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Abstract 

Animals and humans are challenged throughout life by pathogens such as viruses, 

fungi, parasites or bacteria. The immune system, therefore, has developed effective 

mechanisms to cope with such infections. It consists of a network of collaborating 

organs, tissues, cells and proteins to defend the body against harmful influences. The 

immune system is closely linked with the central nervous system. An inflammatory 

process in the periphery elicits a mirror inflammatory reaction in the brain, inducing a 

behavioral response typically referred to as “sickness behavior”, accompanied by 

significant changes in mood, emotion, and cognition. The molecular mechanisms 

underlying the complex immune responses are, however, largely unknown.  

This work was conducted to investigate how a moderate bacterial inflammation in the 

periphery affects the in vivo functional properties of the cortical network.  

To investigate how microglia and neurons react to a peripheral inflammation, we 

analyzed the properties of these cells in the motor cortex of 4-6 months old mice. We 

injected the mice intraperitoneally with the bacterial endotoxin lipopolysaccharide 

(LPS) and compared them to control mice, injected with sterile phosphate buffered 

saline (PBS).  

ELISA analyses of inflammatory cytokines in blood serum and brain samples of LPS-

injected mice revealed that the inflammatory signal was transmitted from the 

periphery to the brain. During the early phase of inflammation, 5 h after LPS injection, 

we measured in both sample types a strong up-regulation of inflammatory cytokines 

such as Tumor necrosis factor alpha (TNF-α), Interleukin-1beta (IL-1β), Interleukin-6 

(IL-6), CC-chemokine ligand 2 (CCL2) or Interleukin-10 (IL-10). However, this 

cytokine response was transient and during the late phase of inflammation, 30 h after 

LPS injection, most of the cytokines returned to control level. 

To analyze the functional properties of the main immune cells of the brain, the 

microglia, we filled the cells with the calcium (Ca2+) -sensor Oregon Green BAPTA-1 

(OGB-1) by means of single cell electroporation and measured their spontaneously 

occurring Ca2+-signals by two-photon Ca2+-imaging.  

We discovered that microglia were able to sense the inflammatory stimulus from the 

periphery and responded with higher incidences of intracellular Ca2+-signals. This 

hyperactivity of microglia occurred during the early phase of inflammation. 

Concomitantly with the lowered cytokine levels in the late phase of inflammation, the 
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microglial Ca2+-signals diminished. Our data revealed that the LPS-induced 

hyperactivity was dependent on the function of an intracellular immune-complex, the 

so-called NLRP3 inflammasome. In the brain, the NLRP3 inflammasome is mainly 

expressed by microglia. It is known as a sensor of cellular stress factors and it is 

important for the maturation and secretion of the inflammatory cytokines IL-1β and 

IL-18. We observed that microglia from NLRP3 knock-out mice (NLRP3-/-) did not 

respond with an increased Ca2+-signaling after injection of LPS. Thus, during 

peripheral inflammation, LPS-induced inflammatory stress factors might activate the 

NLRP3 inflammasome within the cells and thereby promote the microglial 

hyperactivity. The influence of the cytokine TNF-α on the microglial hyperactivity was 

less pronounced. We did not detect a difference between the Ca2+-signals of 

TNF-α knock-out mice (TNF-α-/-) and WT animals.  

In the late phase of inflammation, microglia changed to a more “reactive” state. This 

state was characterized by morphological and functional alterations of the cells, 

including increased soma volumes, proliferation, additional expression of 

inflammatory cytokines (IL-1β), and accelerated cell process movements. 

Interestingly, all of these “effector functions” are linked to intracellular Ca2+-signals. 

Therefore, the strong Ca2+-signaling in microglia during inflammation might have 

triggered the microglial switch from an early “sensor state” to a late “effector state” of 

the cells.  

To investigate the functional properties of cortical neurons, we labeled them with the 

Ca2+-sensor GCaMP6f and used two-photon imaging to analyze their spontaneous 

Ca2+-signals. Similar to microglia, neurons were capable to sense the inflammatory 

stimulus and reacted during the early phase of inflammation with a pronounced 

hyperactivity. We observed a clear increase of the frequency of Ca2+-transients in 

different parts of the cortical circuitry. The frequency of Ca2+-transients increased in 

the somata of cortical neurons from layer 2/3, in presynaptic axons in layer 1 as well 

as in somata of neurons in layer 5. By using TNF-α-/- mice, we demonstrated the 

importance of this proinflammatory cytokine for the LPS-induced neuronal 

hyperactivity. Neurons in TNF-α-/- mice did not react with increased Ca2+-signaling 

after LPS injection.  

In contrast to the microglial hyperactivity, we found that the inflammation-induced 

neuronal hyperactivity was less dependent on the activation of the 
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NLRP3 inflammasome. Notably, a malfunction of the microglial NLRP3 

inflammasome elicited a heightened basal spontaneous Ca2+-signaling in neurons. 

Further, we discovered that the spontaneous Ca2+-signaling in inhibitory GABAergic 

neurons is reduced after LPS injection. Hence, the neuronal hyperactivity during 

inflammation is probably promoted by a reduced activity of GABAergic cells. 

Blocking microglial CSF1 receptors caused an almost complete depletion of microglia 

within the brain. We found that the depletion of microglia resulted in a general 

reduction of the basal spontaneous Ca2+-signaling of neurons. Strikingly, the absence 

of microglia did not affect the early inflammation-induced neuronal hyperactivity. 

Taken together, a bacterial stimulus from the periphery leads to a pronounced 

hyperactivity of the cortical network. Microglia and neurons seem to sense the 

inflammation individually and react with a transient up-regulation of intracellular 

Ca2+-signals. With this work, we provided insights in the in vivo behavior of specific 

cells types (microglia, GABAergic, and glutamatergic neurons) and structures 

(presynapse, postsynapse) during the inflammatory process and shed light on the 

intracellular Ca2+-signaling of these cells/structures during the course of 

inflammation. We found evidence that the activation of specific cytokines is 

underlying the altered brain signaling and showed that neurons react to this 

inflammatory condition in a microglia-independent manner. 
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Zusammenfassung 

Tiere und Menschen sind zeit ihres Lebens mit Krankheitserregern wie Viren, Pilzen, 

Parasiten oder Bakterien konfrontiert. Ihr Immunsystem hat daher wirksame 

Mechanismen entwickelt, um mit solchen Infektionen fertig zu werden. Es besteht 

aus einem Netzwerk von kollaborierenden Organen, Geweben, Zellen und Proteinen, 

welches den Körper vor schädlichen Einflüssen schützt. Das Immunsystem ist hierbei 

eng mit dem zentralen Nervensystem verbunden. Ein entzündlicher Prozess in der 

Peripherie löst im Gehirn eine spiegelbildliche Entzündungsreaktion aus, die 

wiederum eine Verhaltensantwort in Gang setzt, welche typischerweise als 

"Krankheit" bezeichnet wird und mit deutlicher Veränderung der Stimmung, Emotion 

und Kognition einhergeht. Die molekularen Mechanismen, die den komplexen 

Immunantworten zugrunde liegen, sind jedoch weitgehend unbekannt.  

Ziel dieser Arbeit war es zu untersuchen, wie sich eine moderate bakterielle Infektion 

auf die funktionellen Eigenschaften des kortikalen Netzwerks auswirkt. 

Um herauszufinden, wie Mikroglia und Neurone auf eine periphere Entzündung 

reagieren, haben wir die Eigenschaften dieser Zellen im motorischen Cortex von 

4-6 Monate alten Mäusen analysiert. Hierfür injizierten wir Mäusen intraperitoneal 

das bakterielle Endotoxin Lipopolysaccharid (LPS) und verglichen sie mit 

Kontrollmäusen, die sterile phosphatgepufferte Kochsalzlösung (PBS) erhielten. 

ELISA-Analysen von inflammatorischen Zytokinen in Blutserum und Gehirnproben 

von LPS-injizierten Mäusen bewiesen eine Übertragung des Entzündungssignals von 

der Peripherie auf das Gehirn. In der frühen Entzündungsphase, 5 h nach 

LPS-Injektion, maßen wir sowohl im Serum als auch im Gehirn eine starke Erhöhung 

inflammatorischer Zytokine, wie z.B. Tumor-Nekrose-Faktor alpha (TNF-α), 

Interleukin-1beta (IL-1β), Interleukin-6 (IL-6), CC-Chemokin-Ligand 2 (CCL2) oder 

Interleukin-10 (IL-10). Diese Zytokinantwort war lediglich vorübergehend und in der 

späten Phase der Entzündung, 30 h nach LPS-Injektion, kehrten die meisten 

Zytokine zu ihrem Kontrollniveau zurück. 

