
Systematic Test Case Instance Generation for the Assessment of
System-level Design Space Exploration Approaches

Kai Neubauer, Christian Haubelt
University of Rostck

Germany
{kai.neubauer, christian.haubelt}@uni-rostock.de

Philipp Wanko, Torsten Schaub
University of Potsdam

Germany
{wanko, torsten}@cs.uni-potsdam.de

Abstract. The design of embedded systems gets continually more arduous as the complexity of
applications and hardware platforms advance to satisfy the increasing demands on functionality,
performance, and power consumption. Mostly however, the concurrent fulfillment of those
demands are impossible because quality parameters are usually conflicting with each other
and cannot be guaranteed simultaneously. Thus, to find the best compromises of all possible
solutions, an efficient Design Space Exploration (DSE) becomes imperative. While, in recent
time, many DSE techniques to the system-level synthesis problem of embedded systems design
have been proposed, a systematic approach on how to produce a viable set of variant test
cases with definite similar properties is not available. In this work, we therefore propose a
methodology for the test case generation for DSE techniques and present a versatile and easily
expendable benchmark generator based on Answer Set Programming (ASP) that is able to
produce hard synthesis problem instances. The application of the test case instance generator
for an evaluation of a novel DSE approach shows that the impact on performance is negligibly
small compared to the solving complexity of the generated test instances.

1. Introduction

System-level Design Space Exploration (DSE) has been shown in many works (e.g., [1, 3, 6–8])
to be necessary in order to find good solutions for the often multi-objective optimization problem
of embedded systems design. Such problems are defined at system level by a set of applications
consisting of communicating tasks that have to be implemented onto hardware platforms with
computational elements (CPUs, DSPs, etc.) and a communication infrastructure (routers, links,
shared memory). A resulting implementation (resource allocation, tasks mapping, and scheduling)
of an embedded system can be characterized by various quality characteristics (e.g., latency,
throughput, energy requirement) that may be subject to optimization and/or have to fulfill several
constraints. Thus, a DSE is imperative to find feasible solutions with Pareto-optimal properties.

As the system synthesis problem is NP-complete [1], an exhaustive search of all design points is
impossible for reasonably large problems such that only a subset of all solutions can be obtained.
Thus, the actual result of a DSE run is usually not the true Pareto-front but only an approximation
thereof. In order to evaluate the performance of different runs or DSE approaches, quality indi-
cator techniques must be used that measure the distribution of solutions in the approximation set.



Typically, a combination of convergence (distance to the true Pareto-front) and diversity (degree of
distribution) are utilized to evaluate and compare the performances.

However, the specific problem instance in use is another important factor when evaluating a DSE
technique as differently structured applications and assumptions can lead to both easier and harder
optimization problems. On the one hand, in order to evaluate the performance of different DSE
approaches with respect to each other, it is imperative that the DSE inputs are similar and easily
reproducible. On the other hand, for the development of new techniques, test cases that represent
a specific class of problems are desired to cover a large input space. That is, variant test cases with
similar properties must be used to get meaningful results on the performance of a DSE technique
for specific classes of problem instances.

In the work at hand, we propose a systematic test generation methodology for embedded systems
design problems. It considers both the application and hardware architecture generation and is able
to generate variant test cases with similar properties deterministically. As it is based on Answer
Set Programming (ASP), it is easily expendable and platform independent.

The remainder of the paper is organized as follows: In Section 2, related work is discussed
and an overview of DSE techniques for embedded systems design is given. Afterwards, we first
specify the considered application and architecture model in Section 3 before we present our test
case generator in Section 4. Finally, Section 5 concludes the paper.

2. Related Work

In the last decades, a number of approaches have been proposed to tackle the DSE in the area of
embedded systems design. The works can be partitioned into (meta-)heuristics like evolutionary
algorithms and particle swarm optimization (e.g., [3, 6, 13]), exact methods based on symbolic
encoding techniques (e.g., [7, 8]) as well as hybrid approaches that combine symbolic encoding
techniques with heuristic searches (e.g., [11]). Compared to purely heuristic search techniques,
exact methods encode the DSE problem symbolically and systematically include all constraints
into the solving process. Thus, only feasible solutions are found. However, such methods are only
applicable to small problem instances. Meta-heuristics on the other hand, can also be utilized for
large instances but may take a long time finding feasible solutions if design constraints are set
tightly. As a remedy, hybrid methods encode the problem the symbolically and explore the search
space of possible heuristics to find diverse solutions. This way, large problems can be considered
while guaranteeing that only feasible solutions are found.

