien (n = 18 Neugeborene)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GG (g)</td>
<td>3555</td>
<td>2940</td>
<td>3933</td>
<td>2700</td>
<td>4740</td>
</tr>
<tr>
<td>SDS_{GG}</td>
<td>0,28</td>
<td>-0,56</td>
<td>1,0</td>
<td>-1,84</td>
<td>3,12</td>
</tr>
<tr>
<td>Körperfett (%)</td>
<td>12,5</td>
<td>8,8</td>
<td>16,3</td>
<td>5,6</td>
<td>19,8</td>
</tr>
<tr>
<td>≥1 Hypoglykämien (n = 17 Neugeborene)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GG (g)</td>
<td>3530</td>
<td>3265</td>
<td>3770</td>
<td>2470</td>
<td>4300</td>
</tr>
<tr>
<td>SDS_{GG}</td>
<td>0,38</td>
<td>-0,48</td>
<td>0,92</td>
<td>-0,81</td>
<td>1,17</td>
</tr>
<tr>
<td>Körperfett (%)</td>
<td>11,3</td>
<td>10,0</td>
<td>14,1</td>
<td>6,3</td>
<td>16,9</td>
</tr>
</tbody>
</table>

Mit dem Mann-Whitney-U-Test konnte weder für das Geburtsgewicht (p=0,934), noch für den Geburtsgewicht-SDS (p=1,0) oder den Körperfettanteil (p=0,438) ein statistisch signifikanter Unterschied in den Verteilungen zwischen den beiden Gruppen gezeigt werden.

3.9.2. Studiengruppe B: Assoziation von Geburtsgewicht, Geburtsgewicht-SDS und Körperfettanteil mit dem Auftreten von postnatalen Hypoglykämien bei den Neugeborenen

In der Studiengruppe B erfolgte bei n=44 von n=49 Neugeborenen eine postnatale Kontrolle der Blutzuckerkonzentration. Die n=5 Kinder, bei denen keine Messungen stattgefunden haben, waren dieselben Kinder wie in Studiengruppe A. Von den n=44 NG wurde bei n=20 mindestens eine Hypoglykämie <45mg/dl erfasst.

Tabelle 21 zeigt die Merkmale Geburtsgewicht, Geburtsgewicht-SDS und Körperfett, die in den beiden Gruppen verglichen werden sollten.
Tab. 21: Studiengruppe B: Klinische Daten der Subgruppen mit 0 Hypoglykämien vs. ≥1 Hypoglykämien


<table>
<thead>
<tr>
<th></th>
<th>Median</th>
<th>P25</th>
<th>P75</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Hypoglykämien</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n = 24)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GG (g)</td>
<td>3555</td>
<td>2915</td>
<td>3877</td>
<td>2590</td>
<td>4740</td>
</tr>
<tr>
<td>GG-SDS</td>
<td>0,28</td>
<td>-0,42</td>
<td>1,11</td>
<td>-1,89</td>
<td>3,12</td>
</tr>
<tr>
<td>Körperfett (%)</td>
<td>12,0</td>
<td>9,3</td>
<td>16,6</td>
<td>5,6</td>
<td>19,8</td>
</tr>
<tr>
<td>≥1 Hypoglykämien</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n = 20 Neugeborene)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GG (g)</td>
<td>3425</td>
<td>3183</td>
<td>3750</td>
<td>2470</td>
<td>4300</td>
</tr>
<tr>
<td>GG-SDS</td>
<td>0,4</td>
<td>-0,56</td>
<td>0,85</td>
<td>-1,01</td>
<td>1,71</td>
</tr>
<tr>
<td>Körperfett (%)</td>
<td>11,4</td>
<td>9,9</td>
<td>14,2</td>
<td>6,3</td>
<td>19,9</td>
</tr>
</tbody>
</table>

Der Mann-Whitney-U-Test ergab weder für das Geburtsgewicht (p=0,934) noch für den Geburtsgewicht-SDS (p=0,962) und den Körperfettanteil (p=0,588) einen signifikanten Unterschied der Verteilungen.
4. Diskussion

Ein Gestationsdiabetes mellitus kann eine Vielzahl verschiedener Folgen für Mutter und Kind haben. Diese Arbeit konzentrierte sich auf die metabolischen Auswirkungen eines maternalen GDM auf das Kind. Ziel der prospektiven klinischen Studie war es, zu untersuchen, ob Neugeborene von Müttern mit GDM in den ersten 96h nach Geburt einen höheren Körperfettanteil aufweisen als Kinder von Müttern ohne Nachweis eines GDM. Es wurden n=277 Kinder von Müttern ohne GDM in die Referenzgruppe eingeschlossen, n=40 Kinder von Müttern mit GDM in Studiengruppe A sowie n=49 Kinder von Müttern mit GDM in Studiengruppe B. Die Auswertung der erhobenen Daten ergab, dass Kinder von Müttern ohne GDM im Median (P25 – P75) einen BF% von 10,8% (7,7% - 13,4%) hatten. Kinder von Müttern mit GDM wiesen im Median (P25 – P75) einen BF% von 11,4% (9,5% - 15,1%) in Studiengruppe A und 11,3% (9,6 – 15,3%) in Studiengruppe B auf. Der durchgeführte Mann-Whitney-U-Test ergab einen statistisch signifikanten Unterschied in den Verteilungen für das Merkmal BF% zwischen Referenzgruppe und Studiengruppe A (p=0,033) bzw. Studiengruppe B (p=0,014). Im folgenden Kapitel soll diskutiert werden, ob dieser Unterschied auch als relevant betrachtet werden kann.

Zusätzlich wurden verschiedene Subgruppenanalysen durchgeführt.
Es sollte untersucht werden, ob die Größe der AUC für den 75-g oGTT mit dem Geburtsgewicht-SDS, der Anzahl der Hypoglykämien (BZ <45mg/dl) oder dem BF% der NG von Müttern mit GDM assoziiert war. Die statistische Auswertung ergab, dass die einzelnen Merkmale nicht mit der AUC_75-g oGTT korrelierten (s. Kapitel 3.6). Dieses Ergebnis soll im folgenden Kapitel diskutiert werden.

Außerdem wurde untersucht, ob die Güte der mütterlichen BZ-Einstellung (gemessen am BZ-Wert 1h postprandial) bei Müttern mit GDM mit der Anzahl der kindlichen postnatalen Hypoglykämien korrelierte und ob sich ein signifikanter Unterschied bezüglich des GG (g), des SDS_GG oder des BF% der NG zeigte, wenn die Mütter bei mehr oder weniger als 13% der erhobenen BZ-Werte eine Hyperglykämie ≥140mg/dl gemessen hatten. Hierauf konnten keine Hinweise gefunden werden (s. Kapitel 3.7). Gründe dafür werden im Folgenden diskutiert.
4. Diskussion

Zuletzt wurde der Frage nachgegangen, ob NG in den Studiengruppen A bzw. B, die in den ersten 24 Lebensstunden mindestens eine Hypoglykämie mit einem BZ <45mg/dl entwickelt hatten, statistisch signifikante Unterschiede in den Verteilungen für das GG (g), den SDS_GG oder den BF% aufwiesen im Vergleich zu jenen NG, die im selben Zeitraum keine Hypoglykämie entwickelt hatten. Hintergrund dieser Frage war, zu untersuchen, ob in Zukunft eine Messung des BF% mittels PEA POD® zur Detektion bestimmter Risikogruppen für postnatale Hypoglykämien die regelmäßigen, für die Neugeborenen schmerzhaften, Blutzuckerkontrollen ablösen könnte. Hierauf konnte kein Hinweis gefunden werden. Mögliche Ursachen werden im Folgenden besprochen.

4.1. Diskussion der in dieser Arbeit durchgeführten Analysen

4.1.1. Assoziation eines maternalen GDM mit dem Körperfettanteil von Neugeborenen

Die Auswertung der erhobenen Daten in dieser Studie ergab, dass Kinder von Müttern mit GDM im Median (P25 – P75) einen höheren BF% aufwiesen als Kinder von Müttern ohne GDM (BF% = 11,4% (9,5% - 15,1%) für Studiengruppe A bzw. BF% = 11,3% (9,6 – 15,3%) in Studiengruppe B versus BF% = 10,8% (7,7% - 13,4%) in der Referenzgruppe). Dieser Unterschied war statistisch signifikant (p=0,033 für Studiengruppe A bzw. p=0,014 für Studiengruppe B).