Um die funktionellen Eigenschaften der wichtigsten Immunzellen im Gehirn, der 

Mikroglia, zu untersuchen, schleusten wir den Calcium (Ca2+) -Sensor Oregon Green 

BAPTA-1 (OGB-1) mittels Elektroporation in die Zellen ein. Im Anschluss maßen wir 

spontan auftretende Ca2+-Signale der Mikroglia mittels Zwei-Photonen-Mikroskopie. 
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Wir fanden heraus, dass Mikroglia den Entzündungsreiz aus der Peripherie 

wahrnahmen und vermehrt mit intrazellulären Ca2+-Transienten reagierten. Diese 

Hyperaktivität der Zellen war charakteristisch für die frühe Phase der Entzündung. 

Bei sinkendem Zytokinspiegel in der späten Phase, verringerte sich auch die 

Häufigkeit der Ca2+-Signale. Weiterhin konnten wir zeigen, dass die LPS-induzierte 

Hyperaktivität der Mikroglia von der Funktion des so genannten NLRP3-

Inflammasoms abhängt. Das NLRP3-Inflammasom ist ein intrazellulärer 

Immunkomplex, welcher im Gehirn hauptsächlich von Mikrogliazellen exprimiert wird. 

Es fungiert als Sensor für zelluläre Stressfaktoren und ist wichtig für die Reifung und 

Sekretion der inflammatorischen Zytokine IL-1β und IL-18. Wir konnten beobachten, 

dass Mikroglia in NLRP3 Knock-out-Mäusen (NLRP3-/-) keine Verstärkung ihrer 

Ca2+-Signalgebung nach LPS-Injektion zeigten. Daraus lässt sich schließen, dass 

eine periphere Entzündung zu einer Ausschüttung von Stressfaktoren führt, die das 

NLRP3-Inflammasom in den Zellen aktiviert und somit die mikrogliale Hyperaktivität 

fördert. Der Einfluss des inflammatorischen Zytokins TNF-α auf die mikrogliale 

Hyperaktivität war hingegen zu vernachlässigen. Im Vergleich zu Kontroll-Tieren 

konnten wir keine veränderte Ca2+-Signalgebung in TNF-α Knock-out-Mäusen 

(TNF-α-/-) feststellen. In der späten Entzündungsphase wechselten die Mikroglia in 

einen „reaktiveren“ Zustand. Dieser wurde von einer Reihe von morphologischen und 

funktionellen Veränderungen der Zellen begleitet, wie z.B. einem größeren 

Zellkörpervolumen, Proliferation, zusätzlicher Expression entzündlicher Zytokine 

(IL-1β) und einer beschleunigten Bewegung der Zellfortsätze. Interessanterweise 

sind alle diese "Effektor-Funktionen" mit intrazellulären Ca2+-Signalen verknüpft. 

Folglich könnte die starke Ca2+-Signalgebung den Wechsel der Zellen von ihrem 

frühen "Sensor-Zustand" zu einem späten "Effektor-Zustand" verursacht haben. 

Um die Eigenschaften kortikaler Neurone zu untersuchen, markierten wir Neurone 

mit dem Ca2+-Sensor GCaMP6f und analysierten ihre spontane Ca2+-Signalgebung 

mittels Zwei-Photonen-Mikroskopie. Ähnlich wie Mikroglia, waren auch Neurone dazu 

in der Lage, den Entzündungsreiz aus der Peripherie wahrzunehmen. Auch sie 

reagierten mit einer ausgeprägten Hyperaktivität in der frühen Entzündungsphase.  

Wir beobachteten einen deutlichen Anstieg der Frequenz von Ca2+-Transienten in 

verschiedenen Teilen des kortikalen Netzwerks. Die Frequenz der Ca2+-Transienten 



 

VI 

 

stieg in den Zellkörpern kortikaler Neurone aus Schicht 2/3, in präsynaptischen 

Axonen in Schicht 1, sowie in Zellkörpern tiefer gelegener Neurone aus Schicht 5.  

Mit Hilfe der TNF-α-/- Mäuse konnten wir die Bedeutung des inflammatorischen 

Zytokins TNF-α für die LPS-induzierte neuronale Hyperaktivität nachweisen. 

TNF-α-/- Mäuse zeigten keine Verstärkung der Ca2+-Signalgebung nach LPS-

Injektion. Zudem schien im Gegensatz zur Hyperaktivität der Mikroglia, die 

entzündungsinduzierte neuronale Hyperaktivität weniger abhängig von der 

Aktivierung des NLRP3-Inflammasoms zu sein. Jedoch führte das Fehlen des 

NLRP3-Inflammasoms unabhängig von der Entzündung zu einer erhöhten basalen 

spontanen Ca2+-Signalgebung in Neuronen. Weiterhin entdeckten wir, dass bei 

hemmenden GABAergen Neuronen die Frequenz spontaner Ca2+-Transienten nach 

LPS-Injektion reduziert war. Daraus lässt sich schlussfolgern, dass die neuronale 

Hyperaktivität wahrscheinlich durch eine verminderte Aktivität hemmender 

GABAerger Zellen verursacht wird. Die Blockade mikroglialer CSF1-Rezeptoren 

resultierte in einer fast vollständigen Elimination der Mikroglia im Gehirn. Wir fanden 

heraus, dass das Fehlen von Mikroglia zu einer allgemeinen Erniedrigung der 

basalen spontanen Ca2+-Signalgebung von Neuronen führte. Bemerkenswert war, 

dass das Fehlen von Mikroglia keinen Einfluss auf die LPS-induzierte neuronale 

Hyperaktivität hatte. 

Zusammengefasst haben wir herausgefunden, dass ein bakterieller Entzündungsreiz 

aus der Peripherie zu einer ausgeprägten Hyperaktivität des kortikalen Netzwerks 

führt. Mikroglia und Neurone scheinen die Entzündung individuell wahrzunehmen 

und reagieren mit einer vorrübergehenden Erhöhung intrazellulärer Ca2+-Signale.  

Diese Arbeit gibt Aufschluss über das in vivo Verhalten verschiedener Zelltypen 

(Mikroglia, GABAerger und glutamaterger Neurone) und Zellstrukturen (Präsynapse, 

Postsynapse) während eines Entzündungsprozesses im Gehirn und beleuchtet die 

intrazelluläre Ca2+-Signalgebung dieser Zellen/Strukturen im Verlauf des 

Entzündungsprozesses. Wir fanden Hinweise darauf, dass die Aktivierung 

bestimmter inflammatorischer Zytokine der veränderten Ca2+-Signalgebung zugrunde 

liegt und konnten zeigen, dass Neurone unabhängig von Mikroglia auf diesen 

Entzündungszustand reagieren. 
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1. Introduction 

1.1 Anatomical components of cortical networks 

The cerebral cortex of mammals is a complex structure that coordinates among other 

functions the sensory-motor integration and is essential for higher cognitive functions 

including memory formation, emotion and social behavior (Zeisel et al. 2015; 

Etkin et al. 2011; Bicks et al. 2015). It is composed of different cell types, such as 

astrocytes, oligodendrocytes, microglia or neurons. Based on histological 

examinations and the distinct distribution of the cell types and their connections, the 

cerebral cortex can be categorized in the allocortex and the isocortex. Both have a 

characteristically layered horizontal structure. The allocortex, including the 

hippocampus, the rhinal and olfactory cortices, consists of three distinct layers 

(Palomero-Gallagher and Zilles 2015; Witter 2012). In the following, I will set the 

focus on the isocortex, as this work deals with inflammation in this brain structure. 

The isocortex can be classified in specific functional areas, such as the visual, 

auditory, somatosensory or motor cortical areas. Typically, seven distinct layers can 

be distinguished in the isocortex of mice (layer 1, 2/3, 4, 5, 6 and 7). The layers 

consist of specialized populations of neurons with different morphologies, projection 

targets, gene expression and functions (Molyneaux et al. 2007). 

The most superficial layer 1, also termed “external plexiform” or “molecular layer”, is 

almost devoid of neurons. It consists mainly of axons from different sources 

(thalamus, layer 2/3, 5, 6 or 7), some inhibitory neurons and apical dendrites from 

pyramidal neurons of deeper layers (De Paola et al. 2006; Kirkcaldie 2012). 

The layer 2/3 or “supragranular pyramidal layer” is dominated by small pyramidal 

neurons with strong local and cortico-cortical connections. In the motor cortex, there 

are prominent interactions with subcortical projection neurons of layer 5. In addition 

to the pyramidal neurons, this layer is also populated by a diverse group of 

interneurons, like chandelier or basket cells (Kirkcaldie 2012). 

Layer 4, the "granular layer" receives input from the thalamus and is strongly 

pronounced in the somatosensory areas. It contains so-called spiny stellate cells, as 

well as apical dendrites from layer 6 pyramidal neurons, providing feedback back to 

the thalamus (Kirkcaldie 2012). The motor cortex, in contrast, lacks a distinctly visible 
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layer 4, whereby a laminar zone on the border of layer 3 and 5, was reported to 

provide similar functions, with excitatory inputs from the thalamus and excitatory 

outputs to layer 2/3 neurons (Yamawaki et al. 2014). 