While the research on DSE has lead to variant approaches for the exploration itself, systematic
methods to generate test instances are sparse. There exist two graph generation tools [2, 12]
that have been proposed to be used as standard tools for the generation of random task graphs
and synchronous data flow graphs (SDFGs), respectively. Taskgraph For Free (TGFF) [2] was
especially designed to serve as a reference system for generating random task graphs for mapping
and scheduling purposes. It constructs task graphs on the basis of two different algorithms, that can
be configured with a number of parameters. While the first algorithm specifies the properties of
the graph by the maximum In/Out Degree of nodes, the second algorithm generates series-parallel
task graphs recursively with the option of additional edges between parallel units.

The authors of [12] proposed SDF For Free (SDF3), a tool to generate, analyze and visualize
SDFGs. The generated graphs are connected, consistent, and deadlock free with user defined



characteristics. Furthermore, the tool consists of (user expendable) functions that are able to assign
specific properties to actors and channels of the graph.

In contrast to the paper at hand, both SDF3 and TGFF, however, only generate the application
and do not consider the hardware architecture or mapping possibilities. While the task graph
model considered in the paper at hand is similar to TGFF, SDF3 is especially orientated towards
the data flow model of computation that additionally allows the generation of cyclic applications.
In following, we therefore present a holistic approach that is able to concurrently generate the
application, the hardware architecture and assign mapping possibilities. As a result, complete
problem instances are generated that can be used as input for any DSE methodology that can read
text-based input files. Note that an ad-hoc random approach is not desirable as it may generate
problem instances that are not solvable due to mapping (and scheduling) constraints. Furthermore,
ad-hoc approaches have little to no influence on the solving complexity of generated test instances.

3. Prerequisites

In this Section, we formally describe the specificationmodel including the application, the hardware
architecture, and the mapping options that is produced by the generator and serves as input for the
DSE. Furthermore, we lay out the basics of Answer Set Programming (ASP) which we utilize to
implement the generator.

3.1. Specification Model

As depicted in Fig. 1, we model the system specification as a graph separated into a set of
applications A, a heterogeneous architecture template P, and a set of mapping options M that
connects the former two.

Application: The set of applications A consists of independent applications Ai that are
specified in task-level granularity and modeled as a directed acyclic graph Ai = (T,C, E). That
is, each application contains sets of computational tasks T and communication messages C. A
set of edges E ⊆ T × C ∪ C × T specifies dependency relations between the elements. Each
message c ∈ C has exactly one predecessor task, i.e. inter process communication is characterized
in a point-to-point fashion. In order to model the individual complexity of tasks, the function
instructionCount : T×IT 7→ N assigns to each task an integer number of instructions per instruction
type it ∈ IT (e.g., integer, floating point, memory, etc.). This property is utilized to determine the
worst case execution time (WCET) for each mapping option.

Architecture Template: The architecture, or platform template P = (VP,VR, L) consists of
processing elementsVP and the communication infrastructure split into routersVR and links L. The
functions staticPower : VP ∪ VR 7→ N and area : VP ∪ VR 7→ N assign integer values to processing
elements and routers such that they are annotated by individual area and static power requirements.
Analogously, the functions routingEnergy : L 7→ N and routingDelay : L 7→ N assign energy and
routing delay requirements to each link l ∈ L. That is, a message that is sent over a link l consumes
routingEnergy(l) energy and has a delay of routingDelay(l)1. Finally, for each processing element
p ∈ VP, the functions cpi : VP × IT 7→ N and epi : VP × IT 7→ N assign the required cycles

1In this paper, we assume messages to have a fixed size. Modeling larger messages is possible by introducing multiple
messages between two tasks.