Eine Untersuchung von Catalano et al. aus den USA ergab, dass die NG von Müttern mit GDM zwar einen numerisch höheren, jedoch keinen statistisch signifikant höheren BF% (MW ± SD) im Vergleich zu Kindern von Müttern mit normaler Glukosetoleranz hatten (12.6%±4.6 vs. 10.8%±4.2, p=0.06). Die Kinder waren zum Zeitpunkt der Messung maximal 48 Stunden alt. In diese Auswertung wurden jedoch nur n=52 NG von Müttern mit normaler Glukosetoleranz und n=37 Kinder von Müttern mit GDM eingeschlossen und der BF% wurde nicht mit ADP,
sondern mittels Dual-Röntgen Absorptiometrie bestimmt. [29] Dies schränkt die Vergleichbarkeit mit den in dieser Arbeit erhobenen Ergebnisse ein. In eine Studie von Au et al. aus Australien wurden n=599 NG eingeschlossenen, von denen n=67 Mütter einen GDM hatten. [30, 31] In dieser Studie wurde der BF% innerhalb der ersten 48 Lebensstunden mittels ADP bestimmt und die Ergebnisse wurden 2013 in zwei verschiedenen Publikationen veröffentlicht. In der Publikation in Early Human Development wurden mütterliche und kindliche Faktoren untersucht, die einen Einfluss auf die Körperzusammensetzung der Neugeborenen hatten. Au et al. beschrieben, dass die Variable mütterlicher GDM keine signifikante Einflussgröße in ihrer Untersuchung war. [30] Die im Diabetes Care veröffentlichte Publikation verglich die n=67 Kinder von Müttern mit GDM mit den n=532 Kindern von Müttern ohne GDM bezüglich ihres BF% (MW±SD). Der BF% von Kindern von Müttern mit GDM war 7,9±4,5% versus 9,3±4,3% bei Kindern von Müttern ohne GDM. Dieser Unterschied war statistisch nicht signifikant (p=0,151). Die Autoren führten dies, sowie die Tatsache, dass Kinder von Müttern mit GDM sogar einen niedrigeren BF% hatten, unter anderem auf die leitliniengerechte BZ-Einstellung der Mütter mit GDM zurück. [31] Im Vergleich zu den Ergebnissen der vorliegenden Arbeit haben die NG von Müttern ohne GDM einen ähnlichen BF%. Bezüglich des Körperfettanteils von Neugeborenen diabetischer Mütter gibt es jedoch erhebliche Unterschiede (Zur besseren Vergleichbarkeit werden an dieser Stelle die Ergebnisse für den BF% der vorliegenden Arbeit als MW±SD dargestellt.): MW±SD für BF% 7,9±4,5% bei Au et al. [31] vs. BF% 12,1±3,6% für Studiengruppe A bzw. BF% 12,3±3,7% in Studiengruppe B der vorliegenden Arbeit.

In anderen Studien zeigte sich wie in der vorliegenden Arbeit ein teilweise sogar deutlich höherer BF% bei Kindern von Müttern mit GDM im Vergleich zu Kindern von Müttern ohne GDM. Lee et al. publizierten 2012 eine Studie aus den USA, in der der BF% von NG nicht-diabetischer Mütter (n=324) mit NG diabetischer Mütter (n=25) zwischen 24 und 48 Lebensstunden anhand von ADP gemessen und verglichen wurde. Ihre Ergebnisse zeigten einen Unterschied im BF% von NG nicht-diabetischer Mütter
4. Diskussion

(MW±SD 10,2±4,0%) im Vergleich zum BF% von NG diabetischer Mütter (MW±SD 15,4±4,2%), der signifikant war (p=0,001). Als Schwäche ihrer Studie nannten Lee et al. jedoch, dass die diabetische Stoffwechselszlage der Mütter nicht präzise diagnostiziert wurde und die Gruppe sowohl Mütter mit GDM als auch mit T1DM und T2DM enthielt. [32]

Verglichen mit der vorliegenden Arbeit haben Lee et al. ein ähnlich großes Studienkollektiv und kommen zu ähnlichen Ergebnisse für den BF% von NG nicht-diabetischer Mütter, jedoch ist die Differenz zu den NG diabetischer Mütter den BF% betreffend größer. Da in der Veröffentlichung von Lee et al. keine Aussage zur pränatalen Versorgung der Mütter mit diabetischer Stoffwechselszlage gemacht wurde [32], gibt es keine Hinweise darauf, inwiefern diese Differenz im BF% mit einer nicht optimalen Behandlung der Mütter mit diabetischer Stoffwechselszlage während der Schwangerschaft zusammenhängen könnte.

Für beide Studien gilt, dass Untersuchungen im Langzeitverlauf nötig sind, um herauszufinden, welche Folgen die Unterschiede in der neonatalen Körperszammensetzung haben.

Durnwald et al. [33] und Hammami et al. [34] untersuchten in den USA die Auswirkungen einer maternalen diabetischen Stoffwechselszlage auf diejenigen NG, die als LGA geboren wurden.


In die Studie von Hammami et al. wurden n=47 LGA-Neugeborene eingeschlossen, wovon n=11 Mütter mit gestörter Glukosetoleranz hatten. Der Körperfettanteil wurde mittels Dual-Röntgen-Absorptiometrie innerhalb von (MW±SD) 1,8±1,0 Tagen nach Geburt gemessen und war bei NG von Müttern mit gestörter Glukosetoleranz signifikant höher (BF% = 26,4±2,7% vs. 20,4±4,5%, p<0,001). [34]
Catalano et al. untersuchten in den USA n=195 Kinder von Müttern mit GDM und n=220 Kinder von nicht-diabetischen Müttern innerhalb der ersten 72 Lebensstunden mittels anthropometrischer Daten (Hautfaltendicke) und TOBEC bezüglich ihres Körperfetts. Ihre Ergebnisse zeigten, dass die Kinder von Müttern mit GDM eine signifikant höhere Hautfaltendicke hatten, sowie eine höhere absolute Fettmasse. [35]
Logan et al. publizierten 2017 ein Systematic Review, in das 35 Studien mit mehr als 24.000 NG eingeschlossen wurden und das sich, ähnlich wie die vorliegende Arbeit, mit mütterlichem Diabetes während der Schwangerschaft und kindlicher Fettverteilung beschäftigte. Die oben genannten Arbeiten von Au et al. [31], Catalano et al. [35], Durnwald et al. [33], Hammami et al. [34] und Lee et al. [32] wurden ebenso in die Auswertung eingeschlossen wie Arbeiten, die die kindliche Hautfaltendicke als abhängiges Merkmal definiert hatten. Die Analyse ergab, dass Kinder von Müttern mit GDM einen höheren Körperfettanteil aufwiesen als Kinder von Müttern ohne GDM. [36]

Bei der Betrachtung der Ergebnisse dieser Arbeit fällt auf, dass der Unterschied in den Verteilungen für den BF% von NG zwischen Referenz- und Studiengruppen ((Median (P25 – P75) BF% 10,8% (7,7% - 13,4%) für die Referenzgruppe und BF% 11,4% (9,5% - 15,1%) in Studiengruppe A (p=0,033), bzw. BF% 11,3% (9,6 – 15,3%) in Studiengruppe B (p=0,014)) zwar statistisch signifikant, aber absolut betrachtet sehr klein ist. Daraus ergibt sich sowohl die Frage nach möglichen Ursachen als auch nach daraus resultierenden Konsequenzen.
Die Entstehung der individuellen Körperzusammensetzung ist sehr komplex und wird von vielen verschiedenen Faktoren, wie z.B. Ethnie, Geschlecht, familiärer
4. Diskussion


Folgen die Mütter, bei denen ein GDM diagnostiziert wurde, einem leitliniengerechten Therapieregime mit dem Ziel, die Blutzuckerwerte im Normbereich zu halten, so könnte dies zur Folge haben, dass ihre Kinder keinen oder nur einen etwas höheren BF% aufweisen als Kinder von Müttern ohne GDM. Obwohl die Güte der maternalen BZ-Einstellung während der Schwangerschaft in dieser Arbeit nicht für alle Mütter der Studiengruppen untersucht werden konnte, ist dies eine mögliche Erklärung für die geringe Differenz im BF% zwischen Referenz- und Studiengruppen.

In Bezug auf die Konsequenzen aus diesem Ergebnis stellt sich die Frage, ob der Unterschied im BF% auch klinische Relevanz besitzt. Um dieser Fragestellung nachzugehen, bedarf es weiterer Messungen des Körperfettanteils im Langzeitverlauf in derselben Kohorte sowie Untersuchungen auf metabolische oder kardiovaskuläre Endpunkte hin.

Weiterhin ist zu beachten, dass sich der Anteil kindlichen Körperfetts an dem im ersten Lebensjahr steigenden Körpergewicht stark verändert. In den vergangenen Jahren wurden mehrere Arbeiten zur Entwicklung des Körperfettanteils von Säuglingen in den ersten sechs Lebensmonaten gemessen mit ADP publiziert. Fields et al. (USA) zeigten, dass sich der BF% gemessen mit ADP in der Zeit zwischen einem und sechs Lebensmonaten ungefähr verdoppelte. [37] Carberry et al. (Australien) stellten dar, dass sich der BF% zwischen Geburt und 1,5 Lebensmonaten verdoppelte. [38] Roggero et al. (Italien) zeigten in mehreren Messungen zwischen Geburt und dem vierten Lebensmonat, dass der BF% in den ersten vier Lebensmonaten signifikant anstieg, wohingegen sie einen deutlich kleineren Anstieg des BF% zwischen dem vierten und sechsten Lebensmonat feststellten. [39] Basierend auf diesen Ergebnissen, die zeigen, dass der Körperfettanteil eines Säuglings starken Veränderungen unterliegt, ist davon auszugehen, dass die in dieser Arbeit innerhalb vom 96h nach Geburt erhobene geringe
4. Diskussion

Differenz im BF% zwischen Referenz- und Studiengruppen keine klinische Relevanz besitzt.