The cortical layer 5 or the “deep pyramidal layer” consists of relatively large 

pyramidal neurons projecting to various cortical and subcortical brain regions, like the 

striatum, midbrain, pontine nuclei, brainstem or spinal cord. It can be further 

subdivided into layer 5A with the cortico-striatal projections and layer 5B with mainly 

cortico-spinal projections (Kirkcaldie 2012). 

Layer 6 or “polymorphic layer” contains neurons with clearly diverse morphologies. It 

is mainly considered as output layer with strong reciprocal projections to the 

thalamus. The neurons from this layer are connected with different cortical areas and 

are able to modulate the thalamic drive in these regions, making them an important 

part of the cortico-cortical communication (Kirkcaldie 2012). 

Layer 7, the “subgriseal layer” is the deepest cortical layer. It is present in several 

areas of the mouse cortex and is separated from the layer 6 by stratum, containing 

only very few cells. The so-called subplate neurons of layer 7 project to layer 1 and 

across the corpus callosum (Kirkcaldie 2012). 

In addition to the layered structure, cortical neurons are often organized in so-called 

“functional columns”. One column is hereby considered as a group of adjoining cells 

that are working on the same “functional project” (Mountcastle 1997). The functional 

structures were described especially for the sensory areas, like the visual, the 

somatosensory or auditory cortices, whereas in the motor cortex, the organization is 

less clear and it is difficult to distinguish between columnar functional structures 

(Hatsopoulos 2010). This work mainly focuses on the motor cortical areas. They are 

responsible for the orchestration and execution of motor behaviors 

(Fritsch and Hitzig 2009; Ferrier 1874). 

1.2 Systemic inflammation 

Microbial pathogens are a common source of morbidity in humans. A bacterial 

infection leads to classical symptoms of “sickness” as altered body temperature, 

nausea, loss of appetite, fatigue, decreased motor activity, reduced interest in social 

interactions and depression. This “sickness behavior” is a reaction of the organism, 

initiated to efficiently cope with the infection (Dantzer 2009; Perry and Cunningham 
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2007). Phagocytic cells of the innate immune system, like monocytes or tissue 

macrophages, are the first line of defense against a peripheral infection. They get 

activated through pattern recognition receptors (PRRs), which can be classified into 

membrane-bound and cytoplasmic PRRs. One type of the membrane-bound PRRs 

are the toll-like receptors (TLRs). So far, in mammals, 13 distinct members of the 

toll-like receptor family are described (TLR 1-13). They can be found on many 

different cell types. In the periphery, besides monocytes and macrophages, dendritic 

cells, neutrophils, and epithelial cells express TLRs. In the brain, they are present on 

microglia, astrocytes, oligodendrocytes, and neurons (Hanke & Kielian 2011). TLRs 

are able to recognize different pathogen-associated molecular patterns (PAMPs), 

such as viral ribonucleic acid, bacterial flagellin, lipoteichoic acid or 

lipopolysaccharide (LPS) (Albiger et al., 2007). LPS is a bacterial cell wall component 

of gram-negative bacteria. It interacts specifically with TLR-4. This interaction leads 

to an oligomerization of TLR-4 and the recruitment of adaptor proteins, inducing 

pathways that trigger the production of various inflammatory cytokines, such as 

Interleukin-1α, Interleukin-1β (IL-1β), Tumor necrosis factor-α (TNF-α), C-C motif  

chemokine ligand 2 (CCL2), Interleukin-6 (IL-6) or Interleukin-10 (IL-10) 

(Lu, Yeh, and Ohashi 2008; Albiger et al. 2007). The cytokines function hereby as 

mediators that coordinate the systemic inflammatory response to an infection (Hines 

et al. 2013; Dantzer 2009). Under physiological conditions, the brain is protected from 

direct influence of inflammatory mediators by the blood-brain barrier (BBB). 

Nevertheless, a systemic inflammation in the periphery engenders a mirror 

inflammatory response in the brain. There are four known pathways, which enable 

the immune communication from the periphery to the brain (Dantzer 2009) (Figure 1): 

(1) In the neural pathway, locally produced cytokines activate primary afferent 

nerves, like the vagal nerve. The vagal afferents, in turn, project to different brain 

regions that are associated with the induction of “sickness behavior”, for instance, the 

nucleus tractus solitarius, the brain stem, the hypothalamus or other limbic structures. 

(2) The second pathway is a humoral pathway, where circulating peripheral cytokines 

or inflammatory mediators directly access and affect the brain by diffusion at the 

circumventricular organs (CVO), brain regions that lack a contiguous BBB. 
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(3) Additionally, many cytokines can be transported over the BBB in an energy-

dependent active manner. This process involves specific cytokine transporters in the 

BBB and represents the third pathway. 

(4) In the last pathway, the inflammatory cytokines activate perivascular 

macrophages and endothelial cells that start to secrete inflammatory mediators by 

themselves and thereby transmit the signal from the periphery to the central nervous 

system (CNS). 

Taken together, all pathways lead to an inflammation in nervous tissues, termed 

neuroinflammation, and trigger a central inflammatory response, resulting in the 

activation of brain immune cells, such as microglia. 

 

 

Figure 1 Overview of different pathways from the periphery to the brain 

(1) In the neural pathway, locally produced cytokines activate primary afferent nerves, like the vagal nerve that 

transmit the inflammatory signal to the central nervous system (CNS). (2) In the second pathway, a humoral 

pathway, circulating peripheral cytokines or inflammatory factors directly access and affect the brain by diffusion 

at the circumventricular organs (CVOs). (3) In the third pathway, cytokines can be transported over the 

blood-brain barrier (BBB) in an energy-dependent active manner by the activation of specific cytokine transporters 

in the BBB. (4) In the fourth pathway, the inflammatory cytokines activate perivascular macrophages and 

endothelial cells, that start to secrete inflammatory mediators by themselves and thereby transmit the signal from 

the periphery to the CNS. All pathways transmit the inflammatory signal to the brain and lead to an activation of 

brain cells like microglia. 
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1.3 Functional properties of microglia 

Microglial cells play a pivotal role in the immune system of the CNS. They are 

abundantly present within the whole brain and, depending on the region, around 

5-12 % of the cells in the mouse brain are microglia (Lawson et al. 1990). They 

represent a heterogeneous population of innate immune cells with a broad functional 

diversity. Microglia are essential for the maintenance of the normal brain 

homeostasis. They have an impact on synapse remodeling (Tremblay, Lowery, and 

Majewska 2010; Paolicelli et al. 2011) and stand in close interaction with astrocytes 

and neurons, impacting the activity of the entire network (Wake et al. 2009; Liu, 

Tang, and Feng 2011). Under healthy physiological conditions, they are 

characterized by a ramified morphology with small cell bodies and fine processes. 

They use their highly motile processes, to constantly scan their environment 

(Davalos et al. 2005; Nimmerjahn, Kirchhoff, and Helmchen 2005). After sensing an 

inflammatory stimulus, microglia switch from a “resting surveying state” to an 

“activated effector state”. According to the strength of the stimulus, this activation is 

associated with an alteration of their morphology from ramified over a hypertrophic to 

a highly migratory amoeboid state (Kozlowski and Weimer 2012; Kettenmann et al. 

2011). The functional significance of the morphological change is not fully 

understood. However, it is associated with a higher reactivity of microglia, including 

migration of the cells, the clearance of apoptotic cells and the phagocytosis of 

pathogens or cell debris (Nimmerjahn, Kirchhoff, and Helmchen 2005; 

Petersen and Dailey 2004). Upon a local tissue injury or exposure to a “danger 

signal” like adenosine triphosphate (ATP), usually released by damaged cells, 

microglia can direct their motile processes towards the harmed cell or even move to 

the site of the injury. Microglial processes are able to actively shield the healthy 

tissue, protecting it from secondary damage (Davalos et al. 2005). A characteristic 

trait of microglia is that they originate from hematopoietic stem cells in the yolk sac 

and not from bone marrow precursors, like other mononuclear macrophages 

(Ginhoux et al. 2010). They are believed to have a relatively long lifespan and the 

feature to proliferate from resident progenitors within the brain. Their proliferation rate 

is hereby counterbalanced by apoptotic cell death (Askew et al. 2017). In response to 

an inflammatory insult, microglia can increase their presence by up-regulating the 

rate of cell division and thereby enabling the innate immune system of the brain to 
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effectively fight the infection (Fukushima et al. 2015). Calcium (Ca2+) ions are 

considered to be key regulators of cell proliferation by activating transcription factors 

and regulating the gene transcription (Berridge, Lipp, and Bootman 2000). As 

intracellular messenger, Ca2+ is involved in several signaling pathways and 

responsible for the activation of different cellular processes in microglia. 

1.3.1 Ca2+-signaling in microglia 

Microglia express many surface molecules and receptors enabling them to sense 

changes in their environment. A binding of inflammatory mediators can activate 

internal signaling pathways leading to an increased level of cytosolic Ca2+ 

(Kettenmann et al. 2011). Ca2+ ions can enter the cell from different sources. Various 

ionotropic and metabotropic purinergic receptors represent the most prominent 

sources for an increase of the intracellular Ca2+-concentration ([Ca2+]i) 

(Eichhoff, Brawek, and Garaschuk 2011; Brawek and Garaschuk 2017; 

Kettenmann et al. 2011). An activation of ionotropic purinergic P2X receptors, for 

instance, induces an influx of Ca2+ and sodium (Na+) from the extracellular space and 

a concomitant efflux of potassium (K+) through non-selective cationic channels. 

