
Real-Time Analysis of Distributed Systems including Tasks with
Variable Rate-dependent Behavior

Timo Feld, Uwe Werkmann, Frank Slomka
Institute of Embedded Systems/Real-Time Systems

Ulm University, Germany
firstname.lastname@uni-ulm.de

Abstract. In automotive production car engines there are tasks, where the frequency of ac-
tivation and execution times vary with the angular velocity of the engine. The variable
rate-dependent behavior (VRB) task model has been proposed as a means of modeling this
behavior. In the literature a variety of real-time analysis have been developed for tasks with this
dependency of an angular velocity. However, these analysis focus on mono-processor systems.
In this paper we propose the first analysis for distributed systems including VRB-tasks.

1. Introduction

On an engine control unit, some tasks depend on the rotation speed of the engine. For instance,
the task that calculates the quantity of fuel that should be injected: the higher the engine speed,
the more frequent this task is executed and the lower the relative deadline. Furthermore, different
algorithms with different execution times are used at different ranges of the engine speed. In
summary, the frequency of activation, the deadlines and the execution times depend on the rotation
speed of the engine. In the literature these kind of tasks have been given a variety of names. We
use the term task with Variable Rate-dependent Behavior (VRB-task) [7].

CPU 1 CPU 2
FP FP

Figure 1: A distributed system

In recent years, a variety of publications focused on real-time analysis for such VRB-tasks.
All these works focus on mono-processor systems. However, today’s embedded systems are
increasingly based on multiprocessors for higher performance and lower power consumption. One
type is the distributed system, which is particular challenging regarding the real-time analysis.
In Figure 6 a simple distributed system with two CPUs is illustrated. As shown task τ1 triggers
task τ2 and because CPU1 effects CPU2, this system cannot be analyzed as two mono-processor

systems. The Real-Time Calculus (RTC)-toolbox is a powerful Matlab-toolbox for the analysis
of such distributed systems. In order to analyze distributed systems that contain VRB-tasks, we
provide in this paper methods to integrate VRB-tasks in the RTC-toolbox.

1.1. Related Work

The problem of scheduling VRB-tasks has been addressed by Kim et al. [13] (referred to as
rhythmic tasks). They propose an analysis under very restrictive assumptions with exactly one
rhythmic task. In Pollex et al. [15] [16] a sufficient analysis for a task set with multiple VRB-tasks
(referred to as engine-triggered tasks) has been described. The accuracy is improved by Feld and
Slomka [8] by additionally considering angular phases between tasks. Davis et al. [7] propose
analyses for VRB-tasks using integer linear programming (ILP) to find the maximum interference.
Huang and Chen [11] describe a sufficient schedulability test for VRB-tasks under fixed priority
mode-level scheduling, where the same task can have different priorities for each mode. Buttazzo
et al. [6], Guo and Baruah [10], Biondi and Buttazzo [2] and Biondi et al. [3] present analyses
for Earliest Deadline First (EDF)-scheduling. Mohaqeqi et al. [14] propose a representation of
a rate-dependent task with the Digraph Real-time task model and show that their representation
results in a safe analysis. In [4], Biondi et al. presented an exact characterization of interference.
Based on this method, Biondi et al. [5] introduced exact schedulability tests for FP-scheduling.
Most recently Feld and Slomka [9] proposed a method to characterize the exact interference of a
VRB-task. In contrast to [4] they account for arbitrary but bounded accelerations and reduce the
runtime complexity.

All these methods are for uniprocessor systems. In [12], Huang and Chen present utilization
bounds for multiprocessor systems with partitioned scheduling, where each task is statically as-
signed to one processor. Note that such a multiprocessor system differs from a distributed system,
since a task does not effect a task of another processor. To the best of our knowledge there is no
analysis for distributed systems that contain VRB-tasks.

2. Computational Model

In this section, we describe the VRB-task model and the general system model.

2.1. VRB-task model

A VRB-task is triggered according to the rotation of the engine (or in general a rotating source).
The number of rotations accomplished is denoted by ϕ. The angular velocity is denoted by ω and
bounded in [ω−, ω+]. ω is the first derivation of ϕ:

ω = ϕ̇ =
dϕ
dt

[1
s

]
(1)

The acceleration is denoted by a and bounded in [a−, a+]1. It is the second derivation of ϕ:

a = ω̇ = ϕ̈ =
d2ϕ

dt2

[1
s2

]
(2)

1Note that in section 4.3 we assume a constant acceleration of a = 0.

For convenience we assume that ω (including ω− and ω+) is measured in revolutions per second
and the acceleration a in revolutions per second squared.

