
PROOF THEORY

Proceedings of the Workshop held at
Unilog’2018 in Vichy, 25 June 2018

Edited by

Thomas Piecha
Peter Schroeder-Heister

University of Tübingen
2018





Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Programme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Abstracts
Francesca Poggiolesi

Grounding as Meta-linguistic Relation . . . . . . . . . . . . . . . . . . . . . . 3

Ulf Hlobil
Extensions of Non-Monotonic and Non-Transitive Atomic Bases . . . . . . . . 4

Dorota Leszczyńska-Jasion and Szymon Chlebowski
Distributive Deductive Systems: the Case of the First-Order Logic . . . . . . . 5

Gerard R. Renardel de Lavalette
The Mathematics of Derivability . . . . . . . . . . . . . . . . . . . . . . . . . . 6

René Gazzari
The Existence of Pure Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Lutz Straßburger
Syntactic Proofs versus Combinatorial Proofs . . . . . . . . . . . . . . . . . . 9

Alexander Leitsch
CERES: Automated Deduction in Proof Theory . . . . . . . . . . . . . . . . . 10

Enrico Moriconi
Remarks on the Sequent Calculus . . . . . . . . . . . . . . . . . . . . . . . . . 11

Michael Arndt
Tomographs for Substructural Display Logic . . . . . . . . . . . . . . . . . . . 12

Presentations
Ulf Hlobil

Extensions of Non-Monotonic and Non-Transitive Atomic Bases . . . . . . . . 15

Dorota Leszczyńska-Jasion and Szymon Chlebowski
Distributive Deductive Systems: the Case of the First-Order Logic . . . . . . . 31

Gerard R. Renardel de Lavalette
The Mathematics of Derivability: An Application in Horn Logic [paper] . . . . 47

Gerard R. Renardel de Lavalette
The Mathematics of Derivability [slides] . . . . . . . . . . . . . . . . . . . . . . 61

René Gazzari
The Existence of Pure Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Alexander Leitsch
CERES: Automated Deduction in Proof Theory . . . . . . . . . . . . . . . . . 91

Enrico Moriconi
Remarks on the Sequent Calculus . . . . . . . . . . . . . . . . . . . . . . . . . 125

Michael Arndt
Tomographs for Substructural Display Logic . . . . . . . . . . . . . . . . . . . 151

iii





Preface

The workshop on proof theory took place in Vichy at the Pôle Universitaire de Vichy on 25 June
2018. It was part of Unilog’2018, the 6th World Congress and School on Universal Logic. The
proceedings collect abstracts, slides and papers of the presentations given.

The workshop and its proceedings were supported by the French-German ANR-DFG
project “Beyond Logic: Hypothetical Reasoning in Philosophy of Science, Informatics, and
Law”, DFG grant Schr 275/17-1. We would like to thank the organizers of Unilog’2018 for
their support.

Thomas Piecha
Peter Schroeder-Heister

v



Programme

8.30–8.45 Peter Schroeder-Heister

Presentation of the Workshop

8.45–9.30 Francesca Poggiolesi

Grounding as Meta-linguistic Relation

9.30–10.00 Ulf Hlobil

Extensions of Non-Monotonic and Non-Transitive Atomic Bases

10.00–10.30 Dorota Leszczyńska-Jasion and Szymon Chlebowski

Distributive Deductive Systems: the Case of the First-Order Logic

11.00–11.30 Gerard R. Renardel de Lavalette

The Mathematics of Derivability

11.30–12.00 René Gazzari

The Existence of Pure Proofs

12.00–12.30 Lutz Straßburger

From Syntactic Proofs to Combinatorial Proofs

14.15–15.00 Alexander Leitsch

CERES: Automated Deduction in Proof Theory

15.00–15.30 Enrico Moriconi

Remarks on the Sequent Calculus

15.30–16.00 Michael Arndt

Tomographs for Substructural Display Logic

vi



Abstracts





Abstracts

Grounding as Meta-linguistic Relation

Francesca Poggiolesi
Université Paris 1 Panthéon-Sorbonne, CNRS, ENS

UMR 8590 IHPST – Institut d’Histoire et de Philosophie des Sciences et des Techniques

The concept of grounding has a long and venerable history that starts with Aristotle and continue
through philosophers such as Ockham or Bolzano. Quite recently we assist to an impressively
flourishing and increasing interest for the notion of grounding, which is studied and analyzed
from many different angles. Amongst them, scholars have been trying to capture the structural
and formal properties of the concept in question by proposing several logics of grounding (see
e.g. [1–3] and [6]). In these logics grounding is formalized either as an operator or as a predicate.
The main aim of this talk is to present a different approach to the logic of grounding, which
stems from some deep Bolzaian intuitions and where grounding is formalized as a meta-linguistic
relation (see [4, 5]), just like the notion of derivability or that of logical consequence. Let me call
such an approach LG. The central characteristics of LG can be resumed in the following list:

– LG allows a rigorous account of ground-theoretic equivalence.

– InLG grounding rules are unique; in particular it is possible to formulate an unique grounding
rule for negation.

– In LG it is also possible to formulate grounding rules for implication which are quite different
from everything that has been proposed so far and that seem to better reflect our intuitions
on the issue.

– Finally LG allows to prove important results such as the soundness and completeness
theorems, but also the deduction theorem.

References
[1] Correia, F.: Logical Grounds, Review of Symbolic Logic 7, 2014, pp. 31–59.
[2] Fine, K.: The pure logic of ground, Review of Symbolic Logic 25, 2012, pp. 1–25.
[3] Korbmacher, J.: Axiomatic Theories of Partial Grounds, Journal of Philosophical Logic 35,

2017, pp. 1–31.
[4] Poggiolesi, F.: On defining the notion of complete and immediate formal grounding, Synthese

193, 2016, pp. 3147–3167.
[5] Poggiolesi, F.: On constructing a logic for the notion of complete and immediate formal

grounding, Synthese 195, 2018, pp. 1231–1254.
[6] Schnieder, B.: A logic for ‘Because’, Review of Symbolic Logic 4, 2011, pp. 445–465.

3



Abstracts

Extensions of Non-Monotonic
and Non-Transitive Atomic Bases

Ulf Hlobil
Department of Philosophy, Concordia University, Montreal, Canada

The paper presents a proof-theoretic approach to nonmonotonic logics that are in line with
inferentialism and logical expressivism [1, 2]. According to logical expressivism, it is the charac-
teristic job of logical vocabulary to make explicit inferential relations among atomic sentences.
According to semantic inferentialism, the meanings of atomic sentences are determined by
such atomic consequence relations. The paper presents nonmonotonic, nontransitive logics that
embody both of these philosophical ideas. These logics extend atomic bases, i.e. consequences
relations over atomic sentences, by introducing logical vocabulary.

I provide sequent calculi for such non-monotonic, non-transitive base extensions. Tweaking
G3cp and using reflexive bases, e.g., gives us supra-classical base extensions. Since the rules
are invertible, the connectives have a straightforward expressivist interpretation. I show how a
similar supra-intuitionistic sequent calculus can be turned into a natural deduction system.

Along the way, I compare and contrast my expressivist base extensions with extant work on
atomic systems. In contrast to the systems presented here, most work on extensions of atomic
bases focuses on monotonic and transitive bases [4]. Piecha and Schroeder-Heister [3] have
noted that a certain kind of monotonicity isn’t plausible if we take atomic bases to be meaning
determining. I go further and argue we should also reject transitivity (multiplicative Cut) and
so-called “definitional reflection.”

References
[1] Brandom,R. B. (2008).Between Saying andDoing: Towards anAnalytic Pragmatism. Oxford

University Press, Oxford.
[2] Peregrin, J. (2014). Inferentialism: Why Rules Matter. Palgrave Macmillan, New York.
[3] Piecha, T. and Schroeder-Heister, P. (2016). Atomic Systems in Proof-Theoretic Semantics:
Two Approaches. In Redmond, J., Pombo Martins, O., and Nepomuceno Fernández, Á.,
editors, Epistemology, Knowledge and the Impact of Interaction, pp. 47–62. Springer, Cham.

[4] Sandqvist, T. (2015). Base-Extension Semantics for Intuitionistic Sentential Logic. Logic
Journal of the IGPL 23(5), 719–731.

4



Abstracts

Distributive Deductive Systems:
the Case of the First-Order Logic

Dorota Leszczyńska-Jasion and Szymon Chlebowski
Department of Logic and Cognitive Science, Adam Mickiewicz University, Poznań, Poland

The objective of our research is a modern reflection on the notion of proof and on the effectiveness
of its construction. In the project we take advantage of the fact that various proof systems can
generate the same or closely related solutions for the same problem (a formula) with various
complexity (understood both in terms of the time complexity and in terms of the size of the
derivation tree). Therefore it seems like a lot can be achieved in the field of complexity of proof-
search by dividing the initial problem into “subproblems” and assigning to each subproblem a
“proof module” which is computationally optimal for the given subproblem.

A distributive deductive system (DDS, for short) for a given logic L consists of two layers: the
module-layer of proof systems and themeta-layer. Proof systems of the first layer are understood
as sets of rules enriched with procedures and/or heuristics of their use. The rules act on finite
sequences of sequents. Each such proof system – called a module – simulates a proof method (or
proof methods) to the effect of computational characteristics of the method. For example,

– Module A stores rules acting on finite sequences of left-sided sequents. The rules simulate the
method of analytic tableaux in the original ac- count and system KE with the rule of cut.

– Module D enhances the method of resolution. The rules act upon finite sequences of
right-sided reversed sequents.

– Module E stores rules acting on finite sequences of right-sided sequents, the rules are of
synthesizing character.

Hence the differentmodules of a DDS represent (and characterize) a rich collection of various
proof methods. The task of the meta-layer is to distribute parts of a derivation among different
modules. Consequently, the meta-layer will distribute the computational costs of conducting a
derivation among the modules. More specifically, the meta-layer analyses the input data (such
as a single formula) using simple functions, such as the length of a formula, the number of
distinct variables in a formula, but also the pattern of connectives nested in the scope of other
connectives; then, taking into account the procedures and/or heuristics available, the meta-layer
chooses the form of a sequent used for the input and hence also the module (modules) from the
module-layer that will be used at the start. In case of big inputs, the obtained sequents may be
analysed by the tools of the meta-layer many times. For example, the initial input is analysed
to a collection of sequents and the meta-layer indicates that while part of the sequents can be
efficiently treated with the rules of analytic tableaux (module A), for the other part it is more
convenient to decide its inconsistency with resolution system module D.

The aim of our talk is to present the idea of distributive deductive systems and the results
obtained so far for the case of the First-Order Logic.

5



Abstracts

The Mathematics of Derivability

Gerard R. Renardel de Lavalette
Faculty of Science and Engineering, University of Groningen, The Netherlands

Traditionally, the notion of derivability (or provability) in proof theory is defined in terms of
derivations: sequences or tree-like structures consisting of formulae or sequents, satisfying certain
conditions involving proof rules. The ‘driving force’ of derivations usually consists of conditional
statements: implications in the object language (ϕ → ø), entailments in the metalanguage
(ϕ,ø ` ϕ ∧ ø), or proof rules involving sequents (if Γ ` ϕ and Γ, ø ` ÷ then Γ, ϕ → ø ` ÷).

I propose an alternative definition of derivability, capitalizing on the dynamic character of
conditional statements. It is based on set-valued functions F : ℘(EXP)→ ℘(EXP), where EXP
denotes a collection of expressions, with the intended meaning: for all E ⊆ EXP, E entails the
expressions in F(E). So when EXP is a collection of atomic formulae, then F represents the
Horn sentence ∧

Γ⊆EXP

∧

ϕ∈F(Γ)

(∧
Γ→ ϕ

)
.

When EXP is a collection of formulae of some logical language, then F represents the collection
of sequents Γ ` ϕ for all Γ ⊆ EXP and all ϕ ∈ F(Γ). And when EXP is a collection of sequents,
then F represents the proof rule from S infer Γ ` ϕ, for all collections of sequents

S = {Γi ` ϕi | i ∈ I } ⊆ EXP

and all sequents Γ ` ϕ in F(S).
In [1], I experimented with this idea in the context of propositional Horn logic. This led to

several results on uniform and polynomial interpolation. Along the way, a characterization of
validity was established: F � G iff G v F∗, i.e. G(P) ⊆ F∗(P) for all sets P of atoms. In other
words: (the Horn formula represented by) F entails (the Horn formula represented by) G if and
only if G is contained in the reflexive transitive closure F∗ of F . Moreover, it appeared that the
set-valued functions form a weak lazy Kleene algebra (a notion inspired by [2]), governed by
axioms like:

– (F t G) ◦ H = (F ◦ H) t (G ◦ H),
– I t F ◦ F∗ v F∗,
– if F ◦ G v G, then F∗ ◦ G v G.
Here I is the identity function, and t is defined by

(F t G)(P) = F(P) ∪ G(P).

The left distributive version

F ◦ (G t H) = (F ◦ G) t (F ◦ H)

of the first axiom does not hold, and neither do the variants

I t F∗ ◦ F v F∗

and
if F ◦ G v F , then F ◦ G∗ v F

of the second and third axiom.
In the paper abstracted here, the notions and results sketched above are extended to full

Horn logic, where the atomic formulae contain terms and variables and where all formulae
have implicit universal quantification at the outermost level for all occurring variables. For this

6



Abstracts

purpose, the theory of set-valued functions is extended with substitutions ó : EXP→ EXP. The
characterization of validity now reads

F � G iff G v
( ⊔

ó∈SUB
(ó · F)

)∗
,

where SUB denotes the set of all substitutions and where ó · F is defined by

(ó · F)(X ) = {ó(ϕ) | ∃Y ⊆ EXP(X = {ó(ø) | ø ∈ Y}&ϕ ∈ F(Y ))}.

With the proper establishment of notions and results for the combination of set-valued
functions with substitutions, we can scale up to the investigation of proof systems for algebraic
theories and propositional logics, involving sequents. The next step to first-order logic requires
another extension to deal with variable binders (like quantifiers). All in all, it is my goal to
substantiate the claim that set-valued functions are a core ingredient for the proper mathematical
analysis of derivability.

References
[1] Gerard R. Renardel de Lavalette: Interpolation in propositional Horn logic, Journal of Logic
and Computation, doi:10.1093/logcom/exx042.

[2] BernhardMöller: Kleene getting lazy,Science ofComputer Programming 65(2),2007,pp. 195–
214.

7

https://doi.org/10.1093/logcom/exx042


Abstracts

The Existence of Pure Proofs

René Gazzari
Department of Computer Science, University of Tübingen, Germany

Topic of our talk is the notion of pure proofs from a proof theoretical point of view. In a first
step, we explain how to deal with this informal philosophical notion in a formal way. We identify
formal counterparts to the relevant philosophical concepts and notions and provide a formal
definition of pure proofs, this means a definition of pure derivations (in the calculus of Natural
Deduction).

The main goal of our talk is to show that every derivation can be transformed into a pure
derivation, namely into a derivation satisfying the following condition: every non-logical symbol
(the counterparts of mathematical notions) occurring in the derivation already occur in an
essential assumption or in the conclusion of this derivation.

Partial results are easily obtained via well-known results: it is a technical lemma that we may
replace unnecessary constant symbols by variables. Pureness with respect to relation symbols is
a consequence of the existence of the Prawitz normal form and of the subformula property. The
crucial aspect is the treatment of function symbols: to prove the existence of a pure derivation,
we have to replace some (only the unnecessary) occurrences of terms in a derivation by variables,
and to show that the resulting derivation satisfies our demands.

In the course of our argumentation, we overcome some technical difficulties: we introduce
a formal notion of occurrences of terms in a derivation. We identify congruent occurrences
of terms in a derivation, namely those occurrences which have to be of the same shape due to
the inference rules according to which the derivation under discussion is generated. Finally, we
show under which conditions such congruent occurrences can be replaced by variables (or other
suitable terms). Applying this substitution theorem to derivations in Prawitz normal form, we
obtain pure derivations. Our result also sheds light on the problem of the identity of proofs,
another philosophically relevant problem of proof theory. When transforming a derivation into
its pure version, we do not change its normal form, but an essential property of this derivation.
This seems to be a good reason to reconsider, whether we should identify derivations having the
same normal form.

8



Abstracts

Syntactic Proofs versus Combinatorial Proofs

Lutz Straßburger
Inria Saclay – Île-de-France, Campus de l’École Polytechnique, Palaiseau, France

Proof theory is a central area of theoretical computer science, as it can provide the foundations
not only for logic programming and functional programming, but also for the formal verification
of software. Yet, despite the crucial role played by formal proofs, we have no proper notion of
proof identity telling us when two proofs are “the same”. This is very different from other areas
of mathematics, like group theory, where two groups are “the same” if they are isomorphic, or
topology, where two spaces are “the same” if they are homeomorphic.

The problem is that proofs are usually presented by syntactic means, and depending on the
chosen syntactic formalism, “the same” proof can look very different. In fact, one can say that at
the current state of art, proof theory is not a theory of proofs but a theory of proof systems. This
means that the first step must be to find ways to describe proofs independent from the proof
systems. In other words, we need a “syntax-free” presentation of proofs.
Combinatorial proofs form such a canonical proof presentation that (1) comes with a

polynomial correctness criterion, (2) is independent of the syntax of proof formalisms (like
sequent calculi, tableaux systems, resolution, Frege systems, or deep inference systems), and
(3) can handle cut and substitution, and their elimination. Below is an example showing how a
combinatorial proof can be extracted from a deep inference derivation:

c̄ ^ b ^ pa _ cq ^ pc̄ _ aq
awÒ ´́´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́´

b ^ pa _ cq ^ pc̄ _ aq
acÒ ´́´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́´

b ^ b ^ pa _ cq ^ pc̄ _ aq
2 ¨ s ´́´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́´

b ^ b ^ pa _ pc ^ c̄q _ aq
aiÒ ´́´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́´

b ^ b ^ pa _ aq
2 ¨ s ´́´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́

pb ^ aq _ pb ^ aq
m ´́´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́

pb _ bq ^ pa _ aq
acÓ ´́´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́

pb _ bq ^ a

→

c̄ ^ b ^ pa _ cq ^ pc̄ _ aq
awÒ ´́´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́´

b ^ pa _ cq ^ pc̄ _ aq
acÒ ´́´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́´

b ^ b ^ pa _ cq ^ pc̄ _ aq
2 ¨ s ´́´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́´

b ^ b ^ pa _ pc ^ c̄q _ aq
aiÒ ´́´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́´

b ^ b ^ pa _ aq
2 ¨ s ´́´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́

pb ^ aq _ pb ^ aq
m ´́´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́

pb _ bq ^ pa _ aq
acÓ ´́´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́

pb _ bq ^ a

→

c̄ ^ b ^ pa _ cq, c̄ _ a

‚, ‚, ‚ _ ‚, ‚ _ ‚

‚ ^ ‚, ‚ ^ ‚

pb _ bq ^ a

In a nutshell, a combinatorial proof consists of a purely linear part (depicted above in blue/bold)
and a part that corresponds to contraction and weakening (depicted above in purple/regular).
Combinatorial proofs can be composed horizontally and vertically, and can be substituted into
each other.

In this presentation, I will discuss the basic definition of combinatorial proofs, how they can
be normalized, and how we can transform syntactic proofs into combinatorial proofs and back.

References
[1] Dominic Hughes. Proofs Without Syntax. Annals of Mathematics, 164(3): 1065–1076, 2006.
[2] Dominic Hughes. Towards Hilbert’s 24th problem: Combinatorial proof invariants: (prelimi-

nary version). Electr. Notes Theor. Comput. Sci., 165:37–63, 2006.
[3] Lutz Straßburger. Combinatorial Flows and Proof Compression. Research Report RR-9048,

Inria Saclay, 2017. URL: https://hal.inria.fr/hal-01498468
[4] Lutz Straßburger. Combinatorial Flows and Their Normalisation. In FSCD 2017 (LIPIcs),

Dale Miller (Ed.), Vol. 84. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 31:1–31:17.

9

https://hal.inria.fr/hal-01498468


Abstracts

CERES: Automated Deduction in Proof Theory

Alexander Leitsch
Institute of Logic and Computation, Vienna University of Technology, Austria

CERES (cut-elimination by resolution; see [1]) is a method of cut-elimination which strongly
differs from cut-elimination a la Gentzen. Instead of reducing a proof ϕ stepwise (and thereby
simplifying the cuts) CERES computes a formula CL(ϕ) represented as so-called characteristic
clause set. CL(ϕ) encodes the structure of the derivations of cuts in ϕ and is always unsatisfiable.
In classical logic any resolution refutation ñ of CL(ϕ) can be taken as a skeleton of a CERES
normal form ϕ∗ ofϕ (in ϕ∗ all cuts are atomic). CERES was mainly designed as a computational
tool for proof analysis and for performing cut-elimination in long and complex proofs; an
implementation of the method was successfully applied to Fürstenberg’s proof of the infinitude
of primes [2].

There is, however, also an interesting theoretical aspect of the CERES method: reductive
cut-elimination based on the rules of Gentzen can be shown to be “redundant” with respect to
CERES in the following sense: if ϕ reduces to ϕ′ then CL(ϕ) subsumes CL(ϕ′) (subsumption
is a principle of redundancy-elimination in automated deduction). This redundancy property
can be used to prove that reductive methods (of a specific type) can never outperform CERES.
Moreover, subsumption also plays a major role in proving the completeness of intuitionistic
CERES (CERES-i) [3]. CERES-i is based on the concept of proof resolution, a generalization
of clausal resolution to resolution of cut-free proofs. The completeness of CERES-i can then be
proven via a subsumption property for cut-free proofs and a subsumption property for proof
projections under reductive cut-elimination. The results demonstrate that principles invented in
the area of automated deduction can be fruitfully applied to proof theory.

References
[1] Baaz,M. andLeitsch,A.: Cut-elimination and redundancy-elimination by resolution, Journal
of Symbolic Computation 29, 2000, pp. 149–176.

[2] Baaz, M., Hetzl, S., Leitsch, A., Richter, C., and Spohr, H.: CERES: an analysis of
Fürstenberg’s proof of the infinity of primes, Theoretical Computer Science 403, 2008,
pp. 160–175.

[3] Cerna, D., Leitsch, A., Reis, G., and Wolfsteiner, S.: Ceres in intuitionistic logic, Annals of
Pure and Applied Logic 168, 2017, pp. 1783–1836.

10



Abstracts

Remarks on the Sequent Calculus

Enrico Moriconi
Dipartimento di Civiltà e Forme del Sapere, Università di Pisa

In the last section V of his thesis, after the proof of the Hauptsatz,Gentzen proved the equivalence
between the main three types of formalization of the logical inference: the Hilbert-Ackermann
system (H.A.), the Natural Deduction Calculus (N.D.), and the Sequent Calculus (S.C.). In this
proof we can see, so to say, the birth of the same formalism of S.C., which is maybe the most
important formalization of logical deduction ever provided. Also the handwritten version of
the thesis, let’s sayMs.ULS, contains a similar proof of equivalence, as we have learnt from the
important researches made by Jan von Plato on the newly found Gentzen’s texts. Admittedly, the
last section of the thesis is normally rated “less important” than the other sections, but nonetheless
it casts some important light on the emergence of the S.C., and more generally on some structural
features of Gentzen’s work. In the Thesis the equivalence proof proceeds through the following
sequence of steps: i) a proof that every derivation within the H.A.-axiomatization can be
transformed in an equivalent derivation of N.D.-calculus; ii) a proof that every N.D.-derivation
can be transformed into an equivalent S.C.-derivation; iii) a proof that every S.C.-derivation can
be transformed into an equivalent H.A.-derivation. The proof is conducted first for Intuitionistic
logic and afterward for Classical logic. In this way, of course, the goal to prove the equivalence
of all three calculi is accomplished. However, the main single component showing the origin of
S.C. is the translation of derivations built within N.D.-formalism into derivations built within the
axiomatic logical calculus of Hilbert and Ackermann’s book. And it is interesting to note that in
the pertinent part ofMs.ULS Gentzen provided a proof of the equivalence between N.D.-calculi
and the H.A.-formalism by showing the possibility to translate every (classical) N.D.-derivation
into an equivalent H.A.-derivation; in this way it is explicitly supplied a missing link which is only
implicitly present, as a by-product of previous steps i)-iii), in the published version of the thesis.
Gentzen proceeded as follows: given an N.D.-proof of, say A, one first lists all those assumptions
which are not already discharged before the accomplishing of the inference leading to A. Let us
indicate them by Γ. Then one substitutes A by Γ→ A. If A is an assumption, A→ A takes its
place. The steps of inference of N.D. are accordingly translated:

A B I&
A&B

 Γ→ A ∆→ B
Γ,∆→ A&B

Paired with the occurrence of the figure of sequent, here we see, probably for the first time, the
disentangling of two meanings often conflated in the notion of implication: the propositional
(object-language) connective, say ⊃, and the (meta-level) notation for the formal derivability
relation, say→. Of course, in this step Gentzen was greatly helped by his work on Hertz-systems
from the summer of 1931, which output his first published paper of 1932.

Beside trying to retrace the intricate threads leading to the proof of the equivalence, I mean to
focus on the emergence of two paradigms in the conception of Cut. The paradigm of structural
reasoning, which was preserved in the intermediate calculus LDK ofMs.ULS, where the Cut
rule continues to play a fundamental role, and the analytic paradigm. In the latter paradigm
analytic proofs were the new goal, and Gentzen was able to attain it thanks to the Hauptsatz
proved for that “evolution” of LDK-calculi which is constituted by the LK-calculi. In the latter
calculi, structural reasoning was sharply separated from logical meaning, and the general setting
was purely inferential.

11



Abstracts

Tomographs for Substructural Display Logic

Michael Arndt
Department of Computer Science, University of Tübingen, Germany

The central feature of Belnap’s Display Logic [1] is the possibility of displaying every formula
occurring in any given sequent as the only formula in either the antecedent or succedent. This is
accomplished by means of structural connectives that retain the positional information of the
contextual formulae as they are moved aside. Goré accommodates substructural, intuitionistic
and dual intuitionistic logic families by building upon a basic display calculus for Bi-Lambek
logic. His version uses two nullary, two unary, and three binary structural connectives. Since the
structural connectives are not independent of one another, display equivalences are required to
mediate between the binary structural connectives.

I propose an alternative approach in which two graph-like ternary structural connectives
express one set of three structural connectives each. Each of these new connectives represents all
three sequents making up one of the two display equivalences. The notion of sequent disappears
and is replaced by that of a structure tomograph consisting of systems of ternary connectives
in which nodes mark the linking of the connectives and of formulae to those connectives. The
turnstile of a sequent is represented by the highlighting of a single node linking connectives.

References
[1] Goré, R.: Substructural logics on display, Logic Journal of the IGPL 6(3), 1998, pp. 451–504.

12



Presentations





Logical Expressivism and Inferentialism Extending Atomic Bases Taking Stock

Extensions of Non-Monotonic and Non-Transitive
Atomic Bases

Ulf Hlobil
B ulf.hlobil@concordia.ca

Logical Expressivism and Inferentialism Extending Atomic Bases Taking Stock

Here is the plan:

1 Logical Expressivism and Inferentialism
Inferentialist Logical Expressivism
Goals

2 Extending Atomic Bases
Our Atomic Bases
Contrast with Alternative Approaches
Sequent Calculi
Natural Deduction System, NJ-NM

3 Taking Stock

U. Hlobil: Extensions of Non-Monotonic and Non-Transitive Atomic Bases

15



Logical Expressivism and Inferentialism Extending Atomic Bases Taking Stock

1 Logical Expressivism and Inferentialism
Inferentialist Logical Expressivism
Goals

2 Extending Atomic Bases
Our Atomic Bases
Contrast with Alternative Approaches
Sequent Calculi
Natural Deduction System, NJ-NM

3 Taking Stock

Logical Expressivism and Inferentialism Extending Atomic Bases Taking Stock

Inferentialist Logical Expressivism

Inferentialist Logical Expressivism

Brandom ([1], p. 30)
Logic is not properly understood as the study of a distinctive kind of formal
inference. It is rather the study of inferential roles of vocabulary playing a
distinctive expressive role: codifying in explicit form the inferences that are
implicit in the use of ordinary, non-logical vocabulary. [...] The task of logic is
in the first instance to help us say something about conceptual contents
expressed by the use of nonlogical content.

Overall goal: Developing this program by providing a way of
doing formal logic that is in the spirit of Logical Expressivism.
Here: bits and pieces of that.
The consequence relation over atoms (base) determines the
meanings of the atoms. We then introduce logical connectives
by giving rules that specify their role in inferences.
Previous attempts have failed to capture the nonmonotonicity
of bases that Brandom claims is essential (see [2, 5]).

U. Hlobil: Extensions of Non-Monotonic and Non-Transitive Atomic Bases

16



Logical Expressivism and Inferentialism Extending Atomic Bases Taking Stock

Inferentialist Logical Expressivism

Contrast with Prawitz

Prawitz ([7], pp. 73–73)
If we accept this notion of a valid argument [in terms of reducibility] relative to
some choice C of valid closed arguments for atomic sentences [i.e. consequence
relation over atoms or bases], it seems reasonable to define a sentence B as a
logical consequence of sentences A1,A2, ...,An by [...]. This means again
according to our definition that B is a logical consequence of A1,A2, ...,An if
and only if there exists an argument for B from A1,A2, ...,An that is valid
relative to any such choice C .

We are not interested in logical consequence but in
consequence relative to particular bases (choices C ). Hence,
we don’t quantify over bases.
We want to study how logical vocabulary makes explicit what
follows from what according to a particular base within an
enrichment or extension of that very base to cover logical
vocabulary.