Another source of Ca2+ is the endoplasmic reticulum (ER). An increase in [Ca2+]i can, 

for example, be mediated by activation of metabotropic purinergic P2Y receptors, 

leading to a depletion of the intracellular Ca2+-stores in the ER. The Ca2+-release 

from the ER stores, in turn, activates so-called store-operated Ca2+-channels (SOC) 

in the plasma membrane of microglia, initiating a feedback loop with the subsequent 

further influx of Ca2+ from the extracellular space. This feedback loop, in turn, might 

lead to the refilling of the ER Ca2+-stores (Kettenmann et al. 2011). 

1.3.2 Microglial Ca2+-signaling under physiological conditions 

Under normal conditions, spontaneous microglial Ca2+-signaling in the somata of 

ramified microglia of anesthetized mice is a rare event (Eichhoff, Brawek, 

and Garaschuk 2011; Brawek et al. 2014; Pozner et al. 2015). The significance of 

Ca2+-signaling in resting microglia is not completely understood, but it is known that 

somatic spontaneous Ca2+-signaling of microglia does not reflect one to one the 

activity of the surrounding neurons. This was shown by in vivo experiments, 

measuring microglial Ca2+-transients during disinhibition of the neuronal network by 

applying the γ-aminobutyric acid (GABAA) receptor blocker bicuculline. Further, it is 
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known that the more frequently occurring astrocytic Ca2+-waves, present in 70-80 % 

of all astrocytes are not necessarily accompanied by microglial Ca2+-signals 

(Eichhoff, Brawek, and Garaschuk 2011). At the same time, many functional 

properties of microglia are governed by intracellular Ca2+-signals. In addition to 

mediating cell proliferation, Ca2+-signaling is important for cell migration and 

phagocytosis (Korvers et al. 2016). Further, a cytosolic Ca2+-increase is linked to 

gene transcription and release of inflammatory factors such as, for instance, 

chemokines, reactive oxygen species (ROS) or cytokines like TNF-α and IL-1β 

(Hoffmann et al. 2003). Microglial Ca2+-signaling thereby represents an important 

trigger of the central immune response. Hence, spontaneously occurring Ca2+-events 

might represent a good reflection of the activation state of microglia. 

1.3.3 Enhanced microglial Ca2+-signaling during inflammation 

The activation of microglia through inflammatory mediators and the effect on their 

Ca2+-signaling was reported in several in vitro experiments. Applying LPS resulted in 

a chronic elevation of intracellular Ca2+-levels in cultured microglia 

(Hoffmann et al. 2003; Färber and Kettenmann 2006b). In neonatal cultured 

microglia, chronic treatment of the cells with LPS was shown to have an impact on 

the Ca2+-kinetics, with a longer rise and decay time, but no clear effect on the 

frequency of the Ca2+-transients (Korvers et al. 2016). However, the behavior and 

morphology of microglia in culture is different than in the intact organism. The 

cultures derive often from young neonatal brains and immature not yet differentiated 

microglia (Eichhoff, Brawek, and Garaschuk 2011). Further, the sensitive microglial 

cells react to the process of cell culturing and the presence of serum factors with a 

more activated phenotype. It was shown that the isolation of microglia leads to 

increased levels of cytosolic [Ca2+]i in the cells and a concomitantly up-regulated 

expression of microglial activation markers, like the cluster of differentiation 68 

(CD68) or IL-1β (Brawek et al. 2017). All these differences prevent a one to one 

comparison of cultured microglia with microglia in the intact brain under physiological 

conditions. However, classical attempts to analyze in vivo Ca2+-signaling in cells 

(neurons, astrocytes), like the multi-cell bolus loading technique (MCBL) failed for 

microglia. MCBL enables the uptake of small-molecule indicator dyes like 

Oregon Green BAPTA-1 (OGB-1) into the cells. Due to the limited uptake of synthetic 

Ca2+-dyes in microglia, the data obtained from in vivo experiments are rare 
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(Eichhoff, Brawek, and Garaschuk 2011; Brawek and Garaschuk 2013). One option 

to investigate Ca2+-signaling under more physiological in vivo conditions is, to actively 

administer Ca2+-sensors into the cells. This can be achieved by means of single cell 

electroporation (Eichhoff, Brawek, and Garaschuk 2011). Our group could show by 

using this method that activated microglia in proximity of amyloid beta plaques in a 

mouse model of Alzheimer`s disease display a significantly higher incidence of 

Ca2+-transients than resting cells (Brawek et al. 2014). A recently developed mouse 

line with a genetically encoded Ca2+-sensor in microglia provides another option to 

investigate Ca2+-dynamics in microglia under in vivo conditions (Gee et al. 2014; 

Pozner et al. 2015). 

1.4 Functional properties of cortical neurons 

The neuronal network activity in the mouse cortex is highly complex and reflects an 

elaborate balance between inhibitory and excitatory inputs. Generally, cortical 

neurons can be divided into two broad classes. The first class (around 80 % of all 

cells) is represented by excitatory glutamatergic neurons with local as well as long-

range projections to their targets. The second class (around 20 % of all cells) is given 

by inhibitory GABAergic interneurons. They shape the activity of other neurons often 

through local connections (Molyneaux et al. 2007; Jiang et al. 2015). Even in the 

absence of external stimuli, neurons are spontaneously active 

(Shadlen & Newsome 1994; Mazzoni et al. 2007). Upon activation, they fire action 

potentials (APs). APs are triggered by the opening of voltage-gated ion channels, 

resulting in an influx of mainly Na+-ions and a subsequent change in the membrane 

potential. This, in turn, activates voltage-gated Ca2+-channels and leads to a 

concomitant rapid increase in [Ca2+]i (Lev-Ram and Grinvald 1987; 

Berridge, Lipp, and Bootman 2000). 

1.4.1 Ca2+-signaling in neurons 

At rest, neurons typically have an intracellular free Ca2+-concentration of around 

30-100 nM. During neuronal activity, it can rise to 10-100 times higher level 

(Garaschuk and Konnerth 1997; Berridge, Lipp, and Bootman 2000). Similar as in 

microglia, the [Ca2+]i in neurons can be either increased through Ca2+-influx from the 

external space or through release from the internal stores (ER). A plethora of 
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different stimuli, like extracellular agonists, inflammatory noxious factors, membrane 

depolarization or depletion of intracellular stores can lead to the influx of Ca2+ into the 

cell. Responsible for the influx from the extracellular space are Ca2+-permeable 

channels in the plasma membrane. These include voltage-gated Ca2+-channels, 

ligand-gated ion channels, like NMDA or AMPA glutamate receptors, as well as the 

store-operated Ca2+-channels. The Ca2+-release from the ER, in contrast, can be 

mediated by the activation of special ER membrane receptors, such as the inositol 

trisphosphate receptors (IP3Rs) or the ryanodine receptors (Berridge, Lipp, 

and Bootman 2000; Grienberger and Konnerth 2012). Activation of metabotropic 

glutamate receptors, for instance, is known to mediate the production of inositol 

triphosphate (IP3), which can activate IP3Rs. The ryanodine receptors react to 

cytosolic Ca2+-increases, initiating the so-called Ca2+-induced Ca2+-release. 

An increase in [Ca2+]i is generally driven by a strong concentration gradient. After the 

signaling event, the resting cytosolic [Ca2+]i needs to be restored. This task is 

accomplished by a set of specialized Ca2+-pumps. The plasma membrane 

Ca2+-ATPase and the Na+/Ca2+-exchangers extrude Ca2+ out of the cell, whereby the 

sarcoendoplasmic reticulum calcium transport ATPase pumps, return Ca2+ to the 

internal stores (Berridge, Lipp, and Bootman 2000). 

1.4.2 In vivo Ca2+-imaging in populations of cortical neurons 

The neuronal activity and the concomitant changes in [Ca2+]i can be tracked in vivo 

with the help of fluorescent Ca2+-indicator molecules. In 2003, Stosiek et al. 

introduced the multi-cell bolus loading technique (MCBL), enabling convenient 

labeling of a whole population of neurons and astrocytes with small synthetic 

Ca2+-indicators, like OGB-1. After bolus loading OGB-1 into the brain tissue, it is 

quickly taken up by the cells and the cell activity can be monitored subsequently. This 

technique enabled for the first time in vivo measurements of the intracellular 

Ca2+-signaling in neuronal circuits at single-cell resolution and provided insights into 

the sensory-driven activity pattern of layer 2/3 neurons in the barrel cortex 

(Stosiek et al. 2003). Thereafter, MCBL was widely used to study neuronal network 

activity in the intact brain of wild type (WT) animals (Kerr, Greenberg, and Helmchen 

2005; Ohki et al. 2005; Sullivan et al. 2005) and in different animal models of disease 

(Busche et al. 2008; Wenzel et al. 2017). Labeling neuronal networks with OBG-1 by 

means of MCBL leads to a staining of neuronal somata, as well as the surrounding of 
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the neurons, which is termed neuropil. The neuropil consists of dendrites, spines, 

axons, presynaptic boutons, and glial processes (Chklovskii, Schikorski, and Stevens 

2002). However, due to a lack of contrast, a clear discrimination between these 

compartments is not possible. Electroporation provides another option to load 

neurons with Ca2+-indicators. This technique can either be used to stain cells 

individually via single cell electroporation (Judkewitz et al. 2009) or stain several cells 

at once by bulk electroporation (Nagayama et al. 2007). 