Inter-arrival time: The inter-arrival time T is the distance in time between two successive
events. For a VRB-task the inter-arrival time is stated in terms of a fraction of a full rotation. This
fraction is denoted by b. For instance b = 1 if the inter-arrival time equals a full rotation. Since
the angular velocity is given in revolutions per second, the inter-arrival time T for a constant speed
ω can be determined with T = b

ω . The minimum and maximum inter-arrival times are therefore:
Tmin =

b
ω+ and Tmax =

b
ω− .

Execution time: There are several execution modes. The number of modes is denoted by M and
the index of an execution mode by m. The execution time of a VRB-task depends on the previous
inter-arrival time T according to equation (3):

C(T) =




C1 if Tmax ≥ T ≥ T1
C2 if T1 > T ≥ T2
...

CM if TM−1 > T ≥ TM

(3)

T1 is the smallest inter-arrival time for the execution mode 1, T2 for mode 2 and so on. The
smallest inter-arrival time for mode M (TM) equals the smallest inter-arrival time of the system:
TM = Tmin. The largest inter-arrival time for execution mode 1 is denoted by Tu

1 , for mode 2 by
Tu

2 and so on. According to equation 3 it holds Tu
1 = Tmax , Tu

2 = T1 and so on. Each execution
mode m is thus characterized by (Cm,Tm,Tu

m) representing the worst-case execution time Cm (with
C1 ≥ C2 ≥ . . . ≥ CM), minimum inter-arrival time Tm and maximum inter-arrival time Tu

m for a job
executing in that mode.

We note that, in the VRB-task model, the average angular velocity (i.e. the inter-arrival time)
causes the execution mode and accelerations are arbitrary but bounded. In contrast the AVR-task
model [4] assumes accelerations to be fixed between two events and it assumes that the instantaneous
speed causes the execution mode.

2.2. System model

The system that is being analyzed has two or more resources each executing a set of tasks Γ. Each
task may be triggered according to the sporadic task model with a fixed inter-arrival time T and
a fixed net execution time C, by a rotating source as described in section 2.1 or by the outgoing
events of another task.

We note that a task (whether VRB or sporadic task) is typically also defined by its deadline.
However, since the provided methods in this paper do not depend on the deadline, we do not state
these explicitly.

3. Recapitulation of existing real-time analysis

3.1. Exact request bound function

The request bound function αu(∆) expresses the maximum accumulated execution time that a
task can require from the processor within any time interval ∆ of given length. In [9] a method
is proposed which determines the exact request bound function (referred to as the worst-case
interference) generated by one VRB-task in a given interval ∆. The general approach is to identify
all courses of the angular velocity (referred to as paths) that can lead to the highest execution

requirement in a given interval ∆. The number of courses that has to be considered increases
exponentially with increasing interval length. However, for a limited interval ∆ the result of this
method is an exact request bound function αu

exact(∆). Due to space limitations we refer to [9] for
more details.

3.2. Real-time Calculus

The Real-Time Calculus (RTC)-toolbox is a powerful Matlab-toolbox, which allows to analyze
distributed real-time systems. It represents each task with the Greedy Processing Component
(GPC) and describes the stimulation of the system with arrival- and service-curves. Figure 2 shows
a GPC.

GPC

Figure 2: Greedy Processing Component

The service curve β(∆) describes how long the processor is available in a given time interval
∆. The arrival curve α(∆) describes the number of events that require processor resources.
In combination with the execution times of those events it describes the accumulated requested
execution time in a given time interval∆ and is identical to the request bound function (see αu

exact(∆)
in section 3.1). Given both incoming curves, the outgoing curves can be determined: the remaining
service curve β′(∆) and the outgoing event density α′(∆). The remaining service curve describes
how much resources are available for remaining tasks. The outgoing event density describes the
number of events that are completed in a given time interval. This outgoing event density is of
relevance if these events trigger a different task (for instance of another CPU). Each of these curves
have an upper and lower version denoted with u and l . Intuitively the subtraction of the requested
execution time αu(∆) from the available processor time βl (∆) is the remaining processor time
(i.e. the remaining service curve β′l (∆)). Similarly the outgoing event density depends on the
number of incoming events and is bounded by the available processor time. The determination of
the outgoing event density and remaining service curve uses the operations: convolution (⊗) and
deconvolution (�) in Min (⊗, �) and Max-Plus-Algebra (⊗, �). We recap the respective complete
equations in (4). Due to page limitations we refer to [17] for a more detailed explanation.