Es bedarf weiterer Studien, um zu untersuchen, welche Langzeitfolgen ein höherer BF% bei den Kindern von Müttern mit GDM hat. Außerdem sollte herausgearbeitet werden, ab welchem Cut-off-Wert für den BF% sich das Risiko für die Entwicklung von unter anderem metabolischen oder kardiovaskulären Langzeitfolgen signifikant erhöht.

Weiterhin sind Untersuchungen nötig, um zu prüfen, welchen Einfluss die Güte der mütterlichen BZ-Einstellung auf den BF% von NG hat und welche Methode zur Erfassung der Güte der mütterlichen BZ-Einstellung am besten ist.

4.1.2. Zusammenhang der AUC für den 75-g oGTT und der neonatalen Körperzusammensetzung

Wie in Kapitel 3.7. dargestellt, wurde in dieser Arbeit auch untersucht, ob es in Studiengruppe A (n=40 Mutter-NG-Paare) eine Korrelation zwischen der Höhe der maternalen BZ-Werte im 75-g oGTT (dargestellt als area under the curve, AUC) und dem SDS\textsubscript{GG}, der Anzahl der kindlichen postnatalen Hypoglykämien und dem BF% gab. Es ergab sich für keine dieser drei Analysen eine statistisch signifikante Korrelation.

Literatur, die einen Zusammenhang zwischen den Ergebnissen des maternalen oGTT und der kindlichen Körperzusammensetzung untersucht, ist spärlich. Die meisten Autoren, die diesen Themenkomplex bearbeiten, konzentrieren sich auf
die mütterliche BZ-Einstellung nach Diagnose eines GDM und deren Auswirkung auf das Kind (s. Kapitel 4.1.3.).

Durnwald et al. publizierten 2004 eine Studie, in der sie eine mögliche Korrelation zwischen den einzelnen Werten eines 3-h 100-g oralen Glukosetoleranztests und der Fettmasse bzw. des Körperfettanteils (bestimmt mittels TOBEC) von n=50 LGA-Kindern von Müttern mit GDM untersuchten. Ihr Ergebnis war, dass allein der nüchtern-Wert dieses Glukosetoleranztests mit der Fettmasse (r²=0,33; p=0,0009) bzw. dem Körperfettanteil korrelierte (r²=0,14; p=0,02). [33] Dieses Ergebnis ist nur eingeschränkt mit dem der vorliegenden Arbeit vergleichbar, da bei letzterer die oGTT-Werte nicht einzeln betrachtet wurden, sondern in ihrer Summe als AUC, und des Weiteren die Methode der ADP zur Bestimmung des BF% verwendet wurde.


4.1.3. Assoziation der maternalen BZ-Einstellung während der Schwangerschaft mit dem Geburtsgewicht, dem Geburtsgewicht-SDS und dem Körperfettanteil

4. Diskussion

Merkmale konnte ein signifikanter Unterschied nachgewiesen werden (s. Kapitel 3.8.2.). Des Weiteren wurden auch aus den Neugeborenen bezüglich der Anzahl der postnatalen Hypoglykämien <45mg/dl zwei Gruppen gebildet (n=0 Hypoglykämien vs. n≥1 Hypoglykämie). Mit einem Fisher’s Exact Test konnte kein statistisch signifikanter Unterschied zwischen den Gruppen >13% und <13% der BZ-Werte ≥140mg/dl in Bezug auf die postnatalen Hypoglykämien der NG gezeigt werden (p=0,619). Im Folgenden sollen die Ergebnisse dieser Untersuchungen diskutiert werden.


Als Endpunkte bei den Neugeborenen wurde in der vorliegenden Arbeit das GG, der SDSgg, BF% sowie kindliche Hypoglykämien (BZ <45mgdl) untersucht. In der Literatur wurden u.a. ein GG >90. Perzentile (Makrosomie) [42], der BF% gemessen mittels TOBEC [41] oder ADP [31] und neonatale Hypoglykämien [43] untersucht.
Combs et al. (USA) untersuchten die Beziehung zwischen Makrosomie bei NG (definiert als GG >90. Perzentile) und maternalen posprandialen BZ-Werten im Schwangerschaftsverlauf. Sie teilten eine Kohorte von n=111 Müttern, die schon vor der Schwangerschaft einen Diabetes mellitus vorwiesen, in zwei Gruppen ein (makrosomes vs. nicht makrosomes NG). Die Autoren konnten zeigen, dass sich für die zwischen der 29. und 32. SSW erhobenen postprandialen BZ-Werte der jeweilige Mittelwert ± SD zwischen den Gruppen signifikant unterschied (BZ 8,1±0,8mmol/l für Mütter von makrosomen NG vs. BZ 7,6±0,9mmol/l für Müttern von nicht makrosomen NG, p<0,005). Für die nüchtern-BZ-Werte sowie für den Anteil von Hyperglykämien >200mg/dl an allen gemessenen Werten ergab sich kein signifikanter Unterschied. [42]

Combs et al. entdeckten in ihrer Kohorte allerdings auch eine mögliche Assoziation zwischen niedrigen maternalen BZ-Werten während der Schwangerschaft und small for gestational age-Neugeborenen, sodass sie einen möglichen Zielwert für die 1h postprandial gemessene Blutglukose von 130mg/dl vorschlugen. [42]

Uvena-Celebrezze et al. [41] untersuchten bei n=18 Mutter-Kind-Paaren die Beziehung zwischen neonataler Körperzusammensetzung (BF% gemessen mittels TOBEC) und während der Schwangerschaft erhobenen BZ-Werten (nüchtern, präprandial, 2h postprandial). Alle Mütter hatten einen GDM. Ihre Ergebnisse zeigen eine statistisch signifikante Korrelation zwischen der Höhe der nüchtern erhobenen Blutzuckerwerte und dem Geburtsgewicht, der freien Fettmasse, der Hautfaltendicke und dem Körperfettanteil.

Au et al. [31] verglichen den Körperfettanteil von NG von Müttern mit GDM (n=67) mit dem von Müttern mit normaler Glukosetoleranz (NGT) (n=532) und stellten fest, dass der BF% (gemessen mittels ADP) nicht höher, sondern niedriger war (MW±SD für BF%: GDM 7,9±4,5% vs. NGT 9,3±4,3%, p=0,151) und dass kein statistisch signifikanter Unterschied vorlag. Sie führten dieses Ergebnis auf die materne Blutzuckereinstellung zurück, da mehr als 90% der Schwangeren mit GDM im dritten Trimenon HbA1C-Werte und postprandial erhobene BZ-Werte im Zielbereich der Studie hatten.
4. Diskussion


Betrachtet man die Kohorte und die Ergebnisse der vorliegenden Arbeit, so fällt auf, dass die Anzahl der einbezogenen Mutter-Kind-Paare mit n=15 sehr klein ist, vor allem, da durch Dichotomisierung noch kleinere Subgruppen gebildet wurden. Dies könnte zur Folge haben, dass kein statistisch signifikanter Unterschied für die neonatalen Endpunkte detektiert wurde, obwohl möglicherweise ein Unterschied besteht.

Des Weiteren ist auffallend, dass bei den 15 untersuchten Müttern im Median 87\% aller postprandial erhobenen BZ-Werte im Zielbereich lagen, was vermutlich Ausdruck einer sehr guten glykämischen Kontrolle ist. Es wäre interessant, Daten zur glykämischen Kontrolle derjenigen Mütter zu untersuchen, deren NG einen höheren BF\% hatten. Es war aber leider nicht möglich, die Daten der Blutzucker selvmessung von allen Müttern der Studiengruppe A bzw. B zu erheben. Die Frage bleibt bestehen, ab welchem Grenzwert und mit welcher Methode bestimmt ein GDM einen (negativen) Einfluss auf die Körperzusammensetzung von NG hat. Hierfür bedarf es weiterer Studien und Langzeituntersuchungen.
4.1.4. Assoziation der Körperzusammensetzung mit der Entwicklung postnataler Hypoglykämien

Wie in Kapitel 3.9. beschrieben, wurde im Rahmen dieser Arbeit auch untersucht, ob sich diejenigen NG, die 24h postnatal keine Hypoglykämie (BZ <45mg/dl) entwickelten, bezüglich GG, SDS\textsubscript{GG} und BF\% von denjenigen NG unterschieden, bei denen ≥1 Hypoglykämie mit BZ <45mg/dl gemessen wurde.

Mit dem Mann-Whitney-U-Test konnte weder für Studiengruppe A noch für Studiengruppe B ein statistisch signifikanter Unterschied der Verteilungen nachgewiesen werden (siehe Kapitel 3.9.1 und Kapitel 3.9.2.). Hintergrund dieser Fragestellung war die Tatsache, dass maternale Hyperglykämien zu fetalen Hyperglykämien und infolge dessen zu höherer fetaler Insulinausschüttung sowie Makrosomie führen können (s. auch Pedersen Hypothese, zitiert in [12, 13], Kapitel 1.1.5.).