Logical Expressivism and Inferentialism Extending Atomic Bases Taking Stock

Goals

Goals

1. Rehearse (and slightly update) the sequent calculus
method for extending non-monotonic, non-transitive
bases to logically complex languages, which we
developed elsewhere (see [3]).

2. Compare and contrast our ideas with some ideas that
are prominent in work on atomic systems and
proof-theoretic semantics.

4. Translate nonmonotonic, nontransitive sequent
calculus into natural deduction system and includes
all intuitionistically valid arguments.

U. Hlobil: Extensions of Non-Monotonic and Non-Transitive Atomic Bases

17



Logical Expressivism and Inferentialism Extending Atomic Bases Taking Stock

1 Logical Expressivism and Inferentialism
Inferentialist Logical Expressivism
Goals

2 Extending Atomic Bases
Our Atomic Bases
Contrast with Alternative Approaches
Sequent Calculi
Natural Deduction System, NJ-NM

3 Taking Stock

Logical Expressivism and Inferentialism Extending Atomic Bases Taking Stock

Our Atomic Bases

Atomic Bases

We begin with an atomic system:
L0: atomic language, {p1, ..., pn}.
|∼0: base consequence relation, |∼0⊂ P(L0)× L0 or

|∼0⊂ P(L0)×P(L0).

Permutation and contraction hold (sets). Usually also CO:
Γ|∼0 ∆ if ∅ 6= Γ ∩ ∆ ⊆ L0. Otherwise: liberty.
Similar to Schroeder-Heister, Piecha [6], Sandqvist [8] but:

No higher-order rules,
Don’t look at supersets of bases,
No definitional reflection,
No transitivity,
No monotonicity.

U. Hlobil: Extensions of Non-Monotonic and Non-Transitive Atomic Bases

18



Logical Expressivism and Inferentialism Extending Atomic Bases Taking Stock

Contrast with Alternative Approaches

Contrast with Other Atomic Systems

In a nutshell:
Definitional reflection, transitivity, and monotonicity impose
constraints on what one can mean by atomic sentences. Such
constraints strike us as artificial and unjustified.
Higher-order rules and appeal to larger atomic bases bring in
complications whose mastery is not necessary to mean
anything by an atomic sentence. Interesting things can be
done with these notions in place. But we are interested in
meaning and consequence in more basic cases.

Logical Expressivism and Inferentialism Extending Atomic Bases Taking Stock

Contrast with Alternative Approaches

Contrast with Other Atomic Systems

Why no Weakening?
Meaning determining reasoning is defeasible (see Brandom).

Why no Cut?
Cut and CO (Γ,A|∼ A) jointly imply MO. For, suppose Γ|∼ A.
By CO, Γ,A,B|∼ A. By Cut, Γ,B|∼ A. The argument works
even against share-context Cut if we have a conditional for
which Γ|∼ A→ B iff Γ,A|∼ B. Alternatively, we could reject
CO. This would yield a system closer to relevance logic, which
we presented elsewhere [4].

Why no higher-order rules?
People must be able to reason with a sentence in order to
mean anything by it. But they need not be able to assume
and discharge rules to meaning anything by something.

U. Hlobil: Extensions of Non-Monotonic and Non-Transitive Atomic Bases

19



Logical Expressivism and Inferentialism Extending Atomic Bases Taking Stock

Contrast with Alternative Approaches

Contrast with Other Atomic Systems

Why no Definitional Reflection?
DR: If α⇐ B1, ..., α⇐ Bn (and that’s all for a), then

Γ|∼ Bi
Ra

Γ|∼ α

Γ,B1|∼ C ... Γ,Bn|∼ C
La

Γ, α|∼ C
Everyday reasoning counter-example:

Definition of “looking like a zebra”: it is a zebra ⇒ it looks
like a zebra (under standard observation conditions).
Also: it is a zebra |∼ it isn’t a painted donkey.
But: it looks like a zebra (under standard observation
conditions) |6∼ it isn’t a painted donkey.

Advocates of Definitional Reflection must say that the
definition is defective or partial (it doesn’t take into account
that sometime people want to trick us). We find that
implausible and overly restrictive.

Logical Expressivism and Inferentialism Extending Atomic Bases Taking Stock

Contrast with Alternative Approaches

Contrast with Other Atomic Systems

Why no Definitional Reflection? (cont.)
We suspect that what makes Definitional Reflection look
plausible are intuitions regarding transitivity: “Suppose that
B1, ...,Bn and only those (for atomic rules) give me α. Now
suppose I have α. Surely, that means that I must have (in
effect, in some covert way) some Bi . Suppose that, whichever
Bi I have, it gives me C . So I get C if I assume that I got α
(by transitivity).”
These intuitions trade on the fact that the inversion of La
together with the definitional clauses is an instance of Cut.

B1|∼ α α|∼ C
LaB1|∼ C

U. Hlobil: Extensions of Non-Monotonic and Non-Transitive Atomic Bases

20



Logical Expressivism and Inferentialism Extending Atomic Bases Taking Stock

Contrast with Alternative Approaches

Contrast with Other Atomic Systems

Why no Definitional Reflection? (cont.)
To rid ourselves of this bad intuition, we notice that
(intuitively) La is not invertible: Definition: You are Bavarian
⇒ you are German. You are from Berlin ⇒ you are German.
Etc. Also: You are German |∼ you like Merkel’s refugee policy.
But: You are Bavarian |6∼ you like Merkel’s refugee policy.
We want to get more out of the conclusion of an atomic rule
than what is already contained in its premises. Adding new
conceptual resources can make genuinely new conclusion
available.
Schroeder-Heister [9] has shown that Definitional Reflection
doesn’t imply Cut. But we fail to see what motivates
Definitional Reflection after we rejected Cut.

Logical Expressivism and Inferentialism Extending Atomic Bases Taking Stock

Sequent Calculi

G3cp Plus Negation-Rules (Ketonen): NM-MS

Initial sequents: all those in |∼0.

Γ|∼ ∆,A B, Γ|∼ ∆
LC

Γ,A→ B|∼ ∆
A, Γ|∼ ∆,B

RC
Γ|∼ ∆,A→ B

Γ,A,B|∼ ∆
L&

Γ,A&B|∼ ∆
Γ|∼ ∆,A Γ|∼ ∆,B

R&
Γ|∼ ∆,A&B

A, Γ|∼ ∆ B, Γ|∼ ∆
LvA∨ B, Γ|∼ ∆

Γ|∼ ∆,A,B
Rv

Γ|∼ ∆,A∨ B

Γ|∼ A,∆
LN

Γ,¬A|∼ ∆
Γ,A|∼ ∆

RN
Γ|∼ ¬A,∆

U. Hlobil: Extensions of Non-Monotonic and Non-Transitive Atomic Bases

21



Logical Expressivism and Inferentialism Extending Atomic Bases Taking Stock

Sequent Calculi

Properties of NM-MS

Supra-Classical: If |∼0 obeys CO, we get all classical
sequents.
Nice connectives (invertible rules): e.g.
Γ,A&B|∼ ∆ ⇔ Γ,A,B|∼ ∆ and
A∨ B, Γ|∼ ∆ ⇔ A, Γ|∼ ∆ and B, Γ|∼ ∆.

Expressive?
Conditionals (as conclusions) express that the consequent
follows from the antecedent (in context): Γ|∼ A→ B iff
Γ,A|∼ B.
Negations (as conclusions) express that the negatum is
incompatible with the premises: Γ|∼ ¬A iff Γ,A|∼ .
In general: we can apply the rules backwards to reach a
unique set of base sequents that all hold iff the original
sequent holds. Thus, logical vocabulary expresses something
about material inferences.

Logical Expressivism and Inferentialism Extending Atomic Bases Taking Stock

Sequent Calculi

Single-Succedent: MN-SS

Γ,A|∼ B
CP

Γ|∼ A→ B
Γ,A|∼

RN
Γ|∼ ¬A

Γ|∼ A
LN

Γ,¬A|∼

Γ|∼ ↑A Γ,B|∼ C
LC

Γ,A→ B|∼ C
Γ,A,B|∼ C

L&
Γ,A&B|∼ C

Γ|∼ A Γ|∼ B
R&

Γ|∼ A&B

Γ,A|∼ C Γ,B|∼ C
Lv

Γ,A∨ B|∼ C
Γ|∼ A

Rv
Γ|∼ A∨ B

Γ|∼ B
Rv

Γ|∼ A∨ B

Γ|∼ ↑A
CK

Γ,B → C |∼ [↑]A
Γ|∼ ↑A

NK
Γ,¬B|∼ [↑]A

Γ|∼ ↑
ExFF

Γ|∼ [↑]A
Γ|∼ ↑X A Γ|∼ ↑Y A

UN
Γ|∼ ↑X∪Y A

Γ, p1...pn|∼ A
PushUp

Γ|∼ ↑{{p1....pn}}A

U. Hlobil: Extensions of Non-Monotonic and Non-Transitive Atomic Bases

22



Logical Expressivism and Inferentialism Extending Atomic Bases Taking Stock

Sequent Calculi

Properties of NM-SS

The adjustments in red are needed for various reasons and the
upward-arrow allows us to control weakening in a nice way (see
[3]).

Some remarks:
Supra-Intuitionist: If |∼0 obeys CO, we get all intuitionistic
sequents.
We still have: Γ|∼ A→ B iff Γ,A|∼ B.
Upward arrow: X ⊆ P(L0), and Γ|∼↑X A iff
∀χ ∈ X (χ, Γ|∼ A). Convention: Γ|∼↑ A iff Γ|∼↑P(L0) A.
I show elsewhere how to introduce a � such that: Γ|∼ �A iff
∀χ ⊆ L (χ, Γ|∼ A).

Logical Expressivism and Inferentialism Extending Atomic Bases Taking Stock

Natural Deduction System, NJ-NM

Formulate NM-SS as Natural Deduction

We now want to formulated NM-SS as a natural deduction system.
This will give us a better idea of what it is like to reason according
to a consequence relation like that of NM-SS. And many
inferentialists like natural deduction systems. Some things to
watch out for below:

We restrict monotonicity in a way similar to that in which
natural deduction systems for relevance logics do that: we
keep track of assumptions in subscripts.
We restrict transitivity by making sure that, in effect, major
premises “stand proud” (as Tennant) puts it. In this way, we
build in “normalizability.”
We use something close to generalized elimination rules.

U. Hlobil: Extensions of Non-Monotonic and Non-Transitive Atomic Bases

23



Logical Expressivism and Inferentialism Extending Atomic Bases Taking Stock

Natural Deduction System, NJ-NM

Formulate NM-SS as Natural Deduction

By marking a sentence in a proof-tree with subscript X we
indicate that the conclusion depends on the assumptions in X .
(We are a bit more explicit than relevance logic natural
deduction here.)
We can mark the subscripts with upward-arrows that are
labeled by sets of sets of atoms, as in NM-SS.

We understand every base sequent as a rule:
p1 · · · pn atom p1, ..., pn|∼0 qq {p1,...,pn}

Iteration rule:
A X B1 Y · · · Bn Z IterA {A,B1,Bn}↑

Logical Expressivism and Inferentialism Extending Atomic Bases Taking Stock

Natural Deduction System, NJ-NM

Natural Deduction Rules
Introduction and Elimination Rules:

B X∪{A}
→-IntA→ B X

A→ B Y A X ↑ C X∪{B}
→-ElimC X∪{A→B}

⊥ X∪{A}
¬-Int¬A X

¬A Y A X ¬-Elim⊥ X∪{¬A}

A X B X
&-IntA&B X

A&B Y C X∪{A,B}
&-ElimC X∪{A&B}

Ai X ∨-IntA1 ∨ A2 X

A∨ B Y C X∪{A} C X∪{B}
∨-ElimC X∪{A∨B}

U. Hlobil: Extensions of Non-Monotonic and Non-Transitive Atomic Bases

24



Logical Expressivism and Inferentialism Extending Atomic Bases Taking Stock

Natural Deduction System, NJ-NM

Natural Deduction Rules

Structural Rules:

A X ↑ B → C Y pCWA (X∪{B→C})[↑]
A X ↑ ¬B Y pNWA (X∪{¬B})[↑]

⊥ X ↑ ExFFA X [↑]

A X ↑Y A X ↑Z UNA X ↑Y∪Z

A X∪Y0 PushUpA X ↑{Y0}

Logical Expressivism and Inferentialism Extending Atomic Bases Taking Stock

Natural Deduction System, NJ-NM

Some Remarks on NJ-NM

It is easy to prove that NJ-NM defines the same consequence
relation, relative to a give base, as NM-SS.
Hence, NJ-NM is supra-intuitionistic and obeys the
deduction-detachment theorem.
The sequent rules are translated into NJ-NM in a
straightforward way, which is possible because of the
subscripts.
The subscripts of the major premises in elimination rules
drops out of the proof. Hence, we can simply assume the
major premises; they “stand proud.” That is how
“normalizability” and, hence, “Cut-freeness” is insured.

U. Hlobil: Extensions of Non-Monotonic and Non-Transitive Atomic Bases

25



Logical Expressivism and Inferentialism Extending Atomic Bases Taking Stock

Natural Deduction System, NJ-NM

Example 1

Proof of (A&B → C)→ (A→ (B → C)), just relying on Iter
(aka CO):

A&B → C IterA&B → C {A&B→C}

A B IterA {A,B}↑
A B IterB {A,B}↑

&-IntA&B {A,B}↑
A B C IterC {A,B,C}

→-ElimC {A,B,A&B→C}
→-IntB → C {A,A&B→C}
→-IntA→ (B → C) {A&B→C}

→-Int
(A&B → C)→ (A→ (B → C)) ∅

Logical Expressivism and Inferentialism Extending Atomic Bases Taking Stock

Natural Deduction System, NJ-NM

Example 2

Proof of r from p and s ∨ q, given a base in which p, q|∼0 r , and
p, s |∼0 r , and t |∼0 s:

t atom t|∼0 ss {t}
∨-Ints ∨ q {t}

p q
atom p, q|∼0 rr {p,q}

p s
atom p, s |∼0 rr {p,s}
∨-Elimr {p, s∨q}

Notice: The conclusion doesn’t depend on t. The stipulation that
t |∼0 s is superfluous, we could have used the iteration rule (applied
to s ∨ q) instead. All major premises of Elim-rules can be
assumptions (“normalizability” is build in).

U. Hlobil: Extensions of Non-Monotonic and Non-Transitive Atomic Bases

26



Logical Expressivism and Inferentialism Extending Atomic Bases Taking Stock

1 Logical Expressivism and Inferentialism
Inferentialist Logical Expressivism
Goals

2 Extending Atomic Bases
Our Atomic Bases
Contrast with Alternative Approaches
Sequent Calculi
Natural Deduction System, NJ-NM

3 Taking Stock

Logical Expressivism and Inferentialism Extending Atomic Bases Taking Stock

Let’s Take Stock

We could introduce our students to intuitionistic logic by
teaching them NJ-NM over flat bases (just CO). Adding
nonmonotonic, nontransitive material inferential relations
among atoms would then seem entirely natural.
No extra machinery like partial orders over models, default
rules, graph theoretic machinery or the like (which is common
in contemporary nonmonotonic logic) is needed.
That montonicity and transitivity of logical consequence
relations stem from ignoring what is specific to particular
bases and assuming that they all obey CO becomes blindingly
obvious if we look at intuitionistic and classical logic in this
way.
Logic is what happens when we ignore the fact that atomic
sentences have genuine meanings. In order to see what logical
vocabulary makes explicit, we shouldn’t (always) do that.

U. Hlobil: Extensions of Non-Monotonic and Non-Transitive Atomic Bases

27



Logical Expressivism and Inferentialism Extending Atomic Bases Taking Stock

Bibliography I

Robert B. Brandom.
Articulating reasons: an introduction to inferentialism.
Harvard University Press, Cambridge, Mass., 2000.

Robert B. Brandom.
Between saying and doing: towards an analytic pragmatism.
Oxford University Press, Oxford, 2008.

Ulf Hlobil.
A nonmonotonic sequent calculus for inferentialist expressivists.
In Pavel Arazim and Michal Danák, editors, The Logica Yearbook 2015,
pages 87–105. College Publications, 2016.

Ulf Hlobil.
Choosing your nonmonotonic logic: A shopper’ guide.
In Pavel Arazim and Tomáš Lávika, editors, The Logica Yearbook 2017.
London: College Publications, forthcoming.

Logical Expressivism and Inferentialism Extending Atomic Bases Taking Stock

Bibliography II

Mark Norris Lance and Philip Kremer.
The logical structure of linguistic commitment 1: Four systems of
non-relevant commitment entailment.
Journal of Philosophical Logic, 23(4):369–400, 1994.

Thomas Piecha and Peter Schroeder-Heister.
Atomic systems in proof-theoretic semantics: Two approaches.
In Juan Redmond, Olga Pombo Martins, and Ángel
Nepomuceno Fernández, editors, Epistemology, Knowledge and the
Impact of Interaction, pages 47–62. Springer, Cham, 2016.

Dag Prawitz.
On the idea of a general proof theory.
Synthese, 27(1-2):63–77, 1974.

Tor Sandqvist.
Base-extension semantics for intuitionistic sentential logic.
Logic Journal of the IGPL, 23(5):719–731, 2015.

U. Hlobil: Extensions of Non-Monotonic and Non-Transitive Atomic Bases

28



Logical Expressivism and Inferentialism Extending Atomic Bases Taking Stock

Bibliography III

Peter Schroeder-Heister.
Definitional reflection and basic logic.
Annals of Pure and Applied Logic, 164(4):491 – 501, 2013.
Articles in honor of Giovanni Sambin’s 60th birthday.

U. Hlobil: Extensions of Non-Monotonic and Non-Transitive Atomic Bases

29





Distributive Deductive Systems:
the Case of the First-Order Logic

Dorota Leszczyńska-Jasion, Szymon Chlebowski
Department of Logic and Cognitive Science
Adam Mickiewicz University, Poznań, Poland

June 25, 2018

6th World Congress and School on Universal Logic
Vichy, France, June 16-26, 2018

Our work was financially supported by National Science Centre, Poland,
grant no 2017/26/E/HS1/00127.

Overview

Description of the project

Modules of DDS for FOL
Module B
Module D
Module E

How to use it: small functions

Implementation

D. Leszczyńska-Jasion & S. Chlebowski: Distributive Deductive Systems

31



Description of the project

I Distributive Deductive Systems for Classical and
Non-classical Logics. Proof theory supported with
computational methods

I Objectives (1): proof-theoretical description and
implementation (int.al., functional programming language) of
complex deductive systems containing various proof systems
as modules.

I Objectives (2): massive generation of problems (formulas,
proofs, derivations), statistical analysis of the results, data
analysis and data mining, computational experiments.

I The results of analyses / experiments will be used – if possible
– to improve the structure and computational complexity of
the first version of DDSs.

Description of the project
The systems are called distributive deductive systems, as they
contain functions which allow to distribute costs of a derivation
among various modules.

I there are well-known classes of formulas that cause
exponential, factorial (or even worse) growth of computational
complexity on the grounds of a particular deductive system

Sn =
∧

(±p1∨±p2∨ . . .∨±pn)

where ±pi ∈ {pi ,¬pi}

the Pigeonhole Principle:

PHPn :=
n∧

i=0

n∨

j=1
pij →

n∨

j=1

∨

i 6=k
pij ∧pkj

D. Leszczyńska-Jasion & S. Chlebowski: Distributive Deductive Systems

32



Description of the project
G. Boolos, “Don’t eliminate cut”, 1984, consider scheme Hn:

(x)(y)(z)+ x + yz = ++ xyz

(x)d(x) = +xx

L(1)

(x)(L(x)→ L(x +1))

with the conclusion:

L


d . . .d︸ ︷︷ ︸

2n

(1)




Boolos: the shortest tree-method proof has more than 22n

characters, whereas the shortest ND-proof of the conclusion of Hn
from its premises contains less than 16(2n +8n+21) characters
(which is O(2n)).

Description of the project

I at the same time, usually the problematic “hard” formulas
have “nice” proofs / refutations in some other systems

I if the task is to decide validity / entailment, then we should
be able to match the given problem with a proof system

D. Leszczyńska-Jasion & S. Chlebowski: Distributive Deductive Systems

33



Modules of DDS for FOL

A distributive deductive system for a given logic L:
I the module-layer of proof systems
I the meta-layer

Modules of DDS for FOL

A distributive deductive system for a given logic L:
I the module-layer of proof systems

Proof system is a set of rules + the notion of proof + possibly
procedures / heuristics.

Each such proof system – called a module – simulates a proof
method (or proof methods) to the effect of computational
characteristics of the method (p-simulation).

I the meta-layer
The meta-layer contains meta-heuristics (small functions)
which help to choose the module.

D. Leszczyńska-Jasion & S. Chlebowski: Distributive Deductive Systems

34



Table: the modules of the module-layer of a DDS

symbol the proof methods characterized types of sequents
used in the module

A analytic tableaux left-sided canonical sequents
system KE

B sequent calculus both-sided (multi-conclusion)
semantic diagrams (Beth) sequents
natural deduction
axiomatic system

C R-S system right-sided canonical sequents
CNF

D resolution, dual resolution one-sided reversed sequents
Davis-Putnam method

E synthetic tableaux right-sided canonical sequents
truth-tables with synthesizing rules

Module B

S′α′T ⇒ U

S′α′
1α′

2T ⇒ U

S⇒ T ′α′U

S⇒ T ′α′
1U S⇒ T ′α′

2U

S′β′T ⇒ U

S′β′
1T ⇒ U S′β′

2T ⇒ U

S⇒ T ′β′U

S⇒ T ′β′
1β′

2U

S′κ′T ⇒ U

S′κ∗′ T ⇒ U

S⇒ T ′κ′U

S⇒ T ′κ∗′ U

S′γ′T ⇒ U

S′γ′γ(tj )′T ⇒ U

S⇒ T ′δ′U

S⇒ T ′δ′δ(tj )′U

S′δ′T ⇒ U

S′δ(τj )′T ⇒ U

S⇒ T ′γ′U

S⇒ T ′γ(τj )′U

D. Leszczyńska-Jasion & S. Chlebowski: Distributive Deductive Systems

35



Module D

Φ;⇐ S ′β ′T ;Ψ

Φ;⇐ S ′β1
′T ;⇐ S ′β2

′T ;Ψ

Φ;⇐ S ′α ′T ;Ψ

Φ;⇐ S ′α1
′α2

′T ; Ψ

Φ;⇐ S ′κ ′T ;Ψ

Φ;⇐ S ′κ∗ ′T ;Ψ

Φ;⇐ S ′γ ′T ;Ψ

Φ;⇐ S ′γ(τj ) ′T ;Ψ

Φ ;⇐ S ′ δ ′ T ; Ψ

Φ ;⇐ S ′ δ ′ T ;⇐ S ′ δ(tj ) ′ T ; Ψ

Φ ;⇐ S ′ A ′ T ; Ψ ;⇐ U ′ A ′ V ; Ω

⇐ rep(SA ′ T A ′ UA ′ V A) ; Φ ; Ψ ; Ω ;⇐ S ′ A ′ T ;⇐ U ′ A ′ V

Module E

pi ¬pi

where pi occurs in the formula to be derived
B

¬B
B→ C r1

→
C

B→ C r2
→

¬C
¬(B→ C) r3

→

¬B
B

B∨C r1
∨

C
B∨C r2

∨
¬C

¬(B∨C) r3
∨

B
¬B

¬(B∧C) r1
∧

¬C
¬(B∧C) r2

∧
C

B∧C r3
∧

B
¬¬B r¬

where the premises of r3→, r3
∨, r3

∧ may occur in any order. A synthesizing rule
may be applied in the construction of a synthetic tableau for formula A
provided that each premise and conclusion of the rule belongs to the set
Sub(A)∪¬Sub(A)

D. Leszczyńska-Jasion & S. Chlebowski: Distributive Deductive Systems

36



How to use it: decision tree

complexity
dependent on

the number of
variables

module E

the number of
occurrences of
connectives

formula
DNF-like

module D

formula
CNF-like

one of the modules A,B,C

How to use it: small functions

fat vs lean formula

fat

module E

lean

αc < βc

module D

αc > βc

modules CBA

small = good complexity (O(n2))

D. Leszczyńska-Jasion & S. Chlebowski: Distributive Deductive Systems

37



How to use it: small functions

lean vs fat formula

fat

module E

lean

αc < βc

module D

αc > βc

modules CBA

FMI = no. of d. var.
no. of occ. of var.

How to use it: small functions

lean vs fat formula

fat

module E

lean

αc < βc

module D

αc > βc

modules CBA

I if dp(¬¬A) = dp(A)
I if dp(A∧B) = r , then

dp(A) = dp(B) = r
2

I if dp(¬(A∨B)) = r , then
dp(¬A) = dp(¬B) = r

2
I if dp(¬(A→ B)) = r , then

dp(A) = dp(¬B) = r
2

I if dp(A∨B) = r , then
dp(A) = dp(B) = r

I if dp(¬(A∧B)) = r , then
dp(¬A) = dp(¬B) = r

I if dp(A→ B) = r , then
dp(¬A) = dp(B) = r

D. Leszczyńska-Jasion & S. Chlebowski: Distributive Deductive Systems

38



How to use it: small functions

lean vs fat formula

fat

module E

lean

αc < βc

module D

αc > βc

modules CBA

I αc(pi ) = αc(¬pi ) = 1 /
βc(pi ) = βc(¬pi ) = 1

I αc(¬¬A) = αc(A) /
βc(¬¬A) = βc(A)

I αc(α) = αc(α1)+αc(α2) /
βc(α) = βc(α1) ·βc(α2)

I αc(β) = αc(β1) ·αc(β2) /
βc(β) = βc(β1)+βc(β2)

Case study: formula Sn

Sn =
∧

(±p1∨±p2∨ . . .∨±pn)

FMI(Sn) = 2−n

Sn is possibly a representative example of a fat formula?
The maximal (canonical) synthetic tableau for Sn has 2n branches.

αc(Sn) =
n∑

i=1
αc(±p1∨ . . .∨±pn) = n

βc(Sn) =
n∏

i=1
βc(±p1∨ . . .∨±pn) = nn

αc(Sn) = n < n!< nn = βc(Sn)

D. Leszczyńska-Jasion & S. Chlebowski: Distributive Deductive Systems

39



Case study: formula PHPn

PHPn :=
n∧

i=0

n∨

j=1
pij →

n∨

j=1

∨

i 6=k
pij ∧pkj

FMI(PHPn) = 1
2n+1

αc(PHPn) = αc(
n∧

i=0

n∨

j=1
pij) ·αc(

n∨

j=1

∨

i 6=k
pij ∧pkj) =

=




n∑

i=0

n∏

j=1
αc(pij)


 ·




n∏

j=1

n∏

i 6=k,=0
αc(pij ∧pkj)


 = (n+1) ·2n2(n+1)

βc(PHPn) = nn+1 +n2(n+1)

βc(PHPn)< αc(PHPn)

Case studies

1. PHPn: the goal is a further analysis of the example,
2. scheme Hn (Boolos’ example): the goal is to define the

decision functions for quantifier formulas.

D. Leszczyńska-Jasion & S. Chlebowski: Distributive Deductive Systems

40



Implementation of DDS
Aims

I The general construction of the implementation is the same as
that in the theoretical description.

I In writing the main interface (the meta-layer of a DDS)
Python programming language will be used.

I The implementation of the module-layer of a DDS will be
written in a functional programming language Haskell.

Implementation of DDS
Aims

I A large number of proofs for a great amount of formulas will
be generated and analysed with the use of the implementation
of proof-system modules and the interface controlling these
modules.

I These proofs and their descriptions will constitute a data set
which can be further processed using traditional statistical
techniques and more sophisticated machine learning
algorithms.

I The techniques will be used to obtain new knowledge about
proof systems that can be hard to acquire in the traditional,
analytic way. This does not mean that we wish to resign from
the traditional approach—we rather tend to extend the
repertoire of classical methods by modern computational
tools.

D. Leszczyńska-Jasion & S. Chlebowski: Distributive Deductive Systems

41



Implementation of DDS
Aims

I On the basis of the results gained from computational
experiments new decision-functions may be added to the
meta-layer (the functions that are used to decide which
module to choose).

I Also criteria of evaluation of the derivation trees will be
developed at this step. These may be criteria such as: the
length and size of a tree, the number of applications of rules
together with their costs, the number of different modules
used to solve the initial problem, the number of times the
various rules of cut (or other strategic components) are used.

I The primary role of the computational methods is
supplementary with respect to the theoretical part. To sum
up, the computational methods will be used to generate large
number of proofs (test cases) effortlessly, to describe
automatically the generated structures, and to apply
quantitative analyses and knowledge exploration techniques.

Implementation of the module layer of DDS
Aims

I Complete control over implementation—execution order of
expressions and deductive machinery used.

I One structure to represent different proof formats (rose trees
labelled by some kind of hypersequent structure).

I Construct a domain specific language.

D. Leszczyńska-Jasion & S. Chlebowski: Distributive Deductive Systems

42



Implementation of the module layer of DDS
Haskell

I The module layer will be implemented in Haskell
Programming language.

I Mathematical basis of Haskell comprises of typed lambda
calculus and some notions from category theory.

I Powerful type system. A lot of errors can be detected prior to
the execution of the program. Supports polymorphism.

I Concise Programs. Programs in Haskell are of high-level
nature. It is easy to adapt them for different tasks.

I List comprehension. Generally Haskell programs resemble
ordinary math notation.

Implementation of the module layer of DDS
Haskell

I Recursive functions. In pure functional languages there are no
traditional loops (while,for). The only way of looping is to use
recursion.

I Pure functions. In Haskell, the term function is understood in
the standard mathematical sense. Support for higher order
functions.

I Lazy evaluation. No computation should be performed until
the result is needed. It is possible to work out with possibly
infinite structures.

I Inductive data types. One can use recursion, when defining
new types.