α′l = min((αl � βu) ⊗ βl, βl)

α′u = min((αu ⊗ βu) � βl, βu)

β′l (∆) = (βl (∆) − αu(∆))⊗0
β′u(∆) = (βu(∆) − αl (∆))�0

(4)

Given these curves, the maximum response time (also referred to as the delay) of each task

(a) αu (∆) and αl (∆) (b) αω+ (∆) and αω− (∆)
Figure 3: Requested execution time

is determined. The schedulability test is conducted by assuring that the delay is lower than the
corresponding deadline of each task.

4. Real-Time Analysis

In this section, we present an analysis for distributed systems with VRB-tasks. This analysis uses
the RTC-toolbox. In order to include aVRB-task in the RTC-toolbox and conduct the schedulability
test of such a distributed system three methods need to be adapted for VRB-tasks:

• the requested execution time of a VRB-task,

• the outgoing event density of a VRB-task

• and the remaining service curve of a VRB-task.

In the next subsections, we address these methods.

4.1. Requested execution time

We distinguish in the upper and lower bound of the requested execution time.

4.1.1. Upper bound on requested execution time αu(∆)

With the method described in [9] the maximum requested execution time of a VRB-task can be
determined. We depict this method with αu

exact(∆) (see section 3.1). However, the RTC-toolbox
requires its curves to be defined for unlimited intervals2. We therefore construct this curve such
that the first part is exactly computed with αu

exact(∆) according to [9] and after a certain interval
length it is approximated with a linear upper bound (this curve is illustrated in figure 3 a). Note
that the determination of the exact requested execution time of a VRB-task for unlimited intervals
we leave as a future work.
Linear upper bound

2A curve can be defined with the method rtccurve, which uses periodic elements to describe the curve for unlimited
time intervals[1].

The utilization is the increase in execution requirement in relation to the interval length. This
utilization of one mode is computed with Um =

Cm

Tm
. The maximum utilization of a VRB-task is

thus:
Umax = max

m∈N|m≤M

(Cm

Tm

)
. (5)

This Umax is the slope of the upper bound. The maximum requested execution requirement for
an interval ∆ = 0 is bounded by the maximum execution time Cmax , since at most one event can
occur given the stimulation of a VRB-task. The maximum starting point and the maximum slope
result in the following linear upper bound:

αu
linear(∆) = Cmax +Umax∆ (6)

For the first interval ∆exact , the method αu
exact(∆) is used to determine the exact requested

execution time and for any larger interval the linear upper bound is taken. This results in equation 7:

αu(∆) =



αu
exact(∆) , if ∆ < ∆exact

Cmax +Umax∆ , if ∆ ≥ ∆exact
(7)

A larger ∆exact results in a more precise analysis. But this comes with the cost of analysis
runtime, as the runtime of the exact method increases exponentially with increasing interval length
[9].

4.1.2. Lower bound on requested execution time αl (∆)

Analogously to the upper bound, the minimum increase in execution time in relation to interval
length is theminimumutilization. With themaximum inter-arrival timeTu

m ofmode m theminimum
utilization is:

Umin = min
m∈N|m≤M

(
Cm

Tu
m

) (8)

The maximum inter-arrival time Tmax of a VRB-task is the longest time in which no event can
occur. Hence for any interval ∆ > Tmax there is an execution requirement. With this latest starting
point and the minimum slope we conclude the lower bound on the execution requirement with
equation 9 (this curve is illustrated in figure 3 a):

αl (∆) = max((∆ − Tmax)Umin, 0) (9)

4.2. Remaining service curve

We restate from equations 4 in chapter 3.2, the determination of the remaining service curve:

β′l (∆) = (βl (∆) − αu(∆))⊗0
β′u(∆) = (βu(∆) − αl (∆))�0

(10)

The available service curves βl (∆) and βu(∆) are independent of a rotational source (i.e. are
not computed differently for VRB-tasks). αl (∆) and αu(∆) for VRB-tasks are provided with the
previous subsection. Hence by inserting equations 7 and 9 into equations 10 the remaining service
curve can be determined.

4.3. Outgoing event density

The aim is to find the maximum number of processed events for any given time interval ∆. For
simplification we assume steady state conditions (with a = 0) in this section. The computation for
arbitrary accelerations we leave as a future work.