Over the years the methods of measuring Ca2+-signaling steadily improved and a 

wide range of different Ca2+-indicators are known today. Because of their distinct 

properties, in terms of sensitivity, kinetics, excitation or emission spectra, they can be 

used in various approaches and applications (Olga Garaschuk and Griesbeck 2010; 

Grienberger and Konnerth 2012). In addition to small synthetic Ca2+-indicators, 

another option to visualize neuronal Ca2+-signals is the use of genetically encoded 

Ca2+-indicators (GECIs). GECIs can be transferred into the organism by gene 

delivery methods like in utero electroporation, virus-based gene transfer, or 

generation of transgenic mouse lines. Nowadays, there is a possibility to take 

advantage of several different transgenic mouse lines that express GECIs in variable 

types of tissue (Mank et al. 2008; Tallini et al. 2006; Ji et al. 2004; 

Zariwala et al. 2012). GCaMP6 is a commonly used GECI. It is a sensitive 

Ca2+-indicator protein and it was reported to reliably detect single APs in neurons 

(Chen et al. 2013). With the help of, for example, an adeno-associated virus (AAV) 

expressing different GCaMP6 variants, specific regions of the neuronal tissue can be 

effectively labeled. The main advantage of GECIs like GCaMP6, in comparison to 

synthetic small molecule Ca2+-indicators, is that the indicator expression is quite 

stable over a longer period of time. This fact enables Ca2+-imaging of individual 

neurons through a chronic window over weeks. However, as also toxic effects have 

been reported, the measurements over extended periods of time have to be 

performed with caution. Cells showing nuclear fluorescence are likely to be unhealthy 

and might have altered properties, so the imaging of them should be avoided 

(Steinmetz et al. 2017; Tian et al. 2009). Nevertheless, due to a high contrast and a 

distinct staining of different cell compartments, with the correct staining paradigm, 

GCaMP6 can be used to measure Ca2+-signals in the soma, as well as in axonal or 

dendritic structures of cell populations.  
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Taken together, Ca2+-imaging provides a good method to capture functional 

dynamics of neuronal circuits in vivo. It can be used to investigate neurons at a single 

cell or even subcellular level, as well as the whole population of neurons 

(Stosiek et al. 2003; Prevedel et al. 2016; T. Chen et al. 2013). 

1.5 Cytokines 

Cytokines are small regulatory proteins, secreted, either by immune cells of the 

periphery like liver Kupffer cells, monocytes, macrophages, or cells within the CNS. 

Sources of cytokines in the CNS are invading peripheral immune cells, microvascular 

endothelial cells, pericytes, the choroid plexus, astrocytes, microglia and neurons 

(Galic, Riazi, and Pittman 2012). Several hundreds of different cytokines are known, 

and in addition to mediating interactions between cells and their function in general 

immune responses, they can act as neuromodulators. They participate, for instance, 

in neuronal development (Deverman and Patterson 2009; Zhao and Schwartz 1998), 

regulation of sleep (Krueger et al. 1998) or normal aging (Álvarez-Rodríguez et al. 

2012; Vitkovic et al. 2000). The cytokine network is defined by the action of cascades 

of different pro- and anti-inflammatory cytokines, with positive and negative 

feedbacks and complex reciprocal interactions (Amiot et al. 1997). Two of the main 

proinflammatory cytokines are TNF-α and IL-1β, which are described in the chapters 

below. 

1.5.1 Tumor necrosis factor-alpha 

TNF-α is constitutively present within the CNS and mainly locally synthesized by glial 

cells. It is initially produced as a transmembrane protein that can be cleaved into a 

soluble form by the matrix metalloproteinase TNF-α-converting enzyme (TACE). Both 

the transmembrane and the soluble form of TNF-α have physiological implications. 

TNF-α can induce signaling pathways through the activation of the surface receptors 

Tumor necrosis factor receptor 1 and 2 (TNFR1 and TNFR2) (Zhang and An 2007). 

Soluble TNF-α acts mainly via TNFR1, which is present on most cell types within the 

CNS. The transmembrane form of TNF-α, in contrast, has a higher binding affinity to 

the TNFR2, preferentially expressed by glial and endothelial cells (Santello and 

Volterra 2012). After binding of TNF-α, several adaptor proteins are recruited, leading 

to the formation of intracellular protein complexes. These complexes initiate signaling 
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cascades, resulting in the activation of transcription factors, thereby regulating the 

expression of specific genes. The effects of TNF-α are pleiotropic. They include 

influences on cell growth, proliferation, cell migration, apoptosis, necrosis, synaptic 

scaling, and plasticity, as well as the regulation of the BBB permeability, the induction 

of inflammation with glial activation or febrile responses (McCoy and Tansey 2008; 

Santello and Volterra 2012). TNF-α can have protective as well as detrimental 

effects, depending on the activated receptor type, the duration of its action and its 

concentration. Under pathological conditions, the initially low levels of TNF-α in the 

brain can rise rapidly (Santello and Volterra 2012). Especially the soluble form of 

TNF-α is responsible for inflammatory processes, as demonstrated with knock-in 

mice expressing mutant TNF-α that is no longer a substrate for TACE cleavage 

(McCoy and Tansey 2008). During inflammation, there is a general up-regulation of 

TNF-α and its receptors. TNF-α is hereby thought to orchestrate the production of 

itself and other cytokines like IL-1β, IL-6, IL-8, CCL2 or IL-10. Blocking the effects of 

TNF-α in mice, with antibodies against TNF-α, soluble TNF-α receptors, or by using 

TNF-α knock-out mice, led to significantly reduced cytokine levels and a reduced 

inflammatory outcome after stimulation with LPS (Amiot et al. 1997). 

1.5.2 Interleukin-1 beta 

IL-1β represents another major inflammatory cytokine. It holds several physiological 

functions within the CNS, like the regulation of sleep, food and water intake, 

temperature regulation, synaptic plasticity and memory formation (Basu, Krady, and 

Levison 2004; Pinteaux et al. 2002). It is a large hydrophilic protein, which does 

generally not diffuse across the BBB, but can be secreted endogenously in the CNS 

by several cell types like astrocytes, oligodendrocytes, neurons, endothelial cells or 

microglia. Microglia are hereby considered to be the main source of IL-1β 

(Dantzer 2009; Pinteaux et al. 2002). Under healthy conditions, IL-1β is expressed at 

relatively low levels, but during pathologies like injuries or systemic infections, the 

IL-1β levels increase dramatically, inducing inflammation, fever and “sickness 

behavior” (Pinteaux et al. 2002). As TNF-α, also IL-1β acts in a divergent manner 

with dichotomic effects, depending on the activated type of receptors, duration of 

action and concentration. IL-1β activates the Interleukin-1 receptors (IL-1Rs). Two 

main receptors are known, the IL-1 type-I receptor (IL-1RI) (Sims et al. 1988) and the 

IL-1 type-II receptor (IL-1RII) (McMahan et al. 1991). IL-1RI can associate with an 
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IL-1 receptor accessory protein (IL-1RAcP) to activate signaling pathways 

(Wesche et al. 1997). IL-1Rs are present on almost all cell types in the brain 

(Pinteaux et al. 2002). IL-1β is initially synthesized as an inactive pro-

peptide (Lamkanfi and Dixit 2012). In order to switch to a bioactive mature form, it 

needs to be post-translationally processed on intracellular protein platforms, known 

as inflammasomes. In the CNS, inflammasomes are dominantly expressed by 

microglia and macrophages. Both cell types have a sensor function for danger 

signals or infectious stimuli (Walsh, Muruve, and Power 2014). In comparison to the 

toll-like pattern recognition receptors on the surface of the cells, so-called NOD-like 

receptors (NLRs), located in the cytoplasm of the cells are important to sense 

intracellular danger signals. An activation of the NLRs can induce the assembly of the 

inflammasome complex. The complex generally consists of three major parts: a 

cytosolic pattern-recognition receptor, the enzyme caspase 1 and an adaptor protein 

facilitating the interaction between the two. One of the main and best-investigated 

inflammasomes is the NLR family pyrin domain containing 3 inflammasome (NLRP3). 