r1 r2

r3 r4

p1 p2

p3 p4

t5

c5

c6

t6

t7

m6, 2

m9, 4

m8, 5

m7, 7
t1

c2c1

c3 c4

t4

t3t2

m2, 2

m1, 3

m3, 3
m4, 2

m5, 1

A2

A1

Figure 1: Specification example consisting of two applications A1 and A2, a 2 × 2 platform template with
four processing elements p1−4 and routers r1−4, and mapping options m1 to m9 annotated with
WCET values.

and energy per processed instruction of type it ∈ IT . Note that bidirectional arrows represent two
separate links. For example, the connection between p1 and r1 in Fig. 1 represents the directed
edges l1 = (p1, r1) and l2 = (r1, p1).

Problem Instance: For each task, a set of mapping options M ⊆ T×VP is specified. Amapping
option m = (t, p) indicates that task t may be executed on processing element p and is annotated
with a WCET w as well as the dynamic energy e consumed by p when executing t. The WCET and
dynamic energy of mapping option m = (t, p) are calculated by Equations (1) and (2), respectively.

w(m) =
∑
i∈IT

cpi(p, i) · instructionCount(t, i) (1)

e(m) =
∑
i∈IT

epi(p, i) · instructionCount(t, i) (2)

Specifying several mapping options per tasks with different WCETs and energy annotations corre-
sponds to the modeling of heterogeneous systems. Together with the applications and the platform
template, the mapping options complete the problem instance I = (A, P,M).

3.2. Answer Set Programming

To generate problem instances as introduced in the previous section, we implement the generator
as Answer Set Programming (ASP) facts and rules. ASP is a programming paradigm that is
tailored towards NP-hard search problems and is based on the stable model (answer set) semantics.
Problems are formulated in a first-order input language as a set of facts and rules that are used to
represent and infer domain knowledge, respectively. Facts, as the simplest constructs, are used to
define a specific problem instance. Thus, they are unconditionally true and consist of only one
atom (i.e., an n-ary predicate applied to n terms). Given the example in Fig. 1, the facts below
encode the existence of task t1 as well as its mapping options m1 and m2.

task(t1). map(m1,t1,p1). map(m2,t1,p2). (3)

Rules are used to encode constraints and typically contain variables (i.e., names that start with
uppercase letters) that are independent of a particular problem instance. For example, the following
(choice) rule encodes the selection from mapping options.

{ bind(M,T,P) : map(M,T,P) } = 1 :- task(T). (4)



Here, the ternary predicate bind (short bind/3) is inferred exactly once for every task/1 predicate.
Thus, an answer set containing both bind(m1,t1,p1) and bind(m2,t1,p2) simultaneously
cannot exist.

Determining answer sets of logic programs (i.e., the combination of facts and rules) in ASP is
a two-step process. First, the logic program is translated (grounded) into a variable free represen-
tation before it can be solved by an answer set solver that determines stable models (solutions).
Accordingly, solving the example in Eqs. (3) and (4) produces two stable models (solutions): One
with atom bind(m1,t1,p1) and the other with bind(m2,t1,p2). A detailed description of the
solving process is, however, out of scope of this paper and we refer to [5] for further information.

Note that, we do not use pure ASP but utilize some features of the answer set solver clingo5 [4]
such as callback functions to generate IDs and implement a pseudo random number generator that
enables platform independent results. These callback functions are evaluated during grounding
and do not influence the determination of answer sets.

4. Generator

In this section, we present our methodology for generating system-level problem instances. The
generator utilizes the constraint solving capabilities of ASP to define the desired characteristics of
generated test cases. The most important properties of our methodology are listed below:

• Systematic generation: Rules encoded in ASP guarantee the compliance to desired charac-
teristics of the resulting test case. This involves the number of tasks, messages, processing
and communication elements as well as communication behavior of the application.

• Varied test cases: Utilizing the stable model semantics of ASP, the generator produces
variant instances with similar characteristics as described above while the shape of the
generated applications differ. This is important to evaluate DSE techniques with respect to
various classes of applications.

• Modularity: The generation of application and architecture template are independent from
each other, allowing the exchange of rules individually. Furthermore, as of the modular
structure, additional domain-specific properties can be added easily.