D. Leszczyńska-Jasion & S. Chlebowski: Distributive Deductive Systems

43



Implementation of the module layer of DDS
Haskell

I Algebraic data types. Type constructors can be combined
using the operations of sum and product.

I Equational reasoning. Since programs are functions, one can
prove their properties by simple equational reasoning.

I Domain-specific embedded languages. New types can be used
to construct extension of the language.

We think that due to the mentioned features, Haskell will serve
well as a language for the implementation of variety of systems in a
safe and controlled way.

What has been done?
Theory

I Theoretical description of all modules/proof systems for
First-Order Logic.

I Small functions are defined on the propositional level.

D. Leszczyńska-Jasion & S. Chlebowski: Distributive Deductive Systems

44



What has been done?
Implementation

I Implementation of sequent calculus for CPL.
I Implementation of a hypersequent system for the logic K.
I Implementation of synthetic tableaux on the propositional

level.

Thank You for Your attention!

D. Leszczyńska-Jasion & S. Chlebowski: Distributive Deductive Systems

45



Bibliography
G. Boolos, “Don’t Eliminate Cut”, Journal of Philosophical Logic, 13:4,
Springer 1984, 373–378.
S. Chlebowski, Canonical and Dual Erotetic Calculi for First-Order Logic, PhD
thesis, Adam Mickiewicz University 2018.
S. Cook, R. Reckhow, “On the lengths of proofs in the propositional calculus”,
Proceedings of the 6th Annual Symposium on the Theory of Computing, 1974,
p. 135–148.
M. D’Agostino, Investigations into the complexity of some propositional calculi.
Technical Monograph, Oxford University Computing Laboratory 1990.
B. Dunham, H. Wang, “Towards feasible solutions of the tautology problem”,
Annals of Mathematical Logic, 10:2, 1976, 117–154.
M. Komosinski, A. Kups, D. Leszczyńska-Jasion, M. Urbański, “Identifying
efficient abductive hypotheses using multi-criteria dominance relation”, ACM
Transactions on Computational Logic, 15:4, 2014.
Dorota Leszczyńska-Jasion, From Questions to Proofs. Between the Logic of
Questions and Proof Theory, to appear in 2018.
M. Urbański, ‘Remarks on Synthetic Tableaux for Classical Propositional
Calculus”, Bulletin of the Section of Logic, 30:4, 2001, p. 194–204.
A. Wiśniewski, Questions, Inferences, and Scenarios, College Publications,
2013.

D. Leszczyńska-Jasion & S. Chlebowski: Distributive Deductive Systems

46



The Mathematics of Derivability:
An Application in Horn Logic

Gerard R. Renardel de Lavalette∗

Abstract

This is a draft paper, based on my presentation The Mathematics of Derivability given
on June 25, 2018 in the Proof Theory workshop of the conference UNILOG’2018 in Vichy
(France).

1 Introduction

Traditionally, the notion of derivability (or: provability) in proof theory is defined in terms of
derivations: sequences or tree-like structures consisting of formulae or sequents, satisfying certain
conditions involving proof rules. The ‘driving force’ of derivations usually consists of conditional
statements: implications in the object language (ϕ → ø), entailments in the metalanguage
(ϕ,ø ` ϕ ∧ ø), or proof rules involving sequents (if Γ ` ϕ and Γ, ø ` ÷ then Γ, ϕ → ø ` ÷).

I propose an alternative definition of derivability, capitalizing on the dynamic character of
conditional statements. It is based on set-valued functions F : ℘(EXP)→ ℘(EXP), where EXP
denotes a collection of expressions, with the intended meaning: for all E ⊆ EXP, E entails the
expressions in F(E). I list some instantiations.

– EXP is a collection of atomic formulae: F represents the Horn sentence

∧

Γ⊆EXP

∧

ϕ∈F(Γ)

(∧
Γ→ ϕ

)
.

– EXP is a collection of formulae of some logical language: F represents the collection of
sequents Γ ` ϕ for all Γ ⊆ EXP and all ϕ ∈ F(Γ).

– EXP is a collection of sequents: F represents the proof rule from S infer Γ ` ϕ, for all
collections of sequents S = {Γi ` ϕi | i ∈ I } ⊆ EXP and all sequents Γ ` ϕ in F(S).
In [1], I experimented with this idea in the context of propositional Horn logic. This led to

several results on uniform and polynomial interpolation. Along the way, a characterization of
validity was established: F � G iff G v F∗, i.e. G(P) ⊆ F∗(P) for all sets P of atoms. In other
words: (the Horn formula represented by) F entails (the Horn formula represented by) G if and
only if G is contained in the reflexive transitive closure F∗ of F . Moreover, it appeared that the
set-valued functions form a weak lazy Kleene algebra, a notion inspired by [2].

In the present paper, I present a proof for an Interpolation Theorem in Horn logic, extending
the results for propositional Horn logic given in [1]. For this purpose, the notions and results given
in [1] are extended to full Horn logic, where the atomic formulae contain terms and variables and
where all formulae have implicit universal quantification at the outermost level for all occurring
variables. Moreover, the theory of set-valued functions is extended with substitutions.

∗Bernoulli Institute of Mathematics, Computer Science and Artificial Intelligence, University of Groningen, P.O. Box
800, 9700 AV Groningen, The Netherlands, g.r.renardel.de.lavalette@rug.nl

G. R. Renardel de Lavalette: The Mathematics of Derivability

47



2 Logical preliminaries

2.1 Signatures, terms, atoms

Let SIG = SIGf ∪ SIGp, where SIGf is a collection of function symbols and SIGp is a collection of
predicate symbols. The elements in SIG are called signature elements. Each signature element has
its arity, indicating the number of arguments it expects.

Let VAR be an infinite collection of variables with #VAR = #SIG. The collections TERM
of terms and ATOM of atomic formulae are defined as usual from SIG and VAR. Observe that
#ATOM = #TERM = #VAR. We let s, t, u range over terms, ϕ,ø, ÷ over atomic formulae, and
A,B,X,Y,Z over sets of atomic formulae.

The function sig : TERM ∪ ATOM → ℘(SIG) gives the collection of signature elements
in a term or formula, and is defined as usual. For X ⊆ TERM ∪ ATOM, we write sig(X ) for⋃{sig(ϕ) | ϕ ∈ X}. We will also use sigf , sigp to restrict the output of sig: so e.g. sigf(ϕ) =
sig(ϕ) ∩ SIGf .

We define TERM : ℘(SIG) → TERM, Atom : ℘(TERM) × ℘(SIG) → ATOM and AT :
℘(SIG)→ ATOM by

Term(S) = {t ∈ TERM | sig(t) ⊆ S}
Atom(T, S) = {p(t1, . . . tn) | p ∈ S ∩ SIGp, t1, . . . tn ∈ T, n the arity of p}

AT(S) = Atom(Term(S), S)

So we have

Term(S) = {t ∈ TERM | sigf(t) ⊆ S}
AT(S) = {ϕ ∈ ATOM | sigp(ϕ) ⊆ S}

We also define the collection Hterm(S, T ) of terms in T ⊆ TERM with head in S ⊆ SIGf :

Hterm(S, T ) = {t ∈ T | t = f(t1, . . . , tn) with f ∈ S}

2.2 Substitutions

As usual, substitutions ó, ô, . . . ∈ SUB are functions ó : VAR→ TERM. We extend substitutions
ó to all terms and atomic formulae by defining ó̇ : TERM → TERM, ó̇ : ATOM → ATOM
inductively by

ó̇(x) = ó(x)

ó̇(f(t1, . . . , tn)) = f(ó̇(t1), . . . , ó̇(t1))

ó̇(p(t1, . . . , tn)) = p(ó̇(t1), . . . , ó̇(t1))

The domain, range and signature of a substitution are defined by

dom(ó) = {x ∈ VAR | ó(x) 6= x}
rg(ó) = {ó(x) | ó(x) 6= x}
sig(ó) = sig(rg(ó))

For S ⊆ SIGf , we define SUB(S) ⊆ SUB as the collection of substitutions which map variables
to terms with signature in S:

SUB(S) = (VAR→ Term(S))

G. R. Renardel de Lavalette: The Mathematics of Derivability

48



2.3 Horn logic

A Horn clause is a formula of the form
∧
X → ϕ with X ⊆ ATOM and ϕ ∈ ATOM. A Horn

formula is a conjunction of Horn clauses. So a Horn formula is of the form

∧

k∈K

(∧
Xk → ϕk

)

where K is some index set with Xk ∈ ℘(ATOM) and ϕk ∈ ATOM for every k ∈ K . We impose
no restrictions on the size of K and the Xk . HORN is the collection of Horn formulae.

2.4 Parameters in Horn formulae

The parameters in a Horn formula are the occurrences of signature elements in it. For the
function parameters, we define

sigf
(∧

k∈K

(∧
Xk → ϕk

))
= sigf

(⋃

k∈K
Xk ∪ {ϕk | κ ∈ K}

)

For the predicate parameters, we distinguish between positive occurrence (in the ϕk) and negative
occurrence (in the Xk). So we define sigp

+, sigp
− : HORN→ ℘(SIGp) by

sigp
+
(∧

k∈K

(∧
Xk → ϕk

))
= sigp({ϕk | k ∈ K})

sigp
−
(∧

k∈K

(∧
Xk → ϕk

))
= sigp

(⋃

k∈K
Xk

)

We also define sigp
±(Φ) = (sigp

−(Φ), sigp
+(Φ)), sigp

∓(Φ) = (sigp
+(Φ), sigp

−(Φ)). So sigp
∓(Φ)

in the inverse of sigp
±(Φ).

In the sequel, we will extend functions, operations and relations on sets of predicate symbols
to pairs of sets. For this purpose, we use the subscript ·2, so we write e.g.

(A,B) ⊆2 AT2(S) ∪2 AT(sigp±(Φ))

where S = (S−, S+), as an abbreviation of

A ⊆ AT(S−) ∪ AT(sigp
−(Φ)) and B ⊆ AT(S+) ∪ AT(sigp

+(Φ))

2.5 Validity and entailment

A model is a pairM = 〈U, i, j〉 with

U 6= ∅,
i(f) : U n → U for every n-ary function symbol f ∈ SIGf ,

j(p) ⊆ U n for every n-ary predicate symbol p ∈ SIGp.

AnM -valuation is a function α ∈ VAL(M ), where VAL(M ) = VAR→ UM . We shall in general
abbreviate ∀α ∈ VAL(M ) to ∀α wheneverM is evident from the context. The interpretation [[t]]Mα
(also denoted [[t]]iα) of term t inM under valuation α is defined as usual, as is the interpretation
M,α � ϕ of the validity of propositional formulae ϕ = p(t). For X ⊆ ATOM we define:
M,α � X iff ∀ϕ ∈ X M,α � ϕ. The interpretation of the universal closure ∀ϕ of a propositional
formula ϕ is defined by

M � ∀ϕ iff ∀α(M,α � ϕ)

G. R. Renardel de Lavalette: The Mathematics of Derivability

49



So for the universal interpretation of Horn formula ç =
∧
k∈K (

∧
Xk → ϕk) we have

M � ∀ç iff ∀α∀k ∈ K(M,α � Xk =⇒ M,α � ϕk)

LetM = 〈U, i, j〉 be a model with α ∈ VAL(M ). We define the diagram Diag(M,α) ofM and α
by

Diag(M,α) = {ϕ ∈ ATOM |M,α � ϕ}( = {p(t) ∈ ATOM | [[t]]iα ∈ j(p)})

Given ó ∈ SUB, we define αMó : VAR→ U by

αMó (x) = [[ó(x)]]Mα

and we claim

[[ó(t)]]Mα = [[t]]MαMó
M,α � ó(ϕ) ⇐⇒ M,αMó � ϕ

3 Set-valued functions

Set-valued functions are functions F ∈ F(V ) = (℘(V )→ ℘(V )) for some set V . X,Y,Z range
over subsets of V . Inclusion F v G is defined by ∀X ⊆ F(X ) ⊆ G(X ). The union F t G
is defined by (F t G)(X ) = F(X ) ∪ G(X ). The projection function IX ∈ F(V ) is defined by
IX = ëY.X ∩ Y . So I = IV is the identity function.
F is monotonic whenever X ⊆ Y implies F(X ) ⊆ F(Y ). The monotonic closure Fm of F is

the least monotonic function that subsumes F . It can be defined by

Fm(X ) =
⋃
{F (Y ) | Y ⊆ X}

Monotonic composition F m◦ G is defined by Fm ◦ Gm.
The collection PFP(F , X ) of prefixpoints of F extending X is defined by

PFP(F , X ) = {Y ⊆W | X ∪ F(Y ) ⊆ Y}

So PFP(F) = PFP(F , ∅) is the set of all prefixpoints of F , i.e. all Y with F(Y ) ⊆ Y . Moreover,
we have PFP(F , X ) = PFP(F) ∩ {Y | Y ⊇ X}. When F is extensive, i.e. X ⊆ F(X ) for all
X , it is evident that PFP(F) equals FP(F), the collection of all fixpoints of F , i.e. all Y with
F(Y ) = Y .

PFP is antimonotonic in both arguments, and we have

PFP(
⋃

i∈I
Fi , X ) =

⋂

i∈I
PFP(Fi , X ) (1)

With PFP, we can define the iterative closure F∗ of F by:

F∗ = ëX.
⋂

PFP(Fm, X )

We claim

F∗ = I t Fm ◦ F∗ (defining property of F∗)
I t Fm ◦ G v G =⇒ F∗ v G (inductive property of F∗)

G. R. Renardel de Lavalette: The Mathematics of Derivability

50



3.1 Horn logic formulated with set-valued functions

Formula set valued functions F ∈ F(ATOM) represent Horn formulae. A Horn formula
H =

∧
k∈K (

∧
Xk → ϕk) is uniquely represented by F defined by

F = ëY.{ϕk | k ∈ K & Xk = Y}

Conversely, we define horn(F), the Horn formula represented by F :

horn(F) =
∧{∧

X → ϕ | X ⊆ ATOM, ϕ ∈ F(X )
}

We define dom, rg : F(ATOM)→ ℘(ATOM) and base : F(ATOM)→ ℘(ATOM)2 by

dom(F) =
⋃
{X | F(X ) 6= ∅}

rg(F) =
⋃
{F(X ) | X ⊆ ATOM}

base(F) = (dom(F), rg(F))

The functions sigf , sigp
+ and sigp

− are defined for F(ATOM) by

sigf(F) = sigf(base(F))
sigp

+(F) = sigp(rg(F))
sigp
−(F) = sigp(dom(F))

As a consequence, we have sigf(F) = sigf(horn(F)), and similarly for sigp
+ and sigp

−.

3.2 Restriction

Range restriction of a set-valued function F is obtained by left-composition with a projection
function, for rg(IX ◦ F) ⊆ rg(F) ∩ X . However, domain restriction cannot obtained via
right-composition, for in general dom(F ◦ IX ) 6⊆ dom(F) ∩ X . So we define

F �X = ëY. if Y ⊆ X then F(Y ) else ∅

Now dom(F �X ) ⊆ dom(F) ∩ X . We define full restriction by

F|(X,Y ) = IX ◦ F �Y

for which we have

F|(X,Y ) v F
base(F|(X,Y )) ⊆2 base(F) ∩2 (X,Y )

(F|(X,Y ))m = IX ◦ Fm ◦ IY

3.3 Axiomatization of set-valued functions

In [1], we presented weak lazy Kleene algebras 〈A,+, ·,∗ , 0, 1〉 as an axiomatization of set-valued
functions. We list the axioms.

(WLKA1) + is commutative: a + b = b + a

(WLKA2) + is associative: a + (b + c) = (a + b) + c

(WLKA3) + is idempotent: a + a = a

(WLKA4) + has unit element 0: a + 0 = a

(WLKA5) · is associative: a · (b · c) = (a · b) · c

G. R. Renardel de Lavalette: The Mathematics of Derivability

51



(WLKA6) a ≤ a · 1 = 1 · a, 1 · 1 = 1, a · b · 1 = a · b and (a · 1)∗ = a∗ · 1 = a∗

(WLKA7) · is right-distributive over +: (a + b) · c = a · c + b · c
(WLKA8) if b ≤ c then a · b ≤ a · c
(WLKA9) · is left strict w.r.t. 0: 0 · a = 0

(WLKA10) 1 + a · a∗ ≤ a∗
(WLKA11) if a · b ≤ b then a∗ · b ≤ b · 1

These axioms translate to properties of set-valued functions F , G,H, where + is interpreted
by t, · by m◦, ∗ by itself, 0 by ëX.∅ and 1 by I. Moreover, we derived in [1] some additional
properties that we shall use here:

(F t G)∗ = F∗ ◦ (Gm ◦ F∗)∗ (2)

(Fm ◦ Gm)∗ ◦ Fm = Fm ◦ (Gm ◦ Fm)∗, if Fm is union-distributive (3)

Here union-distributive means: for all X,Y F(X ∪ Y ) = F(X ) ∪ F(Y ).
We shall also use the ·+ operator, defined by F+ = Fm ◦ F∗.

3.4 Set-valued functions and substitution

Given ó ∈ SUB, we define the lifting ó ∈ F(ATOM) and the extended inverse ó̆ ∈ F(ATOM) by

ó = ëA.{ó(ϕ) | ϕ ∈ A}
ó̆ = ëA.{ϕ ∈ ATOM | ó(ϕ) ∈ A}

We define ó · F by

(ó · F)(X ) =
⋃
{ó(F(Y )) | ó(Y ) = X}

andclaim thathorn(ó·F) = ó̇(horn(F)).Wewill often use themonotonic closureó m· F = (ó·F)m
of ó · F . We have

ó
m· F = ó ◦ Fm ◦ ó̆ (4)

ó
m· (ô m· F) = (ó ◦ ô) m· F (5)

3.5 Validity and entailment for set-valued functions

We extend validity to set-valued functions:

M,α � F iff ∀X ⊆ ATOM(M,α � X =⇒ M,α � F(X ))

M � F iff ∀α M,α � F
F � G iff ∀M (M � F =⇒ M � G)

We claim

M,α � F iff Diag(M,α) ∈ PFP(Fm) (6)

which is demonstrated as follows:

M,α � F ⇐⇒ ∀A ⊆ ATOM (M,α � A =⇒ M,α � F(A)) (by definition)

⇐⇒ ∀A ⊆ Diag(M,α) F(A) ⊆ Diag(M,α) (definition of Diag)

⇐⇒ Fm(Diag(M,α)) ⊆ Diag(M,α) (definition of Fm)
⇐⇒ Diag(M,α)) ∈ PFP(Fm) (definition of PFP)

G. R. Renardel de Lavalette: The Mathematics of Derivability

52



4 Characterizing entailment

For propositional Horn logic, we characterized in [1] entailment with the Kleene closure operator:
F � G iff G v F∗. For full Horn logic, we also need substitutions for the characterization. We
define the substitution closure operator SC : ℘(SUB)× F(ATOM)→ F(ATOM) by

SC(Σ,F) =
⊔

ó∈Σ
ó

m· F

and we abbreviate SC(SUB,F) to SC(F). Observe that we have

SC(F) = SC(SUBvar(F),F) (7)

where SUBV = (V → TERM). This follows from the fact that ó m· F = (ó �var(F)) m· F . We also
define

KSC(F) = SC(F)∗

Now we can show

Lemma 1. F � G iff G v KSC(F).

Proof. The ‘if ’ part G v KSC(F) =⇒ F � G follows from

F � F∗ (8)

F � SC(F) (9)

� is transitive (10)

G v F =⇒ F � G (11)

(10) and (11) are easy to prove. For the other two, we reason as follows.

(8) is a consequence of PFP(Fm) ⊆ PFP(F∗), which is demonstrated as follows: if X ∈
PFP(Fm) then Fm(X ) ⊆ X , so X =

⋂
PFP(Fm, X ) = F∗(X ), hence X ∈ PFP(F∗).

(9): first we recall thatM,α � ó m· F iffM,αMó � F , so F � ó
m· F for all ó ∈ SUB. Now we

use the fact the collection of set-valued functions entailed by F is closed under union, and we
obtain F � SC(F).

For the proof of the ‘only if ’ part, we use term models. Given A ⊆ ATOM, the term model
TM(A) = 〈TERM, i, jA〉 is the model with ATOM as universe, where i(f) maps terms t to the
term f(t) for all function symbols f ∈ SIGf , and where jA(p) = {t | p(t) ∈ A} for all predicate
symbols p ∈ SIGp. The valuations in term models are the substitutions ó ∈ SUB, and we have

[[t]]TM(A)
ó = ó̇(t)

TM(A), ó � ϕ ⇐⇒ ó̇(ϕ) ∈ A

As a consequence, we have (recall that ó̆(A) = {ϕ | ó̇(ϕ) ∈ A})

Diag(TM(A), ó) = ó̆(A) (12)

We claim the following auxiliary results:

ó̆(A) ∈ PFP(Fm) ⇐⇒ A ∈ PFP(ó m· F) (13)

PFP(SC(F)) =
⋂

ó∈SUB
PFP(ó m· F) (14)

TM(A) � F ⇐⇒ A ∈ PFP(SC(F)) (15)

They are demonstrated as follows.

G. R. Renardel de Lavalette: The Mathematics of Derivability

53



(13): ó̆(A) ∈ PFP(Fm) ⇐⇒ (Fm ◦ ó̆)(A) ⊆ ó̆(A) (definition of PFP)

⇐⇒ (ó ◦ Fm ◦ ó̆)(A) ⊆ A (X ⊆ ó̆(Y ) iff ó(X ) ⊆ Y )

⇐⇒ A ∈ PFP(ó m· F) (definition of m· and PFP)

(14): PFP(SC(F)) = PFP
( ⊔

ó∈SUB
ó

m· F
)

(definition of SC)

=
⋂

ó∈SUB
PFP(ó m· F) (1)

(15): TM(A) � F ⇐⇒ ∀ó ∈ SUB TM(A), ó � F (elementary)

⇐⇒ ∀ó ∈ SUB Diag(TM(A), ó) ∈ PFP(Fm) (6)

⇐⇒ ∀ó ∈ SUB ó̆(A) ∈ PFP(Fm) (12)

⇐⇒ ∀ó ∈ SUB A ∈ PFP(ó m· F) (13)

⇐⇒ A ∈ PFP(SC(F)) (14)

Now we can prove F � G =⇒ G v KSC(F):
F � G
=⇒ ∀A ⊆ ATOM (TM(A) � F =⇒ TM(A) � G) (elementary)

⇐⇒ ∀A ⊆ ATOM (A ∈ PFP(SC(F)) =⇒ A ∈ PFP(SC(G))) (15)

⇐⇒ PFP(SC(F)) ⊆ PFP(SC(G)) (elementary)

=⇒ SC(G)∗ v SC(F)∗ (by definition of ·∗)
=⇒ G v KSC(F) (G v SC(G)∗; definition of KSC(F)) 2

Observe that Lemma 1 can be read as a completeness result F � G ⇐⇒ F ` G, provided we
define F ` G by G v KSC(F).

5 Propositional interpolation

In [1], we proved interpolation for propositional Horn logic. This logic is obtained in the present
setting when SIGf = ∅ and all p ∈ SIG = SIGp have arity 0, so variables and substitutions play
no role, ATOM = SIG and sigp = sig. Interpolation follows from Lemma 2 that will also be used
in the proof of interpolation for full Horn logic.

Lemma 2. Let A = (A−, A+) ⊆2 ATOM
2, F ,G ∈ F(ATOM). Then

(F t G)∗|A v (F+|(A ∪2 A−1G ) t G)∗

where AG denotes Atom2(TERM, sigp
±(G)).

Proof. We will use some auxiliary results:

F∗|A v (F+|A)∗ (16)

(F ◦ (G|A−1 ◦ H)∗)|A = F|A ◦ (G ◦ H|A)∗ (17)

They are proved as follows.

(16): we have F∗|A v (F∗|A)∗ = (F+|A t I|A)∗ v ((F+|A)∗)∗ = (F+|A)∗.
(17) is demonstrated by

(F ◦ (G|A−1 ◦ H)∗)|A
= IA+ ◦ F ◦ (IA− ◦ G ◦ IA+ ◦ H)∗ ◦ IA− (definition of |)
= IA+ ◦ F ◦ IA− ◦ (G ◦ IA+ ◦ H ◦ IA−)∗ ((3); IA− is union-distributive)

= F|A ◦ (G ◦ H|A)∗ (definition of |)

G. R. Renardel de Lavalette: The Mathematics of Derivability

54



Now we can prove the statement of the Lemma. We use the abbreviation B for A ∪2 A−1G .

(F t G)∗|A = F∗ ◦ (Gm ◦ F∗)∗|A (2)

v F∗ ◦ (Gm|B−1 ◦ F∗)∗|B (B = A ∪2 A−1G )

= F∗|B ◦ (Gm ◦ F∗|B)∗ (17)

v (F+|B)∗ ◦ (Gm ◦ (F+|B)∗)∗ (16)

= (F+|(A ∪2 A−1G ) t G)∗ (2); Q = A ∪2 A−1G 2

Theorem 3 (propositional interpolation). For any propositional Horn formula ϕ and for any P ⊆2

sigp
±(ϕ), there is a uniform interpolant è with

1. sig±(è) ⊆ P;

2. for all ÷, ø with sig±(ϕ) ∩ (sig∓(÷) ∪ sig±(ø)) ⊆ P we have

ϕ ∧ ÷ ` ø iff è ∧ ÷ ` ø.

Proof. Let F correspond with ϕ, i.e. horn(F) = ϕ. Define

J = F+|P

We shall show that è = horn(J ) satisfies the theorem. One straightforwardly checks that
sig(è) = sig(J ) ⊆2 P, i.e. part (1) of the theorem. For part (2) we reason as follows. Let ÷, ø
with sig±(ϕ) ∩ (sig∓(÷) ∪ sig±(ø)) ⊆2 P and let G, H satisfy horn(G) = ÷, horn(H) = ø. We
set out to prove

F t G � H iff J t G � H

For the ‘if ’ part, we observe that J v F∗, so F � J by Lemma 1 and the fact that here
KSC(F) = F∗.

To prove the ‘only if ’ part, we define PF = sig±(F), and similarly for PG , PH. As a
consequence, we have

F = F|PF (18)

PF ∩2 (P−1G ∪2 PH) ⊆2 P (19)

Now it suffices to show that (F t G)∗|PH v (J t G)∗.

(F t G)∗|PH v (F)+|(P−1G ∪2 PH) t G)∗ (propositional interpolation: Lemma 2)

v (F+|P t G)∗ ((18), (19))

= (J t G)∗ (definition of J ) 2

6 Properties of substitutions

In this section,we prove three lemmata about substitutions. The first is about splitting substitutions
in two parts, one of them restricted to terms built from some subset of SIGf . The second lemma
tells when substitution and iteration commute, and the third lemma does the same for substitution
and restriction.

LetS ⊆ SIGf .Wewant to split substitutionsó in two parts: a substitution óS with sig(óS) ⊆ S,
and a substitution ô (depending only on S, not on ó) such that ó = ô̇ ◦ óS . For this purpose, we

G. R. Renardel de Lavalette: The Mathematics of Derivability

55



introduce term-indexed variables xt and a de-indexing substitution ô with ô(xt) = t. The term-
indexed variables can be used to replace subterms t = g(t1, . . . , tn) which have as head a function
symbol g ∈ SIGf −S. For this idea to work, we require that #(VAR− dom(ó)) = #VAR, so there
are enough ‘fresh’ variables available in VAR− dom(ó). Without loss of generality, we assume
that VAR− dom(ó) contains variables xt for all t ∈ TERM (here we use that #VAR = #TERM).
Now we can prove

Lemma 4. SC(F) = ô
m· SC(SUB(sigf(F)),F), where T is the de-indexing substitution with

ô(xt) = t for all t ∈ Hterm(SIGf − sigf(F),TERM).

Proof. Without loss of generality, we may assume that #(VAR− var(F)) = #VAR. When needed,
this can be realized via a renaming of the variables occurring in F .
We have to prove

⊔

ó∈SUB
ó

m· F = ô
m·
( ⊔

ó−∈SUB(sigf (F))

ó−
m· F
)

Since ô m· and⊔ commute, and SUB contains all substitutions, the w inclusion is obvious. For
the v inclusion, it suffices to show

∀ó ∈ SUB ∃ó− ∈ SUB(sigf(F)) ó = ô ◦ ó−

To prove this, let ó ∈ SUB. Since ó m· F is determined by ó � var(F), we may assume that
dom(ó) = var(F). We shall define ó− such that ó = ô̇ ◦ ó− holds. For this purpose, we use
variables xt ∈ VAR − var(F) for all t ∈ HT = Hterm(SIGf − sigf(F),TERM). ó− is obtained
by eliminating all (sub)terms in the range of ó that are not in Term(sigf(F)). Define ó− by
ó−(x) = (ó(x))− for all x ∈ VAR, where ·− : TERM→ Term(sigf(F)) is defined by

x− = x if x ∈ VAR

t− = xt if t ∈ HT
f(tt , . . . , tn)− = f(t−1 , . . . , t

−
n ) for all f ∈ SIGf

Now one easily shows that ô̇(t−) = t for all t ∈ TERM, so indeed ó = ô̇ ◦ ó−. 2

Lemma 5. If ó̇ is injective onA ⊆ ATOM2 andF|A = F , then substitution and iteration commute:

(ó m· F)+ = ó
m· F+

Proof. First we define

Eqó = ëX ⊆ ATOM.{ϕ | ∃ø ∈ X ó̇(ø) = ó̇(ϕ)}
Fó = Eqó ◦ Fm ◦ Eqó

They satisfy the following properties:

ó̆ ◦ ó ◦ ó̆ = ó̆ (20)

ó ◦ ó̆ ◦ ó = ó (21)

Eqó = ó̆ ◦ ó (22)

IA ◦ Eqó ◦ IA = IA, if ó̇ injective on A (23)

Now the Lemma follows directly from the next statements:

(ó m· F)+ = ó
m· (Fó)+ (24)

ó̇ is injective on A and F|A = F =⇒ (Fó)+ = (F+)ó (25)

ó
m· Fó = ó

m· F (26)

G. R. Renardel de Lavalette: The Mathematics of Derivability

56



They are proved as follows.