NLRP3 can be activated by harmful stimuli, such as amyloid beta, viral, fungal and 

bacterial components or extracellular ATP. The activation is a two-step process. First, 

a priming signal like, for example, bacterial LPS is needed, to trigger the transcription 

of inflammatory cytokine precursors like pro-IL-1β or pro-IL-18. Then, a second 

trigger, such as ATP, initiates the protein complex formation. This leads to a 

subsequent activation of the proinflammatory enzyme caspase 1 and the maturation 

and release of the active forms of IL-1β or IL-18. The release of the pyrogenic 

cytokine IL-1β into the extracellular space may, for example, induce fever by 

interacting with temperature-sensitive neurons in the preoptic hypothalamus or 

modulate the secretion of the corticotrophin-releasing hormone, by influencing 

neurons of the paraventricular nucleus of the hypothalamus. Corticotrophin-releasing 

hormone, in turn, can act on the pituitary and regulates the release of corticotrophin 

and the secretion of glucocorticoids by the adrenal cortex (Whiteside, Quan, and 

Herkenharn 1999; Gadek-Michalska and Bugajski 2004). The action of cytokines can 

have a broad impact on the organism. Cytokines have a great spectrum of different 

activities and always act in the context of other cytokines with opposing or 

potentiating effects on each other. Overall, they can be considered as junctions 
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between cells of the immune and neuronal system and represent, among others, one 

way of the communication between these cells. 

1.6 Microglia-neuron interactions 

In the recent years, it became more and more clear that microglia play an active role 

in the development and maintenance of the neuronal circuitry. As highly dynamic 

cells, they stand in close interaction with neurons. Their fine processes regularly 

contact neuronal synapses in an activity-dependent manner (Wake et al. 2009; 

Tremblay, Lowery, and Majewska 2010). Microglia seem to be able to sense 

neuronal activation, whereby synapses from neurons with higher activity are 

contacted more frequently. It was shown, that rather small spines are contacted more 

often and tend to increase under the influence of microglia (Tremblay, Lowery, and 

Majewska 2010; Eyo and Wu 2013). Microglial cells have the ability to engulf and 

phagocyte whole synapses. Immune factors of the complement system expressed by 

synapses and complement receptors on the surface of microglia were shown to 

mediate phagocytosis and synaptic pruning during development (Stevens et al. 2007; 

Schafer et al. 2012). Thus, microglia are important for synaptic reorganizations during 

development as well as in the mature adult brain (Paolicelli et al. 2011; 

Miyamoto et al. 2013). In addition to the contact-mediated synapse remodeling, 

microglia have the ability to actively shape the function of neurons by release of 

modulatory factors. These factors can be prostaglandins, chemokines or cytokines. 

The cytokine TNF-α, for instance, was implicated in neuronal synaptic scaling and IL-

1β was considered to be relevant for long-term potentiation in neurons 

(Stellwagen and Malenka 2006; Wohleb 2016). All these abilities make microglia 

essential players of the synaptic network plasticity. 

Vice versa, also neurons are important for the development of microglia. Factors 

released by neurons, like Interleukin-34 (IL-34) or the colony stimulating factor-1 

(CSF-1), for example, act on CSF-1 receptors on microglia and participate in the 

regulation of the development and the viability of microglial cells. A blockade of the 

CSF-1 receptor results in a robust depletion of microglia within the brain 

(Elmore et al. 2014; Dagher et al. 2015). Also, neurons can interact with microglia via 

direct contact-dependent mechanisms or through soluble factors like chemokines, 

neurotransmitters, and cytokines (Wohleb 2016). Under physiological conditions, 
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neurons express or release "OFF"-signals, to keep microglia in their 

surveillance/resting state. Under pathological circumstances, neurons either remove 

the "OFF"-signals or communicate via "ON"-signals, to actively initiate microglial 

effector functions (Biber et al. 2007). Chemokines like the CX3C motif ligand 1 

(CX3CL1), also known as fractalkine can act as "OFF"-signal. CX3CL1 directly 

connects neurons with microglia. CX3CL1 is constitutively expressed on neurons and 

binds the CX3C motif receptor 1 (CX3CR1) expressed on microglia. This bridge 

between the cells regulates the activity state of microglia. While the ligand is bound to 

the receptor, microglia remain in their quiescent, ramified state (Wohleb 2016). An 

improper ligand-receptor connection was shown to alter the responses of microglia to 

inflammatory and neurotoxic stimuli like LPS and has implications for the survival of 

the neurons. It is known that CX3CR1 knock-out mice show a stronger morphological 

activation of microglia and a significantly increased incidence of neuronal cell death 

(Cardona et al. 2006). Several factors from the immunoglobulin superfamily function 

as such "OFF"-signals. The CD200 glycoprotein from neurons and the CD200 

receptors on microglia represent another direct contact between the cells, mediating 

the morphological state of microglia. A disrupted CD200/CD200R signaling leads to 

highly activated microglia and a worsening of neuroinflammatory processes 

(Masocha 2009; Deckert et al. 2006; Hoek 2000; Meuth et al. 2008). Further, an 

activation of CD45 receptors expressed by microglia inhibits their activation. After 

neuronal damage, neurons can release CD22, which activates CD45 receptors 

(Tan, Town, and Mullan 2000; Mott et al. 2004; Biber et al. 2007). Microglia were also 

shown to express receptors for neurotransmitters, such as glutamate, GABA, 

noradrenaline, dopamine or purines. Activation of these receptors in vitro was 

reported to result in changes of the membrane properties of microglia. Moreover, 

except glutamate, all of these neurotransmitters led to a decreased release of 

inflammatory mediators, like nitric oxide, TNF-α or IL-1β in response to LPS 

stimulation. Transforming growth factor-β, expressed in neurons, might represent 

another neuronal "OFF"-signal to keep microglia quiet. Transforming growth factor-β 

knock-out mice were characterized by an increased activation of microglia 

(Brionne et al. 2003; Biber et al. 2007). 
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On the other hand, instead of down-regulating the activity of microglia, neurons are 

also capable to release activating "ON"-signals. In presence of danger or harmful 

stimuli, for example, damaged neurons may release purines like ATP. Such purines 

can act on microglial purinergic receptors and initiate either inflammatory mediator 

responses or affect the process motility and phagocytosis of microglia (Koizumi et al. 

2007; Wohleb 2016). Upon stimulation, neuronal cultures were shown to release 

chemokines, such as CX3CL1, C-X-C motif chemokine ligand 10 (CXCL10) or 

C-C motif chemokine ligand 21 (CCL21) (Limatola et al. 2005; Klein et al. 2005; 

de Jong 2005). These, in turn, were reported to initiate the migration of microglia. 

Hence, neurons might actively attract microglial cells in dangerous situations 

(Biber et al. 2007). In comparison to the "OFF"-signal-neurotransmitters mentioned 

above, the release of neuronal glutamate can be considered as neuronal 

"ON"-signal. The stimulation of glutamate receptors on microglia was hereby 

correlated with the release of proinflammatory TNF-α and concomitant neurotoxic 

effects (Taylor 2005; Biber et al. 2007). Another "ON"-signal is the triggering receptor 

expressed on myeloid cells 2 (TREM 2). Released by neurons, it can interact with 

DNAX-activating protein 12 from microglia and modulate phagocytic functions of 

these cells. A TREM-2 knock-down leads to disturbed phagocytosis of apoptotic 

neurons by microglia and to an increased transcription of proinflammatory factors as 

TNF-α (Takahashi, Rochford, and Neumann 2005; Biber et al. 2007). 

1.7 Excitatory effect of peripheral inflammation on neurons 

Considering numerous signaling molecules, mediating communication between 

neurons and microglia, it is not surprising that activation of microglia in response to 

an immune challenge affects neurons. For example, neuronal cortical slices and 

hippocampal neuronal cell cultures treated with microglia-conditioned medium were 

reported to show potentiated NMDA-induced currents (Moriguchi et al. 2003; 

Hayashi et al. 2006). Additionally, experiments with LPS-injected rats and multi-wire 

electrode measurements revealed that neurons change their activity pattern after a 

peripheral infection (Xi and Toth 2000). This activity change was reported to be 

accompanied by an up-regulation of the transcription factor c-fos, which is expressed 

when neurons fire APs (Dragunow and Faull 1989). The up-regulation of c-fos was 

observed in several brain areas, mostly related with the nucleus tractus solitarius, the 
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paraventricular nucleus, the bed nucleus of the stria terminalis, and the central 

nucleus of the amygdala. These are brain regions, that lead to activation of the 

hypothalamic-pituitary-adrenal axis and the autonomic nervous system 

(Xi and Toth 2000). In vitro experiments, using acute mouse brain slices exposed to 

LPS, revealed increased levels of TNF-α and IL-1β and concomitant facilitation of 

epileptiform discharges in hippocampal neurons (Gao et al. 2014). Another study, 

using mouse brain slices, showed that upon stimulation with LPS microglia release 

ATP. This is followed by a subsequent release of glutamate by astrocytes, ending up 

in an increased neuronal excitatory transmission (Pascual et al. 2012). Further 

experiments revealed that LPS-activated microglia actively displaced inhibitory 

GABAergic synapses in the mouse motor cortex, whereby excitatory synapses did 

not seem to be affected. This suggests an increased excitation after stimulation with 

LPS (Chen et al. 2014). Additionally, several electrophysiological recordings from 

experiments in rodents pointed out that LPS treatment can reduce the threshold for 

epileptic seizures via cytokine-mediated pathways (Kovács et al. 2014; M. a Galic et 

al. 2008; Vezzani et al. 2002; Cerri et al. 2016; Rodgers et al. 2009). All these data 

indicate quite clearly, that the brain is actively involved in the reaction to an 

inflammatory process. Nevertheless, the underlying mechanisms are not well 

understood. 
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1.8 Relevance and aim of the project 

Organisms are constantly endangered by infectious stimuli. The role of the intact 

immune system is to fight those infections, enabling long and healthy life. Apart from 

the hazard induced by a bacterial infection and the concomitant danger of developing 

a sepsis, a disturbed balance of inflammatory responses is linked with many severe 

diseases, like Alzheimer`s disease, multiple sclerosis or Parkinson`s disease.  