• Platform independence: The generator is implemented in ASP allowing it to be executed
on each system on which a compatible ASP solver is installed.

Next, we describe the implemented modules to generate applications, the hardware architecture,
and mapping options before we propose a method on how to feasibly handle design constraint.

4.1. Application Module

For the application generator module, we consider the applications to be modeled as series-parallel
graphs (SPGs). In this way, a wide range of application characteristics can be described by
one versatile encoding. An SPG is a fully connected graph that consists of series and parallel
patterns.2 While a series pattern can be used to model direct dependencies between two tasks (or
2Note that without loss of generality, we only consider binary parallel patterns in this paper. This can be easily
extended to parallel patterns with more than two branches.



1

2

3

(a) Series pattern

1

2

43

(b) Parallel pattern

1

2

3�

(c) Terminal pattern
Figure 2: Different patterns considered in the series-parallel graph generation.

Listing 1: Application Encoding
1 series(P,A) :- patterns(NS,NP,A), P=1..NS.
2 parallel(P,A) :- patterns(NS,NP,A), P=NS+1..NP+NS.
3 pattern(P,A) :- series(P,A).
4 pattern(P,A) :- parallel(P,A).
5 1 {contains(P1,P2,N,A) : pattern(P2,A), P1!=P2; contains(P1,term(N),N,A)} 1 :-

↪→ parallel(P1,A), N=1..4.
6 1 {contains(P1,P2,N,A) : pattern(P2,A), P1!=P2; contains(P1,term(N),N,A)} 1 :-

↪→ series(P1,A), N=1..3.
7 :- contains(P1,P2,X,A), contains(P1,P2,Y,A), X!=Y.
8 contains(P1,P2,A) :- contains(P1,P2,_,A).
9 :- contains(P1,P2,A), contains(P3,P2,A), pattern(P2,A), P1!=P3.

10 1{start(P,A) : pattern(P,A)}1 :- patterns(_,_,A).
11 reachable(P,A) :- start(P,A).
12 reachable(P2,A) :- contains(P1,P2,A), reachable(P1,A).
13 :- not reachable(P,A), pattern(P,A).
14 contains_trans(P1, P2, A) :- contains(P1, P2, A), pattern(P2,A).
15 contains_trans(P1, P3, A) :- contains_trans(P1,P2,A), contains(P2, P3, A), pattern(P3, A).
16 :- contains_trans(P, P, A).
17 [...]
18 0 {instructions(task(TID,A),TYPE,N) : N=@getValue(instr_min ,instr_max ,seed,(TID,A,TYPE))} 1 :-

↪→ task(TID,A), TYPE=1..instr_nr.
19 :- 0 #count {TYPE,(TID,A):instructions(task(TID,A),TYPE,_)} 0, task(TID,A).
20 instruction_exist(TYPE) :- instructions(_,TYPE,_).
21 :- not instruction_exist(TYPE), TYPE=1..instr_nr.

sub-applications) of an application, a parallel pattern models possible concurrent execution of two
sub-applications. As an example, consider applications A1 and A2 in Figure 1. The former can
be described as a parallel pattern where tasks t2 and t3 are able to be executed concurrently (and
in arbitrary order). That is, they are only dependent on their common predecessor task t1. The
latter application, on the other hand, represents a series pattern where task t5, t6, and t7 have to be
executed in a strict order as they are form a dependency chain. Depending on the dominance of
series or parallel patterns, the application allows for less or more concurrency, respectively.

An SPG is constructed recursively: Initially, an SPG has the form of a series (Fig. 2b), parallel
(Fig. 2a) or terminal (Fig. 2c) pattern. While terminal nodes determine the stop criterion of the
recursive construction process, each node of series and parallel patterns contains itself one of the
patterns depicted in Fig. 2. Given a fixed number of series and parallel patterns to be generated, s
and p respectively, this results in an overall number of 1 + 2 · s + 3 · p tasks and 2 · s + 4 · p edges.
The encoding of the series-parallel is depicted in Listing 1. At first, series and parallel patterns

are inferred from the input patterns/3 facts, defining the number of series and parallel patterns
for application Ai ∈ A, viz. NS and NP. Line 3 and 4 define that both series and parallel are



.