Aufgrund der höheren fetalen Insulinsekretion können postnatale Hypoglykämien entstehen, wenn das NG den eigenen Blutzuckerhaushalt noch nicht ausreichend regulieren kann.


Dieser Index diente in der Studie von Persson et al. als Marker für proportionales (P-LGA) bzw. bei einem PI >90. Perzentile für ein dysproportionales (D-LGA) Wachstum des Feten, d.h. das NG wies ein höheres Körpergewicht im Verhältnis
4. Diskussion

zur Körperlänge auf. Persson et al. untersuchten dann die Entwicklung einer neonatalen Hypoglykämie <2,6mmol/l (ca. 47mg/dl) im Alter von 6h nach Geburt in den beiden Gruppen.
Sie beschrieben, dass in der Gruppe der NG von Müttern mit GDM der Anteil der D-LGA, die eine Hypoglykämie entwickelten, höher war als unter den P-LGA, dass dieser Unterschied jedoch nicht statistisch signifikant war. [45]


Zu der in der vorliegenden Arbeit durchgeführten Untersuchung muss kritisch angemerkt werden, dass es sich mit n=40 Probanden in Studiengruppe A und n=49 Probanden in Studiengruppe B um sehr kleine Kohorten handelt. Es müssten weitere Untersuchungen durchgeführt werden, um die vorläufigen Ergebnisse dieser Arbeit anhand einer höheren Fallzahl zu bestätigen oder zu verwerfen.
Stärke dieser Untersuchung war, dass der kindliche BZ-Spiegel nach einem für die Wöchnerinnenstation üblichen Schema gemessen wurde und bei den NG bis zu fünf BZ-Werte innerhalb der ersten 24 Lebensstunden erhoben wurden (0-1h, 1-3h, 3-6h, 6-12h, 12-24h). So konnte der Blutzucker relativ engmaschig untersucht und mittels Fütterung behandelt werden.

4.2. Methodenkritik

In dieser Arbeit wurde die Messung des Körperfettanteils von Neugeborenen mit der Methode der Air Displacement Plethysmography mit dem PEA POD®-Gerät durchgeführt. Stärke dieser Methode ist, dass die Messung nicht invasiv erfolgt, ohne ionisierende Strahlung durchgeführt wird, nur wenige Minuten dauert und für das Kind angenehm und sicher ist. Eine Schwäche der Methode ist jedoch,
4. Diskussion

dass sie zum jetzigen Zeitpunkt noch relativ jung ist und bisher noch keine Normwerte für den mittels Air Displacement Plethysmography gemessenen neonatalen Körperfettanteil existieren.
Hier sind weitere Untersuchungen nötig, um in Zukunft besser aussagen zu können, welche Werte für den BF% von NG normal, niedrig oder hoch sind. Eine Entwicklung von Perzentilenkurven für den BF% gemessen mit Air Displacement Plethysmography wäre anzustreben.

Des Weiteren sind zukünftig wiederholte Messungen des Körperfettanteils mit Air Displacement Plethysmography zu verschiedenen Zeitpunkten in der Kindheit
4. Diskussion

...und im Erwachsenenalter nötig, um Langzeitverläufe zu beobachten und zu untersuchen, ob und ab welchem Cut-off der BF% mit bestimmten metabolischen oder kardiovaskulären Risiken assoziiert ist.

4.2.1. Validierung der Methode


Die Methode der ADP bei NG wurde mit bisher etablierten Methoden zur Bestimmung des BF% verglichen, zum Beispiel der Dual-Röntgen Absorptiometrie [55, 56] und der Bio-Impedanz-Analyse. [51]

Des Weiteren wurde eine Studie publiziert, in der BF%-Werte einerseits gemessen mittels ADP und andererseits ermittelt über ein 4-Kompartmente-Modell, in das Ergebnisse von Dual-Röntgen-Absorptiometrie, Deuteriumdilution und Messungen des Kaliumgehalts im Körper einbezogen wurden. [57]

Der Tatsache geschuldet, dass die im vorigen Absatz genannten Methoden zur Bestimmung des BF% indirekt und damit anfällig für Fehler sind, entschieden sich Sainz et al. [58] und Frondas-Chauty et al. [59] die Methode der ADP mit einer chemischen Analyse zu vergleichen und nutzten dafür Rindergewebe bzw. Ferkel.

Im Folgenden sollen die Ergebnisse dieser Untersuchungen zur Validierung detailliert dargestellt werden:

Sainz et al. validierten mit 24 Phantomen aus Rindergewebe die ADP gegen eine chemische Analyse (CA). Um die Übereinstimmung der Ergebnisse beider Methoden zu beschreiben, berichteten sie den Mittelwert der Differenzen und die 95%-Grenzen der Übereinstimmung, die als MW±2SD der Differenzen zwischen beiden Methoden angegeben wurden. Der Mittelwert der Differenzen (%Fettanteil_{ADP} - %Fettanteil_{CA}) betrug -0,04% (Range: -1,54% bis 0,81% Fettanteil). Die 95%-Grenzen der Übereinstimmung betrugen -1,22% bis 1,13% Fettanteil. Dies besagt, dass bei 95% der Messungen die Differenz der Ergebnisse weniger als
1,22% betrug und dass sich die Populationsmittelwerte für den Fettanteil zwischen beiden Methoden fast nicht unterschieden. Der Korrelationskoeffizient nach Pearson war mit r>0,99 statistisch signifikant (p<0,0001), wobei in diese Berechnung neben der ADP und der chemischen Analyse auch noch die Ergebnisse des hydrostatischen Wiegens (Bei dieser Methode wurde das Gewicht der Phantome unter Wasser gemessen und damit deren Volumen und Dichte bestimmt.) mit einbezogen wurden. [58]

Frondas-Chauty et al. untersuchten 34 Ferkel, die ungefähr der Gewichtsklasse von frühgeborenen und reifgeborenen Kindern entsprachen, zu verschiedenen Zeitpunkten mittels ADP und biochemischer Analyse. Sie berichteten einen MW±SD der Differenzen für den Fettanteil von -0,66±1,73%, der sich signifikant von null unterschied (p=0,031), den Autoren zufolge jedoch wahrscheinlich nicht physiologisch relevant ist. Die 95%-Grenzen der Übereinstimmung wurden nicht in Zahlen angegeben und lassen sich aus dem Bland-Altman-Plot bei ungefähr -4% bis 3% Fettanteil ablesen. Bei der Untersuchung der Reproduzierbarkeit der Messungen des Fettanteils mittels ADP zeigte sich bei denjenigen Ferkeln, die in der biochemischen Analyse einen niedrigeren Fettanteil (<5,4%) hatten, ein größerer Variationskoeffizient für den Fettanteil (Median 19,3% mit P25 - P75 13,4% - 29,1%) als bei den Ferkeln, die biochemisch bestimmt einen höheren Fettanteil (>10%) aufwiesen (Median 4,9% mit P25-P75 3,8%-9,3%). Die Autoren empfahlen deshalb, bei Kindern mit niedrigem BF% wiederholte Messungen durchzuführen. [59]

Wie einleitend beschrieben, gab es mehrere Untersuchungen mit dem Ziel, die ADP gegen bestehende indirekte Methoden zur Bestimmung der Körperzusammensetzung von Neugeborenen und Säuglingen zu validieren.

Ma et al. untersuchten n=53 NG innerhalb der ersten Lebenswoche mittels ADP sowie mit Deuteriumdilution und beobachteten 95%-Grenzen der Übereinstimmung bei einer BF%-Differenz (ADP-Deuteriumdilution) von -6,84% und 6,81%. Der MW±SD der Differenz zwischen den beiden Methoden betrug -0,07±3,39% BF% und unterschied sich nicht signifikant von null (p=0,89). Sie stellen des Weiteren dar, dass die Messung des BF% mittels ADP eine hohe Reproduzierbarkeit
Diskussion

aufwies und sich das Verhalten der Neugeborenen (ruhig – aktiv – starkes Schreien) nicht auf die Messung auswirkte. Ma et al. bescheinigten der ADP eine hohe Validität und Reliabilität.[54]

Eine weitere Studie zur Validität der ADP, in die n=49 Kinder im Alter von (MW±SD) 8.0±5.4 Wochen eingeschlossen wurden, wurde von Ellis et al. [57] publiziert. Zur Abschätzung des BF% stellten sie der ADP ein 4-Kompartimente-Modell gegenüber, das seinerseits Ergebnisse von Deuteriumdilution, Dual-Röntgen-Absorptiometrie und Messung des Kaliumgehalts im Körper enthielt. Ihre Untersuchung ergab in der linearen Regressionsanalyse ein R²=0,73 (p<0,001) und im Bland-Altman-Diagramm 95%-Grenzen der Übereinstimmung von -6,8% und 8,1%. Auch Ellis et al. beschrieben das PEA POD-System als reliable und genaue Methode zur Bestimmung des BF% bei Säuglingen. [57]