(26): ó
m· Fó = ó ◦ Eqó ◦ Fm ◦ Eqó ◦ ó̆ = ó ◦ Fm ◦ ó̆ = ó

m· F .

(24): (ó m· F)+ = (ó m· F) ◦ (ó m· F)∗ (definition of ·+)
= ó ◦ Fó ◦ ó̆ ◦ (ó ◦ Fm ◦ ó̆)∗ ((26); (4))

= ó ◦ Fó ◦ ó̆ ◦ (ó ◦ Fm ◦ Eqó ◦ ó̆)∗ (ó̆ = Eqó ◦ ó̆ by (22), (20))

= ó ◦ Fó ◦ (ó̆ ◦ ó ◦ Fm ◦ Eqó)∗ ◦ ó̆ ((3); ó̆ is left distributive)

= ó ◦ Fó ◦ (Fó)∗ ◦ ó̆ ((22); definition of Fó)
= ó

m· (Fó)+ (definition of ·+; (4))

(25): (Fó)+ = Eqó ◦ Fm ◦ Eqó ◦ (Eqó ◦ Fm ◦ Eqó)∗ (definition of Fó and ·+)
= Eqó ◦ Fm ◦ IA ◦ Eqó ◦ (Eqó ◦ IA ◦ Fm ◦ IA ◦ Eqó)∗

(F injective on A, so F = F ◦ IA = IA ◦ F))
= Eqó ◦ Fm ◦ (IA ◦ Eqó ◦ Eqó ◦ IA ◦ Fm)∗ ◦ IA ◦ Eqó

((3); IA ◦ Eqó is union-distributive)
= Eqó ◦ Fm ◦ (IA ◦ Fm)∗ ◦ IA ◦ Eqó

(Eqó ◦ Eqó = Eqó by (20) and (22); IA ◦ Eqó ◦ IA = IA by (23))

= Eqó ◦ Fm ◦ (Fm)∗ ◦ Eqó ((2); F ◦ IA = F)
= (F+)ó (definition of ·+ and Fó) 2

Lemma 6. Let P = (P−, P+) ⊆2 SIGp
2 and define A = Atom2(TERM, P). Then substitution and

restriction to A commute: for any ó ∈ SUB we have

(ó m· F)|A = ó
m· (F|A)

Proof. We observe that, by the definition of A, any ó̇ is indifferent for A, i.e.

∀ϕ ∈ ATOM (ϕ ∈ A ⇐⇒ ó̇(ϕ) ∈ A)

As a consequence, we have IA ◦ ó = ó ◦ IA and IA ◦ ó̆ = ó̆ ◦ IA, so

(ó m· F)|A = IA ◦ ó ◦ F ◦ ó̆ ◦ IA = ó ◦ IA ◦ F ◦ IA ◦ ó̆ = ó
m· (F|A) 2

7 Uniform interpolation

Now we can prove uniform interpolation for Horn logic.

Theorem 7. For any Horn formula ϕ and for any P = (P−, P+) ⊆2 sigp
±(ϕ), there is a uniform

interpolant è with

1. sigp±(è) ⊆2 P and sigf(è) ⊆ sigf(ϕ);

2. for all ÷, ø with sigp±(ϕ) ∩2 (sigp∓(÷) ∪2 sigp±(ø)) ⊆2 P we have

ϕ ∧ ÷ ` ø iff è ∧ ÷ ` ø.

Proof. Let F correspond with ϕ, i.e. horn(F) = ϕ. Define

J = SC(SUB(sigf(F)),F)+|AP

where AP = Atom2(TERM, P). We shall show that è = horn(J ) satisfies the theorem. One
straightforwardly checks that sigp(è) = sigp(J ) ⊆2 S and sigf(è) = sigf(J ) ⊆ sigf(ϕ), i.e. part

G. R. Renardel de Lavalette: The Mathematics of Derivability

57



(1) of the theorem. For part (2) we reason as follows. Let ÷, ø with sigp
±(ϕ) ∩ (sigp

∓(÷) ∪
sigp
±(ø)) ⊆2 P and let G,H satisfy horn(G) = ÷, horn(H) = ø. We set out to prove

F t G � H iff J t G � H
For the ‘if ’ part, we observe that J v KSC(F), so F � J by Lemma 1.

The proof for the ‘only if ’ part is more involved. Define AF = AT2(SIGf ∪2 sigp±(F)), and
similarly for AG , AH. As a consequence, we have

SC(F ) = SC(F)|AF (27)

AF ∩2 (A−1G ∪2 AH) ⊆2 AP (28)

For (27) we also use that sigp
±(SC(F)) = sigp

±(F). Now it suffices to show that KSC(F t
G)|AH v KSC(J t G).
KSC(F t G)|AH
= (SC(F) t SC(G))∗|AH (def. of KSC; SC distributes over t)
v (SC(F)+|(A−1G ∪2 AH) t SC(G))∗ (prop. interpolation: Lemma 2)

v (SC(F)+|AP t SC(G))∗ (27, 28)

= ((ô m· SC(SUB(sigf(F)),F))+|AP t SC(G))∗ (substitution splitting: Lemma 4)

= (ô m· SC(SUB(sigf(F)),F)+|AP t SC(G))∗ (distributing ô over ·+: Lemma 5)

= (ô m· (SC(SUB(sigf(F)),F)+|AP) t SC(G))∗ (distributing ô over ·|AP : Lemma 6)

= (ô m· J t SC(G))∗ (definition of J )
v (SC(J ) t SC(G))∗ (ô m· J v SC(J ))
= KSC(J t G) (SC distributes over t; def. of KSC) 2

7.1 Counterexample for a stronger condition on occurrence of function symbols

The condition sigf(è) ⊆ sigf(ϕ) about the occurrence of function symbols in the interpolant
is rather weak compared with the condition sigp

±(è) ⊆±sigp (ϕ) ∩2 (sigp∓(÷) ∪2 sigp±(ø)) on
predicate symbols. However, it is not possible to strengthen the function symbol condition to

sigf(è) ⊆ sigf(ϕ) ∩ (sigf(÷) ∪ sigf(ø))

We demonstrate this with a counterexample. Let ϕ = p(a), ÷ = p(x) → q, ø = q. Then
indeed ϕ ∧ ÷ � ø, but there is no interpolant è with sigf(è) ⊆ sigf(ϕ) ∩ (sigf(÷) ∪ sigf(ø)) =
{a} ∩ (∅ ∪ ∅) = ∅. The only interpolant (modulo equivalence) is p(a), and p(x) does not work.
In first-order logic, the interpolant would be ∃xp(x), but existential quantification is not available
in Horn logic.

8 Further work

I list some ideas for further investigation.

– Try to find conditions that allow to strengthen the function parameter condition sigf(è) ⊆
sigf(ϕ) to

sigf(è) ⊆ sigf(ϕ) ∩ (sigf(÷) ∪ sigf(ø))

– Apply set-valued functions to propositional logics.

– Apply set-valued functions to (conditional) equational logic.

– Consider other types of conditional statements: sequents, proof rules.

– Apply set-valued functions to the theory of derived rules.

G. R. Renardel de Lavalette: The Mathematics of Derivability

58



References

[1] Gerard R. Renardel de Lavalette. Interpolation in propositional Horn logic. Journal of Logic
and Computation. doi:10.1093/logcom/exx042.

[2] Bernhard Möller. Kleene getting lazy. Science of Computer Programming, 65:195–214, 2007.

G. R. Renardel de Lavalette: The Mathematics of Derivability

59





The mathematics of derivability

Gerard R. Renardel de Lavalette

Bernoulli Institute for Mathematics, CS and AI
University of Groningen
the Netherlands

UNILOG2018 Vichy – workshop Proof Theory

theorem

infinitary Horn logic (IHL): t ∈ TERM, α ∈ ATOM as in predicate logic
formulae ϕ = ∀∧i∈I(

∧
Ai → αi) (Ai ⊆ ATOM)

pr±(ϕ) = (pr+(ϕ), pr−(ϕ)): positively/negatively occurring predicate symbols.
fun(ϕ): function symbols.

uniform interpolation: for any ϕ in IHL and for any P = (P+, P−) ⊆2 pr(ϕ), there is
a uniform interpolant θ with

1. pr(θ) ⊆2 P and fun(θ) ⊆ fun(ϕ);

2. for all ψ, χ with pr±(ϕ) ∩ (pr∓(ψ) ∪ pr±(χ)) ⊆2 P we have

ϕ ∧ ψ ` χ iff θ ∧ ψ ` χ.

propositional non-uniform case (i.e. no terms; θ depends on ϕ,ψ, χ):
‖θ‖ is polynomial in ‖ϕ‖+ ‖χ‖

UNILOG2018 Vichy – workshop Proof Theory 1

G. R. Renardel de Lavalette: The Mathematics of Derivability

61



theorem ∼ artefact

UNILOG2018 Vichy – workshop Proof Theory 2

workbench

UNILOG2018 Vichy – workshop Proof Theory 3

G. R. Renardel de Lavalette: The Mathematics of Derivability

62



proof theory workbench

Instruments used for proof theory:

proof trees sequential derivations induction

UNILOG2018 Vichy – workshop Proof Theory 4

conditional statements

conditional statements are the driving force in derivations

They occur on different levels:

implications in the object language: ϕ→ ψ

sequents in the metalanguage: Γ, ϕ, ψ ` ϕ ∧ ψ

proof rules involving sequents: if Γ ` ϕ and Γ, ψ ` χ then Γ, ϕ→ ψ ` χ

UNILOG2018 Vichy – workshop Proof Theory 5

G. R. Renardel de Lavalette: The Mathematics of Derivability

63



set-valued functions

mathematical formulation of conditional statements:

set-valued functions F : ℘(EXP)→ ℘(EXP)

EXP = ATOM : F ∼ Horn formula

EXP = FORM : F ∼ sequent

EXP = SEQ : F ∼ proof rule

From now on: EXP = ATOM

from F to Horn formula:
∧
A⊆ATOM

∧
α∈F(A) (

∧
A→ α)

from Horn formula to F : F(A) = {αi | i ∈ I, Ai = A}

UNILOG2018 Vichy – workshop Proof Theory 6

propositional case: example

propositional logic: no functions, no terms, so ATOM = SIGp.

Let ATOM = {a, b, c, d}.

Now a ∧ (a→ b) ∧ (a→ c) ∧ ((a ∧ c)→ d) corresponds to

F : ∅ 7→ {a}
{a} 7→ {b, c}
{a, c} 7→ {d}
P 7→ ∅ for P 6= ∅, {a}, {a, c}

UNILOG2018 Vichy – workshop Proof Theory 7

G. R. Renardel de Lavalette: The Mathematics of Derivability

64



propositional case: derivability

Derivability for propositional set-valued functions:

F ` G is defined by G v F∗

v is function inclusion: F v G iff F(A) ⊆ G(A) for all A ⊆ ATOM

F∗ is the Kleene closure of F : F∗ = (the least G with I t Fm ◦ G v G)
”do F zero or more times”
[ later also F+: ”one or more times” ]

Fm is the monotonic closure of F : Fm(A) =
⋃{F(B) | B ⊆ A}

I is the identity function: I(A) = A

We have completeness: F ` G iff F |= G

UNILOG2018 Vichy – workshop Proof Theory 8

properties of set-valued functions

We consider the structure

SF(EXP) = 〈F(EXP),t, m◦,∗ , ∅, I〉

of set-valued functions over EXP.

Here
m◦ is monotonic composition: F m◦ G = Fm ◦ Gm.

Is SF(EXP) a Kleene algebra?

Recall that Kleene algebra axiomatizes composition, choice and iteration (·,+,∗).

Well, almost: it turns out that SF(EXP) is a weak lazy Kleene algebra.

UNILOG2018 Vichy – workshop Proof Theory 9

G. R. Renardel de Lavalette: The Mathematics of Derivability

65



Kleene algebra

a+ b = b+ a
a+ (b+ c) = (a+ b) + c
a+ a = a

a · (b · c) = (a · b) · c

(a+ b) · c = a · c+ b · c
a · (b+ c) = a · b+ a · c

a+ 0 = a
a · 0 = 0 · a = 0
a = a · 1 = 1 · a

1 + a · a∗ ≤ a∗
1 + a∗ · a ≤ a∗
a · b ≤ b⇒ a∗ · b ≤ b
a · b ≤ a⇒ a · b∗ ≤ a

UNILOG2018 Vichy – workshop Proof Theory 10

lazy Kleene algebra

proposed by Bernhard Möller in 2007 to axiomatize predicate transformers

a+ b = b+ a
a+ (b+ c) = (a+ b) + c
a+ a = a

a · (b · c) = (a · b) · c

(a+ b) · c = a · c+ b · c
b ≤ c⇒ a · b ≤ a · c

a+ 0 = a
0 · a = 0
a = a · 1 = 1 · a

1 + a · a∗ ≤ a∗
a · b ≤ b⇒ a∗ · b ≤ b

UNILOG2018 Vichy – workshop Proof Theory 11

G. R. Renardel de Lavalette: The Mathematics of Derivability

66



weak lazy Kleene algebra

a+ b = b+ a
a+ (b+ c) = (a+ b) + c
a+ a = a

a · (b · c) = (a · b) · c

(a+ b) · c = a · c+ b · c
b ≤ c⇒ a · b ≤ a · c

a+ 0 = a
0 · a = 0
a ≤ a · 1 = 1 · a

1 + a · a∗ ≤ a∗
a · b ≤ b⇒ a∗ · b ≤ b · 1

UNILOG2018 Vichy – workshop Proof Theory 12

useful laws in weak lazy Kleene algebra

1 ≤ a∗
a ≤ a∗
a ≤ b⇒ a∗ ≤ b∗
a∗ · a∗ = (a∗)∗ = a∗

c+ a · b ≤ b⇒ a∗ · c ≤ b · 1

(a+ b)∗ = a∗ · (b · a∗)∗

(a · b)∗ · a ≤ a · (b · a)∗

(a · b)∗ · a = a · (b · a)∗ if a is left distributive,
i.e. a · (c+ d) = a · c+ a · d for all c, d

UNILOG2018 Vichy – workshop Proof Theory 13

G. R. Renardel de Lavalette: The Mathematics of Derivability

67



projection and restriction

projection: IA with IA(B) = B ∩A

restriction: F �A with (F �A)(B) = F(B) if B ⊆ A
= ∅ if B 6⊆ A

We have

F �A v F , IA ◦ F v F

pr(IA ◦ F �B) ⊆2 pr(F) ∩2 (A,B)

Here pr(F) = (pr+(F), pr−(F)) with

pr−(F) = dom(F) =
⋃{F(A) | A ⊆ ATOM}

pr+(F) = rg(F) =
⋃{A | A ⊆ ATOM,F(A) 6= ∅}

UNILOG2018 Vichy – workshop Proof Theory 14

propositional interpolation

if P ⊆2 pr(F) then J = F+|P is a uniform interpolant for F and P :

pr(J ) ⊆2 P , and for all G, H with pr(F) ∩ (pr−1(G) ∪ pr(H)) ⊆2 P we have

F t G ` H iff J t G ` H

proof: we have F ` J , so ⇐ is easy. For ⇒:

F t G ` H
⇔
H v (F t G)∗|pr(H)

⇒
H v ((F+|(pr−1(G) ∪ pr(H))) t G)∗|pr(H)

⇒
H v ((F+|P ) t G)∗|pr(H)

⇔
J t G ` H

UNILOG2018 Vichy – workshop Proof Theory 15

G. R. Renardel de Lavalette: The Mathematics of Derivability

68



making it polynomial

in general, ‖J ‖ is exponential in ‖F‖

however, for non-uniform interpolation a polynomial-size interpolant Jp can be found

here we use thin functions F where F(A) ∩ F(B) = ∅ whenever A 6= B

and a thinning operator Θ with Θ(F) v F , (Θ(F))∗(∅) = F∗(∅)

then we get ‖Jp‖ ≤ #pos(F) · (#neg(F) + 1) ·#neg(H)

UNILOG2018 Vichy – workshop Proof Theory 16

first-order Horn logic

terms in TERM are built from variables in VAR and functions in SIGf

atomic formulae in ATOM are built from terms in TERM and predicates in SIGp

set-valued functions F : ℘(ATOM)→ ℘(ATOM)

substitutions σ : VAR→ TERM

applied to F : (σ · F)(X) = {σ(ϕ) | ϕ ∈ Fm({ψ | σ(ψ) ∈ X})}

we have
(σ · F)+ = σ · (Eqσ ◦ F ◦ Eqσ)+

where Eqσ(X) = {ϕ | ∃ψ ∈ X σ(ϕ) = σ(ψ)}

UNILOG2018 Vichy – workshop Proof Theory 17

G. R. Renardel de Lavalette: The Mathematics of Derivability

69



characterization of `

universal closure: UC(F) =
⊔

σ∈SUB

σ · F

Kleene universal closure: UCK(F) = (UC(F))∗

we define: F ` G by G v UCK(F), i.e. G v (
⊔

σ∈SUB

σ · F)∗

we have completeness: F ` G iff F |= G

UNILOG2018 Vichy – workshop Proof Theory 18

substitution splitting

given S ⊆ SIGf, how to split σ ∈ SUB in an S-part σS ∈ SUBS and τ outside S?

define TERMelim = {t | t = f(t1, . . . tn) with f 6∈ S}

define VARnew = {xt | t ∈ TERMelim}

define σS by: σS(x) = (σ(x) with subterms s ∈ TERMelim replaced by xs)

define τ by: τ(xt) = t for all xt ∈ VARnew

claim: now σ = τ ◦ σS

consequence: UC(F) = τ · UCS(F)

where UCS(F) =
⊔{σ · F | σ ∈ SUB, sigσ ⊆ S}

UNILOG2018 Vichy – workshop Proof Theory 19

G. R. Renardel de Lavalette: The Mathematics of Derivability

70



first-order interpolation

uniform interpolation: for any F and for any P = (P+, P−) ⊆2 pr(F), there is a
uniform interpolant J with

1. pr(J ) ⊆2 P and fun(J ) ⊆ fun(F);

2. for all G, H with pr±(F) ∩ (pr∓(G) ∪ pr±(H)) ⊆2 P we have

F t G ` H iff J ∧ G ` H.

interpolant: J = ((
⊔
σ∈SUBF

σ
m· F)+|AP )

notation used:
AP = {α ∈ ATOM | pr(α) ⊆2 P}
AF = {α ∈ ATOM | pr(α) ⊆2 pr(F)}

UNILOG2018 Vichy – workshop Proof Theory 20

first-order interpolation

F t G ` H
⇔
H v UCK(F t G)|AH

⇔
H v (UC(F) t UC(G))∗|AH

⇔
H v (UC(F)+|(A−1G ∪AH) t UC(G))∗|AH

⇔
H v (τ

m· ((
⊔
σ∈SUBF

σ
m· F)+|AP ) t UC(G))∗|AH

⇔
H v (τ

m· J t UC(G))∗|AH
⇒
H v (UC(J ) t UC(G))∗|AH

⇔
H v UCK(J t G)|AH

⇔
J t G ` H

UNILOG2018 Vichy – workshop Proof Theory 21

G. R. Renardel de Lavalette: The Mathematics of Derivability

71



further work

try to strenghten the function parameter condition fun(θ) ⊆ fun(ϕ) to

fun(θ) ⊆ fun(ϕ)) ∩ (fun(ψ) ∪ fun(χ))

apply set-valued functions to propositional logics

apply set-valued functions to (conditional) equational logic

consider other types of conditional statements: sequents, proof rules

apply set-valued functions to the theory of derived rules

. . .

UNILOG2018 Vichy – workshop Proof Theory 22

G. R. Renardel de Lavalette: The Mathematics of Derivability

72



Introduction
Theory of Occurrences

Formal Results

The Existence of Pure Proofs

René Gazzari
University of Tübingen, Germany

UniLog 6, 2018, Vichy

June 25, 2018

René Gazzari, elbron@gmx.net Pure Proofs

Introduction
Theory of Occurrences

Formal Results

Philosophical Issues
Natural Deduction
Notions of Pureness

Relevance of Pure Proofs

[M]athematicians and philosophers of mathematics think that it
is somehow valuable for a proof to be ‘pure’, that is, not to use
notions extraneous to what is being proved. (Arana)

The problem of pure proofs is a philosophical problem about informal
mathematics. We provide a proof-theoretical, and therefore formal
approach to this problem.

First, we provide a plausible definition of pure derivations, and then
we prove that every derivation can be transformed into a pure
derivation.

René Gazzari, elbron@gmx.net Pure Proofs

R. Gazzari: The Existence of Pure Proofs

73



Introduction
Theory of Occurrences

Formal Results

Philosophical Issues
Natural Deduction
Notions of Pureness

Representation of Informal Mathematics

We represent informal mathematics as follows:

1 proofs: by “a formal system which comes as close as possible to
actual reasoning” (Gentzen): the calculus of Natural Deduction.

2 notions: by non-logical symbols (constant symbols, function symbols,
and relation symbols) of a formal first order language.

3 mathematical theories: by a set of axioms faithfully formulated in the
rich language with sufficiently many non-logical symbols.

4 pureness: by a formal definition of pure derivations (depending on
occurrences of non-logical symbols in derivations).

René Gazzari, elbron@gmx.net Pure Proofs

Introduction
Theory of Occurrences

Formal Results

Philosophical Issues
Natural Deduction
Notions of Pureness

Natural Deduction

1 as given by Gentzen

2 with inference rules for
⊥ (reductio ad absurdum), implication (introduction // elimination),
universal quantifier (introduction // elimination)

3 without inference rules for identity

René Gazzari, elbron@gmx.net Pure Proofs

R. Gazzari: The Existence of Pure Proofs

74



Introduction
Theory of Occurrences

Formal Results

Philosophical Issues
Natural Deduction
Notions of Pureness

Prawitz Normal Form

1 Theorem (Prawitz): every derivation D can be transformed into a
cut-free derivation F stronger than D.

2 F is called the (Prawitz) Normal Form of D

3 F can be strictly stronger, as we may loose assumptions while
normalisation.

4 every formula occurring in a normal derivation is a subformula of an
open assumption or of the conclusion (subformula principle)

5 classical exception: negated assumptions (¬A) discharged in an
reductio ad absurdum step.

René Gazzari, elbron@gmx.net Pure Proofs

Introduction
Theory of Occurrences

Formal Results

Philosophical Issues
Natural Deduction
Notions of Pureness

Pureness

1 An open assumption of D is called essential, if it is an open
assumption of the normal form F of D.

2 An non-logical symbol ξ is called relevant in D, if ξ occurs in an
essential assumption or in the conclusion of D.

3 A derivation D is (absolutely) pure, if every non-logical symbol
occurring somewhere in D is relevant.

René Gazzari, elbron@gmx.net Pure Proofs

R. Gazzari: The Existence of Pure Proofs

75



Introduction
Theory of Occurrences

Formal Results

Philosophical Issues
Natural Deduction
Notions of Pureness

Well-Known Results

1 Technical Lemma (Completeness) Every constant symbol occurring in
a derivation can be replaced by a fresh parameter.
(Proof: induction over the structure of derivations.)

2 Consequence: every derivation can be transformed into a pure
derivation with respect to constant symbols by replacing all
non-relevant constant symbols.

3 Furthermore: due to the subformula principle, every derivation in
Prawitz normal form is pure with respect to relation symbols (the
classical exception makes no difference)

René Gazzari, elbron@gmx.net Pure Proofs

Introduction
Theory of Occurrences

Formal Results

Philosophical Issues
Natural Deduction
Notions of Pureness

Function Symbols

1 Can we eliminate non-relevant function symbols?

2 Yes!

3 Simple example (in Prawitz Normal Form):

∀x .P(x)

P(f (v))

∀x .P(x)→ P(v)

P(f (v))→ P(v)

P(v)

 
∀x .P(x)

P(w)

∀x .P(x)→ P(v)

P(w)→ P(v)

P(v)

The function symbol f is not relevant in D.

4 But: we need an elaborate theory of occurrences (of terms in
derivations) for the proof.

René Gazzari, elbron@gmx.net Pure Proofs

R. Gazzari: The Existence of Pure Proofs

76



Introduction
Theory of Occurrences

Formal Results

Theory of Occurrences
Excursus: Basic Proof Theory
Congruence Relation

Concept (Occurrence)

1 An occurrence is determined by the following three aspects:

context: An occurrence is an occurrence in a syntactic entity.
shape: An occurrence is an occurrence of a syntactic entity.
position: An occurrence is an occurrence at a position in the context.

2 Context and shape are standard syntactic entities.

3 The position is given by nominal forms in which the intended
positions of the occurrences are marked by nominal symbols ∗k .

René Gazzari, elbron@gmx.net Pure Proofs

Introduction
Theory of Occurrences

Formal Results

Theory of Occurrences
Excursus: Basic Proof Theory
Congruence Relation

Example (Occurrence)

The (multiple) occurrence of the problematic term f (v) is given as follows:

1 The position of the problematic term occurrence is given by the
following nominal derivation:

D l
∀x .P(x)

P(f (v))

∀x .P(x)→ P(v)

P(f (v))→ P(v)

P(v)

 
∀x .P(x)

P(∗0)

∀x .P(x)→ P(v)

P(∗0)→ P(v)

P(v)

2 The context is the derivation D, its shape is the term f (v).

René Gazzari, elbron@gmx.net Pure Proofs

R. Gazzari: The Existence of Pure Proofs

77



Introduction
Theory of Occurrences

Formal Results

Theory of Occurrences
Excursus: Basic Proof Theory
Congruence Relation

Nominal Forms

We need three types of nominal forms:

1 nominal terms: with nominal symbols ∗k as new atoms:

∗k | v | x | c | f (t0, . . . tn)

2 nominal formulae: via nominal terms instead of standard terms:

⊥ | (t = s) | P(t0, . . . tn−1) | (A→ B) | (∀x .A)

3 nominal trees: without inference rules, but with arbitrary discharge of
assumptions

A | D0 . . . Dn
A

René Gazzari, elbron@gmx.net Pure Proofs

Introduction
Theory of Occurrences

Formal Results

Theory of Occurrences
Excursus: Basic Proof Theory
Congruence Relation

Remarks (Nominal Forms)

1 Three types of nominal forms:

 most definitions have three (analogous) versions.
 we only provide one version in the talk

2 Classification of nominal forms:
1 standard entity = no nominal symbol occurring
2 simple = no nominal symbol occurs more than once
3 unary = ∗0 is the only nominal symbol
4 single = simple and unary

René Gazzari, elbron@gmx.net Pure Proofs

R. Gazzari: The Existence of Pure Proofs

78



Introduction
Theory of Occurrences

Formal Results

Theory of Occurrences
Excursus: Basic Proof Theory
Congruence Relation

Central Tool: General Substitution Function

1 Binary function on nominal trees and arbitrary sequences of nominal
terms, resulting in nominal trees.

2 D[s0, . . . sn] is the result of the simultaneous replacement of all
occurrences of nominal symbols ∗0, . . . ∗n in D by the nominal terms
s0, . . . sn, respectively. (recursive definition)

3 Example:
P(∗0) P(∗2)

P(∗0)
[c + ∗0, ∗1] l P(c + ∗0) P(∗2)

P(c + ∗0)

René Gazzari, elbron@gmx.net Pure Proofs

Introduction
Theory of Occurrences

Formal Results

Theory of Occurrences
Excursus: Basic Proof Theory
Congruence Relation

Remarks (General Substitution Function)

1 Subsequently, only unary nominal forms needed; we write ∗ for ∗0.

René Gazzari, elbron@gmx.net Pure Proofs

R. Gazzari: The Existence of Pure Proofs

79



Introduction
Theory of Occurrences

Formal Results

Theory of Occurrences
Excursus: Basic Proof Theory
Congruence Relation

Less-Structured Relation

1 A nominal tree D is less-structured than a nominal tree D′ (D ≤ D′), if
there is a nominal term s such that D′ l D[s].

2 Example (with atomic trees):

(minimal) P(∗) ≤ P(∗+ c) ≤ P(c + c) (maximal)

As: P(∗)[∗+ c] l P(∗+ c), and P(∗+ c)[c] l P(c + c).

René Gazzari, elbron@gmx.net Pure Proofs

Introduction
Theory of Occurrences

Formal Results

Theory of Occurrences
Excursus: Basic Proof Theory
Congruence Relation

Elimination Forms

1 D is called an elimination form of a standard tree D, if D ≤ D.

2 D is called a nominal derivation, if D is an elimination form of a
standard derivation D.

René Gazzari, elbron@gmx.net Pure Proofs

R. Gazzari: The Existence of Pure Proofs

80



Introduction
Theory of Occurrences

Formal Results

Theory of Occurrences
Excursus: Basic Proof Theory
Congruence Relation

Occurrences

1 A triple o = 〈D, t, D〉 is called an occurrence of the term t in the
derivation D, if D is an elimination form of D in which the standard
term t is eliminated (D l D[t]).

D is the context of o
t is the shape of o
D is the position of o

2 A single occurrence o is called extraneous, if its shape contains a
non-logical symbol which is not relevant in the underlying derivation.

René Gazzari, elbron@gmx.net Pure Proofs

Introduction
Theory of Occurrences

Formal Results

Theory of Occurrences
Excursus: Basic Proof Theory
Congruence Relation

Lies-Within Relation

1 An occurrence o lies-within an occurrence o′ (o ≤ o′), if the position
D′ of o′ is less-structured than the position D of o. We also say that o′

contains o.