. .

.

.

.

. .

.

.

.

.

.

.

.

. .

.

.

. .

.
.

.

.

.

.

.

. .

.

.

.

.

.

.

Figure 3: Three variant applications with similar characteristics. Each application contains one series and
two parallel patterns, i.e., as input for the generator the atom patterns(1,2,1) was used.

Listing 2: Architecture Encoding
1 router(ID,X,Y,Z) :- ID=X+NX*(Y-1)+NX*NY*(Z-1), resources(NX,NY,NZ), X=1..NX, Y=1..NY, Z=1..NZ.
2 processor(ID,X,Y,Z) :- router(ID,X,Y,Z).
3 router(ID) :- router(ID,_,_,_).
4 processor(ID) :- processor(ID,_,_,_).
5 link(router(N),processor(N)) :- router(N,_,_,_), processor(N,_,_,_).
6 link(router(M),router(N)) :- router(M,X,Y,Z), router(N,X+1,Y,Z).
7 link(router(M),router(N)) :- router(M,X,Y,Z), router(N,X,Y+1,Z).
8 link(router(M),router(N)) :- router(M,X,Y,Z), router(N,X,Y,Z+1).
9 link(X,Y) :- link(Y,X).

10 0 { cpi(processor(RID),TYPE,N):N=@getValue(cpi_min,cpi_max,seed,(RID,TYPE)) } 1 :-
↪→ processor(RID), TYPE=1..instr_nr.

11 epi(processor(R),TYPE,EPI) :- cpi(processor(R), TYPE, _),
↪→ EPI = @getValue(epi_min,epi_max,seed,(R,TYPE)).

valid patterns. Afterwards, for each node of the parallel (line 5) and series (line 6) patterns, a
child pattern is selected. That is, either another pattern or a terminal node is selected. To prevent
invalid pattern constructs, lines 7-16 contain rules to prohibit several decisions. Line 7 provides
that no pattern is contained at two different positions of another pattern. Lines 8 and 9 prohibit the
situation that a pattern is contained in two different patterns at the same time, while lines 10-13
guarantee that the graph is fully connected for each application. Finally, lines 14-16 provide the
transitive closure of the graph and make sure no cycle is present (a pattern must not contain itself
transitively). An example of three applications with similar characteristics is depicted in Figure
3. Here, the input patterns(1,2,1) is used, specifying to generate an application containing
one series pattern, two parallel patterns and having the ID "1". Note that for sake of brevity, the
deduction of output predicates task/2 and comm/3 encoding tasks and messages for a specific
application is not given in Listing 1. Lines 18 to 21 assign the number of instructions to each
task. Furthermore, it is guaranteed that each tasks consists of at least one instruction type and
that each instruction type is contained in at least on task. To this end, the 4-ary callback function
getValue(min,max,seed,ID) returns a random integer value between min and max based on
the seed. To reduce grounding overhead, this done only once for each ID. Note that all variables
containing min and max are input parameters.

4.2. Architecture Module

The hardware architecture module generates a 3-dimensional grid of routers that are each connected
to a processing element via two independent communication links. An example of a resulting
platform is given in Figure 1. Here, the routers r1−r4 form a grid of size 2×2×1 and are connected
to four processing elements p1 − p4. The encoding is shown in Listing 2. At first, the number and



Listing 3:Mapping Encoding
1 N{map(ID,task(T,A),processor(R)):processor(R),ID=@getId(m,(T,A,R))}N:-task(T,A),

↪→ N=@getValue(map_min, map_max, seed,(T,A)).
2 :- map(ID, T, R), instructions(T,TYPE,_), not cpi(R,TYPE,_).
3 executionTime(MID,TIME) :- map(MID, T, R), TIME=#sum{CYCLES,TYPE:instructions(T,TYPE,INS),

↪→ cpi(R,TYPE,IPC), CYCLES=INS*CPI}.
4 dynamicEnergy(MID,E) :- map(MID, T, R), E=#sum{ENERGY,TYPE:instructions(T,TYPE,INS),

↪→ epi(R,TYPE,EPI), ENERGY=INS*EPI}.