Fields et al. [55] publizierten eine Arbeit, in der sie den BF% von n=84 sechs Monate alten Säuglingen gemessen mittels ADP und Dual-Röntgen-Absorptiometrie (DXA) verglichen. Sie kamen zu dem Ergebnis, dass die Werte für den BF% signifikant korrelierten (r=0,925, p<0,01). Es gab jedoch auch statistisch signifikante Unterschiede zwischen den beiden Methoden, wobei die Ergebnisse für den BF% gemessen mittels ADP niedriger waren als diejenigen gemessen mittels Dual-Röntgen-Absorptiometrie (MW±SD BF%ADP 26,7±4,7 vs. BF%DXA 31,1±3,6%, p<0,001). Im Bland-Altman-Plot zeigte sich eine statistisch signifikante positive Korrelation für die Differenz BF%ADP-BF%DXA und den Mittelwert des BF% aus den beiden Methoden (r=0,588, p<0,000). Es wurden keine 95%-Grenzen der Übereinstimmung angegeben. Fields et al. weisen auf die Notwendigkeit weiterer Arbeiten hin, um diese relativ großen Unterschiede zwischen den Ergebnissen der beiden Methoden zu verstehen. [55]

Wrottesley et al. [56] führten eine ähnliche Studie durch und untersuchten eine Kohorte von n=88 südafrikanischen Neugeborenen mittels ADP und Dual-Röntgen-Absorptiometrie. Ihre Ergebnisse bezüglich des BF% zeigten eine signifikante Korrelation der Ergebnisse miteinander (r=0,63, p<0,001), jedoch auch einen statistisch signifikanten Unterschied zwischen den Methoden (MW±SD BF%ADP 12,9±4,4% vs. BF%DXA 9,9±4%, p<0,001). Im Gegensatz zur Arbeit von Fields et al. [55] waren bei Wrottesley et al. [56] die BF%-Werte gemessen mittels
ADP die höheren Werte. Im Bland-Altman-Plot zeigten sich für den BF%-gemessen mittels ADP und DXA 95%-Grenzen der Übereinstimmung von -4,2% bis 10,2%. Der Mittelwert der Differenz betrug 3%, eine Standardabweichung wurde nicht angegeben. Ähnlich wie Fields et al. [55] zeigten Wrottesley et al. [56] deutliche Differenzen zwischen den BF%-Ergebnissen bei der Verwendung der beiden Methoden (ADP und DXA). Beide Arbeitsgruppen betonen die Wichtigkeit weiterer Untersuchungen, um die Unterschiede zu minimieren.

Ähnlich wie Ma et al. [54] untersuchten auch Yao et al. [53] die Reproduzierbarkeit der Ergebnisse einer BF%-Bestimmung mittels ADP. Yao et al. untersuchten n=17 Kinder drei Mal innerhalb von zwei aufeinanderfolgenden Tagen. Die 95%-Grenzen der Übereinstimmung für den BF% lagen bei -2.0% - 1.2% für die Messungen innerhalb eines Tages und -2.2% - 1.7% für die Messungen an den zwei aufeinanderfolgenden Tagen. Der MW±SD der Unterschiede zwischen den Ergebnissen der beiden Methoden lag für die Tests, die an einem Tag durchgeführt wurden, bei BF% -0.39±0.81% und für die Tests, die an zwei aufeinanderfolgenden Tagen durchgeführt wurden, bei BF% -0.27±0.97%, wobei beide Ergebnisse sich nicht signifikant von null unterschieden (kein p-Wert angegeben). [53]

Abgesehen von der chemischen Analyse sind alle Methoden zur Bestimmung der Körperzusammensetzung indirekt und damit einer gewissen Gefahr für falsch hohe oder falsch niedrige Ergebnisse ausgesetzt. Die für diese Arbeit gewählte Methode der ADP findet, wie vorausgehend beschrieben, in der Literatur vor allem auch deshalb breite Akzeptanz, weil sie im Vergleich zu anderen Methoden nicht invasiv, ohne ionisierende Strahlung oder Sedierung und innerhalb kurzer Zeit durchgeführt werden kann. Es muss jedoch beachtet werden, dass es bisher keine Normwerte gibt und der Einfluss von starkem Schreien durch das Neugeborene während der Messung auf die Messergebnisse noch nicht sicher geklärt ist. [60]
4.3. Studienplanung

4.3.1. Einschlusskriterien


4.3.2. Fallzahlplanung

Da es zum bearbeiteten Thema keine ähnlichen Studien aus Deutschland gab und unklar war, welche Werte für den BF% von NG in unserem Tübinger Kollektiv zu erwarten waren, wurde keine klassische Fallzahlberechnung durchgeführt. Es wurde der pragmatische Ansatz gewählt, alle Messungen durchzuführen, die innerhalb eines Jahres möglich waren. Im Vergleich mit anderen Studien, die zu der in dieser Studie bearbeiteten Fragestellung durchgeführt wurden, lag die Größe der Kohorte ungefähr in der Mitte.

Die Anzahl der Mutter-Kind-Paare, die in die Auswertung der BZ-Selbstmessung der Schwangeren mit GDM eingeschlossen werden konnten, (n=15) war sehr
Diskussion

gering und die Gruppe wurde durch Dichotomisierung nochmals ungefähr halbiert (s. Kapitel 3.8.). Die sehr kleine Fallzahl hätte allenfalls erlaubt, einen sehr großen Unterschied nachzuweisen, der im Studienkollektiv jedoch nicht bestand. Ähnliches gilt für die Auswertung der postnatalen Hypoglykämien der Neugeborenen (s. Kapitel 3.9.). Auch hier könnte ein möglicherweise bestehender Unterschied der Verteilungen durch die geringe Kohortengröße (n= 35 in Studiengruppe A, bzw. n=44 in Studiengruppe B) nicht detektiert worden sein.

4.3.3. Weitere Faktoren, die den Körperfettanteil von Neugeborenen beeinflussen

In der vorliegenden Arbeit wurde die Assoziation zwischen einem maternalen GDM und dem kindlichen BF% in den ersten 96h nach der Geburt untersucht. Bei der Interpretation der Studienergebnisse ist es wichtig, zu beachten, dass es neben dem mütterlichen GDM noch eine Vielzahl anderer Faktoren gibt, die mit der Entwicklung der fetalen Körperzusammensetzung assoziiert sind. Weitere wichtige Einflussgrößen für die Planung einer Studie wie der vorliegenden werden im Folgenden besprochen.

Stuebe et al. [62] und Breij et al. [63] zeigten, dass der maternale präkonzeptionelle BMI eine wichtige Rolle für den neonatalen BF% (ermittelt mit ADP) [63], Makrosoßmie und den neonatalen BF% basierend auf der Messung der Hautfaltendicke [62] spielt.

Josefson et al. [64] stellten in ihrer Untersuchung dar, dass eine erhöhte mütterliche Gewichtszunahme während des ersten Schwangerschaftstrimenons mit einem erhöhten BF% (gemessen mittels ADP) der NG assoziiert war. Au et al. zeigten, dass unter anderem eine erhöhte mütterliche Gewichtszunahme während der Schwangerschaft sowie mütterliches Übergewicht mit einem höheren BF% der NG (gemessen mittels ADP) assoziiert war. [30]

In einer Arbeit von Farah et al. [65] wird dargestellt, dass die fetale abdominelle Fettmasse (gemessen mit Ultraschall) signifikant mit den Ergebnissen eines 3h 100-g oGTT korrelierte, dessen Werte jedoch unter den Grenzwerten für einen pathologischen oGTT lagen. Diese Untersuchung gibt Hinweise darauf, dass die mütterlichen Blutzuckerwerte auch unterhalb der Grenzwerte für die Diagnose
eines GDM einen Einfluss auf die Ausbildung von fetalem Fettgewebe haben können.
Catalano et al. [12] merken zudem an, dass es bei dem Versuch, die Entwicklung des fetalen Übergewichts zu verstehen, wichtig sei, neben Glukose andere Substrate wie zum Beispiel Triglyceride nicht außer Acht zu lassen.

Neben den hier genannten Faktoren spielen möglicherweise auch Genetik und Epigenetik, fetale Programmierung, Geschlecht, Ethnie, Plazentafunktion und postnatale Ernährung eine Rolle. Vor allem auf der Ebene der Genetik ist eine Erklärung der großen Heterogenität bezüglich des individuellen Metabolismus eines Fetus gut vorstellbar.
Um das komplexe Zusammenspiel all dieser Faktoren, die einen Einfluss auf die Entwicklung der fetalen Körperzusammensetzung haben, besser zu verstehen, sind noch weitere Untersuchungen nötig.