3 events

2 events t

T C

T

Figure 4: Outgoing event density

Figure 4 shows a simple example of one task that has the full processor capacity available. In
this example events occur with an inter-arrival time of T each having an execution time of C. Since
full processor capacity is assumed in this example, always C after the occurring of each event it
is processed. The processing of an event (i.e. the outgoing event) is indicated with a down-arrow
below the time-line. Figure 4 shows an interval length which includes two outgoing events and
another interval that includes three outgoing events. These show that the distance between each
two outgoing events equals the inter-arrival time. It follows:

1. A smaller inter-arrival time leads to a higher number of processed events in an interval ∆.

3 events

2 events tT

C

Figure 5: Outgoing event density with limited βu (∆)

In figure 5 we illustrate an example where the processor is not fully available. According to the
available service curve βu(∆) the processor is not available during certain times as labeled in the
figure. The occurring and processing of jobs are denoted with J1, J2 and J3. Figure 5 illustrates
that the length of the execution time limits the distance between outgoing events. It follows:

2. The distance between each two outgoing events is not less than the execution time. Hence a
lower execution time leads to a higher (or at least the same) number of processed events.

From the computational model (see section 2.1) it follows:

3. The highest angular velocity causes the smallest inter-arrival time.

4. The execution times are decreasing with increasing angular velocity. Hence the smallest
execution time is at the highest angular velocity.

From points 1. to 4. it follows: the highest angular velocityω+ produces the maximum outgoing
event density α′u(∆). Therefore the incoming curve αω+ (∆) for this purpose is constructed with
Tmin = b/ω+ and Cmin = C(Tmin):

αω+ (∆) =
⌈
∆

Tmin

⌉
Cmin (11)

Analogously the minimum outgoing event density is produced at the lowest angular velocity.
Hence the respective incoming curve is constructed with the highest inter-arrival time Tmax = b/ω−

and the largest execution time Cmax = C(Tmax):

αω− (∆) =
⌊
∆

Tmax

⌋
Cmax (12)

Both curves (αω+ and αω−) are illustrated in figure 3 b. We use the determination of the outgoing
event density from equations 4 in chapter 3.2 and replace the respective functions with αω+ (∆) and
αω− (∆) to adapt for VRB-tasks:

α′u = min((αω+ ⊗ βu) � βl, βu)

α′l = min((αω− � βu) ⊗ βl, βl)
(13)

As described in the last subsections (using equations 7, 9, 10 and 13) all relevant methods are
modified in order to include VRB-tasks in the RTC-toolbox. Thus to determine the delay of a
VRB-task or to determine any necessary curves for the remaining regular tasks (that are not VRB-
tasks), the RTC-toolbox can be used. A tutorial and description of these methods provided by the
RTC-toolbox is given in [1].

5. Experiments

Using themethods described in section 4 and the RTC-toolbox a distributed system can be analyzed.
Another advantage of incorporating VRB-tasks into the RTC-toolbox is that this system can use
several schedulers as well as combinations of those. To illustrate the powerfulness of our new
method, we implemented the analysis of the distributed system illustrated in figure 6. The system
consists of two CPUs connected with a Bus. Several schedulers are used: CPU1 uses Fixed
Priority- and CPU2 Earliest Deadline First-scheduling. The bus uses Time Division Multiple
Access (TDMA), where tasks τ5 and τ7 share one TDMA-slot with fixed priorities.

Tasks τ1 and τ4 are VRB-tasks and have the following parameters:

• acceleration is bounded in a− = −100 1
sec2 and a+ = 100 1

sec2 .

• the speed-range is ω− = 1000 rpm, ω+ = 5000 rpm with 4 execution modes: [1000 rpm,
2000 rpm], (2000 rpm, 3000 rpm], (3000 rpm, 4000 rpm], (4000 rpm, 5000 rpm].

• execution times (of each executionmode) of task τ1 areC1 = 2.4 ms,C2 = 2 ms,C3 = 1.35 ms
and C4 = 0.9 ms

• execution times of task τ4 are C1 = 4.2 ms, C2 = 3 ms, C3 = 2.5 ms and C4 = 1.86 ms

• the rotation scaling factor is for both tasks b = 1, i.e. an event occurs every full rotation.

Task τ9 is a sporadic task and has the parameters T = 40 ms and C = 8 ms. The other tasks are
stimulated by the outgoing event density of the preceding tasks. The main result of this analysis is:

• The complete delay of the path stimulated by S1 is:
– d(S1) = d(τ1) + d(τ2) + d(τ3) = 3 + 9 + 8 = 20 ms

• The complete delay of the path stimulated by S2 is:
– d(S2) = d(τ4) + d(τ5) + d(τ6) + d(τ7) + d(τ8) = 7.4 + 3 + 5 + 4.5 + 15 = 34.9 ms

• The complete delay of the path stimulated by S3 is: d(S3) = d(τ9) = 14.6 ms

CPU 1 BUS

TDMA

CPU 2

EDF

FP

FP

S1

S2

S3

S2

S1

S3

(VRB)

(VRB)

Figure 6: Distributed system

6. Summary and Future Work

In this paper we presented the first analysis for distributed systems with VRB-tasks. To illustrate
the powerfulness of the method, we analyzed a system that uses a mix of Fixed Priority, Earliest
Deadline First and TDMA-scheduling. To deal with the requirement of curves being defined for
unlimited intervals, we used an upper bound on the request bound function. In a future work, we
want to determine the exact request bound function for unlimited intervals. Hence, having precise
knowledge of the execution requirement for arbitrary high time intervals and thus avoiding the need
for an approximation.