IDs of routers are determined by interpretation of the input atom resources/3 that represents the
grid size in each dimension X , Y , and Z . For each router, an accompanying processing element
(processor/4) is inferred in line 2 before both 4-ary predicates router/4 and processor/4
are projected to unary predicates in lines 3 and 4. Lines 5 to 9 define the communication links
(link/2) between routers and processing elements. At first, a link is created between a router
and its processing element having the same ID. Afterwards, in lines 6 to 8, a link between each
two neighboring routers is added. Finally, the last link rule assures bidirectional links between
elements. The last three lines generate random CPI and EPI values for each processing element
and instruction type. Note that a processor may not support a specific instruction type.

4.3. Mapping Module

Given the application and architecture module, for the completion of a problem instance I =
(A, P,M), mapping options as well as further properties (energy and timing requirements) have
to be determined. To this end, in the mapping module, a random number of mapping options is
generated for each tasks that has been created by the application module. Afterwards, energy and
timing requirements are determined based on instruction count, instruction type, as well as CPI
and EPI values generated in other modules.
The encoding is given in Listing 3. Line 1 generates a random number of mapping options. Here,

the binary callback function getID(BASE,ARG) determines a unique identifier for the mapping
option based on the identifiers of the task, the resource it is mapped to and the application number.
Line 2 guarantees that no mapping is inferred, that binds a task to an incompatible processing ele-
ment, i.e., if the processing element does not support a specific instruction type, no task containing
such instructions must be mapped to that resource. Finally, the execution time and dynamic energy
for a specific mapping option are calculated in lines 3 and 4, respectively.

4.4. Constraint Generation

Generally, in order to evaluate DSE approaches, it becomes imperative to provide a large variety
of test cases. To this end, the generator is used to generate different problem classes with varying
characteristics. That is, each problem instance that belongs to a specific class has similar charac-
teristics including the number of series and parallel patterns, the size of the architecture, and the
range of property values. Utilizing each of the generated problem instances as input, the design
space exploration is carried out and can be evaluated with respect to varying problem instances.

In addition to the properties discussed before, real system implementations have to fulfill several
constraints, like maximum power dissipation and latency/throughput requirements. One possible
approach to deal with such demands in the generator is to utilize random numbers. However,



a random constraint generation does not work properly as the problem instance would either be
over-constrained (i.e., there are no feasible solutions to be found) or under-constrained (i.e., every
solution found during DSE is feasible). Unfortunately, as the system synthesis problem is NP-
complete, non-trivial upper bounds (and lower bounds) of constraints are hard to calculate.

Therefore, we propose a two-step approach based on the work of [9] utilizing the ASP modulo
Theories (ASPmT) paradigm to tightly integrate non-linear constraints analyzing techniques into
the ASP solving. ASPmT is a paradigm to integrate background theories (like difference logic) into
the ASP solver that enables the consideration of non-linear constraints. This way, after a problem
instance is determined, we are able to analyze valid solutions in the background theory. Finally,
this information is used to calculate hard constraints for a given problem instance by weighting the
analysis results with a user specified complexity factor. This way, instances of the same class can be
set to a similar relative difficulty. This approach was utilized to generate the test instances of [10].
Here, the generation of test case instances (including constraint generation) has been executed in a
matter of a few seconds while the DSE ran for 30 minutes per instance. Compared to the solving
complexity of the generated instances, the generator itself only has a small impact on performance.

5. Conclusion

In this paper, we have presented a novel methodology for generating holistic problem instances to
evaluate Design Space Exploration (DSE) techniques. Based on Answer Set Programming (ASP),
our approach provides a modular generation of different parts of the synthesis problem instance. In
order to allow for systematic generation of applications and hard architectures, we utilize the class
of series-parallel task graphs that are characterized by their contained number of series and parallel
patterns as well as connected grids to model the communication infrastructure. This way, only a
few input parameters have to be used to create a number of different problem instances with similar
characteristics. Random CPI and EPI values for processing elements in combination with different
instruction types are utilized to provide realistic heterogeneous problem instances where tasks with
different instruction combinations behave deterministically when mapped to various processing
elements. Finally, in order to generate test case instances with user defined solving complexity
regarding desired design constraints, we propose to utilize the ASPmT paradigm.