4.4. Studienablauf

4.4.1. Erhebung der einzelnen Parameter

Eine Stärke dieser Arbeit ist, dass die erhobenen mütterlichen Daten bei allen eingeschlossenen Teilnehmern fast komplett sind, denn es fehlen nur sehr vereinzelt Angaben wie z.B. das präkonzeptionelle Gewicht.
Bei den NG in den Studiengruppen A und B wurde leider bei n=5 NG keine Blutzuckermessung durchgeführt, da der GDM der Mutter nicht als solcher diagnostiziert wurde (s. Kapitel 3.9.1. und 3.9.2.).
Zu den BZ-Messungen der NG ist weiterhin anzumerken, dass diese nach einem festen stationsüblichen Schema bis zu fünf Mal innerhalb der ersten 24 Lebensstunden präprandial durchgeführt wurden. Damit ist die Wahrscheinlichkeit gering, dass in diesem Zeitraum Hypoglykämien auftraten, die klinisch unauffällig waren und nicht erfasst wurden.
Die Güte der BZ-Einstellung der Schwangeren wurde aufgrund des BZ-Werts, der 1h postprandial gemessen wurde, eingeschätzt. Dies hat sich in Studien als sinnvoll erwiesen. [42, 43] Es gilt jedoch zu bedenken, dass auch andere Marker
4. Diskussion

für die BZ-Einstellung, wenn sie im Normalbereich liegen, mit positiven Veränderungen beim NG assoziiert sind, so zum Beispiel der HbA$_{1c}$-Wert. [31]

Eine Schwäche dieser Studie ist, dass die Zahl der Eltern, die einer Messung zugestimmt hatten, deutlich höher war als die Anzahl der tatsächlich durchgeführten Messungen: bei $n=133$ NG konnte aus Zeitgründen keine Messung durchgeführt werden. Die Messungen wurden über ein Jahr verteilt an vier bis fünf Werktagen pro Woche nachmittags durch das PEA POD®-Team durchgeführt. Allerdings war die Liegezeit der Wöchnerinnen mit ihren Neugeborenen an der UFK sehr kurz und die Mütter wurden oft kurzfristig entlassen, noch bevor das PEA POD®-Team davon erfuhr.

4.5. Schlussfolgerung

In dieser Arbeit konnte gezeigt werden, dass es in der eingeschlossenen Studienkohorte zwischen Kindern von Müttern mit bzw. ohne GDM bezüglich des BF% einen statistisch signifikanten, sehr kleinen Unterschied gab, der wahrscheinlich ohne oder von geringer klinischer Relevanz ist.

Wie in Kapitel 4.3.3. aufgeführt, gibt es eine Reihe von Faktoren, die einen Einfluss auf die neonatale Körperzusammensetzung haben. Dass die Differenz im BF% zwischen Referenz- und Studiengruppen so klein ist, könnte damit zusammenhängen, dass die Therapie des maternalen GDM von hoher Qualität war und die Mütter sich bezüglich ihres individuellen Therapieregimes sehr diszipliniert verhielten und somit eine gute Blutzuckereinstellung erzielt wurde, die wiederum eine ähnliche Fettakquirierung der Fetus wie in der Referenzgruppe zur Folge hatte. Diese These kann im Rahmen dieser Arbeit jedoch weder bestätigt noch widerlegt werden.

4. Diskussion

Adipositas sowie den assoziierten kardiovaskulären Erkrankungen besteht und wie das Verhältnis zu anderen Faktoren wie z.B. Lebensstil und Ernährung ist.
5. Zusammenfassung

Gestationsdiabetes mellitus ist eine diabetische Stoffwechselsituation, die in der Schwangerschaft auftritt und eine Vielzahl möglicher Folgen für Mutter und Kind haben kann. In dieser Arbeit wurde untersucht, ob sich NG von Müttern mit GDM (Studiengruppen A, bzw. B mit n=40 bzw. n=49 NG) bezüglich des BF% innerhalb der ersten 96h nach Geburt von NG unterscheiden, deren Mütter keinen Nachweis eines GDM (Referenzgruppe, n=277 NG) hatten. Weiterhin wurde untersucht, ob die Ergebnisse des 75-g oGTT der Schwangeren mit GDM eine Assoziation mit dem BF% ihrer Kinder hatten. Außerdem wurde untersucht, ob eine Beziehung zwischen der Rate der mütterlichen Hyperglykämien während der Schwangerschaft und dem neonatalen BF% zu erkennen war. Zuletzt wurde geprüft, ob es bei den NG der Mütter mit GDM einen Unterschied bezüglich des BF% gab, je nachdem, ob bei den Kindern postnatal keine oder ≥1 Hypoglykämie <45mg/dl gemessen wurde.

Als Methode zur Bestimmung des BF% wurde die Air Displacement Plethysmography eingesetzt, die in der Literatur breite Akzeptanz findet und nicht invasiv und ohne ionisierende Strahlung in wenigen Minuten durchgeführt werden kann. Bezüglich der Hauptfragestellung ergab sich ein kleiner aber signifikanter Unterschied für den BF% zwischen Referenz- und Studiengruppen A bzw. B (Median und P25 – P75) Referenzgruppe BF% 10,8% (7,7% - 13,4%), Studiengruppe A BF% 11,4% (9,5% - 15,1%, p=0,033), Studiengruppe B BF% 11,3% (9,6% - 15,3%, p=0,014).

Es gibt Hinweise darauf, dass die geringe Ausprägung des Unterschiedes unter anderem auf eine gute Kontrolle des mütterlichen GDM zurückzuführen sein könnte. [31]

Es bedarf weiterer Studien, um für den mittels ADP bestimmten BF% geschlechtsspezifische Normwerte für verschiedene Ethnien und Altersstufen während der Kindheit und im Erwachsenenalter zu entwickeln. Mit Hilfe solcher Referenzwerte könnte untersucht werden, ab welchem BF% neonatale Adipositas beginnt, die mit einem Risiko für Folgeerkrankungen assoziiert ist.
6. Literaturverzeichnis


6. Literaturverzeichnis


6. Literaturverzeichnis


gestational diabetes mellitus compared with women with normal glucose tolerance levels. Am J Obstet Gynecol 191: 804-808.


7. Erklärung zum Eigenanteil der Dissertationsschrift

Die Arbeit wurde in der Abteilung Kinderheilkunde IV Neonatologie der Universitätsklinik für Kinder- und Jugendmedizin Tübingen unter Betreuung von Professor Dr. Axel Franz durchgeführt.

Die Konzeption der Studie erfolgte durch Dr. Cornelia Wiechers und Professor Dr. Axel Franz.


Die statistische Auswertung erfolgte in Rücksprache mit Professor Dr. Axel Franz durch mich.

Ich versichere, das Manuskript selbständig verfasst zu haben und keine weiteren als die von mir angegebenen Quellen verwendet zu haben.

Tübingen, den 05.04.2018

(Unterschrift)
8. Danksagung

Professor Dr. med. Christian F. Poets danke ich für die Möglichkeit, diese Studie in der Abteilung für Neonatologie durchführen zu können.

Professor Dr. med. Axel Franz danke ich für die Überlassung des Themas, die Unterstützung bei der Durchführung der Studie, der Auswertung der Daten und der Verfassung der Dissertationsschrift.

Dr. med. Cornelia Wiechers danke ich für die Unterstützung bei der Durchführung der Studie und die vielen wertvollen Tipps.

Ich habe mich mit dieser Doktorarbeit von Prof. Franz und Dr. Wiechers stets gut betreut gewusst und bin beiden dankbar für die motivierende und ermutigende Zusammenarbeit, sowie die wertvollen Anregungen und Ratschläge.

Sara Kirchhof, Vanessa Avellina und Romy Weber danke ich für die produktive Zusammenarbeit während der Datenerhebung.

Den Hebammen und Pflegekräften der Wöchnerinnen-Stationen der Universitätsfrauenklinik Tübingen sowie der Stationen Neo 1 und Neo 2 der Neonatologie Tübingen danke ich für die freundliche Zusammenarbeit.

Den Eltern, die sich mit ihren Neugeborenen zur Teilnahme an dieser Studie bereit erklärt haben, danke ich für ihre Bereitschaft und das entgegengebrachte Vertrauen.

Meinem Ehemann, meiner Familie und meinen Freunden danke ich von Herzen für alle Unterstützung und Ermutigung.
9. Anhang

9.1. Votum der Ethikkommission vom 05.05.2014

Sehr geehrte Frau Kollegin,

die Unterlagen zur o.g. Studie hatten den Mitgliedern der Ethik-Kommission an der Medizinischen Fakultät und am Universitätsklinikum Tübingen bereits in der Sitzung am 03.02.2014 zur Beratung vorgelegt. Mit Schreiben vom 05.02.2014 hatte die Kommission Ergänzungen des Prüfplans und des Informationstextes empfohlen. Mit den Ergänzungen im Studienprotokoll und Informationstext/ Einwilligungserklärung wurden die Empfehlungen der Ethik-Kommission berücksichtigt.

Danach bestehen gegen die Durchführung dieser Studie seitens der Kommission keine Bedenken.

Für die Durchführung Ihres Studienvorhabens wünschen wir Ihnen viel Erfolg.