2 Example:

P(c + c)

Q → P(c + c)
≤ P(c + c)

Q → P(c + c)

As:
P(∗)

Q → P(c + c)
≤ P(∗+ c)

Q → P(c + c)

Via: s l ∗+ c

René Gazzari, elbron@gmx.net Pure Proofs

R. Gazzari: The Existence of Pure Proofs

81



Introduction
Theory of Occurrences

Formal Results

Theory of Occurrences
Excursus: Basic Proof Theory
Congruence Relation

Basic Proof Theory

1 Needed: detailed specification of the position of occurrences.
2 Based on a theory of occurrences of subtrees in nominal trees (using a

second kind of nominal symbols).

inference step = occurrence of the subtree generated in that step.
assumption = atomic inference step.

3 A term occurrence o has a location, if there is an inference step such
that all nominal symbols of o occur in its conclusion.

in this case: the inference step is the location of o.
in this case: the nominal formula A in the conclusion of that inference
step is the local position of o.

4 More specifications are possible!

René Gazzari, elbron@gmx.net Pure Proofs

Introduction
Theory of Occurrences

Formal Results

Theory of Occurrences
Excursus: Basic Proof Theory
Congruence Relation

Special Occurrences

The following special occurrences are crucial in our discussion:

1 Occurrences of a (co-)eigenvariable are single occurrences located as
follows:

...
A(v)

∀x .A(x)

...
2 Occurrences of a (co-)eigenterm are single occurrences located as

follows:
...

∀x .A(x)

A(t)

...

René Gazzari, elbron@gmx.net Pure Proofs

R. Gazzari: The Existence of Pure Proofs

82



Introduction
Theory of Occurrences

Formal Results

Theory of Occurrences
Excursus: Basic Proof Theory
Congruence Relation

Restricted Occurrences

1 A single occurrence o is called restricted, if one of the following
conditions is satisfied:

o strictly contains an occurrence of an eigenvariable or of an eigenterm.
o contains an occurrence of a co-eigenvariable or of a co-eigenterm.

2 We also attribute this property to the respective positions.

René Gazzari, elbron@gmx.net Pure Proofs

Introduction
Theory of Occurrences

Formal Results

Theory of Occurrences
Excursus: Basic Proof Theory
Congruence Relation

Congruence Relation

We introduce a congruence relation ∼=:

1 principle idea: Relate single occurrences (their positions) which have
necessarily the same shape (due to the inference rules).

2 example:

P(t) P(t)

P(t) ∧ P(t)

3 relevance: If we want to replace a term t by another term s in a
derivation, then we have to replace complete congruence classes of t

René Gazzari, elbron@gmx.net Pure Proofs

R. Gazzari: The Existence of Pure Proofs

83



Introduction
Theory of Occurrences

Formal Results

Theory of Occurrences
Excursus: Basic Proof Theory
Congruence Relation

Principle Definition

1 Define direct congruence ∼=1 between elimination forms of the
underlying derivation.

 ∼=1 between single elimination forms having (almost) the same local
positions at the right locations.

 Recursive definition depending on the structure of the underlying
derivation; each inference rule has several subcases.

 We provide the two example clauses of the definition.

René Gazzari, elbron@gmx.net Pure Proofs

Introduction
Theory of Occurrences

Formal Results

Theory of Occurrences
Excursus: Basic Proof Theory
Congruence Relation

Direct Congruence

1 Example clause: introduction of the implication
[A]! [A]

F
B

A→ B

∼=1

[A]

F

B
A→ B

single discharged assumption l antecedent of the conclusion
conclusion of the premise l succedent of the conclusion
already congruent in the direct subtrees (recursive cases)

René Gazzari, elbron@gmx.net Pure Proofs

R. Gazzari: The Existence of Pure Proofs

84



Introduction
Theory of Occurrences

Formal Results

Theory of Occurrences
Excursus: Basic Proof Theory
Congruence Relation

Direct Congruence

1 Example clause: introduction of the universal quantifier
F

A(v)

∀x .A(x)

∼=1

F

A(v)

∀x .A(x)

(different) positions of the eigenvariable.
conclusion of the premise l kernel of the conclusion modulo
substitution of the eigenvariable; additionally, the elimination forms are
not restricted.
already congruent in the direct subtrees (recursive cases)

René Gazzari, elbron@gmx.net Pure Proofs

Introduction
Theory of Occurrences

Formal Results

Theory of Occurrences
Excursus: Basic Proof Theory
Congruence Relation

Congruence Relation

1 Congruence of single elimination forms is the reflexive, symmetric,
and transitive closure of the direct congruence

2 Congruence of single occurrences defined via the congruence of their
positions.

René Gazzari, elbron@gmx.net Pure Proofs

R. Gazzari: The Existence of Pure Proofs

85



Introduction
Theory of Occurrences

Formal Results

Theory of Occurrences
Excursus: Basic Proof Theory
Congruence Relation

Representation of Congruence Classes

1 needed: one common elimination form representing all single
elimination forms in a congruence class.

2 definable: A merge function µ resulting in common elimination form
having nominal symbols at the same positions as any of the
arguments. (recursive definition)

3 common elimination form: If S is a congruence class, then µ(S) is
the common elimination form of all members of S.

René Gazzari, elbron@gmx.net Pure Proofs

Introduction
Theory of Occurrences

Formal Results

Restricted Occurrences
Substitution Theorem
Existence of Pure Proofs

Proposition (Restricted Occurrences)

1 Let D in Prawitz Normal Form.

2 If o = 〈D, f (t0, . . . tn), D〉 is a single and restricted occurrence of a
complex term with main function symbol f then the following both
statements hold:

3 There is a complex term f (s0, . . . sn) occurring in an open assumption
or in the conclusion of D.

4 If D ends with an elimination step, then there is such an occurrence
occurring in an open assumption.

 Proved by induction over the number of elimination of the implication
steps in D.

René Gazzari, elbron@gmx.net Pure Proofs

R. Gazzari: The Existence of Pure Proofs

86



Introduction
Theory of Occurrences

Formal Results

Restricted Occurrences
Substitution Theorem
Existence of Pure Proofs

Side Conditions

If a term s is intended to replace some occurrences of a term t in a
derivation, two side conditions have to be satisfied:

1 regularity: No quantifiable variable may occur free in a derivation.

 Demand that Vq(s) ⊆ Vq(t).

2 eigenvariable: Eigenvariables may not occur in open assumptions.

 Demand that Vp(s) ∩ Ve(D) ⊆ Vp(t).

René Gazzari, elbron@gmx.net Pure Proofs

Introduction
Theory of Occurrences

Formal Results

Restricted Occurrences
Substitution Theorem
Existence of Pure Proofs

Substitution Theorem

1 Let o = 〈D, t, D〉 be a single occurrence of a term t in a derivation D
such that no restricted occurrence is congruent to o.

2 Let s be a term satisfying the regularity condition with respect to t
and the eigenvariable condition.

3 If S is the set of positions of occurrences congruent to o, then
µ(S)[s] is a derivation.

 Proved by induction over the structure of D.

René Gazzari, elbron@gmx.net Pure Proofs

R. Gazzari: The Existence of Pure Proofs

87



Introduction
Theory of Occurrences

Formal Results

Restricted Occurrences
Substitution Theorem
Existence of Pure Proofs

Remarks (Substitution Theorem)

1 The substitution theorem is general as there are only few restriction
on the involved terms.

2 The substitution theorem is strong, as we do not have to replace all
occurrences of a given term, but minimal classes.

3 With the help of the substitution theorem, we are able to replace all
extraneous occurrences of terms in a derivation.

René Gazzari, elbron@gmx.net Pure Proofs

Introduction
Theory of Occurrences

Formal Results

Restricted Occurrences
Substitution Theorem
Existence of Pure Proofs

Existence of Pure Derivations

1 Let D be an arbitrary derivation.

2 There is a pure derivation F stronger than D.

René Gazzari, elbron@gmx.net Pure Proofs

R. Gazzari: The Existence of Pure Proofs

88



Introduction
Theory of Occurrences

Formal Results

Restricted Occurrences
Substitution Theorem
Existence of Pure Proofs

Proof Sketch (Existence of Pure Derivations)

1 Without loss of generality, D is in Prawitz Normal Form, and
therefore pure with respect to relation symbols.

2 Assume: there is an extraneous occurrence o = 〈D, t, D〉 of a term t.

The congruence class of o does not contain restricted occurrences. (o
is extraneous.)
A fresh parameter w (not occurring in D) satisfies both the regularity
and the eigenvariable condition with respect to t.
Let S be the set of positions of the occurrences o′ congruent to o.
D′ l µ(S)[w ] is a derivation.

3 D′ has the same open assumptions and the same conclusion as D, as
o is extraneous. The number of extraneous occurrences in D′ is
strictly less than in D.

4 Repeating finitely many times such a substitution, we obtain the pure
derivation F as demanded.

René Gazzari, elbron@gmx.net Pure Proofs

Introduction
Theory of Occurrences

Formal Results

Restricted Occurrences
Substitution Theorem
Existence of Pure Proofs

Concluding Remarks

1 example: Let D be an arithmetical proof of a statement about
addition such that multiplication is not mentioned in any essential
assumption. If multiplication somewhere occurs in D, then we can
eliminate such occurrences.

2 identity of proofs: Eliminating non-relevant function symbols does
not change the normal form (modulo some terms), but a relevant
property of the derivation (pureness). Therefore, Pravitz normal form
does not seem to be fine enough for defining the identity of proofs.

René Gazzari, elbron@gmx.net Pure Proofs

R. Gazzari: The Existence of Pure Proofs

89



Introduction
Theory of Occurrences

Formal Results

Restricted Occurrences
Substitution Theorem
Existence of Pure Proofs

Last Slide

Thank You!

René Gazzari, elbron@gmx.net Pure Proofs

Introduction
Theory of Occurrences

Formal Results

Restricted Occurrences
Substitution Theorem
Existence of Pure Proofs

Literature

Andrew Arana, On Formally Measuring Extraneous Notions.
Philosophia Mathematica (III) 17 (2009).

Gerhard Gentzen, Investgations into Logical Deduction.
in: M. E. Szabo (Editor), The Collected Papers of Gerhard Gentzen.
North Holland Publishing Company, 1969.

René Gazzari, elbron@gmx.net Pure Proofs

R. Gazzari: The Existence of Pure Proofs

90



CERES: Automated Deduction in Proof Theory

Alexander Leitsch

Vienna University of Technology

proof theory and automated deduction

proof theory:

I analysis of proofs and provability

I sequent calculus, natural deduction

I cut-elimination, normalization

automated deduction:

I proof search

I resolution calculus, paramodulation, superposition

I refinements, redundancy and deletion

A. Leitsch: CERES: Automated Deduction in Proof Theory

91



proof theory and automated deduction

proof theory:

I analysis of proofs and provability

I sequent calculus, natural deduction

I cut-elimination, normalization

automated deduction:

I proof search

I resolution calculus, paramodulation, superposition

I refinements, redundancy and deletion

proof theory and automated deduction

does proof theory benefit from automated deduction?

yes.

I Automation support in formal proof verification.

I Cut-elimination by resolution

I theoretical results from automated deduction yield new
insights in cut-elimination.

A. Leitsch: CERES: Automated Deduction in Proof Theory

92



proof theory and automated deduction

does proof theory benefit from automated deduction?

yes.

I Automation support in formal proof verification.

I Cut-elimination by resolution

I theoretical results from automated deduction yield new
insights in cut-elimination.

proof theory and automated deduction

does proof theory benefit from automated deduction?

yes.

I Automation support in formal proof verification.

I Cut-elimination by resolution

I theoretical results from automated deduction yield new
insights in cut-elimination.

A. Leitsch: CERES: Automated Deduction in Proof Theory

93



Cut-elimination

I reductive methods: based on Gentzen’s proof. Stepwise (and
local) reduction of cuts. Local proof rewriting system.

I semantic methods: prove cut-free completeness.

I CERES: cut-elimination by resolution. Semi-semantic global
method, based on resolution refutations of unsatisfiable clause
sets. Works for LK, LJ, higher-order LK, finitely-valued LK,
hypersequent calculus for Gödel logic, LK proof schemata.

In this talk: LK and LJ.

Cut-elimination

I reductive methods: based on Gentzen’s proof. Stepwise (and
local) reduction of cuts. Local proof rewriting system.

I semantic methods: prove cut-free completeness.

I CERES: cut-elimination by resolution. Semi-semantic global
method, based on resolution refutations of unsatisfiable clause
sets. Works for LK, LJ, higher-order LK, finitely-valued LK,
hypersequent calculus for Gödel logic, LK proof schemata.

In this talk: LK and LJ.

A. Leitsch: CERES: Automated Deduction in Proof Theory

94



Cut-elimination

I reductive methods: based on Gentzen’s proof. Stepwise (and
local) reduction of cuts. Local proof rewriting system.

I semantic methods: prove cut-free completeness.

I CERES: cut-elimination by resolution. Semi-semantic global
method, based on resolution refutations of unsatisfiable clause
sets. Works for LK, LJ, higher-order LK, finitely-valued LK,
hypersequent calculus for Gödel logic, LK proof schemata.

In this talk: LK and LJ.

The Method CERES: cut-elimination by resolution

Example: ϕ =

ϕ1 ϕ2

(∀x)(P(x)→ Q(x)) ` (∃y)(P(a)→ Q(y))
cut

ϕ1 =

P(u) ` P(u) Q(u) ` Q(u)

P(u),P(u)→ Q(u) ` Q(u)
→: l

P(u)→ Q(u) ` P(u)→ Q(u)
→: r

P(u)→ Q(u) ` (∃y)(P(u)→ Q(y))
∃ : r

(∀x)(P(x)→ Q(x)) ` (∃y)(P(u)→ Q(y))
∀ : l

(∀x)(P(x)→ Q(x)) ` (∀x)(∃y)(P(x)→ Q(y))
∀ : r

S = {P(u) `} × {` Q(u)}.

A. Leitsch: CERES: Automated Deduction in Proof Theory

95



Example

ϕ =
ϕ1 ϕ2

(∀x)(P(x)→ Q(x)) ` (∃y)(P(a)→ Q(y))
cut

ϕ2 =

P(a) ` P(a) Q(v) ` Q(v)

P(a),P(a)→ Q(v) ` Q(v)
→: l

P(a)→ Q(v) ` P(a)→ Q(v)
→: r

P(a)→ Q(v) ` (∃y)(P(a)→ Q(y))
∃ : r

(∃y)(P(a)→ Q(y)) ` (∃y)(P(a)→ Q(y))
∃ : l

(∀x)(∃y)(P(x)→ Q(y)) ` (∃y)(P(a)→ Q(y))
∀ : l

S ′ = {` P(a)} ∪ {Q(v) `}.

cut-ancestors in axioms:

S1 = {P(u) `}, S2 = {` Q(u)}, S3 = {` P(a)}, S4 = {Q(v) `}.

S = S1 × S2 = {P(u) ` Q(u)}.

S ′ = S3 ∪ S4 = {` P(a); Q(v) `}.

characteristic clause set:

CL(ϕ) = S ∪ S ′ = {P(u) ` Q(u); ` P(a); Q(v) `}.

A. Leitsch: CERES: Automated Deduction in Proof Theory

96



Projection of ϕ to CL(ϕ)

I Skip inferences leading to cuts.

I Obtain cut-free proof of end-sequent + a clause in CL(ϕ).

proof ϕ of S

⇓
cut-free proof ϕ(C ) of S ◦ C .

Let ϕ be the proof of the sequent
S : (∀x)(P(x)→ Q(x)) ` (∃y)(P(a)→ Q(y)) shown above.

CL(ϕ) = {P(u) ` Q(u); ` P(a); Q(v) `}.
Skip inferences in ϕ1 leading to cuts:

P(u) ` P(u) Q(u) ` Q(u)

P(u),P(u)→ Q(u) ` Q(u)
→: l

P(u), (∀x)(P(x)→ Q(x)) ` Q(u)
∀ : l

ϕ(C1) =

P(u) ` P(u) Q(u) ` Q(u)

P(u),P(u)→ Q(u) ` Q(u)
→: l

P(u), (∀x)(P(x)→ Q(x)) ` Q(u)
∀ : l

P(u), (∀x)(P(x)→ Q(x)) ` (∃y)(P(a)→ Q(y)),Q(u)
w : r

A. Leitsch: CERES: Automated Deduction in Proof Theory

97



ϕ proof of
S : (∀x)(P(x)→ Q(x)) ` (∃y)(P(a)→ Q(y))

CL(ϕ) = {P(u) ` Q(u); ` P(a); Q(v) `}.

For C2 = ` P(a) we obtain the projection ϕ(C2):

P(a) ` P(a)

P(a) ` P(a),Q(v)
w : r

` P(a)→ Q(v),P(a)
→: r

` (∃y)(P(a)→ Q(y)),P(a)
∃ : l

(∀x)(P(x)→ Q(x)) ` (∃y)(P(a)→ Q(y)),P(a)
w : l

The Method CERES

given proof ϕ of S (S skolemized),

I extract characteristic clause set CL(ϕ),

I compute the projections of ϕ to clauses in CL(ϕ),

I construct a resolution refutation γ of CL(ϕ),

I insert the projections of ϕ into γ ⇒ CERES normal form of ϕ.

A. Leitsch: CERES: Automated Deduction in Proof Theory

98



Example

ϕ proof of
S : (∀x)(P(x)→ Q(x)) ` (∃y)(P(a)→ Q(y))

CL(ϕ) = {C1 : P(u) ` Q(u), C2 : ` P(a), C3 : Q(u) `}.
a resolution refutation δ of CL(ϕ):

` P(a) P(u) ` Q(u)

` Q(a)
R

Q(v) `
` R

ground projection γ of δ - this is an LK-derivation!:

` P(a) P(a) ` Q(a)

` Q(a)
R

Q(a) `
` R

via σ = {u ← a, v ← a}.

Example

end sequent S of ϕ, S = B ` C .
γ =

` P(a) P(a) ` Q(a)

` Q(a)
R

Q(a) `
` R

CERES-normal form ϕ(γ) =

(χ2)
B ` C ,P(a)

(χ1)
P(a),B ` C ,Q(a)

B,B ` C ,C ,Q(a)
cut

(χ3)
Q(a),B ` C

B,B,B ` C ,C ,C
cut

S
contractions

atomic cut normal form (ACNF)

A. Leitsch: CERES: Automated Deduction in Proof Theory

99



Characteristic Clause Set:

Let ϕ be an LK-derivation of S and let Ω be the set of all
occurrences of cut formulas in ϕ. We define the set of clauses
CL(ϕ) inductively:

Let ν be the occurrence of an initial sequent in ϕ and sqν the
corresponding sequent. Then

S/ν = {sq(ν,Ω)}

where sq(ν,Ω) is the subsequent of sqν containing the ancestors of
Ω.

Assume:
S/ν already constructed for depth(ν) ≤ k.
depth(ν) = k + 1:

I unary rule: ν is the consequent of µ: S/ν = S/µ.

I binary rule: ν is the consequent of µ1 and µ2:

I The auxiliary formulas of ν are ancestors of Ω, i.e. the
formulas occur in sq(µ1,Ω), sq(µ2,Ω):

S/ν = S/µ1 ∪ S/µ2.

I The auxiliary formulas of ν are not ancestors of Ω:

S/ν = S/µ1 × S/µ2.

CL(ϕ) = S/ν0 where ν0 is the occurrence of the end-sequent.

A. Leitsch: CERES: Automated Deduction in Proof Theory

100



unsatisfiability of CL(ϕ)

If ϕ is a cut-free proof then there are no occurrences of cut
formulas in ϕ and CL(ϕ) = {`}.

Proposition:
Let ϕ be an LK-derivation. Then CL(ϕ) is unsatisfiable.

structure of proof:

I construct a proof ϕ∗ of ` from CL(ϕ) (as a set of axioms)
using the cut-formulas of ϕ.

I By soundness of LK CL(ϕ) is unsatisfiable.

projection lemma

Lemma:
Let ϕ be a proof of a sequent S : Γ ` ∆.
Let C : P̄ ` Q̄ be a clause in CL(ϕ). Then there exists a deduction

ϕ(C ) of P̄, Γ ` ∆, Q̄

s.t.
ϕ(C ) is cut-free and l(ϕ(C )) ≤ l(ϕ).

Projection of ϕ to C : construct ϕ(C ).

A. Leitsch: CERES: Automated Deduction in Proof Theory

101



the remaining steps:

I Construct an R-refutation γ of CL(ϕ). γ exists by the
completeness of resolution.

I insert the projections of ϕ into γ.

I add some contractions and obtain a proof with (only) atomic
cuts (CERES normal form).

Generality of CERES

CERES does not only work for LK.

I any sound sequent calculus for classical logic (with some form
of cut rule) does the job.

I unary rules do not “count”.

I necessary: auxiliary formulas, principal formulas, ancestor
relation

A. Leitsch: CERES: Automated Deduction in Proof Theory

102



Why CERES?

I Efficient method for (semi-) automated proof analysis due to
theorem provers (they refute the characteristic clause set).
Analysis of Fürstenberg’s (topology-based) proof of the
infinitude of primes by CERES (BHLRS 2008).

I Analysis of cut-elimination methods. Behavior of reductive
cut-elimination “redundant” w.r.t. characteristic clause sets
(subsumption property). CERES is in some sense more general
and more efficient than reductive methods (asymptotic
complexity analysis) (BL 2006, CLRW 2017).

I Identification of fast cut-elimination classes (i.e. classes where
cut-elimination is of elementary complexity) (BL 2010).

Why CERES?

I Efficient method for (semi-) automated proof analysis due to
theorem provers (they refute the characteristic clause set).
Analysis of Fürstenberg’s (topology-based) proof of the
infinitude of primes by CERES (BHLRS 2008).

I Analysis of cut-elimination methods. Behavior of reductive
cut-elimination “redundant” w.r.t. characteristic clause sets
(subsumption property). CERES is in some sense more general
and more efficient than reductive methods (asymptotic
complexity analysis) (BL 2006, CLRW 2017).

I Identification of fast cut-elimination classes (i.e. classes where
cut-elimination is of elementary complexity) (BL 2010).

A. Leitsch: CERES: Automated Deduction in Proof Theory

103



Why CERES?

I Efficient method for (semi-) automated proof analysis due to
theorem provers (they refute the characteristic clause set).
Analysis of Fürstenberg’s (topology-based) proof of the
infinitude of primes by CERES (BHLRS 2008).

I Analysis of cut-elimination methods. Behavior of reductive
cut-elimination “redundant” w.r.t. characteristic clause sets
(subsumption property). CERES is in some sense more general
and more efficient than reductive methods (asymptotic
complexity analysis) (BL 2006, CLRW 2017).

I Identification of fast cut-elimination classes (i.e. classes where
cut-elimination is of elementary complexity) (BL 2010).

subsumption: a detour to automated deduction

C subsumes C ′ if C ′ contains an instance of C .

I Let C : Γ ` ∆ and C ′ : Γ′ ` ∆′ be clauses (atomic sequents).

I We define C ⊆ C ′ if Γ ⊆ Γ′ and ∆ ⊆ ∆′ (⊆ denotes the
multiset inclusion).

I C subsumes C ′ (C ≤ss C
′) via ϑ if there exists a substitution

ϑ such that Cϑ ⊆ C ′.

Examples:

I P(x) ` Q(x) ≤ss P(a) ` Q(a),R(a) via ϑ = {x ← a}.
I P(x) ` P(f (x)) 6≤ss P(a) ` P(f (f (a)).

I ` P(x),P(y) 6≤ss ` P(a) (holds for sets, we have multisets).

A. Leitsch: CERES: Automated Deduction in Proof Theory

104



resolution and subsumption

The subsumption principle:

I resolvents of subsumed clauses are redundant.

I elimination of subsumed clauses preserves completeness of
resolution.

The subsumption theorem: Let C1,C2,D1,D2 be clauses s.t.

I C1 ≤ss D1,

I C2 ≤ss D2.

Let D be a resolvent of D1 and D2. Then either

I C1 ≤ss D or

I C2 ≤ss D or

I there exists a resolvent C of C1,C2 such that C ≤ss D.

resolution and subsumption

extension of subsumption to sets of clauses:

Let C,D be sets of clauses. C ≤ss D if for every clause D ∈ D
there exists a clause C ∈ C s.t. C ≤ss D.

The extended subsumption theorem:

I if C ≤ss D and D is derivable by resolution from D then there
exists a resolution derivation of a clause C from C s.t.
C ≤ss D.

This result yields the completeness of resolution + subsumption: `
can only be subsumed by `.

A. Leitsch: CERES: Automated Deduction in Proof Theory

105



resolution and subsumption

Example:

C1 : P(x) ` Q(x) ≤ss D1 : P(f (z)) ` Q(f (z)),R(z),

C2 : Q(f (y)) ` R(y) ≤ss D2 : Q(f (a)) ` R(a).

R(D1,D2) = P(f (a)) ` R(a),R(a),

R(C1,C2) = P(f (y)) ` R(y).

R(C1,C2) ≤ss R(D1,D2) via {y ← a}.

the subsumption principle for proofs

Let γ and δ be resolution deductions. We define γ ≤ss δ by
induction on the number of nodes in δ:

If δ consists of a single node labelled with a clause D then
γ ≤ss δ if γ consists of a single node labelled with C and
C ≤ss D.

Let δ be
(δ1)
D1

(δ2)
D2

D
R

and γ1 be a deduction of C1 with γ1 ≤ss δ1, γ2 be a
deduction of C2 with γ2 ≤ss δ2. Then we distinguish the
following cases:

C1 ≤ss D: then γ1 ≤ss δ.
C2 ≤ss D: then γ2 ≤ss δ.

A. Leitsch: CERES: Automated Deduction in Proof Theory

106



the subsumption principle for proofs

Let δ be
(δ1)
D1

(δ2)
D2

D
R

and γ1 be a deduction of C1 with γ1 ≤ss δ1, γ2 be a deduction of
C2 with γ2 ≤ss δ2. C1 6≤ss D,C2 6≤ss D:

Let C be resolvent of C1 and C2 s.t. C ≤ss D and γ =

(γ1)
C1

(γ2)
C2

C
R

Then γ ≤ss δ.

the subsumption principle for proofs

I C,D: sets of clauses and C ≤ss D.

I Let δ be a resolution deduction of a clause D from D.

I Then there exists a clause C and a resolution deduction γ of
C from C s.t. γ ≤ss δ.

A. Leitsch: CERES: Automated Deduction in Proof Theory

107



the subsumption principle for proofs

Example:

C = {` P(x); P(y) ` Q(y)},
D = {` P(f (z)),R(z); P(y),R(y) ` Q(y)}.

γ ≤ss δ for δ =

` P(f (x)),R(x)

` P(f (z)),R(z) P(y),R(y) ` Q(y)

P(z) ` P(f (z)),Q(z)
y ← z

` R(x),P(f (f (x))),Q(f (x))
z ← f (x)

and γ =
` P(x) P(y) ` Q(y)

` Q(y)
x ← y

subsumption and reductive cut-elimination

Let R be the proof rewrite system of the Gentzen rules - without
the axiom rule and applied only to non-atomic cuts.

I ϕ >R ϕ′ if ϕ rewrites to ϕ′ via a rule in R.

I normal forms under R: atomic cut normal forms (ACNFs).

I if ϕ >∗R ψ and ψ is irreducible under R then ψ is an ACNF of
ϕ.

Theorem: Let ϕ be an LK-proof of a skolemized end-sequent S
and ϕ >R ϕ′. Then CL(ϕ) ≤ss CL(ϕ′).

Corollary 1: If ψ is a normal form of ϕ under R then
CL(ϕ) ≤ss CL(ψ).

A. Leitsch: CERES: Automated Deduction in Proof Theory

108



subsumption and reductive cut-elimination

Theorem: Let ϕ be an LK-proof of a skolemized end-sequent S
and ϕ >R ϕ′. Then CL(ϕ) ≤ss CL(ϕ′).

Corollary 2:

I If ψ is a normal form of ϕ under R and δ is a resolution
refutation of CL(ψ)
then there exists a resolution refutation γ of CL(ϕ) s.t.
γ ≤ss δ.

Note: If γ ≤ss δ then ‖γ‖ ≤ ‖δ‖.

CERES versus R

Complexity Results:

I corollary 2 can be used to show that a non-elementary
speed-up of CERES via R is impossible!

I there are sequences of proofs ϕn where cut-elimination via
CERES is elementary but the computation of Gentzen normal
forms based on R has no elementary bound in ‖ϕn‖.

I there are sequences of proofs ϕn where cut-elimination via
CERES is elementary but the computation of Tait normal
forms based on R has no elementary bound in ‖ϕn‖.

A. Leitsch: CERES: Automated Deduction in Proof Theory

109



subsumption and reductive cut-elimination

work in progress:

I R0 : full set of Gentzen rules for cut-elimination.

I CLs(ϕ) : structural characteristic clause set of ϕ.

I If ϕ >R0 ϕ
′ then there exists a resolution derivation of a set

of clauses D from CLs(ϕ) s.t. D ≤ss CLs(ϕ′).

I Let Φ be a cut-elimination sequence on ϕ based on R0; then
there exists a resolution refutation γ(Φ) of CLs(ϕ) such that
‖γ(Φ)‖ is polynomial in ‖Φ‖.

I Yields a polynomial simulation of cut-elimination via R0 by
CERES.

CERES for LJ?

I straightforward applications fail:

I for LJ-proofs ϕ the CERES-normal forms are in LK but
typically not in LJ

possible remedy: eliminate the atomic cuts? Also this may fail!

I works only for left-sided end-sequents and negative resolution.