Thus, it is very important to understand the fundamental mechanisms of the immune 

responses of an organism. Specifically, to understand how peripheral inflammation 

affects the brain under in vivo conditions. Up to date, such studies are rare and the 

mechanisms at the cellular and molecular levels are largely elusive.  

This project aims to provide a better understanding of the local network function in 

the in vivo cortex during peripheral inflammation. 

 

The specific aims are: 

 

• To provide an in vivo characterization of microglial and neuronal signaling 

during peripheral inflammation 

 

• To decipher the involvement of the specific cell types (microglia, glutamatergic 

and GABAergic neurons) and structures (presynapses and postsynapses) in 

different phases of the inflammatory reaction 

 

• To investigate the mechanisms underlying altered brain signaling, in particular, 

the influence of cytokines and the effect of microglial depletion 
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2. Material and Methods 

2.1 Animals 

All experiments were performed with 4-6 months old mice of either sex. The animals 

were housed under standardized conditions with a 12 h light-dark cycle and free 

access to water and food. C57BL/6 mice (Charles River, USA) served as wild type 

(WT) animals in this work. For visualization of microglia, CX3CR1GFP/+ transgenic 

mice (B6.129P-Cx3cr1tm1Litt/J, Jackson Laboratory, USA) or Iba1GFP/+ transgenic 

mice (Tg(Aif1-EGFP)1Kohs, Jackson Laboratory, USA) were used. These mouse 

lines express enhanced green fluorescent protein (eGFP) under the microglial 

CX3CR1 promoter (Jung et al. 2000) or the Ionized calcium-binding adaptor 

molecule 1 (Iba1) promoter (Hirasawa et al. 2005). Ca2+-signals in inhibitory neurons 

were measured in the offspring of a VIAAT-Cre mouse line (B6.FVB-Tg(Slc32a1-

cre)2.1Hzo/FrkJ, Jackson Laboratory, USA) crossed with a GCaMP6 mouse line 

(B6;129S6-Igs7tm93.1(tetO-GCaMP6f)Hze/J, Jackson Laboratory, USA). The newly 

generated mouse line (VIAAT-Cre-GCaMP6) expressed the Cre recombinase under 

control of the vesicular inhibitory amino acid transporter (VIAAT) promoter, which is 

exclusively active in inhibitory GABAergic neurons. The impact of cytokines was 

investigated by using Tumor necrosis factor-α (TNF-α-/-) and NLR Family Pyrin 

Domain Containing 3 (NLRP3-/-) knock-out mice (B6.129S-Tnftm1Gkl/J and 

B6.129S6-Nlrp3tm1Bhk/J, Jackson Laboratory, USA). All experimental procedures 

were in accordance with the institutional animal welfare guidelines and were 

approved by the state government of Baden-Württemberg, Germany. 

2.2 Induction of a peripheral inflammation 

For induction of peripheral inflammation, the mice received an intraperitoneal (i.p.) 

injection of the bacterial endotoxin lipopolysaccharide (LPS) from Escherichia coli 

(E. coli, serotype O111:B4, Sigma-Aldrich, USA). LPS was diluted in sterile 

phosphate buffered saline (PBS) and injected at a dose of 1.5 mg/kg body weight 

(BW). Control animals were injected with an equivalent volume of sterile PBS. 
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2.3 Enzyme-linked immunosorbent assay (ELISA) 

2.3.1 Sample collection and tissue processing 

Mice were injected with LPS or PBS as described above (see 2.2). 5 h or 30 h after 

the injections, the mice were deeply anesthetized with a mixture of ketamine 

(200 mg/kg BW, Fagron, Netherlands) and xylazine (20 mg/kg BW, Sigma-Aldrich, 

USA). Blood serum samples were obtained by puncturing the orbital sinus of the 

mice. The samples were located on ice for 1 h before centrifugation for 15 min at 

14 000 x g. After blood collection, the mice were transcardially perfused with sterile 

PBS and the brain was immediately dissected and snap frozen in 2-methylbutane on 

dry ice. A Dounce homogenizer (Sigma-Aldrich, USA) was used to homogenize the 

brain samples in N-PER neuronal protein extraction reagent (1 g brain per 5 ml 

N-PER reagent, Thermo Fisher Scientific, USA), containing 13.3 % protease inhibitor 

cocktail (Sigma-Aldrich, USA). Afterward, the brain homogenates were incubated for 

10 min on ice, before the cell debris was pelletized by centrifugation (10 000 x g, 

10 min at 4 °C). The supernatants were collected and the protein concentration of the 

homogenates was determined using the Pierce™ BCA Protein Assay Kit 

(Thermo Fisher Scientific, USA), according to the manufacturer’s guide. 

2.3.2 ELISA 

ELISA Kits (Quantikine ELISA, R & D systems, USA) were used to measure the 

cytokine levels of IL-1β (Kit sensitivity 4.8 pg/ml), TNF-α (Kit sensitivity 7.21 pg/ml), 

CCL2 (Kit sensitivity 2 pg/ml), IL-6 (Kit sensitivity 1.8 pg/ml) and IL-10 (Kit sensitivity 

5.22 pg/ml). A total volume of 100 µl of the blood serum samples or brain 

homogenates was used to perform the ELISA analysis, according to the 

manufacturer’s guide. Each sample was hereby tested in duplicate. The 

chemiluminescent protein signal was measured as optical density with a plate reader 

(PowerWave XS2, BioTek, USA). 

In another group of mice, blood serum samples were collected as described above 

(see 2.3.1) and the cytokine levels were determined by the company microBIOMix 

GmbH (Germany) with the Luminex xMAP™-Technology (www.microbiomix.de). The 

blood serum levels of CCL2, IL-6 and IL-10 were determined by this method. 



Material and Methods 

21 

 

2.4 Immunohistochemistry 

2.4.1 Sample collection and tissue processing 

Animals were injected with LPS or PBS as described above (see 2.2). 5 h and 30 h 

after the injections, the mice were deeply anesthetized with a mixture of 

ketamine (200 mg/kg BW, Fagron, Netherlands) and xylazine (20 mg/kg BW, 

Sigma-Aldrich, USA). Afterward, they were transcardially perfused with PBS and 4 % 

paraformaldehyde (PFA, Roth, Germany). The brains were dissected and fixed 

overnight, shaking in 4 % PFA at 4 °C. Then, the brains were washed 3 x 10 min with 

PBS and dehydrated for another 12 h in 25 % sucrose solution (diluted in PBS). The 

cortices of the brains were cut into four equal parts (frontal left, frontal right, rostral 

left, and rostral right), separately embedded in TissueTek (Sakura, VWR, USA) and 

stored at -80 °C until use. 

2.4.2. Immunofluorescence staining 

2.4.2.1 Iba1 and IL-1β 

A cryostat (Leica, Germany) was used to cut the embedded brains into 50 µm thick 

sagittal slices. All incubations and washing steps were carried out on free-floating 

sections at room temperature in 24 well plates (Greiner Bio-One, Austria) on a 

horizontal shaker (Titramax 100, Heidolph, Germany). The cut sections were first 

washed 3 x 10 min with PBS. To prevent unspecific antibody binding, the slices were 

incubated for 2 h in blocking solution, containing 10 % donkey normal serum (DNS, 

Dianova, Jackson Immuno Research, USA) and 1 % Triton X-100 (Sigma-Aldrich,  

USA) in PBS. Then, the sections were incubated for 60 h with the primary antibody 

solution. A polyclonal rabbit anti-Iba1 antibody (Wako, USA) was used, in 

combination with a polyclonal goat anti-IL-1β antibody (R & D Systems, USA). The 

antibodies were diluted in blocking buffer with 0.04 % NaN3 at concentrations of 

1:3000 for Iba1 and 1:200 for IL-1β. After washing the slices 5 x 10 min with PBS, 

they were incubated for 3 h with a secondary antibody solution, constantly protected 

from light. The secondary antibodies were diluted in blocking solution containing 2 % 

DNS and 1 % Triton X-100 in PBS at concentrations of 1:1000 for donkey anti-goat 

Alexa Fluor 594 (Iba1-staining) and 1:2000 for donkey anti-rabbit Alexa Fluor 488 

(IL-1β-staining) (Invitrogen, USA). Final washing steps with PBS were performed for 



Material and Methods 

22 

 

4 x 10 min before the slices were mounted on fluorescence-free Superfrost Plus 

microscope slides (Langenbrinck, Germany) with Prolong Gold Antifade Mounting 

Medium (Thermo Fisher Scientific, USA). 