Mit freundlichen Grüßen

Prof. Dr. med. Dieter Luft
Vorsitzender der Ethik-Kommission

ALLGEMEINE HINWEISE SIEHE SIEHT 2
9.2. Elterninformationsschreiben

Elterninformation

UnTERSUCHUNGEN ZUR FETalen Programmierung bei Neugeborenen von Müttern mit Schwangerschaftsdiabetes bzw. von Müttern mit überdurchschnittlicher Gewichtszunahme in der Schwangerschaft oder vorbestehendem Übergewicht, sowie bei gesunden reifen Neugeborenen

Lieber Eltern,

wir möchten eine klinische Untersuchung durchführen, deren Ergebnisse helfen sollen, die Auswirkungen eines Schwangerschaftsdiabetes auf die Neugeborenen besser verstehen zu können.

HINTERGRUND UND ZIEL DER UNTERSUCHUNG


Die Häufigkeit des Gestationsdiabetes ist in den letzten Jahren weltweit deutlich angestiegen, und da nur 50% der Schwangeren mit Gestationsdiabetes zu einer bestimmten Risikogruppe gehören (Patienten mit Übergewicht, Schwangerschaftszucker in einer vorherigen Schwangerschaft etc.), wird seit März 2012 ein allgemeines Screening mittels oralen Glucksetoleranztests in Deutschland empfohlen. In den USA rechnet man damit, dass bereits jede fünfte Frau in der Schwangerschaft eine Behandlung aufgrund eines Gestationsdiabetes benötigt.

Neben dem erhöhten Risiko, dass die betroffenen Frauen später eine dauerhafte Blutzuckererhöhung im Sinne eines Diabetes bekommen können, gibt es auch Hinweise darauf, dass es zu verschiedenen

In dieser Untersuchung soll geprüft werden, wie sich die Blutzucker- und andere Stoffwechselwerte des Neugeborenen nach einem oralen Glukosetoleranztest (Trinken von Zuckerlösung) verändern und ob die Hautfaltendicke bzw. Körperzusammensetzung sowie die körperliche Aktivität, das Essverhalten und das Schlaf-/Wachverhalten sich zwischen Neugeborenen diabetischer Mütter und Neugeborenen von Müttern ohne Diabetes unterscheiden. Darüber hinaus werden wir untersuchen, inwiefern sich das Körpergewicht der Mutter und die Gewichtsentwicklung während der Schwangerschaft auf diese Merkmale auswirken.

Studienablauf
Wenn Sie der Teilnahme an der Studie zustimmen, würden wir gerne pseudonymisiert (das heißt ohne Namensnennung) einen Basisedatensatz von Mutter und Kind erheben und bei Ihrem Kind verschiedene Untersuchungen durchführen, aus denen Sie einzelne oder auch alle zur Teilnahme auswählen können:

1. Basisdaten:

2. Messung des Körperfettanteils und der Hautfaltendicke des Kindes:

Bei der Hautfaltendickenmessung wird mittels eines Messschiebers (Kaliper) die Dicke der Hautfalten an drei verschiedenen Stellen des Körpers (Oberarm, Schulteralblatt, Bauch) bestimmt. Diese Messung dauert nur wenige Sekunden und ist nicht schmerzhaf.

3. Ermittlung der körperlichen Aktivität des Kindes
Die Bestimmung der körperlichen Aktivität erfolgt ebenfalls nicht-invasiv mittels eines am Unterschenkel angebrachten Bewegungssensors (ActivWatch2®). Dieser ist 43x23x10mm groß und wiegt lediglich 7g. Die Bewegungsfreiheit der teilnehmenden Neugeborenen wird durch die Größe und das Gewicht des Sensors nicht negativ beeinflusst, so dass die Belastung durch die Messung für das Kind minimal ist.

4. Erhebung des Essverhaltens des Kindes

5. Aufzeichnung des Schlaf-/Wachverhaltens des Kindes
Um das Schlaf-/Wachverhalten Ihres Kindes zu messen, werden wir ein sogenanntes Polysomnogramm aufzeichnen. Dabei werden mit Hilfe von am Kopf angebrachten Elektroden (die Sie sicher bereits von Aufzeichnungen der Herzstromkurve (Elektrokardiogramm bzw. „EKG“) kennen) die
9. Anhang

Elterninfo – GDM_NEO_01 – Version 2.0 vom 27.3.2014 Seite 3


Um Ihr Kind während der Polysomnogramm-Aufzeichnung bestmöglich zu überwachen, wird außerdem in den Zeiten, in denen Sie nicht selbst Ihr Kind im Auge haben, eine Überwachung mittels Pulsoximeter erfolgen. Diese Überwachung kann selten mit Fehlalarmen verbunden sein – die bedeutungslos sind und Sie nicht verunsichern sollten. Für den extrem unwahrscheinlichen Fall eines echten Alarms werden Ihnen vor der Elektrodenanlage von den Medizinstudierenden die entsprechenden Vorgehensweisen erklärt. Des Weiteren ist am Pulsoximeter eine Empfehlung für das Verhalten im Fall eines echten Alarms angebracht.

Die Untersuchungen 2) bis 5) würden wir gerne bei einem Teil der Kinder mehrfach durchführen: im Alter von 36-72 Stunden, sowie im Alter von 7-14 Tagen, 4 und schließlich 8 Wochen.

6. Orale Glukosetoleranzmessung beim Kind

Bei allen Neugeborenen erfolgt zwischen der 36.-72. Lebensstunde regelhaft im Rahmen des Neugeborenen-Screenings eine kapilläre Blutabnahme aus der Ferse. Wir würden gerne zum Zeitpunkt dieser Blutentnahme (nächtlich, 3h nach der letzten Mahlzeit) statt der kapillären Fersenblutentnahme (Standard) durch einen in der Versorgung Neugeborener erfahrenen Arzt eine Venenverweilkatheter liegen und die Blutentnahme für das Neugeborenen-Screening und die ggf. klinisch notwendige Bilirubinkontrolle sowie, bei den Kindern diabetischer Mütter, eine klinisch indizierte Blutzuckerkontrolle darüber durchführen. Direkt im Anschluss sollen dann schmerzfrei aus der liegenden Kanüle die erste Studienblutentnahme und eine Blutzuckerkontrolle erfolgen.

Anschließend wird Ihrem Kind eine zuckerhaltige Testlösung in Form von 17,5 ml/kg Körpergewicht 10%-iger Glukoselösung aus der Flasche oder per Fingerfütterung (dem sogenannten „Finger-Feeding“) verabreicht. Um den Verlauf der Blutzucker- und Stoffwechselwerte nach einer Glukosebelastung zu messen, wird 30 und 60 Minuten nach Gabe der Testmahlzeit aus der Venenverweilkatheter schmerzfrei eine weitere Studienblutentnahme und eine Blutzuckerkontrolle durchgeführt. 120 Minuten nach der Mahlzeit soll aus der Venenverweilkatheter noch eine weitere (alleinige) Blutzuckerkontrolle erfolgen.

Somit ist kein zusätzlicher Nadelstich für Ihr Kind notwendig und die kapilläre Blutentnahme, die den Standard für das Neugeborenen-Screening darstellt und sonst unter Umständen auch 2 oder 3 Nadelstiche erforderlich macht, entfällt. Falls das Legen einer Venenverweilkatheter beim ersten Versuch nicht möglich sein sollte, wird dieser Untersuchungsteil abgebrochen und nur eine Standard-Blutabnahme für das Neugeborenen-Screening durchgeführt.

Durch den studienbedingten Blutverlust von ca. 2ml ist im Vergleich zum Blutvolumen der Kinder (ca. 300ml) vernachlässigbar gering und ohne Bedeutung. Der Blutverlust entspricht etwa 0,6% des Blutvolumens und würde bei Ihnen der Entnahme von ca. 1-2 Serumröhrchen à 10ml Blut entsprechen.

Wie auch sonst im klinischen Alltag üblich, würde bei klinischen Zeichen einer Unterkühlung unverzüglich ein Blutzuckertest und der Glukosetoleranztest bei einem Wert unter 60 mg/dl beendet und das Kind angelegt bzw. zugefüttert.

Ist die Studie mit Risiken verbunden?

Zu 2. Die Messung der Hautfaltendicke und der Körperfettzusammensetzung ist nicht invasiv und ohne Strahlung möglich und dauert insgesamt lediglich 5-6 Minuten. Es sind keine Risiken mit dieser Messung verbunden.


Zu 4. Das Essverhalten wird zum einen durch das Wiegen des Kindes vor und nach dem Stillen, zum anderen durch das Ausfüllen eines Fragebogens erfasst. Diese Verfahren bergen weder für Sie noch
für Ihr Kind irgendeine Form von Risiko.


Die Studienteilnahme ist freiwillig!

Weder Sie noch Ihr Kind haben Nachteile zu befürchten, wenn Sie sich gegen eine Teilnahme entscheiden. Selbstverständlich kann das Einverständnis zur Studie auch jederzeit ohne Angaben von Gründen formlos widerrufen werden, ohne dass Ihnen oder Ihrem Kind daraus Nachteile entstehen. Ihr Kind wird in diesem Fall genauso behandelt und versorgt, wie es Standard in unserer Klinik ist. Durch die Studienteilnahme ergibt sich kein direkter persönlicher Nutzen für Sie oder Ihr Kind.