References

[1] Real-time calculus toolbox tutorial. http://www.mpa.ethz.ch/static/Tutorial.html.

[2] Biondi, Alessandro and Giorgio Buttazzo: Engine control: task modeling and analysis. In
Design Automation and Test in Europe (DATE), 2015.

[3] Biondi, Alessandro, Giorgio Buttazzo, and Stefano Simoncelli: Feasibility analysis of en-
gine control tasks under EDF scheduling. In Euromicro Conference on Real-Time Systems
(ECRTS), 2015.

[4] Biondi, Alessandro, Alessandra Melani, Mauro Marinoni, Marco Di Natale, and Giorgio
Buttazzo: Exact interference of adaptive variable-rate tasks under fixed-priority scheduling.
In Euromicro Conference on Real-Time Systems (ECRTS), 2014.

[5] Biondi, Alessandro, Marco Di Natale, and Giorgio Buttazzo: Response-time analysis for real-
time tasks in engine control applications. InProceedings of the ACM/IEEE Sixth International
Conference on Cyber-Physical Systems (ICCPS), pages 120–129, 2015.

[6] Buttazzo, G., E. Bini, and D. Buttle: Rate-adaptive tasks: Model, analysis and design-issues.
In Design Automation and Test in Europe (DATE), 2014.

[7] Davis, R., T. Feld, V. Pollex, and F. Slomka: Schedulability tests for tasks with variable rate-
dependent behaviour under fixed priority scheduling. InReal-Time and Embedded Technology
and Applications Symposium (RTAS), 2014.

[8] Feld, Timo and Frank Slomka: Sufficient response time analysis considering dependencies
between rate-dependent tasks. In Design Automation and Test in Europe (DATE), 2015.

[9] Feld, Timo and Frank Slomka: Exact interference of tasks with variable rate-dependent
behaviour. accepted at Transactions on Computer-Aided Design of Integrated Circuits and
Systems (TCAD), 2017. Digital Object Identifier: 10.1109/TCAD.2017.2729459.

[10] Guo, Zhishan and Sanjoy Baruah: Uniprocessor EDF scheduling of AVR task systems. In
Proceedings of the ACM/IEEE Sixth International Conference on Cyber-Physical Systems
(ICCPS), pages 159–168, 2015.

[11] Huang, Wen Hung and Jian Jia Chen: Techniques for schedulability analysis in mode change
systems under fixed-priority scheduling. In International Conference on Embedded and Real-
Time Computing Systems and Applications (RTCSA), 2015.

[12] Huang, Wen Hung and Jian Jia Chen:Utilization bounds on allocating rate-monotonic sched-
uled multi-mode tasks on multiprocessor systems. In Design Automation Conference (DAC),
2016.

[13] Kim, Junsung, Karthik Lakshmanan, and Ragunathan Rajkumar: Rhythmic tasks: A new
task model with continually varying periods for cyber-physical systems. In Proceedings of
the IEEE/ACM Third International Conference on Cyber-Physical Systems (ICCPS), pages
55–64, 2012.

[14] Mohaqeqi, Morteza, Jokaria Abdullah, Pontus Ekberg, and Wang Yi: Refinement of workload
models for engine control by state space partitioning. In Euromicro Conference on Real-Time
Systems (ECRTS), 2017.

[15] Pollex, Victor, Timo Feld, Frank Slomka, Ulrich Margull, Ralph Mader, and Gerhard Wirrer:
Sufficient real-time analysis for an engine control unit. InProceedings of the 21st International
conference on Real-Time Networks and Systems (RTNS), pages 247–254, 2013.

[16] Pollex, Victor, Timo Feld, Frank Slomka, Ulrich Margull, Ralph Mader, and Gerhard Wirrer:
Sufficient real-time analysis for an engine control unit with constant angular velocities. In
Design Automation and Test in Europe (DATE), 2013.

[17] Wandeler, E.: Modular Performance Analysis and Interface-Based Design for Embedded
Real-Time Systems. PhD thesis, ETH Zurich, September 2006. Chapter 2.