A. Leitsch: CERES: Automated Deduction in Proof Theory

110



An Example:

P ` P
P ` P ∨ ¬P ∨r

P ` P
P,¬P ` ¬l
¬P ` ¬P ¬r
¬P ` P ∨ ¬P ∨r

P ∨ ¬P ` P ∨ ¬P ∨l

P ` P
¬P,P ` ¬l
¬P ` ¬P ¬r
¬P,¬¬P ` ¬l
¬P,¬¬P ` P

wr

¬P ` ¬¬P → P
→r

P ` P
P,¬¬P ` P

wl

P ` ¬¬P → P
→r

P ∨ ¬P ` ¬¬P → P
∨l

P ∨ ¬P ` ¬¬P → P
cut

An Example:

The characteristic clause set of ϕ is:
CL(ϕ) = {` P ; P ` ; P ` P}. Which admits the (only
non-redundant) resolution refutation:

` P P `
` R

A. Leitsch: CERES: Automated Deduction in Proof Theory

111



An Example:

The projections are the following:

ϕ[` P]

P ` P
` P,¬P ¬r
¬¬P ` P

¬l
¬¬P ` P,P

wr

` P,¬¬P → P
→r

and
ϕ[P `]

P ` P
P,¬¬P ` P

wl

P ` ¬¬P → P
→r

Note that ϕ[` P] is classical.

An Example:

The final ACNF is:

P ` P
` P,¬P ¬r
¬¬P ` P

¬l
¬¬P ` P,P

wr

` P,¬¬P → P
→r

P ` P
P,¬¬P ` P

wl

P ` ¬¬P → P
→r

` ¬¬P → P,¬¬P → P
cut

` ¬¬P → P
cr

P ∨ ¬P ` ¬¬P → P
wl

not every resolution refutation is useful! Need resolution with
tautology.

A. Leitsch: CERES: Automated Deduction in Proof Theory

112



Solution of the problem

I don’t separate resolution refutations from projections!

I resolve the projections directly.

I need a resolution principle for cut-free LK-proofs.

Proof resolution

I Let ϕ1 be a cut-free proof of Γ ` ∆,A1, . . . ,An,

I ϕ2 be a cut-free proof of B1, . . . ,Bm,Π ` Λ,

I and σ be a most general unifier of
A : {A1, . . . ,An,B1, . . . ,Bm} where Aσ = {A}.

I Then a ground resolvent of ϕ1σ and ϕ2σ is a resolvent of ϕ1

and ϕ2.

Note that

I ϕ1σ is a proof of Γσ ` ∆σ,A, . . . ,A,

I ϕ2σ is a proof of A, . . . ,A,Πσ ` Λσ.

I ground resolution corresponds to propositional resolution in
clause logic!

Apply this resolution principle to the proof projections in
CERES!

A. Leitsch: CERES: Automated Deduction in Proof Theory

113



Proof resolution

Let

I ϕ be a cut-free proof of Γ ` ∆,A, . . . ,A,

I ψ be a cut-free proof of A, . . . ,A,Π ` Λ.

I A ground resolvent of ϕ and ψ is any cut-free proof of

Γ,Π ` ∆,Λ

obtained by (kind of) reductive cut-elimination on A.

CERES-i

intuitionistic CERES CERES-i:

I given an LJ-proof ϕ of a skolemized end-sequent,

I compute the set P(ϕ) of all proof projections of ϕ,

I apply proof resolution to P(ϕ).

CERES-i is complete, i.e. there is always a resolution derivation of
a cut-free intuitionistic proof from P(ϕ).

I completeness proof: uses a subsumption principle for cut-free
proofs and a subsumption theorem for projections under
reductive cut-elimination.

I proof is analogous to the completeness proof of resolution!

A. Leitsch: CERES: Automated Deduction in Proof Theory

114



proof subsumption

complex definition! Here the ∨ : r -case:

I ϕ a proof of Γ ` ∆ and ϕ ≤ss ψ
′, i.e. (ϕ,ψ′, ϑ) is a proof

subsumption.

I ψ′ is a proof of Π1,Π2 ` Λ1,Λ2 and (Γ ` ∆)ϑ = Π1 ` Λ1.

case 1: ψ =
(ψ′)

Π1,Π2 ` Λ1,Λ
′
2,A

Π1,Π2 ` Λ1,Λ
′
2,A ∨ B

∨ : r1

Then (ϕ,ψ, ϑ) is a proof subsumption.

proof subsumption

I ϕ a proof of Γ ` ∆ and ϕ ≤ss ψ
′, i.e. (ϕ,ψ′, ϑ) is a proof

subsumption.

I ψ′ is a proof of Π1,Π2 ` Λ1,Λ2 and (Γ ` ∆)ϑ = Π1 ` Λ1.

case 2: ψ =
(ψ′)

Π1,Π2 ` Λ′1,A,Λ2

Π1,Π2 ` Λ′1,A ∨ B,Λ2
∨ : r1

Let ϕ∗ = (for A0ϑ = A,B0ϑ = B)

(ϕ)
Γ ` ∆′,A0

Γ ` ∆′,A0 ∨ B0
∨ : r1

Then (ϕ∗, ψ, ϑ) is a proof subsumption.

A. Leitsch: CERES: Automated Deduction in Proof Theory

115



proof subsumption: an example

ϕ =
P(x) ` P(x) Q(x) ` Q(x)

P(x),Q(x) ` P(x) ∧ Q(x)
∧ : r

P(x),Q(x) ` ∃y(P(y) ∧ Q(y))
∃ : r

ψ =

R(c) ` R(c)

P(a) ` P(a)

R(b),P(a) ` P(a)
w : l

R(c),R(c)→ R(b),P(a) ` P(a)
→ : l

Q(a) ` Q(a)

R(c),R(c)→ R(b),P(a),Q(a) ` P(a) ∧ Q(a))
∧ : r

R(c),R(c)→ R(b),P(a),Q(a) ` ∃y(P(y) ∧ Q(y))
∃ : r

(ϕ,ψ, ϑ) is a proof subsumption for ϑ = {x ← a}.

CERES-i: the completeness proof

the crucial results are:

I Let (ϕ,ψ, ϑ) be a proof subsumption and ψ be intuitionistic
then ϕ is intuitionistic as well.

I The main subsumption lemma: Let ϕ >R ϕ′ and ψ′ be a
projection for ϕ′. Then there exists a projection ψ for ϕ and a
substitution ϑ s.t. (ψ,ψ′, ϑ) is a proof subsumption.

I Lifting Theorem for Proofs: Let (ϕ,ϕ′, ϑ1) and (ψ,ψ′, ϑ2) be
proof subsumptions for cut-free proofs which are
variable-disjoint. Let χ′ be a ground proof resolution of ϕ′

and ψ′. Then either

1. (ϕ, χ′, ϑ1) is a proof subsumption or
2. (ψ, χ′, ϑ2) is a proof subsumption or
3. there exists a resolvent χ of ϕ and ψ and a substitution σ s.t.

(χ, χ′, σ) is a proof subsumption.

A. Leitsch: CERES: Automated Deduction in Proof Theory

116



CERES-i: the completeness proof

the crucial results are:

I Let (ϕ,ψ, ϑ) be a proof subsumption and ψ be intuitionistic
then ϕ is intuitionistic as well.

I The main subsumption lemma: Let ϕ >R ϕ′ and ψ′ be a
projection for ϕ′. Then there exists a projection ψ for ϕ and a
substitution ϑ s.t. (ψ,ψ′, ϑ) is a proof subsumption.

I Lifting Theorem for Proofs: Let (ϕ,ϕ′, ϑ1) and (ψ,ψ′, ϑ2) be
proof subsumptions for cut-free proofs which are
variable-disjoint. Let χ′ be a ground proof resolution of ϕ′

and ψ′. Then either

1. (ϕ, χ′, ϑ1) is a proof subsumption or
2. (ψ, χ′, ϑ2) is a proof subsumption or
3. there exists a resolvent χ of ϕ and ψ and a substitution σ s.t.

(χ, χ′, σ) is a proof subsumption.

CERES-i: the completeness proof

the crucial results are:

I Let (ϕ,ψ, ϑ) be a proof subsumption and ψ be intuitionistic
then ϕ is intuitionistic as well.

I The main subsumption lemma: Let ϕ >R ϕ′ and ψ′ be a
projection for ϕ′. Then there exists a projection ψ for ϕ and a
substitution ϑ s.t. (ψ,ψ′, ϑ) is a proof subsumption.

I Lifting Theorem for Proofs: Let (ϕ,ϕ′, ϑ1) and (ψ,ψ′, ϑ2) be
proof subsumptions for cut-free proofs which are
variable-disjoint. Let χ′ be a ground proof resolution of ϕ′

and ψ′. Then either

1. (ϕ, χ′, ϑ1) is a proof subsumption or
2. (ψ, χ′, ϑ2) is a proof subsumption or
3. there exists a resolvent χ of ϕ and ψ and a substitution σ s.t.

(χ, χ′, σ) is a proof subsumption.

A. Leitsch: CERES: Automated Deduction in Proof Theory

117



CERES-i: the completeness proof

I completeness for ACNFtop-forms: Let ψ be an ACNFtop of
an LJ-proof ϕ of Γ ` ∆. Then resolving the projections of ϕ
yields a cut-free LJ-proof of Γ ` ∆.

I completeness of CERES-i: Let ϕ be an LJ-proof of a
skolemized end-sequent S . Then the application of CERES-i
to ϕ yields a cut-free LJ-proof χ of S . proof by using above
completeness result + main subsumption lemma + lifting
theorem for proofs.

CERES-i: the completeness proof

I completeness for ACNFtop-forms: Let ψ be an ACNFtop of
an LJ-proof ϕ of Γ ` ∆. Then resolving the projections of ϕ
yields a cut-free LJ-proof of Γ ` ∆.

I completeness of CERES-i: Let ϕ be an LJ-proof of a
skolemized end-sequent S . Then the application of CERES-i
to ϕ yields a cut-free LJ-proof χ of S . proof by using above
completeness result + main subsumption lemma + lifting
theorem for proofs.

A. Leitsch: CERES: Automated Deduction in Proof Theory

118



CERES-i: an example

P ` P1

P ` P1 ∨ ¬P2
∨r

P2 ` P

P2,¬P `
¬l

¬P ` ¬P2
¬r

¬P ` P1 ∨ ¬P2
∨r

P ∨ ¬P ` P1 ∨ ¬P2
∨l

P ` P2

¬P2,P `
¬l

¬P2 ` ¬P
¬r

¬P2,¬¬P `
¬l

¬P2,¬¬P ` P
wr

¬P2 ` ¬¬P → P
→r

P1 ` P

P1,¬¬P ` P
wl

P1 ` ¬¬P → P
→r

P1 ∨ ¬P2 ` ¬¬P → P
∨l

P ∨ ¬P ` ¬¬P → P
cut

CERES-i: an example

The projections are:

P ` P2

` P2,¬P
¬r

¬¬P ` P2
¬l

¬¬P ` P2,P
wr

` P2,¬¬P → P
→r

and

P1 ` P

P1,¬¬P ` P
wl

P1 ` ¬¬P → P
→r

and

P ` P1
P2 ` P
¬P,P2 `

¬l

P2,P ∨ ¬P ` P1
∨l

A. Leitsch: CERES: Automated Deduction in Proof Theory

119



CERES-i: an example

resolve

P ` P1
P2 ` P
¬P,P2 `

¬l

P2,P ∨ ¬P ` P1
∨l

and

P1 ` P
P1,¬¬P ` P

wl

P1 ` ¬¬P → P
→r

and get

P ` P
P2 ` P
¬P,P2 `

¬l

P2,P ∨ ¬P ` P
∨l

¬¬P,P2,P ∨ ¬P ` P
wl

P2,P ∨ ¬P ` ¬¬P → P
→r

CERES-i: an example

next resolve

P ` P2

` P2,¬P
¬r

¬¬P ` P2
¬l

¬¬P ` P2,P
wr

` P2,¬¬P → P
→r

and

P ` P

P2 ` P

¬P,P2 `
¬l

P2,P ∨ ¬P ` P
∨l

¬¬P,P2,P ∨ ¬P ` P
wl

P2,P ∨ ¬P ` ¬¬P → P
→r

and get

P ` P

P ` P
¬P,P ` ¬l
¬P ` ¬P ¬r
¬¬P,¬P ` ¬l
¬¬P,¬P ` P

wr

P ∨ ¬P,¬¬P ` P
∨l

P ∨ ¬P ` ¬¬P → P
→r

A. Leitsch: CERES: Automated Deduction in Proof Theory

120



Complexity: CERES-i versus reductive cut-elimination

I CERESIL outperforms Gentzen’s cut-elimination method:
there exists an infinite sequence of LJ-proofs ϕn s.t.
Gentzen’s method yields a nonelementary increase in proof
size; CERESIL is polynomial on ϕn.

I Consider the following cut-elimination method R: (1) use the
Gentzen method without the axiom rule and reduce to an
atomic cut normal form and (2) eliminate the atomic cuts
(using also the axiom rule). Result: a nonelementary speed-up
of CERESIL via R is impossible (i.e. R cannot be much faster
than CERESIL).

CERES-i: open problems

I is there a resolution refinement ρ s.t., given an LJ-proof ϕ
any refutation via ρ can be used? i.e. any CERES normal form
of ϕ based on ρ can be transformed into a cut-free LJ-proofs.
conjecture: refinement based on indexing via atom
occurrences in cuts.

I proof resolution is search intensive - find refinements to make
the method useful in practice.

A. Leitsch: CERES: Automated Deduction in Proof Theory

121



subsumption principle and proof theory

I complexity analysis of cut-elimination methods.

I prove completeness of cut-elimination methods.

I subsumption plays a major role in schematic CERES.

CERES: future research

I investigate other normalization methods using CERES.

I semi-automated analysis of (inductive proofs) via schematic
CERES.

I proof mining: analysis of real mathematical proofs by CERES.

A. Leitsch: CERES: Automated Deduction in Proof Theory

122



References

I M. Baaz, A.L.: Cut-elimination and redundancy-elimination
by resolution. Journal of Symbolic Computation 29, 149-176
(2000)

I M. Baaz, A.L.: Towards a clausal analysis of cut-elimination.
Journal of Symbolic Computation 41, 381-410 (2006)

I M. Baaz, S. Hetzl, A.L., C. Richter, H. Spohr: CERES: an
analysis of Fürstenberg’s proof of the infinity of primes.
Theoretical Computer Science 403 (2-3), 160-175 (2008)

I M. Baaz, A.L.: Cut-elimination: syntax and semantics. Studia
Logica 102(6): 1217-1244 (2014)

I D. Cerna, A.L., G. Reis, S. Wolfsteiner: CERES in
intuitionistic logic. Annals of Pure and Applied Logic 168,
pp. 1783–1836 (2017)

Thank You!

A. Leitsch: CERES: Automated Deduction in Proof Theory

123





INTRODUCTION REMARKS ON THE
EQUIVALENCE PROOFS

NATURAL DEDUCTION
AND ITS PROBLEMS

SEQUENT CALCULUS TWO INTERPRETATIONS
OF CUT

Remarks on the Sequent Calculus

Enrico Moriconi

Department of Civilisations and Forms of Knowledge
University of Pisa

enrico.moriconi@unipi.it

Universal Logic 2018
Vichy, 16-26/6/2018

INTRODUCTION REMARKS ON THE
EQUIVALENCE PROOFS

NATURAL DEDUCTION
AND ITS PROBLEMS

SEQUENT CALCULUS TWO INTERPRETATIONS
OF CUT

OUTLINE

1 INTRODUCTION

2 REMARKS ON THE EQUIVALENCE PROOFS

3 NATURAL DEDUCTION AND ITS PROBLEMS

4 SEQUENT CALCULUS

5 TWO INTERPRETATIONS OF CUT

E. Moriconi: Remarks on the Sequent Calculus

125



INTRODUCTION REMARKS ON THE
EQUIVALENCE PROOFS

NATURAL DEDUCTION
AND ITS PROBLEMS

SEQUENT CALCULUS TWO INTERPRETATIONS
OF CUT

INTRODUCTION

In his thesis, after the proof of the Hauptsatz, Gentzen provided
in the last long section V the proof of the equivalence between
three types of formalization of the logical inference in both the
intuitionistic and classical version: the Hilbert-Ackermann
system LHJ/K, the Natural Deduction Calculus NJ/K, and the
Sequent Calculus LJ/K.
Admittedly, this section of the thesis is normally rated “less
important” than the other sections, but it is nonetheless
interesting since it allows us to retrace some steps of the
reasoning which brought to the invention of the Sequent
Calculus, and more generally to highlight some structural
features of Gentzen’s work.

INTRODUCTION REMARKS ON THE
EQUIVALENCE PROOFS

NATURAL DEDUCTION
AND ITS PROBLEMS

SEQUENT CALCULUS TWO INTERPRETATIONS
OF CUT

The equivalence proof Gentzen gave in the published version of
the thesis proceeds through the following sequence of steps:

LHJ /K; NJ /K; LJ /K; LHJ /K

E. Moriconi: Remarks on the Sequent Calculus

126



INTRODUCTION REMARKS ON THE
EQUIVALENCE PROOFS

NATURAL DEDUCTION
AND ITS PROBLEMS

SEQUENT CALCULUS TWO INTERPRETATIONS
OF CUT

The step LJ ; LHJ has three main ideas:
1 Introduction of new Groundsequents (Gsq)
2 Introduction of the formula A&¬A in the succedent of any

sequent with empty succedent
3 Introduction of two new inference figures.

INTRODUCTION REMARKS ON THE
EQUIVALENCE PROOFS

NATURAL DEDUCTION
AND ITS PROBLEMS

SEQUENT CALCULUS TWO INTERPRETATIONS
OF CUT

The first step produces a “simplification” of LJ by
introducing as new Gsqs some axioms of LHJ , whose
equivalence with the replaced Inference figures is easily
proved by means of the Cut rule.
The replaced inferences schemas are

&− L,∨ − R, ∀ − L,∃ − R,¬ − L,⊃ −L.
The new Gsqs are:
Gsq1-2 A1&A2 → Ai Gsq3-4 Ai → A1 ∨ A2
Gsq5 ∀xF (x)→ F (a) Gsq6 F (a)→ ∃xF (x)
Gsq7 ¬A,A→ Gsq8 A ⊃ B,A→ B.

E. Moriconi: Remarks on the Sequent Calculus

127



INTRODUCTION REMARKS ON THE
EQUIVALENCE PROOFS

NATURAL DEDUCTION
AND ITS PROBLEMS

SEQUENT CALCULUS TWO INTERPRETATIONS
OF CUT

To show how the replacement works we give just an example,
concerning ⊃ −L:

Γ→ A B,∆→ Λ

A ⊃ B, Γ, δ → Λ

⇓

Γ→ A

Gs8
A ⊃ B,A→ B

ExchA,A ⊃ B → B
Cut

Γ,A ⊃ B → B B,∆→ Λ
Cut

Γ,A ⊃ B,∆→ Λ
ExchA ⊃ B, Γ,∆→ Λ

INTRODUCTION REMARKS ON THE
EQUIVALENCE PROOFS

NATURAL DEDUCTION
AND ITS PROBLEMS

SEQUENT CALCULUS TWO INTERPRETATIONS
OF CUT

The second step is determined by the necessity that in any
sequent the succedent is not empty. Otherwise, how could we
translate a sequent in an implication of LHJ ? Thus, we write
the formula A&¬A at the right of→ in any sequent with an
empty succedent.

E. Moriconi: Remarks on the Sequent Calculus

128



INTRODUCTION REMARKS ON THE
EQUIVALENCE PROOFS

NATURAL DEDUCTION
AND ITS PROBLEMS

SEQUENT CALCULUS TWO INTERPRETATIONS
OF CUT

The third step is the more intricate one, even though the idea is
simple. If we consider the axioms of LHJ , it is immediate to
acknowledge the close link with the inference figures of LJ .
For instance, the rule (Ctr-L)

A,A, Γ→ B
A, Γ→ B

corresponds obviously to the axiom schema 2.13 of LHJ

(A ⊃ (A ⊃ B)) ⊃ (A ⊃ B)

INTRODUCTION REMARKS ON THE
EQUIVALENCE PROOFS

NATURAL DEDUCTION
AND ITS PROBLEMS

SEQUENT CALCULUS TWO INTERPRETATIONS
OF CUT

However, the (possibly) occurring formulas in Γ are not involved
in the accomplishment of the rule, constituting, so to speak, a
disturbing element for the searched translation. To overcome
this obstacle, Gentzen introduced two other inference rules:

Γ,A→ B
Inf 10

Γ→ A ⊃ B
and Γ→ A ⊃ B Inf 11

Γ,A→ B

It is immediate to see that these rules allow to move in the
succedent all the formulas not active in the rule which is to be
applied; after that, we can apply the rule, and at last all
formulas previously moved to the right can be carried back in
the antecedent.

E. Moriconi: Remarks on the Sequent Calculus

129



INTRODUCTION REMARKS ON THE
EQUIVALENCE PROOFS

NATURAL DEDUCTION
AND ITS PROBLEMS

SEQUENT CALCULUS TWO INTERPRETATIONS
OF CUT

Now, any sequent A1, . . . ,An → B is substituted by the formula
(A1& . . .&An) ⊃ B: it is immediate to see that in this way all the
Gsqs become axioms of LHJ . And the proof is completed.

INTRODUCTION REMARKS ON THE
EQUIVALENCE PROOFS

NATURAL DEDUCTION
AND ITS PROBLEMS

SEQUENT CALCULUS TWO INTERPRETATIONS
OF CUT

Now let us consider the translation LK; LHK, which is the
only problematic case one encounters in extending the
previous equivalence result to the classical case. Gentzen
introduces an auxiliary calculus LK? such that:

1 Ctr-R and Exch-R are not allowed.
2 In all other schemas no substitution may be performed for

Θ and Λ in the succedent of the inference schema; these
places thus remain empty.

3 To the inference figures are then added the two following
ones concerning negation:

Γ→ A,Θ
Inf 1

Γ,¬A→ Θ

Γ,¬A→ Θ
Inf 2

Γ→ A,Θ
It is to be noted that in these cases Θ need not be empty.

E. Moriconi: Remarks on the Sequent Calculus

130



INTRODUCTION REMARKS ON THE
EQUIVALENCE PROOFS

NATURAL DEDUCTION
AND ITS PROBLEMS

SEQUENT CALCULUS TWO INTERPRETATIONS
OF CUT

All the inference figures undergo the following transformation:
1 By applying Inf 1 to the superior sequent(s) all the formulas

occurring in Θ or Λ are negated and moved in the left of
the antecedent, so that we isolate the active formula on the
right-hand side.

2 Afterward, we apply the operational rule.
3 Lastly, thanks to Inf 2, the formulas occurring in Θ or Λ are

carried back in the succedent.

INTRODUCTION REMARKS ON THE
EQUIVALENCE PROOFS

NATURAL DEDUCTION
AND ITS PROBLEMS

SEQUENT CALCULUS TWO INTERPRETATIONS
OF CUT

To show the way in which any LK-derivation is transformed in
an LK?-derivation we consider two cases: ∨ − R and ⊃ −L. In
the following sometimes we denote Θ¬ the set {¬D1, . . . ,¬Dn},
where Θ is {D1, . . . ,Dn}:

Γ→ Θ,A ∨ − R
Γ→ Θ,A ∨ B

⇓
Γ→ Θ,A

Inf 1
Γ,¬Dn → ¬D1, . . . ,¬Dn−1,A

... Inf 1
Γ,¬D1, . . . ,¬Dn → A ∨ − R

Γ,¬D1, . . . ,¬Dn → A ∨ B
Inf 2

Γ,¬D1, . . . ,¬Dn−1 → Dn,A ∨ B
... Inf 2

Γ→ Θ,A ∨ B

E. Moriconi: Remarks on the Sequent Calculus

131



INTRODUCTION REMARKS ON THE
EQUIVALENCE PROOFS

NATURAL DEDUCTION
AND ITS PROBLEMS

SEQUENT CALCULUS TWO INTERPRETATIONS
OF CUT

Now ⊃ −L:

Γ→ Θ,A B,∆→ Λ ⊃ −LA ⊃ B, Γ,∆→ Θ,Λ

⇓

Γ→ Θ,A
... Inf 1

Θ¬, Γ→ A

B,∆→ Λ

... Inf 1B,Λ¬,∆→ ⊃ −LA ⊃ B,Θ¬, Γ,Λ¬,∆→
... Inf 2A ⊃ B, Γ,∆→ Θ,Λ

INTRODUCTION REMARKS ON THE
EQUIVALENCE PROOFS

NATURAL DEDUCTION
AND ITS PROBLEMS

SEQUENT CALCULUS TWO INTERPRETATIONS
OF CUT

The next step consists in transforming any LK?-derivation in an
LJ + (→ A ∨ ¬A)-derivation by translating any sequent

A1, . . . ,Am → B1, . . . ,Bn

into

A1, . . . ,Am → B1 ∨ . . . ∨ Bn

If the succedent was empty, it remains empty.
What we have got is that, except for application of Inf 1 and Inf
2, all initial sequents and inference figures belong to LJ . Let
now consider Inf 1 and Inf 2.

E. Moriconi: Remarks on the Sequent Calculus

132



INTRODUCTION REMARKS ON THE
EQUIVALENCE PROOFS

NATURAL DEDUCTION
AND ITS PROBLEMS

SEQUENT CALCULUS TWO INTERPRETATIONS
OF CUT

Inf 1: if Θ is empty, we substitute Inf 1 with ¬ − L. Otherwise,
and denoting Θ∨ the disjunction of the formulas in Θ, the
translation produces:

Γ→ Θ∨ ∨ A
Γ,¬A→ Θ∨

INTRODUCTION REMARKS ON THE
EQUIVALENCE PROOFS

NATURAL DEDUCTION
AND ITS PROBLEMS

SEQUENT CALCULUS TWO INTERPRETATIONS
OF CUT

The last schema is then transformed in the following one, still
belonging to LJ

Γ→ Θ∨ ∨ A

Θ∨ → Θ∨

¬A,Θ∨ → Θ∨

Θ∨,¬A→ Θ∨

A→ A
¬A,A→
A,¬A→

A,¬A→ Θ∨ ∨ − L
Θ∨ ∨ A,¬A→ Θ∨

Cut
Γ,¬A→ Θ∨

E. Moriconi: Remarks on the Sequent Calculus

133



INTRODUCTION REMARKS ON THE
EQUIVALENCE PROOFS

NATURAL DEDUCTION
AND ITS PROBLEMS

SEQUENT CALCULUS TWO INTERPRETATIONS
OF CUT

Inf 2: in consequence of previous modification, the schema
assumes the following form:

Γ,¬A→ Θ∨

Γ→ Θ∨ ∨ A

In turn, this schema is transformed as follows:

→ A ∨ ¬A

A→ A
A, Γ→ A

A, Γ→ Θ∨ ∨ A

Γ,¬A→ Θ∨

¬A, Γ→ Θ∨

¬A, Γ→ Θ∨ ∨ A
A ∨ ¬A, Γ→ Θ∨ ∨ A

Γ→ Θ∨ ∨ A

INTRODUCTION REMARKS ON THE
EQUIVALENCE PROOFS

NATURAL DEDUCTION
AND ITS PROBLEMS

SEQUENT CALCULUS TWO INTERPRETATIONS
OF CUT

The previous derivation, which occurs in LJ +(A ∨ ¬A) , can be
transformed in an LHJ +(A∨¬A)-derivation, that is to say in an
LK-derivation.

E. Moriconi: Remarks on the Sequent Calculus

134



INTRODUCTION REMARKS ON THE
EQUIVALENCE PROOFS

NATURAL DEDUCTION
AND ITS PROBLEMS

SEQUENT CALCULUS TWO INTERPRETATIONS
OF CUT

It is interesting to note that Inf 2 provides the classical flavour.
In fact, it allows to prove “intuitionistically”–i.e., with just one
formula occurring in the succedent– the Principle of Excluded
Middle:

A→ A ∨ − RA→ A ∨ ¬A ¬ − L;Inf 1¬(A ∨ ¬A),A→ ¬− R¬(A ∨ ¬A)→ ¬A ∨ − R¬(A ∨ ¬A)→ A ∨ ¬A ¬ − L;Inf 1¬(A ∨ ¬A),¬(A ∨ ¬A)→
Ctr¬(A ∨ ¬A)→

Inf 2→ (A ∨ ¬A)

By applying usual ¬ − R in the last step would result in
producing ¬¬(A ∨ ¬A).

INTRODUCTION REMARKS ON THE
EQUIVALENCE PROOFS

NATURAL DEDUCTION
AND ITS PROBLEMS

SEQUENT CALCULUS TWO INTERPRETATIONS
OF CUT

Reflecting on the equivalence proofs Gentzen provided in the V
section of the thesis, some points deserve attention:

1 The first feature one could note is the peculiar definition of
“equivalence” that Gentzen adopted, which is different from
the usual one (consisting in declaring two formulas
equivalent wenn die eine aus der anderen herleitbar ist, V
1.2).

2 With this definition Gentzen aims at a translation going
from derivations to derivations. Two derivations are said
equivalent if the endformula (endsequent) of the first is
equivalent with that of the second; two formulas are
equivalent if either they are identical or one is got by
substituting the falsum symbol f by A&¬A in the other; a
sequent is equivalent to the implication from the
conjunction of antecedents to the disjunction of
succedents.

E. Moriconi: Remarks on the Sequent Calculus

135



INTRODUCTION REMARKS ON THE
EQUIVALENCE PROOFS

NATURAL DEDUCTION
AND ITS PROBLEMS

SEQUENT CALCULUS TWO INTERPRETATIONS
OF CUT

3 Foreshadowing the “Reduction Strategy” he was going to
employ shortly after in his proof of consistency, he devises
a sequence of transformation steps which literaly transform
derivations into equivalent derivations.