Fallzahl

Insgesamt sollen je 60 Kinder von Müttern mit Schwangerschaftsdiabetes, von Müttern mit Übergewicht bzw. erhöhter Gewichtszunahme während der Schwangerschaft und 60 Kinder von gesunden Müttern mit den verschiedenen Verfahren untersucht werden.

Der Datenschutz ist in jeder Hinsicht gewahrt.

Sowohl die Blutproben als auch die Daten der Kinder werden mithilfe von Identifikationsnummern verschlüsselt (pseudonymisiert, ohne Namensnennung). Dies bedeutet, dass Personen, die mit den Proben oder Messdaten Ihres Kindes arbeiten, nicht wissen, von wem diese Proben oder Daten stammen. Die Zuordnung der verschlüsselten Daten ist nur anhand einer Probandenliste möglich, die in einem verschlossenen Schrank, getrennt von den Studienunterlagen aufbewahrt wird und nur dem Studienleiter zugänglich ist. Eine Information über die von Ihnen erhobenen Daten ist auf Ihren Wunsch selbstverständlich möglich. Die Daten werden für die Dauer von 10 Jahren in der Kinderklinik Tübingen aufbewahrt. Die Weitergabe der erhobenen Daten an Dritte (d.h. Personen, die mit der weiteren Bearbeitung der Daten betraut sind) sowie die Auswertung erfolgt ausschließlich in pseudonymisierter Form, d.h. ein Bezug zu Ihrer Person kann anhand dieser Daten nicht hergestellt werden. Es ist geplant, nach Abschluss der Studie die Ergebnisse in wissenschaftlichen Zeitschriften zu veröffentlichen – wiederum ohne dass daraus Rückschlüsse auf Ihr Kind möglich wären.

Wir würden uns sehr freuen, wenn Sie der Untersuchung zustimmen würden. Die Ergebnisse dieser Studie bieten vielleicht die Chance, die genauen Ursachen für die abträglichen Spätfolgen von Schwangerschaftsdiabetes bei den Kindern betroffener Mütter besser zu verstehen und somit Hinweise auf geeignete vorbeugende Maßnahmen zu finden.

Gerne stehen wir Ihnen jederzeit für Rückfragen zur Verfügung!

Mit freundlichen Grüßen

Dr. Cornelia Wiechers  Prof. Dr. Axel Franz  Prof. Dr. Christian Poets
9.3. Elterneinwilligung

Einwilligungserklärung zur Studienteilnahme und Erklärung zum Datenschutz

Für die klinische Studie mit dem Titel

Untersuchungen zur fetalen Programmierung bei Neugeborenen von Müttern mit Schwangerschaftsdiabetes bzw. von Müttern mit überdurchschnittlicher Gewichtszunahme in der Schwangerschaft oder vorbestehendem Übergewicht, sowie bei gesunden reifen Neugeborenen

Wir, die Eltern von______________________________ geb.:__________________________
(Name und Geburtsdatum des Neugeborenen)
erklären:

1. dass wir die Elterninformation zur Durchführung der o. g. Studie (Version 2.0 vom 27.03.2014) gelesen und verstanden haben und die Möglichkeit hatten, Fragen zu besprechen,
2. dass wir über die Ziele, die Dauer und den Ablauf der Studie aufgeklärt wurden,
3. dass wir darüber informiert wurden, dass die Teilnahme an der Untersuchung freiwillig ist und dass die Einwilligung jederzeit ohne Angabe von Gründen und ohne Nachteile widerrufen werden kann.
4. dass wir über den Umgang mit den erhobenen Daten (von Mutter und Kind) informiert wurden, insbesondere, dass die Daten in pseudonymisierter Form mindestens 10 Jahre im Universitätsklinikum Tübingen gespeichert werden.

Hiermit willigen wir in die Erhebung der Daten von Mutter und Kind sowie in die Teilnahme unseres Kindes an folgenden Teilen dieser Untersuchung ein:

1. Messung des Körperfettanteils und der Hautfaltendicke □ Ja □ Nein
2. Ermittlung der körperlichen Aktivität □ Ja □ Nein
3. Erhebung des Essverhaltens □ Ja □ Nein
4. Aufzeichnung des Schlauf-/Wachverhaltens □ Ja □ Nein
5. Orale Glukosetoleranzmessung □ Ja □ Nein

Tübingen, den

........................................................................................................................................
(Datum) Name der Mutter in Blockschrift Unterschrift der Mutter

........................................................................................................................................
(Datum) Name des Vaters in Blockschrift Unterschrift des Vaters

........................................................................................................................................
(Datum) Name des aufklärenden Arztes bzw. Mitarbeiters Unterschrift des Arztes/Mitarbeiters

GDM_NE0_01 (Einwilligungserklärung V2.0 vom 27.03.2014)
9.4. Fragebogen

Studie zum Körperfettanteil bei Neugeborenen

Liebe Studienteilnehmer, für die Auswertung des Körperfettanteils bei Neugeborenen bitten wir Sie, folgende Angaben zu machen:

Angaben zur Mutter:

Name, Vorname: __________________________________________
Geburtsdatum: __________________________________________
Körpergröße: __________________________________________
Gewicht vor der Schwangerschaft: __________________________
Gewicht bei der Entbindung: ______________________________
Vorerkrankungen: □ nein □ ja, welche? ____________________

Diabetes mellitus: □ nein □ ja
 □ Typ1, seit __________ □ Typ2, seit __________
Diabetes mellitus in der Familie: □ nein □ ja, Wer? __________

Blutzuckervorte in der Schwangerschaft: □ regelrecht □ erhöht, falls erhöht: __________
Wann wurden die erhöhten Blutzuckervorte festgestellt (Datum): __________
Wo (Welche Praxis / Klinik): ________________________________
Wie: __________________________________________________

Wurde ein oraler Glukosetoleranztest (OGTT) durchgeführt? □ nein □ ja, falls ja ...
Wann wurde der Test durchgeführt (Datum): ____________________
Wo (Welche Praxis / Klinik): ________________________________

Blutzuckervorte bei OGTT:
nüchtern: _____________________________________________
   nach 1 h: ____________________________________________
   nach 2 h: ____________________________________________

Wie wurden die erhöhten Blutzuckervorte behandelt?
Ernährungsumstellung: □ nein □ ja, ab wann: ________________
Insulin: □ nein □ ja, ab wann: ____________________________

Eiweißausscheidung in der Schwangerschaft: □ regelrecht □ erhöht
Blutdruckvorte in der Schwangerschaft: □ regelrecht □ erhöht
Medikamente gegen Bluthochdruck: □ nein □ ja, welche (ab wann?)

____________________________________________________________
Andere Medikamente in der Schwangerschaft: □ nein □ ja, welche (ab wann?)

Angaben zum Vater

Alter: _________ Grösse: _________ Gewicht: ____________

PeaPod Fragebogen Version vom 18.09.2014
9. Anhang

Studie zum Körperfettanteil bei Neugeborenen

Angaben zum Kind:

Name, Vorname: ____________________________________________
Geburtsdatum / -uhrzeit: ______________________________________
   Errechneter Geburtstermin: ________________________________
Geburtsgewicht: __________________________________________
Länge bei Geburt: __________________________________________
Kopfumfang bei Geburt: ____________________________________
Geburtsmodus: ☐ vaginal ☐ Kaiserschnitt
Apgarwerte nach 5 min (_____ ) und 10 min (_____ )
Nabelarterien pH-Wert: ______________________________________
Komplikationen in der Schwangerschaft: ☐ nein ☐ ja, welche? ________
Komplikationen während der Geburt: ☐ nein ☐ ja, welche? ________
Mehrlingschwangerschaft: ☐ nein ☐ ja, Anzahl der Mehrlinge (___) und laufende
   Nummer des Mehrlings (___)
Ernährung: ☐ voll gestillt ☐ teilweise gestillt
Babynahrung: ☐ nein ☐ ja, Sorte: _________________
Trinkmenge am Vortag der Peapod-Messung (ml/d): _________________
Wann wurde das letzte Mal gestillt (Uhrzeit / Menge)? _________________
Bislang zeitgerechte Entwicklung des Kindes: ☐ ja ☐ nein, weshalb? ________

Gab es nach der Geburt eine Blutzuckertestung bei Ihrem Kind? ☐ nein ☐ ja
Falls ja: Bitte geben Sie den niedrigsten Blutzuckerwert (in mg/dl) in folgenden
   Zeitintervallen an:
   0 – 1 Stunde (nach Geburt): ____________ 1 – 3 Stunden: ____________
   3 - 6 Stunden: _______________ 6 - 12 Stunden: _______________
   12 – 24 Stunden: ________________
   Hat Ihr Kind eine Glucoseinfusion benötigt: ☐ ja ☐ nein
   Lebensalter (in Stunden) bei letztem Blutzuckerwert < 45mg/dl: ________________
War Ihr Kind stationär auf eine neonatologischen Station behandelt? ☐ nein ☐ ja,
Falls ja: Bitte geben Sie die Diagnosen laut Arztbrief an:

Vielen Dank für Ihre Mithilfe!