Acknowledgment

This work was funded by the German Science Foundation (DFG) under grants HA 4463/4-1 and
SCHA 550/11-1.

References

[1] Blickle, T., J. Teich, and L. Thiele: System-level synthesis using evolutionary algorithms.
Design Automation for Embedded Systems, 58:23–58, 1998. http://link.springer.com/
article/10.1023/A:1008899229802.

[2] Dick, R. P., D. L. Rhodes, and W. Wolf: Tgff: task graphs for free. In Proceedings of the
Sixth International Workshop on Hardware/Software Codesign, 1998. (CODES/CASHE ’98),
pages 97–101, Mar 1998. http://ziyang.eecs.umich.edu/~dickrp/tgff/.



[3] Ferrandi, F., P. L. Lanzi, C. Pilato, D. Sciuto, and A. Tumeo: Ant colony heuristic for
mapping and scheduling tasks and communications on heterogeneous embedded systems.
IEEETransactions onComputer-AidedDesign of Integrated Circuits and Systems, 29(6):911–
924, 2010, ISSN 0278-0070.

[4] Gebser, M., R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and P.Wanko: Theory solv-
ing made easy with clingo 5. In Technical Communications of the Thirty-second International
Conference on Logic Programming (ICLP’16), 2016.

[5] Gebser, M., R. Kaminski, B. Kaufmann, J. Romero, and T. Schaub: Progress in clasp series
3. In Proceedings of the Thirteenth International Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR’15), pages 368–383, 2015.

[6] Jia, Z.J., A. Núñez, T. Bautista, and A.D. Pimentel: A two-phase design space exploration
strategy for system-level real-time application mapping onto mpsoc. Microprocessors and
Microsystems, 38(1):9 – 21, 2014, ISSN 0141-9331. http://www.sciencedirect.com/
science/article/pii/S0141933113001361.

[7] Khalilzad, N., K. Rosvall, and I. Sander: A modular design space exploration framework for
multiprocessor real-time systems. In Proceedings of 2016 Forum on Specification and Design
Languages (FDL), pages 1–7, 2016.

[8] Lukasiewycz, M., M. Glass, C. Haubelt, and J. Teich: Efficient symbolic multi-objective
design space exploration. In Proceedings of 2008 Asia and South Pacific Design Automation
Conference (ASP-DAC), pages 691–696, 2008.

[9] Neubauer, K., P. Wanko, T. Schaub, and C. Haubelt: Enhancing symbolic system synthesis
through ASPmT and partial assignment evaluation. In Proceedings of Design, Automation
and Test in Europe (DATE), pages 306–309, Lausanne, 2017.

[10] Neubauer, K., P. Wanko, T. Schaub, and C. Haubelt: Exact multi-objective design space
exploration using aspmt. In Proceedings of Design, Automation and Test in Europe (DATE),
Dresden, 2018.

[11] Schlichter, T., M. Lukasiewycz, C. Haubelt, and J. Teich: Improving system level design space
exploration by incorporating SAT-solvers into multi-objective evolutionary algorithms. In
Proceedings of IEEE Computer Society Annual Symposium on Emerging VLSI Technologies
and Architectures (ISVLSI’06), 2006, ISBN 0-7695-2533-4.

[12] Stuijk, S., M.C.W.Geilen, and T. Basten: SDF3: SDFFor Free. InApplication of Concurrency
to System Design, 6th International Conference, ACSD 2006, Proceedings, pages 276–278.
IEEE Computer Society Press, Los Alamitos, CA, USA, June 2006. http://www.es.ele.
tue.nl/sdf3.

[13] Thompson,M. andA.D. Pimentel:Exploiting domain knowledge in system-level mpsoc design
space exploration. Journal of Systems Architecture, 59(7):351 – 360, 2013, ISSN 1383-7621.
http://www.sciencedirect.com/science/article/pii/S1383762113001045.