4 Gentzen is not interested in giving a proof that different
formalizations of the logical deduction prove the same
class of theorems, extensionally considered.

5 This is part and parcel of his belief that there is no realm of
first-order logical truths to be captured by (his) logical
calculi.

6 Keeping in mind that his base reference was to the building
of the Natural Deduction Calculi, it is worth reminding that
what he wanted to capture by means of them was not
constituted by the unsettled class of logical truths, but by
the concrete, though open-ended, cluster of schemas of
reasoning actually exploited in mathematics.

INTRODUCTION REMARKS ON THE
EQUIVALENCE PROOFS

NATURAL DEDUCTION
AND ITS PROBLEMS

SEQUENT CALCULUS TWO INTERPRETATIONS
OF CUT

7 This is what he clearly claims both in the thesis (page 183):
Wir wollen einen Formalismus aufstellen, der
möglichst genau das wirkliche logische
Schliessen bei mathematischen Beweisen
wiedergibt
[We wish to set up a formalism that reflects as
accurately as possible the actual logical
reasoning involved in mathematical proofs.].

and in the first published paper on the consistency of
elementary arithmetic (see p. 506).

E. Moriconi: Remarks on the Sequent Calculus

136



INTRODUCTION REMARKS ON THE
EQUIVALENCE PROOFS

NATURAL DEDUCTION
AND ITS PROBLEMS

SEQUENT CALCULUS TWO INTERPRETATIONS
OF CUT

The Natural Deduction Calculi were the first (we are
around 1932) formalization provided by Gentzen in his
search for a way of representing, better than through
axiomatic procedures, the reasoning actually employed in
mathematical arguments.
From the first pages of the published thesis, we know that
reflecting on NJ/K-calculi Gentzen devised the idea of a
direct proof, but –he soon realized– without having
available the tools to get it. Only the intuitionistic version of
the calculi, in fact, works well for the normal form theorem.

INTRODUCTION REMARKS ON THE
EQUIVALENCE PROOFS

NATURAL DEDUCTION
AND ITS PROBLEMS

SEQUENT CALCULUS TWO INTERPRETATIONS
OF CUT

From the important researches made by Jan von Plato on
the newly found Gentzen’s texts, we know that in the
handwritten version of the thesis, called Ms.ULS,
Gentzen’s design was

1 firstly, to present the calculus of natural deduction,
2 secondly, to show its equivalence to axiomatic logic,
3 thirdly, to establish normalization and the subformula

property.
4 Finally, to extend all of this to arithmetic (which however

failed as there is no subformula property for derivations in a
formal system of arithmetic).

E. Moriconi: Remarks on the Sequent Calculus

137



INTRODUCTION REMARKS ON THE
EQUIVALENCE PROOFS

NATURAL DEDUCTION
AND ITS PROBLEMS

SEQUENT CALCULUS TWO INTERPRETATIONS
OF CUT

Thus, one of Gentzen’s first concerns was to proof the
equivalence of his new calculus with the formalism of
LHJ/K: thanks to this proof, in fact, the property of
semantic completeness proved by Gödel for LHK would
also have been shared by his new calculi.
First, he proves that derivations in the axiomatic calculus of
LHJ/K can be reproduced in his system of NJ/K which in
this way results to be at least as strong as the standard
axiomatic calculus of LHJ/K.
Then he provides a translation of every NJ/K-derivation
into an equivalent LHJ/K-derivation. Notably, in this way it
is explicitly supplied a missing link characterizing the
published thesis: there, in fact, this step is only implicitly
present, as a by-product of the steps

LHJ /K; NJ /K; LJ /K; LHJ /K

INTRODUCTION REMARKS ON THE
EQUIVALENCE PROOFS

NATURAL DEDUCTION
AND ITS PROBLEMS

SEQUENT CALCULUS TWO INTERPRETATIONS
OF CUT

Derivations in NJ/K are reproduced in axiomatic logic as
follows: for any formula A occurring in a given NJ/K-proof, we
consider all the assumptions which still stand under A; i.e. such
that A depends on them. Let they be A1, . . . ,An, then A is
substituted by the expression (A1& . . .&An) ⊃ A. If A is an
assumption, then A ⊃ A takes its place. The NJ/K-step of
inferences assume the following shape (we consider just the
case of conjunction):

D ⊃ A E ⊃ B
D&E ⊃ A&B

D ⊃ A1&A2
D ⊃ Ai

E. Moriconi: Remarks on the Sequent Calculus

138



INTRODUCTION REMARKS ON THE
EQUIVALENCE PROOFS

NATURAL DEDUCTION
AND ITS PROBLEMS

SEQUENT CALCULUS TWO INTERPRETATIONS
OF CUT

In the case of &I, first one proves in LHJ/K

(D ⊃ A) ⊃ ((E ⊃ B) ⊃ (D&E ⊃ A&B))

then the previous rule &I, which is the translation of usual
NJ/K-rule of &I, is replaced by two applications of MP, as
follows:

(D ⊃ A) ⊃ ((E ⊃ B) ⊃ (D&E ⊃ A&B)) (D ⊃ A)

(E ⊃ B) ⊃ (D&E ⊃ A&B) (E ⊃ B)

(D&E ⊃ A&B)

INTRODUCTION REMARKS ON THE
EQUIVALENCE PROOFS

NATURAL DEDUCTION
AND ITS PROBLEMS

SEQUENT CALCULUS TWO INTERPRETATIONS
OF CUT

In the case of &E , first one proves in LHJ/K

((A1&A2) ⊃ Ai) ⊃ ((D ⊃ A1&A2) ⊃ (D ⊃ Ai))

then the previous rule &E , which is the translation of usual
NJ/K-rule of &E , is replaced by two applications of MP, by
exploiting also the LHJ/K-axiom ((A1&A2) ⊃ Ai), as follows:

((A1&A2) ⊃ Ai) ⊃ ((D ⊃ A1&A2) ⊃ (D ⊃ Ai)) ((A1&A2) ⊃ Ai)

(D ⊃ A1&A2) ⊃ (D ⊃ Ai)

(D ⊃ A1&A2) ⊃ (D ⊃ Ai) D ⊃ A1&A2

D ⊃ Ai

E. Moriconi: Remarks on the Sequent Calculus

139



INTRODUCTION REMARKS ON THE
EQUIVALENCE PROOFS

NATURAL DEDUCTION
AND ITS PROBLEMS

SEQUENT CALCULUS TWO INTERPRETATIONS
OF CUT

The overall idea is very similar to the procedure Bernays
provided in the first volume of Grundlagen, 1934, in order to
prove the deduction theorem: to prove that A ` B entails
` A ⊃ B first put “A ⊃” in front of any formula occurring in the
given proof that A ` B and then rearrange the resulting
“proof-tree” in order to accommodate previous occurrences of
axioms, and application of MP and UG.

INTRODUCTION REMARKS ON THE
EQUIVALENCE PROOFS

NATURAL DEDUCTION
AND ITS PROBLEMS

SEQUENT CALCULUS TWO INTERPRETATIONS
OF CUT

In this way, however, two, so to speak, “new” symbols, &
and ⊃, are introduced which are different from the same
symbols belonging to the object language, henceforth
requiring new additional inference figures which disturb the
systematic character of introductions and eliminations. To
overcome this difficulty, Gentzen exploits the notion of a
“single-succedent sequent”, where commas and the arrow
substitute the two symbols & and ⊃, and we get
A1, . . . ,An → A.
This notion was to him familiar as a result of his work on
Hertz’ systems. The structural framework provided by
Hertz turn out useful to accommodate his new kind of
expression, called by Gentzen “sentence” (Satz by Hertz)
and then “sequent”.

E. Moriconi: Remarks on the Sequent Calculus

140



INTRODUCTION REMARKS ON THE
EQUIVALENCE PROOFS

NATURAL DEDUCTION
AND ITS PROBLEMS

SEQUENT CALCULUS TWO INTERPRETATIONS
OF CUT

What has been thus provided, however, is not the previous
expression in disguise, but a new metalinguistic entity –the
commas and the arrows do not contribute to the building of
formulas– which will be ruled by new inference rules anyway
outside the systematic character of introductions and
eliminations. Since these rules don’t pertain to the logical
symbols but to the structure of the sequents, they are called
structural rules, whereas the other operational or logical rules.
One could say that the distinction between these two kinds of
rules is the characteristic feature of the sequent calculus, and
also the witness that Gentzen succeeded in disentangling the
linguistic component of implication from its metalinguistic,
inferential component. That is to say, matters of meaning from
matters of reasoning.

INTRODUCTION REMARKS ON THE
EQUIVALENCE PROOFS

NATURAL DEDUCTION
AND ITS PROBLEMS

SEQUENT CALCULUS TWO INTERPRETATIONS
OF CUT

Here are the the most substantial sources of Sequent Calculus:
first, the translation from a classical Natural Calculus to the
axiomatic system of logic of Hilbert and Ackermann, and,
secondly, Gentzen’s experience with the “sequents” of Hertz
systems.
However, to fully understand the rationale for the change of
framework, moving from Natural Deduction to Logistic, or
Sequent Calculus is not easy.

E. Moriconi: Remarks on the Sequent Calculus

141



INTRODUCTION REMARKS ON THE
EQUIVALENCE PROOFS

NATURAL DEDUCTION
AND ITS PROBLEMS

SEQUENT CALCULUS TWO INTERPRETATIONS
OF CUT

Gentzen was perfectly aware that the kind of analysis
which provided the backbone of the formulation of
NJ/K-calculi was able to ensure their (experimental)
completeness, but not the analytic nature of the inferences
allowed.
As it is suggested by difficulties in accommodating
negation within the symmetries of Introduction and
Elimination, derivations may fail to satisfy the so-called
subformula property, the most important consequence of
the Hauptsatz.
From this same point of view, serious problems also come
from the (⊃ E)-rule, the so-called modus ponens. To a
deeper analysis, in fact, using the ⊃ operator appears to
involve a peculiar form of cut.

INTRODUCTION REMARKS ON THE
EQUIVALENCE PROOFS

NATURAL DEDUCTION
AND ITS PROBLEMS

SEQUENT CALCULUS TWO INTERPRETATIONS
OF CUT

The way the rules of the N-calculi analyse the correct
inferences associated with each individual logical operator
was not completely analytical.
In fact, Gentzen’s inferential approach mixed the
formalization of the meanings of the logical operators with
an account of the consequence relation. Moving from
NJ/K-calculi to LJ/K-calculi, Gentzen aimed to separate
the task of determining the meanings of logical constants
from the question of accounting for the inferential features
of the deductive system.
This question is clearly seen with respect to the ⊃ symbol,
since the meaning of “A implies B” overlaps with that of “B
is derivable from A”.

E. Moriconi: Remarks on the Sequent Calculus

142



INTRODUCTION REMARKS ON THE
EQUIVALENCE PROOFS

NATURAL DEDUCTION
AND ITS PROBLEMS

SEQUENT CALCULUS TWO INTERPRETATIONS
OF CUT

Implication, which is the only symbol whose I-rule has an
(open) derivation as its premise, in its E-rule, the modus
ponens, involves a particular form of cut.
In order to show this special nature of the implication within
the natural deduction framework it makes sense to
compare the normalization procedures concerning
implication and disjunction. When an application of the
⊃ I-rule is immediately followed by an application of the
⊃ E-rule, as in:

INTRODUCTION REMARKS ON THE
EQUIVALENCE PROOFS

NATURAL DEDUCTION
AND ITS PROBLEMS

SEQUENT CALCULUS TWO INTERPRETATIONS
OF CUT

[A]

...
B

A ⊃ B

...
A

B
...

E. Moriconi: Remarks on the Sequent Calculus

143



INTRODUCTION REMARKS ON THE
EQUIVALENCE PROOFS

NATURAL DEDUCTION
AND ITS PROBLEMS

SEQUENT CALCULUS TWO INTERPRETATIONS
OF CUT

Here, of course, we face a sort of “detour” (Umwege), since the
application of the E-rule does not contribute anything new, thus
it can be eliminated, by converting (or reducing, or equating)
the previous derivation to the following one:

...
[A]

...
B
...

INTRODUCTION REMARKS ON THE
EQUIVALENCE PROOFS

NATURAL DEDUCTION
AND ITS PROBLEMS

SEQUENT CALCULUS TWO INTERPRETATIONS
OF CUT

In the case of disjunction we can have the following case of
detour

...
A

A ∨ B

[A]

...
C

[B]

...
C

C
...

E. Moriconi: Remarks on the Sequent Calculus

144



INTRODUCTION REMARKS ON THE
EQUIVALENCE PROOFS

NATURAL DEDUCTION
AND ITS PROBLEMS

SEQUENT CALCULUS TWO INTERPRETATIONS
OF CUT

This normalizes to

...
[A]

...
C
...

INTRODUCTION REMARKS ON THE
EQUIVALENCE PROOFS

NATURAL DEDUCTION
AND ITS PROBLEMS

SEQUENT CALCULUS TWO INTERPRETATIONS
OF CUT

The configurations may seem quite analogous, but there are
some important distinctions:

1 whereas in the case of implication we compose the minor
premise with the direct grounds for obtaining the major
premise,

2 in the case of disjunction we proceed the other way round
by composing the direct grounds for obtaining the major
premise with the (left) minor premise.

3 With implication, the normalization procedure gives back a
derivation of B from A, which is the direct grounds for
inferring the major premise of the elimination, A ⊃ B.

4 With disjunction, on the other hand, the direct grounds for
inferring the major premise of the elimination is just A (or
B), and what the normalization procedure gives back is not
those direct grounds but the so-called general conclusion
C which, according to the minor premises, can be inferred
both from A and from B.

E. Moriconi: Remarks on the Sequent Calculus

145



INTRODUCTION REMARKS ON THE
EQUIVALENCE PROOFS

NATURAL DEDUCTION
AND ITS PROBLEMS

SEQUENT CALCULUS TWO INTERPRETATIONS
OF CUT

5 Whereas the ⊃ E-rule has a specific conclusion, given by
the direct grounds for inferring its major premise, the
conclusion of the ∨E-rule is a generic formula, i.e. any
formula C which can be obtained both from A and B.

6 Since it is impossible to formulate the ∨E-rule with a
specific conclusion (neither A nor B, in fact, can play this
role), to compare the two rules properly, so that we can
appreciate the specific nature of implication within the
natural deduction framework, the only way is to transform
the ⊃ E-rule.

7 We thus consider the sequence ⊃ I− ⊃ E when the
so-called general format has also been adopted for the
⊃ E-rule, let’s say G ⊃ E:

INTRODUCTION REMARKS ON THE
EQUIVALENCE PROOFS

NATURAL DEDUCTION
AND ITS PROBLEMS

SEQUENT CALCULUS TWO INTERPRETATIONS
OF CUT

[A]

...
B⊃ I A ⊃ B

...
A

[B]

...
C G ⊃ EC

E. Moriconi: Remarks on the Sequent Calculus

146



INTRODUCTION REMARKS ON THE
EQUIVALENCE PROOFS

NATURAL DEDUCTION
AND ITS PROBLEMS

SEQUENT CALCULUS TWO INTERPRETATIONS
OF CUT

In the latter case, the normalization procedures gives back

...
[A]

...
[B]

...
C

Here two kinds of composition occur: whereas the latter
depends on the general format of the elimination rule, and is
shared by both implication and disjunction; the former, on the
other hand, is owned just by implication, and is a cut on A
which is tied to the peculiar nature of the treatment of
implication within natural deduction.

INTRODUCTION REMARKS ON THE
EQUIVALENCE PROOFS

NATURAL DEDUCTION
AND ITS PROBLEMS

SEQUENT CALCULUS TWO INTERPRETATIONS
OF CUT

Gentzen proceeds as follows: given an N.D.-proof of, say A,
one lists all those assumptions which are not already
discharged before the accomplishing of the inference leading to
A. Let us indicate them by Γ. Then one substitutes A by Γ→ A.
If A is an assumption, A→ A takes its place. The steps of
inference of N.D. are accordingly translated:

A B I&A&B
;

Γ→ A ∆→ B
Γ,∆→ A&B

E. Moriconi: Remarks on the Sequent Calculus

147



INTRODUCTION REMARKS ON THE
EQUIVALENCE PROOFS

NATURAL DEDUCTION
AND ITS PROBLEMS

SEQUENT CALCULUS TWO INTERPRETATIONS
OF CUT

Paired with the occurrence of the figure of sequent, here we
see, probably for the first time, the disentangling of two
meanings often conflated in the notion of implication: the
propositional (object-language) connective, say ⊃, and the
(meta-level) notation for the formal derivability relation, say→.
Of course, in this step Gentzen was greatly helped by his work
on Hertz-systems from the summer of 1931, which output his
first published paper of 1932.

INTRODUCTION REMARKS ON THE
EQUIVALENCE PROOFS

NATURAL DEDUCTION
AND ITS PROBLEMS

SEQUENT CALCULUS TWO INTERPRETATIONS
OF CUT

A sequent represents a “possibility of derivation”: given such
and such hypotheses, such sentence can hold. Gentzen’s
sequent calculus shows how to pass from a given possibility of
proof to another possibility of proof, and not directly how to
pass from a sentence to another sentence. Note that this is a
character already present in his first paper of 1932. What in his
calculus is equivalent to the proof of a given sentence is the
proof of a sequent with a void antecedent and just that
sentence in the consequent; which means: it is always possible
to prove the sentence constituting the consequent.

E. Moriconi: Remarks on the Sequent Calculus

148



INTRODUCTION REMARKS ON THE
EQUIVALENCE PROOFS

NATURAL DEDUCTION
AND ITS PROBLEMS

SEQUENT CALCULUS TWO INTERPRETATIONS
OF CUT

It is interesting to note that, in the equivalence proofs provided
in the last section of the thesis, Gentzen resurrected the LDK
calculus where Cut plays a necessary role, even though this
was a section of a work devoted to the proof of the eliminability
of the Cut.

INTRODUCTION REMARKS ON THE
EQUIVALENCE PROOFS

NATURAL DEDUCTION
AND ITS PROBLEMS

SEQUENT CALCULUS TWO INTERPRETATIONS
OF CUT

It is interesting to focus on the emergence of two paradigms in
the conception of Cut. The paradigm of structural reasoning,
which was preserved in the intermediate calculus LDK of
Ms.ULS , where the Cut rule continues to play a fundamental
role, and the analytic paradigm. Here analytic proofs was the
new goal, and Gentzen was able to attain it thanks to the
Hauptsatz proved for that “evolution” of LDK-calculi which is
constituted by the LK-calculi. In the latter calculi, structural
reasoning was sharply separated from logical meaning, and the
general setting was purely inferential.

E. Moriconi: Remarks on the Sequent Calculus

149



INTRODUCTION REMARKS ON THE
EQUIVALENCE PROOFS

NATURAL DEDUCTION
AND ITS PROBLEMS

SEQUENT CALCULUS TWO INTERPRETATIONS
OF CUT

THANKS

FOR YOUR ATTENTION

E. Moriconi: Remarks on the Sequent Calculus

150



Tomographs for Substructural Display Logic

Michael Arndt

University Tübingen

Universal Logic 2018, Vichy

Workshop on Proof Theory

June 25, 2018

Overview

▸ Introductory Remarks
▸ Begriffsschrift
▸ Residuation

▸ Display Calculus for Substructural Logics
▸ Structural Connectives and their Properties
▸ Display Property
▸ Logical Connectives and Structural Overloading
▸ Generalized Cut-Elimination

▸ Tomographs for Substructural Logics
▸ Translating Sequents into Tomographs
▸ Residuation in Tomographs
▸ Example Derivations

▸ Explicit Negation
▸ Galois Connections
▸ Negation in the Display Caclulus
▸ Negation in Tomographs

▸ Summary

M. Arndt: Tomographs for Substructural Display Logic

151



Introductory Remarks

We introduce a two-dimensional notation for Goré’s display calculus for
substructural logics.

It requires only two ternary connectives to render all ten of the structural
connectives of Goré’s display calculus (six binary and four unary) as well
as two structural constants.

Structural conjunction, implication, replication (due to the logic’s
non-commutative setting) and empty structure as well as two structural
negations are rendered by one ternary connective, and their duals are
rendered by another.

Recall the Begriffsschrift

There are certain similarities to Frege’s two-dimensional notation, the
Begriffsschrift, regarding the role of the turnstile/judgement stroke.

Schroeder-Heister’s observation of structural features in Gentzen-style
features in Frege (1999) and Frege’s sequent calculus (2014):

Moving the judgement stroke to the right along the top horizontal line
corresponds to moving from the conclusion to the premise in the sequent
calculus’ (→R) rule.

Moreover, recall Frege’s remarks on whether the Begriffsschrift should be
based on a conjunctive or a conditional connective.

M. Arndt: Tomographs for Substructural Display Logic

152



Begriffsschrift Sentences as Sequents

(1) (2) (3) (4)

A

C

B

C

A

B

C

(4) C → (B → A) , C → B , C ⊢ A

(3) C → (B → A) , C → B ⊢ C → A

(2) C → (B → A) ⊢ (C → B)→ (C → A)
(1) ⊢ (C → (B → A))→ ((C → B)→ (C → A))

Frege’s Design Choice

“Instead of expressing ‘and’ by means of the symbols for
conditionality and negation, as is done here, conditionality
could also be represented, conversely, by means of a symbol for
‘and’ and the symbol for negation. One might introduce, say,

{ Γ
∆

as the symbol for the conjoined content of Γ and ∆, and render

A

B by { A

B

I chose the other way, since inference seemed to me to be
expressed more simply that way.”

(G. Frege. Begriffsschrift, pp. 12–13)

M. Arndt: Tomographs for Substructural Display Logic

153



Residuation

A residuated groupoid is a structure ⟨L,≤,⊙,⦸,⊘⟩ where

(i) ⟨L,≤⟩ is a lattice;

(ii) ⟨L,⊙⟩ is a groupoid;

(iii) for all x , y , z ∈ L: y ≤ x ⦸ z iff x ⊙ y ≤ z iff x ≤ z ⊘ y .

x ⦸ z (left residual of z by x) is the greatest y such that x ⊙ y ≤ z ,
z ⊘ y (right residual of z by y) is the greatest x such that x ⊙ y ≤ z .

If the groupoid is commutative, then left and right residuals collapse.

Co-Residuation

A co-residuated groupoid is a structure ⟨L,≤,⊡,⧅,⧄⟩ where

(i) ⟨L,≤⟩ is a lattice;

(ii) ⟨L,⊡⟩ is a groupoid;

(iii) for all x , y , z ∈ L: x ⧅ z ≤ y iff z ≤ x ⊡ y iff z ⧄ y ≤ x .

x ⧅ z (left co-residual of z by x) is the least y such that z ≤ x ⊡ y ,
z ⧄ y (right co-residual of z by y) is the least x such that z ≤ x ⊡ y .

If the groupoid is commutative, then left and right co-residuals collapse.

M. Arndt: Tomographs for Substructural Display Logic

154



Residuation and Co-residuation in Logic

The algebraic property of residuation has analogues in logic.

Import/Export: Γ ⊧ A→ C iff A,Γ ⊧ C

Deduction: Γ ⊢ A→ C iff A,Γ ⊢ C

Relevance logic: B ⊢ A→ C iff A ∗B ⊢ C

Linear logic: B ⊢ A⊸ C iff A⊗B ⊢ C iff A ⊢ C ⟜ B

Lambek logic: B ⊢ A / C iff A⊗B ⊢ C iff A ⊢ C /B

Display logic: Y ⊢ X > Z iff X ;Y ⊢ Z iff X ⊢ Z < Y
X > Z ⊢ Y iff Z ⊢ X ;Y iff Z < Y ⊢ X

Display Calculus for Substructural Logics

We will now present Goré’s display calculus introduced in Substructural
logics on display (1998).

Firstly, we discuss the matter of structures, the binary structural
connectives and the residuation rules governing them.

We then present the structural rules of the calculus that can be added to
the core calculus to obtain various Bi-Lambek logics.

Finally, we present its logical rules, which are extremely interesting, as
each logical connective reflects a structural property expressed by a
structural connective.

M. Arndt: Tomographs for Substructural Display Logic

155



Structural Connectives in Display Logic

In Goré’s display logic, all sequents have the form S ⊢ S, where structures
S are formed on the basis of formulae F as follows:

S ∶∶= Φ ∣ F ∣ (S ; S) ∣ (S > S) ∣ (S < S)
(By convention the outmost parentheses of structures may be omitted.)

The function of the structural connectives is as follows:

Φ – (co-)empty structure
; – binary structural (co-)composition> – structural left (co-)residual< – structural right (co-)residual

A,B,C , . . . range over formulae. X ,Y,Z, . . . range over structures.

Structural Overloading

Unfortunately, the definition obfuscates the fact that the structural
connectives are overloaded. Each one of the symbols is actually used for
two different connectives and, respectively, two different constants.

An improved definition would give sequents as L ⊢ R, where antecedent
structures L and succedent structures R are formed on the basis of
formulae F as follows:

L ∶∶= Φ̀ ∣ F ∣ (L ;̀ L) ∣ (R >̀ L) ∣ (L <̀R)
R ∶∶= Φ́ ∣ F ∣ (R ;́ R) ∣ (L >́R) ∣ (R <́ L)

Indeed, under such a scheme, even formulae could and should be
assigned a left/right-polarity.

It is important to keep in mind that Goré uses overloading. However, we
will informally talk about L- and R-structures to clarify certain points.

M. Arndt: Tomographs for Substructural Display Logic

156



Residuation Rules

The residuation rules codify the property of left and right residuation for
structural L-composition within the framework of the sequent calculus.

Corresponding rules govern the property of left and right co-residuation
for structural R-composition for the dual connectives.

(rp1)
X ;Y ⊢ ZY ⊢ X > Z Z ⊢ X ;YX > Z ⊢ Y (drp1)

(rp2)
X ;Y ⊢ ZX ⊢ Z < Y Z ⊢ X ;YZ < Y ⊢ X (drp2)

Residuation Rules

The residuation rules and their duals are double line rules. That is, each
of them abbreviates two rules, one to be read as it stands, the other one
being obtained by reading the given rule upside down.

Since the premises of (rp1) and (rp2) are identical, as are the premises of
(drp1) and (drp2), we can combine each pair into a “triple double line
rule” governing the relationship between the respective three sequents:

(rt)

X ⊢ Z < YX ;Y ⊢ ZY ⊢ X > Z
Z < Y ⊢ XZ ⊢ X ;YX > Z ⊢ Y

(drt)

M. Arndt: Tomographs for Substructural Display Logic

157



Displaying Formulae

The following example is an extended variant of an example for the
residuation properties given in Goré’s article.

It shows that any one of the formulae A, B, C and D occurring in
sequent C < D ⊢ A > B can be displayed.

A ⊢ B < (C < D)
(rt)

A ; (C < D) ⊢ B
(rt)

C < D ⊢ A > B
(drt)

C ⊢ (A > B) ; D
(drt)(A > B) > C ⊢ D

Display Property

Theorem (Belnap)
For every sequent S and every antecedent/succedent part X of S,
there is a structurally equivalent sequent S′ that has X (alone) as its
antecedent/succedent. X is said to be displayed in S′.

Proof.
Repeated applications of (rt) and (drt) allow arbitrarily nested structures
to be displayed.

M. Arndt: Tomographs for Substructural Display Logic

158



Display Calculus – Core Structural Rules

(rt)

X ⊢ Z < YX ;Y ⊢ ZY ⊢ X > Z
Z < Y ⊢ XZ ⊢ X ;YX > Z ⊢ Y

(drt)

(Φ−+ ⊢)

Φ ;X ⊢ YX ⊢ YX ; Φ ⊢ Y
X ⊢ Φ ;YX ⊢ YX ⊢ Y ; Φ

(⊢ Φ−+)

Display Calculus – Optional Structural Rules I

X ; (Y ;Z) ⊢W
(ass ⊢) (X ;Y) ;Z ⊢W

W ⊢ (X ;Y) ;Z
(⊢ ass)W ⊢ X ; (Y ;Z)

Y ;X ⊢ Z
(com ⊢) X ;Y ⊢ Z Z ⊢ Y ;X

(⊢ com)Z ⊢ X ;Y

M. Arndt: Tomographs for Substructural Display Logic

159



Display Calculus – Optional Structural Rules II

Y ⊢ Z
(w− ⊢) X ;Y ⊢ Z Z ⊢ Y

(⊢ w−)Z ⊢ X ;Y
X ⊢ Z

(w+ ⊢) X ;Y ⊢ Z Z ⊢ X
(⊢ w+)Z ⊢ X ;Y

X ;X ⊢ Z
(c ⊢) X ⊢ Z Z ⊢ X ;X

(⊢ c)Z ⊢ X

Display Calculus – Optional Structural Rules III

Y ;X ⊢ Φ
(yet ⊢) X ;Y ⊢ Φ

Φ ⊢ Y ;X
(⊢ yet)

Φ ⊢ X ;Y

X > (Y ;Z) ⊢W
(grn1 ⊢) (X > Y) ;Z ⊢W

W ⊢ (X ;Y) < Z
(⊢ grn1)W ⊢ X ; (Y < Z)

(X ;Y) < Z ⊢W
(grn2 ⊢) X ; (Y < Z) ⊢W

W ⊢ X > (Y ;Z)
(⊢ grn2)W ⊢ (X > Y) ;Z

M. Arndt: Tomographs for Substructural Display Logic

160



Grishin’s Rules

(X ;Y) < Z ⊢W(grn2 ⊢) (grn2 ⊢)X ; (Y < Z) ⊢W

A ; (C < D) ⊢ B
(rt)

C < D ⊢ A > B
(drt)

C ⊢ (A > B) ; D

(A ; C) < D ⊢ B
(drt)

A ; C ⊢ B ; D
(rt)

C ⊢ A > (B ; D)

W ⊢ X > (Y ;Z)
(⊢ grn2) (⊢ grn2)W ⊢ (X > Y) ;Z

Grishin’s Rules

X > (Y ;Z) ⊢W(grn1 ⊢) (grn1 ⊢)(X > Y) ;Z ⊢W

(B > A) ; C ⊢ D
(rt)

B > A ⊢ D < C
(drt)

A ⊢ B ; (D < C)
B > (A ; C) ⊢ D

(drt)
A ; C ⊢ B ; D

(rt)
A ⊢ (B ; D) < C

W ⊢ (X ;Y) < Z
(⊢ grn1) (⊢ grn1)W ⊢ X ; (Y < Z)

M. Arndt: Tomographs for Substructural Display Logic

161



Grishin’s Rules

C < D ⊢ A > B

(rt) + (grn2 ⊢) + (drt) ⋮ (drt) + (⊢ grn2) + (rt)

A ; C ⊢ B ; D

(drt) + (grn1 ⊢) + (rt) ⋮ (rt) + (⊢ grn1) + (drt)

B > A ⊢ D < C

Displayed Substructural Logics

Intuitionistic Classical
Ass. Com. Ctr. Wk. Yet. Grn.

Non-ass. Bi-Lambek (✓)
Non-comm. Bi-Linear BL1 ✓
Non-comm. Bi-Linear BL2 ✓ ✓
Non-comm. Bi-Linear BL3 ✓ ✓ ✓
Cyclic Bi-Linear ✓ ✓
Bi-Linear ✓ ✓ [✓] (✓)
Non-comm. Bi-relevant ✓ ✓ (✓)
Bi-Affine ✓ ✓ (✓)

M. Arndt: Tomographs for Substructural Display Logic

162



Display Calculus – Logical Connectives

connective name type

⊗ conjunction intensional−⊳ implication intensional⊲− replication intensional∧ conjunction extensional

⊕ disjunction intensional⊳− dual replication intensional−⊲ dual implication intensional∨ disjunction extensional

constant name type

1 triviality intensional
0 absurdity intensional

⊺ triviality extensional� absurdity extensional

Display Calculus – Intensional Logical Rules I

A ; B ⊢ Z
(⊗ ⊢)

A⊗B ⊢ Z X ⊢ A Y ⊢ B
(⊢ ⊗)X ;Y ⊢ A⊗B

X ⊢ A B ⊢ Y
(−⊳ ⊢)

A −⊳ B ⊢ X > Y Z ⊢ A > B
(⊢ −⊳)Z ⊢ A −⊳ B

B ⊢ Y X ⊢ A
(⊲− ⊢)

B ⊲−A ⊢ Y < X Z ⊢ B < A
(⊢ ⊲−)Z ⊢ B ⊲−A

M. Arndt: Tomographs for Substructural Display Logic

163



Display Calculus – Intensional Logical Rules II

A ⊢ X B ⊢ Y
(⊕ ⊢)

A⊕B ⊢ X ;Y Z ⊢ A ; B
(⊢ ⊕)Z ⊢ A⊕B

A > B ⊢ Z
(⊳− ⊢)

A ⊳−B ⊢ Z A ⊢ X Y ⊢ B
(⊢ ⊳−)X > Y ⊢ A ⊳−B

B < A ⊢ Z
(−⊲ ⊢)

B −⊲ A ⊢ Z Y ⊢ B A ⊢ X
(⊢ −⊲)Y < X ⊢ B −⊲ A

Display Calculus – Intensional Logical Rules III

Φ ⊢ Z
(1 ⊢)

1 ⊢ Z (⊢ 1)
Φ ⊢ 1

(0 ⊢)
0 ⊢ Φ

Z ⊢ Φ
(⊢ 0)Z ⊢ 0

M. Arndt: Tomographs for Substructural Display Logic

164



Observation about the Extensional Logical Rules

Every intensional logical connective as well as every intensional constant
corresponds to exactly one structural connective or constant.

logical name structural name

⊗ conjunction ; composition−⊳ implication > left residual⊲− replication < right residual
1 triviality Φ empty structure⊕ disjunction ; co-composition⊳− dual replication > left co-residual−⊲ dual implication < right co-residual
0 absurdity Φ co-empty structure

Recall that the structural symbols are overloaded!

Display Calculus – Extensional Logical Rules I

A ⊢ Z
(∧ ⊢ 1)

A ∧B ⊢ Z
B ⊢ Z

(∧ ⊢ 2)
A ∧B ⊢ Z

Z ⊢ A Z ⊢ B
(⊢ ∧)Z ⊢ A ∧B

A ⊢ Z B ⊢ Z
(∨ ⊢)

A ∨B ⊢ Z
Z ⊢ A

(⊢ ∨ 1)Z ⊢ A ∨B

Z ⊢ B
(⊢ ∨ 2)Z ⊢ A ∨B

M. Arndt: Tomographs for Substructural Display Logic

165



Display Calculus – Extensional Logical Rules II

(⊢ ⊺)Z ⊢ ⊺

(� ⊢) � ⊢ Z

Display Calculus – Reasoning Rules

(id)
A ⊢ A

X ⊢ A A ⊢ Y
(cut)X ⊢ Y

M. Arndt: Tomographs for Substructural Display Logic

166



Belnap’s Conditions

(C1) Each formula occurring in a premise of a rule instance is a
subformula of some formula in the conclusion.

(C2) Congruent parameters are occurrences of the same structure.

(C3) Each parameter is congruent to at most one structure variable in the
conclusion. That is, no two structure variables in the conclusion are
congruent to each other.

(C4) Congruent parameters are all either antecedent or succedent
structures.

(C5) A schematic formula variable in the conclusion of an inference rule ρ
is either the entire antecedent or the entire succedent. This formula
is called a principal formula of ρ.

Belnap’s Conditions

(C6) Each inference rule is closed under simultaneous substitution of
arbitrary structures for congruent succedent parameters.

(C7) Each inference rule is closed under simultaneous substitution of
arbitrary structures for congruent antecedent parameters.

(C8) For inference rules ρ and σ with respective conclusions X ⊢ A and
A ⊢ Y with formula A principal in both inferences in the sense of C5
the following holds: if cut is applied to yield X ⊢ Y , then

(i) X ⊢ Y is identical to either X ⊢ A or A ⊢ Y , or

(ii) there is a derivation of X ⊢ Y from the premises of ρ and σ
such that the cut formula of every cut occurring in that
derivation is a proper subformula of A.

M. Arndt: Tomographs for Substructural Display Logic

167



Generalized Cut-Elimination

Theorem (Belnap)
If a display calculus satisfies C1, then it has the subformula property, that
is every formula occurring in a cut-free derivation appears as a
subformula of some formula in the conclusion.
A display calculus satisfying C2–C8 enjoys cut-elimination.

Proof.
The proof follows Gentzen’s original idea, successively eliminating
topmost instances of the cut-rule by tracing the cut-formula upwards
until the cut is a principal cut. Unlike in Gentzens proof, no multicut-rule
is required to resolve the difficulties arising from a contraction rule
applied to the cut-formula. Belnaps proof avoids this by computing the
set of ancestor occurrences of the cut-formula and essentially applying
the cut-rule to each member in that set.

Tomographs for Substructural Logics

We will now present our two dimensional notation.

The name “tomograph” stems from a graph theoretical rendering of
Goré’s logic that employs bipartite graphs, using one type of vertices for
logical and the other type for structural matters.

The required graphs are extremely simple in that they have the
cut-property, which means that the graph is so weakly connected that
removing any internal vertex results in a disconnected graph.

For the purpose of brevity, we simply provide an EBNF for a
two-dimensional notation that generates such graphs.

M. Arndt: Tomographs for Substructural Display Logic

168



Tomographs

Tomographs T are defined on the basis of structures S and formulae F as
follows:

T ∶∶= S S turnstile marker

S ∶∶= ∣ empty structure

∣ F ∣ F formula content

∣ S
S

∣ S
S ∣ S

S fusion fork

∣ S
S
∣ S

S ∣ S
S fission fork

▸ Beginning at the turnstile marker, structures are grown both to the
left (antecedent position) and to the right (succedent position).

▸ Structural elements must not overlap. Forks may be stretched
vertically, strokes (horizontal lines) may be extended, but not tilted.

Translating Sequents into Tomographs

The functions ⟨⟨⋅⟩⟩⊢ and ⟨⟨⋅⟩⟩, by way of auxiliary functions ⟨⟨⋅∥ and ∥⋅⟩⟩,
translate sequents of substructural display logic into tomographs.

⟨⟨U ⊢ V⟩⟩⊢ =def ⟨⟨U∥ ∥V⟩⟩
⟨⟨U ⊢ V⟩⟩⊢ =def ⟨⟨U∥ ∥V⟩⟩

⟨⟨Φ∥ =def

⟨⟨A∥ =def A

⟨⟨X ;Y∥ =def
⟨⟨X ∥⟨⟨Y∥

⟨⟨X > Z∥ =def ⟨⟨Z∥ ∥X ⟩⟩
⟨⟨Z < Y∥ =def

⟨⟨Z∥ ∥Y⟩⟩

∥Φ⟩⟩ =def

∥A⟩⟩ =def A

∥X ;Y⟩⟩ =def
∥X ⟩⟩∥Y⟩⟩

∥X > Z⟩⟩ =def
⟨⟨X ∥ ∥Z⟩⟩

∥Z < Y⟩⟩ =def ⟨⟨Y∥ ∥Z⟩⟩

M. Arndt: Tomographs for Substructural Display Logic

169



Reading Tomographs

left
rig

h
t

antecedent succedent

A
C

B
D

A ; C ⊢ B ; D

left
rig

h
t

antecedent succedent

A

C
B

D

C < D ⊢ A > B

▸ Formulae on the left of a stroke are antecedent formulae: F

▸ Formulae on the right of a stroke are succedent formulae: F
▸ The occurrence of antecedent (succedent) formulae from top to

bottom corresponds to the linear order of antecedent (succedent)
formulae within a sequent from left to right.

Residuation in Tomographs

Residuation rule (rt) shifts the turnstile through the arms of fusions, and
its dual (drt) shifts the turnstile through the arms of fissions.

Fusion Fork Fission Fork

(rt)

X
Y Z

X ⊢ Z < Y X ;Y ⊢ Z

Y ⊢ X > Z
X
YZ

Z < Y ⊢ XZ ⊢ X ;Y

X > Z ⊢ Y
(drt)

Identity up to residuation in substructural display logic becomes identity
of tomographs – up to turnstile postition if that information is retained.

M. Arndt: Tomographs for Substructural Display Logic

170



Residuation Rules for Tomographs

We can thus formulate rules governing residuation in a calculus for
tomographs.

(rt)

XY Z
XY Z
XY Z

XYZ
XYZ
XYZ

(drt)

Returning to Goré’s Example

A ⊢ B < (C < D)
(rt)

A ; (C < D) ⊢ B

(rt)

C < D ⊢ A > B

(drt)

C ⊢ (A > B) ; D

(drt)

(A > B) > C ⊢ D

A
B

C
D

(rt)

A
B

C
D

(rt)

A
B

C
D

(drt)

A
B

C
D

(drt)

A
B

C
D

M. Arndt: Tomographs for Substructural Display Logic

171



Characteristc Property of the Translation

Proposition
Let S and T be two different sequents that are interderivable by any
number of applications of the residuation rules (rt) and (drt). Then

(i) ⟨⟨S⟩⟩ ≡ ⟨⟨T⟩⟩
(ii) ⟨⟨S⟩⟩⊢ /≡ ⟨⟨T⟩⟩⊢

Proof.
By induction on the length of the derivation and inspecting the premises
and conclusions of each possible instance of (rt) and (drt) and their
translations.

Characteristc Property of the Translation

The characteristic property states that tomographs obtained by a
“forgetful” translation (forgetting the turnstile) of sequents that are
interderivable by applications of the residuation rules alone are identical.

We will now present the rules for a tomograph calculus.

For each rule we provide both a version with turnstile markers and a
version without them.

When using the former, the rules (rt) and (drt) are required to be able to
move the turnstile marker to desired positions.

When using the latter, every rule can be applied at any position of a
tomograph that matches the premise.

M. Arndt: Tomographs for Substructural Display Logic

172



Display Tomographs – Core Structural Rules

(rt)

XY Z
XY Z
XY Z

XYZ
XYZ
XYZ

(drt)

(Φ−+ ⊢)

X Y
X Y
X Y

X Y
X Y
X Y

(⊢ Φ−+)

Display Tomographs – Core Structural Rules

(rt)

XY Z
XY Z
XY Z

XYZ
XYZ
XYZ

(drt)

(Φ−+ ⊢)

X Y
X Y
X Y

X Y
X Y
X Y

(⊢ Φ−+)

M. Arndt: Tomographs for Substructural Display Logic

173



Display Tomographs – Optional Structural Rules I

XYZ W
(ass ⊢) XY Z W

XYZW
(⊢ ass)X YZW

YX Z
(com ⊢) XY Z

Z YX
(⊢ com)

Z XY

Display Tomographs – Optional Structural Rules I

XYZ W
(ass ⊢) XY Z W

XYZW
(⊢ ass)X YZW

YX Z
(com ⊢) XY Z

Z YX
(⊢ com)

Z XY

M. Arndt: Tomographs for Substructural Display Logic

174



Display Tomographs – Optional Structural Rules II

Y Z
(w− ⊢) XY Z

Z Y
(⊢ w−)

Z XY

X Z
(w+ ⊢) XY Z

Z X
(⊢ w+)

Z YX

XX Z
(c ⊢) X Z

Z XX
(⊢ c)Z X

Display Tomographs – Optional Structural Rules II

Y Z
(w− ⊢) XY Z

Z Y
(⊢ w−)

Z XY

X Z
(w+ ⊢) XY Z

Z X
(⊢ w+)

Z YX

XX Z
(c ⊢) X Z

Z XX
(⊢ c)Z X

M. Arndt: Tomographs for Substructural Display Logic

175



Display Tomographs – Optional Structural Rules III

YX
(yet ⊢) XY

YX
(⊢ yet)

XY

YZ XW
(grn1 ⊢)

Y
Z

X
W

WZ XY
(⊢ grn1)

W
X

Y
Z

XY WZ
(grn2 ⊢) X

Y W
Z

XW YZ
(⊢ grn2)X

W Y
Z

Display Tomographs – Optional Structural Rules III

YX
(yet ⊢) XY

YX
(⊢ yet)

XY

YZ XW
(grn1 ⊢)

Y
Z

X
W

WZ XY
(⊢ grn1)

W
X

Y
Z

XY WZ
(grn2 ⊢) X

Y W
Z

XW YZ
(⊢ grn2)X

W Y
Z

M. Arndt: Tomographs for Substructural Display Logic

176



Display Tomographs – Optional Structural Rules III

Without turnstile, rules (grn1 ⊢) and (⊢ grn1) are indistinguishable, as are
rules (grn2 ⊢) and (⊢ grn2).

Consequently, they can be combined into a single rule each.

YZ XW
(grn1)

Y
Z

X
W

XW YZ
(grn2)X

W Y
Z

Display Tomographs – Logical Connectives

connective name type⊗ conjunction intensional⇀ implication intensional⇁ replication intensional∧ conjunction extensional⊕ disjunction intensional↼ dual replication intensional↽ dual implication intensional∨ disjunction extensional

constant name type
1 triviality intensional
0 absurdity intensional⊺ triviality extensional� absurdity extensional

M. Arndt: Tomographs for Substructural Display Logic

177



Display Tomographs – Intensional Logical Rules I

A
B

Z
(⊗ ⊢)

A⊗B Z
X A Y B

(⊢ ⊗)XY A⊗B

X A B Y
(⇀ ⊢) X

A⇀B
Y

AZ B

(⊢ ⇀)Z A⇀B

B Y X A
(⇁ ⊢)

A⇁BX Y
Z
A

B

(⊢ ⇁)Z A⇁B

Display Tomographs – Intensional Logical Rules I

A
B

Z
(⊗ ⊢)

A⊗B Z
X A Y B

(⊢ ⊗)XY A⊗B

X A B Y
(⇀ ⊢) X

A⇀B
Y

AZ B

(⊢ ⇀)Z A⇀B

B Y X A
(⇁ ⊢)

A⇁BX Y
Z
A

B

(⊢ ⇁)Z A⇁B

M. Arndt: Tomographs for Substructural Display Logic

178



Display Tomographs – Intensional Logical Rules II

A X B Y
(⊕ ⊢)

A⊕B XY
Z A

B
(⊢ ⊕)Z A⊕B

B
AZ

(↼ ⊢)

B ↼A Z
A X Y B

(⊢ ↼)

Y X
B ↼A

B
Z
A

(↽ ⊢)

B ↽A Z
Y B A X

(⊢ ↽)

Y B ↽AX

Display Tomographs – Intensional Logical Rules II

A X B Y
(⊕ ⊢)

A⊕B XY
Z A

B
(⊢ ⊕)Z A⊕B

B
AZ

(↼ ⊢)

B ↼A Z
A X Y B

(⊢ ↼)

Y X
B ↼A

B
Z
A

(↽ ⊢)

B ↽A Z
Y B A X

(⊢ ↽)

Y B ↽AX

M. Arndt: Tomographs for Substructural Display Logic

179



Display Tomographs – Intensional Logical Rules III

Z
(1 ⊢)

1 Z
(⊢ 1)

1

(0 ⊢)

0
Z

(⊢ 0)Z 0

Display Tomographs – Intensional Logical Rules III

Z
(1 ⊢)

1 Z
(⊢ 1)

1

(0 ⊢)

0
Z

(⊢ 0)Z 0

M. Arndt: Tomographs for Substructural Display Logic

180



Display Tomographs – Extensional Logical Rules I

A Z
(∧ ⊢ 1)

A ∧B Z
B Z

(∧ ⊢ 2)

A ∧B Z

Z A Z B
(⊢ ∧)Z A ∧B

A Z B Z
(∨ ⊢)

A ∨B Z

Z A
(⊢ ∨ 1)Z A ∨B

Z B
(⊢ ∨ 2)Z A ∨B

Display Tomographs – Extensional Logical Rules I

A Z
(∧ ⊢ 1)

A ∧B Z
B Z

(∧ ⊢ 2)

A ∧B Z

Z A Z B
(⊢ ∧)Z A ∧B

A Z B Z
(∨ ⊢)

A ∨B Z

Z A
(⊢ ∨ 1)Z A ∨B

Z B
(⊢ ∨ 2)Z A ∨B

M. Arndt: Tomographs for Substructural Display Logic

181



Display Tomographs – Extensional Logical Rules II

(⊢ ⊺)Z ⊺

(� ⊢) � Z

Display Tomographs – Extensional Logical Rules II

(⊢ ⊺)Z ⊺

(� ⊢) � Z

M. Arndt: Tomographs for Substructural Display Logic

182



Display Tomographs – Reasoning Rules

(id)

A A

X A A Y
(cut)X Y

Display Tomographs – Reasoning Rules

(id)

A A

X A A Y
(cut)X Y

M. Arndt: Tomographs for Substructural Display Logic

183



Display Tomographs – Discussion of the Rules

The rules that use turnstile markers are identical to the one of Goré’s
sequent calculus up to notation.

A structural rule without turnstile marker can be applied anywhere within
a tomograph that matches the structural requirements of the premise(s).

A logical rule without turnstile marker can be applied anywhere along the
“formula rim” of a tomograph:

▸ In the case of a single premise rule it can be applied at any fork that
has two formula occurrences. The fork is eliminated, the connective
is introduced to connect the formulae.

▸ In the case of a two premise rule it can be applied at any two formula
occurrences of two tomographs. The fork is introduced to compose
the contexts, the connective is introduced to connect the formulae.

Cut elimination proceeds as it does in Goré’s sequent calculus.

Display Tomographs – Eliminating Cuts

⋮
X A

⋮
Y B

(⊢ ⊗)XY A⊗B

⋮
A

B
Z

(⊗ ⊢)

A⊗B Z
(cut)XY Z

«

⋮
Y B

⋮
X A

⋮
A

B
Z

(cut)X
B

Z
(cut)XY Z

M. Arndt: Tomographs for Substructural Display Logic

184



Example Derivation I

(id)

A A
(w− ⊢)

B

A
A

(rt)

B

A
A

(⊢ ⇀)

A B ⇀A
(Φ+ ⊢)

A
B ⇀A

(rt)

A
B ⇀A

(⊢ ⇀)

A⇀ (B ⇀A)
with turnstile focussing

(id)

A A
(w− ⊢)

B

A
A

(⊢ ⇀)

A B ⇀A
(Φ+ ⊢)

A
B ⇀A

(⊢ ⇀)

A⇀ (B ⇀A)
without turnstile focussing

Example Derivation II

(id)

A A
(id)

0 0
(⇀ ⊢)

A

A⇀ 0
0

(rt)

A

A⇀ 0
0

(⊢ ⇁)

A (A⇀ 0)⇁ 0

with turnstile focussing

(id)

A A
(id)

0 0
(⇀ ⊢)

A

A⇀ 0
0

(⊢ ⇁)

A (A⇀ 0)⇁ 0

without turnstile focussing

M. Arndt: Tomographs for Substructural Display Logic

185



Example Derivation III

(id)

A A
(Φ+ ⊢)

A
A

(⊢ Φ−)

A

A (grn2)

A

A
(⊢ 0)

A
0

A
(⊢ ⇀)

A⇀ 0
A⋮

(0 ⊢)

0

⋮
A⇀ 0
A

(⇁ ⊢)(A⇀ 0)⇁ 0

A (grn2)(A⇀ 0)⇁ 0

A
(⊢ Φ−)(A⇀ 0)⇁ 0

A
(Φ+ ⊢)(A⇀ 0)⇁ 0 A

Explicit Negation

We now turn to the matter of including explicit structural negation into
both the sequent calculus and the calculus for tomographs.

The former was demonstrated by Goré, and we give a brief account of
galois connection and its dual, the algebraic basis for structural negation.

The two symbols for structural negations, ♯ and ♭, used by Goré for both
sets of connected negations are also overloaded.

Structural negations for tomographs are obtained according to the
correlation between residuation with regard to the empty structure and
the galois connection of two negations. The same holds for the dual case.

M. Arndt: Tomographs for Substructural Display Logic

186



Galois Connections

A Galois connection on a structure ⟨L,≤⟩ is a pair of functions ζ ∶ L→ L
and η ∶ L→ L such that

(⋆) for all x , y ∈ L: y ≤ ζ(x) iff x ≤ η(y).
A dual Galois connection on a structure ⟨L,≤⟩ is a pair of functions
κ ∶ L→ L and λ ∶ L→ L such that

(†) for all x , y ∈ L: κ(x) ≤ y iff λ(y) ≤ x .

The function pairs (ζ, η) and (κ,λ) are pairs of polarities, as each of
them uniquely determines the other via the characteristic property.

Galois Connection as Structural Negation

Goré’s display logic uses two unary structural connectives: ♯ and ♭.
The display property governing these structural connectives is obtained
by means of Galois connection and its dual.

X ⊢ ♯Y
(gc) Y ⊢ ♭X

♯X ⊢ Y
(dgc)♭Y ⊢ X

The following rules relate the structural negations to the (dual) residuals
and empty structure.

Y ⊢ X > Φ
(⊢ ♯) Y ⊢ ♯X X > Φ ⊢ Y

(♯ ⊢)♯X ⊢ Y
Y ⊢ Φ < X

(⊢ ♭) Y ⊢ ♭X Φ < X ⊢ Y
(♭ ⊢)♭X ⊢ Y

M. Arndt: Tomographs for Substructural Display Logic

187



Explicit Negation in the Display Calculus

There are four natural negations in Intuitionistic Bi-Lambek logic.

connective name type

⋅0 right negation intensional
0⋅ left negation intensional⋅1 dual right negation intensional
1⋅ dual left negation intensional

The easiest way to gain an intuition for these negations is via the
following definitions.

A0 =def A −⊳ 0 0A =def 0 ⊲−A

A1 =def A ⊳− 1 1A =def 1 −⊲ A

Display Calculus – Intensional Logical Rules IV

Z ⊢ A
(⋅0 ⊢)

A0 ⊢ ♯Z Z ⊢ ♯A
(⊢ ⋅0)Z ⊢ A0

Z ⊢ A
(0⋅ ⊢)

0A ⊢ ♭Z Z ⊢ ♭A
(⊢ 0⋅)Z ⊢ 0A

♯A ⊢ Z
(⋅1 ⊢)

A1 ⊢ Z A ⊢ Z
(⊢ ⋅1)♯Z ⊢ A1

♭A ⊢ Z
(1⋅ ⊢)

1A ⊢ Z A ⊢ Z
(⊢ 1⋅)♭Z ⊢ 1A

M. Arndt: Tomographs for Substructural Display Logic

188



Galois Connections in Tomographs

Fusion Fork Fission Fork

(rt)

X
Y

X ⊢ Φ < Y X ;Y ⊢ Φ

Y ⊢ X > Φ

X
Y

Φ < Y ⊢ X
Φ ⊢ X ;Y

X > Z ⊢ Y
(drt)

Galois Connections in Tomographs

Fusion Fork Fission Fork

(gc)

X
Y

X ⊢ ♭Y X ;Y ⊢ Φ

Y ⊢ ♯X

X
Y

♭Y ⊢ X
Φ ⊢ X ;Y

♯X ⊢ Y
(dgc)

M. Arndt: Tomographs for Substructural Display Logic

189



Galois Connection Rules for Tomographs

These are the rules governing Galois connection in a calculus for
tomographs.

(gc)

XY
XY

XY
XY

(dgc)

These rules are only useful in the calculus that tracks the turnstile.

Explicit Negation in Display Tomographs

The are four negations in Intuitionistic Bi-Lambek logic are:

connective name type

⋅0 down negation intensional⋅0 up negation intensional

1⋅ dual down negation intensional
1⋅ dual up negation intensional

The same intuition for these negations is gained via the following
definitions.

A0 =def A⇀ 0 A0 =def A⇁ 0

1A =def A↼ 1 1A =def A↽ 1

M. Arndt: Tomographs for Substructural Display Logic

190



Display Tomographs – Intensional Logical Rules IV

Z A
(⋅0 ⊢) Z

A0

AZ
(⊢ ⋅0)Z A0

Z A
(⋅0 ⊢)

A0Z
Z
A

(⊢ ⋅0)Z A0

Display Tomographs – Intensional Logical Rules IV

Z A
(⋅0 ⊢) Z

A0

AZ
(⊢ ⋅0)Z A0

Z A
(⋅0 ⊢)

A0Z
Z
A

(⊢ ⋅0)Z A0

M. Arndt: Tomographs for Substructural Display Logic

191



Display Tomographs – Intensional Logical Rules V

AZ
(1⋅ ⊢)

1A Z
A Z

(⊢ 1⋅)Z
1A

Z
A

(1⋅ ⊢)
1A Z

A Z
(⊢ 1⋅)

1AZ

Display Tomographs – Intensional Logical Rules V

AZ
(1⋅ ⊢)

1A Z
A Z

(⊢ 1⋅)Z
1A

Z
A

(1⋅ ⊢)
1A Z

A Z
(⊢ 1⋅)

1AZ

M. Arndt: Tomographs for Substructural Display Logic

192



Example Derivation IV

(id)

A A
(Φ+ ⊢)

A
A

(⊢ Φ−)

A

A (grn2)

A

A
(⊢ ⋅0)

A0

A⋮

⋮
A0

A
(⋅0 ⊢)

A0
0

A (grn2)

A0
0

A
(⊢ Φ−)

A0
0

A
(Φ+ ⊢)

A0
0 A

Summary

We have presented the notion of tomographs, a two-dimensional notation
based on ternary structural elements – fission and fusion forks.

In this framework the property of (dual) residuated triples, which relates
binary structural connectives in view of a turnstile, amounts to looking at
the structural elements with one of three possible foci.

The binary relation of the turnstile itself becomes expendable, since the
rules of the calculus can be formulated on the basis of relationships
between structural elements and formulae alone.

At the same time, the structural representation of sequents is still the
basis of a calculus in which structural and logical rules are applied to
obtain new tomographs.

We have also addressed explicit structural negation, which can be treated
by the same ternary structural elements – fission and fusion forks.

M. Arndt: Tomographs for Substructural Display Logic

193






	Contents
	Preface
	Programme
	Abstracts
	Francesca Poggiolesi: Grounding as Meta-linguistic Relation
	Ulf Hlobil: Extensions of Non-Monotonic and Non-Transitive Atomic Bases
	Dorota Leszczynska-Jasion and Szymon Chlebowski: Distributive Deductive Systems: the Case of the First-Order Logic
	Gerard R. Renardel de Lavalette: The Mathematics of Derivability
	René Gazzari: The Existence of Pure Proofs
	Lutz Straßburger: Syntactic Proofs versus Combinatorial Proofs
	Alexander Leitsch: CERES: Automated Deduction in Proof Theory
	Enrico Moriconi: Remarks on the Sequent Calculus
	Michael Arndt: Tomographs for Substructural Display Logic

	Presentations
	Ulf Hlobil: Extensions of Non-Monotonic and Non-Transitive Atomic Bases
	Dorota Leszczynska-Jasion and Szymon Chlebowski: Distributive Deductive Systems: the Case of the First-Order Logic
	Gerard R. Renardel de Lavalette: The Mathematics of Derivability: An Application in Horn Logic [paper]
	Gerard R. Renardel de Lavalette: The Mathematics of Derivability [slides]
	René Gazzari: The Existence of Pure Proofs
	Alexander Leitsch: CERES: Automated Deduction in Proof Theory
	Enrico Moriconi: Remarks on the Sequent Calculus
	Michael Arndt: Tomographs for Substructural Display Logic

	Die Endsequenz