2.4.2.2 Iba1 and CD68 

The embedded brains were cut and processed as described above (see 2.4.2.1). The 

brain slices were incubated for 1 h in blocking solution, containing 5 % DNS and 

1 % Triton X-100 in PBS. Then, the sections were incubated overnight with the 

primary antibody solution. A polyclonal rabbit anti-Iba1 antibody (Wako, USA) was 

used in combination with a monoclonal rat anti-CD68 antibody (Bio-Rad, UK). The 

antibodies were diluted in blocking buffer at concentrations of 1:500 for Iba1 and 

1:1000 for CD68. After washing the slices 3 x 10 min with PBS, they were incubated 

for 2 h with a secondary antibody solution, constantly protected from light. The 

secondary antibodies were diluted at concentrations of 1:1000 in blocking solution 

containing 2 % DNS and 1 % Triton X-100 in PBS. Donkey anti-rabbit Alexa 

Fluor 488 was used for the Iba1-staining and donkey anti-rat Alexa Fluor 594 for the 

CD68-staining. Final washing steps with PBS were performed for 3 x 10 min before 

the slices were mounted on fluorescence-free Superfrost Plus microscope slides 

(Langenbrinck, Germany) with Vectashield Mounting Medium (Vector Laboratories, 

USA). 

2.5 Surgical procedures 

2.5.1 Chronic cranial window implantation 

The mice were deeply anesthetized with an i.p. injection of fentanyl (0.05 mg/kg BW, 

Fentadon, Eurovet Animal Health, Netherlands), midazolam (5.0 mg/kg BW, Hameln 

Pharma Plus, Germany) and medetomidine (0.5 mg/kg BW, Dormilan, Alfavet, 

Germany). After proving the complete sedation of the animals with a toe-pinch, a hair 

trimmer was used to remove the fur from the area of surgery. The mice were placed 

on a warming plate under a dissecting microscope and fixed in a stereotaxic frame. 

Eye ointment was applied to protect their eyes from drying out. During the entire 

surgery, the body temperature was monitored with a rectal thermometer 

(Voltcraft, Conrad, Germany) and maintained between 36-37 °C. To provide a 

persistent analgesia, the mice received an s.c. injection of 5 mg/kg BW carprofen 
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(Rymadil, Pfizer, USA). An i.p. injection of 4 mg/kg BW dexamethasone 

(Sigma-Aldrich, USA) prevented swelling of the brain during the surgery. All surgical 

instruments were pre-sterilized with a glass bead sterilizer (Fine Science Tools, USA) 

and cleaned with 70 % ethanol. The skin above the area of surgery was disinfected 

with a povidone-iodine solution (Braunol, B. Braun, Germany). A local anesthetic 

(2 % xylocaine, AstraZeneca, UK) was injected s.c., shortly before the skin above the 

skull was removed with scissors, starting with a horizontal cut and enlarging it 

laterally to the eyes. After removing the skin and the connective tissue, the skull was 

dried with compressed air, and a circular glass coverslip with a diameter of 3 mm was 

placed above the right motor cortex. The glass coverslip was centered at 1.5 mm 

anterior and 1.5 mm lateral from the bregma. The shape of the glass coverslip was 

pre-drawn on the bone with a pencil and the cover glass removed. Then, the bone 

was carefully thinned by using a dental drill (Ultimate 500, NSK, Japan), drilling down 

a circular shape, corresponding to the pre-drawn area. Between the drilling steps, in 

regular intervals cold ringer solution (B. Braun, Germany) was applied, to prevent an 

overheating of the bone. After only a very thin layer of bone was left, a drop of ringer 

solution was added and the circular drilled bone flap was lifted up with fine tip 

forceps, cautiously, to keep the dura mater intact. A fresh drop of ringer solution was 

applied and a sterile 3 mm circular glass coverslip was placed on the brain. With the 

help of a needle, the glass coverslip was pressed gently onto the brain and glued to 

the skull with cyanoacrylate glue (UHU, Germany). Once the glue was dry, the whole 

skull was covered with a thin layer of dental cement (Tetric Evoflow, Ivoclar Vivadent, 

Liechtenstein), carefully omitting the circular chronic glass window. A custom-made 

titanium bar was embedded in the dental cement between the ears and fixed with an 

additional layer of cement. The bar was used for head fixation of the animal under the 

microscope during the imaging sessions. The cement was hardened by shortly 

shining ultraviolet light on it. After the cement was solid, the mice were replaced in 

their home cage and received an s.c. injection of antidote, containing flumazenil 

(0.5 mg/kg BW, Fresenius, Germany) and atipamezole (2.5 mg/kg BW, Nosedorm, 

Alfavet, Germany) to antagonize the anesthesia. For the next 3 consecutive days, the 

mice received s.c. injections of 5 mg/kg BW carprofen. To prevent infections, their 

drinking water was supplemented with 0.025 % of the antibiotic enrofloxacin 

(Baytril, Bayer, Germany) for 10 days. To reduce immediate inflammatory effects due 
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to the surgery, all experimental measurements were performed at the earliest 

3-4 weeks after the chronic window implantation. 

2.5.2 Acute craniotomy 

The mice were deeply anesthetized with 2.5 % isoflurane (CP-Pharma, Germany) in 

pure oxygen (O2) and transferred to a warming plate under a dissecting microscope. 

The body temperature of the mice was constantly maintained between 36-37 °C and 

the isoflurane concentration was reduced to 0.8-1.5 %. After an s.c. injection of 2 % 

xylocaine, the skin and the connective tissue above the skull were carefully removed 

and a custom build recording chamber with a hole in the middle was glued above the 

motor cortex (1.5 mm anterior and 1.5 mm lateral from the bregma). After the glue 

was dry, a bone area with a diameter of approximately 3 mm was drilled, until only a 

thin layer of bone was left. Then, the mouse was fixed in the microscopic setup and 

the chamber was perfused with an at 37 °C pre-warmed extracellular ringer solution 

(125 mM NaCl, 4.5 mM KCl, 26 mM NaHCO3, 1.25 mM NaH2PO4, 2 mM CaCl2, 

1 mM MgCl2, 20 mM glucose, pH 7.4). The ringer solution was constantly bubbled 

with 95 % O2 and 5 % CO2. A thin syringe cannula (30 G) served to cut out a small 

(< 1 mm2) craniotomy for the two-photon measurements.  

2.6 Single cell electroporation of microglia 

An acute craniotomy was performed in Iba1GFP/+, TNF-α-/- or NLRP3-/- mice 

(as described in 2.5.2). Before electroporating microglia in TNF-α-/- or NLRP3-/- mice, 

the cells were visualized with a tomato lectin staining (Schwendele et al. 2012). For 

this purpose, 25 µg tomato lectin conjugated with DyLight 594 (Vectorlabs, USA) 

were dissolved in 1 ml standard pipette solution (150 mM NaCl, 2.5 mM KCl and 10 

mM HEPES, pH 7.4). The solution was filtered with a centrifugal filter with a pore 

diameter of 0.45 µm (Millipore Ultrafree, Merck, USA). Then, a glass pipette with a tip 

diameter of < 1 µm was filled with the solution and directed into the tissue with a 

micromanipulator (LN Junior, Luigs & Neumann, Germany), 100 µm below the 

cortical surface. With an attached pressure injection system (PDES-02D, NPI 

Electronic, Germany) a short pressure pulse of 30 s with 10-55 kPa was applied. The 

pipette was retracted and the experiment continued 30 min after the tomato lectin 

injection. For the single cell electroporation (Eichhoff, Brawek, and Garaschuk 2011), 
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10 mM Oregon Green 488 BAPTA-1 (OGB-1, Invitrogen, USA) were used in a 

solution containing 140 mM potassium gluconate, 14 mM KCl, 4 mM NaCl and 

10 mM HEPES with a pH of 7.3. The OGB-1 solution (3 µl) was filled into a pipette 

with a tip diameter of < 1 µm. The pipette was guided to the membrane of an eGFP- 

or tomato lectin-stained microglia in layer 2/3 of the motor cortex. Then, a negative 

current of 600 nA was applied for 10 ms, by using a MVCS-02C iontophoresis system 

(NPI Electronic, Germany). After the electroporation of the cell with OGB-1, the 

pipette was carefully withdrawn and some minutes later, the Ca2+-signals of the 

microglia were measured. To prove the viability of the cells, subsequent to the 

measurements, Ca2+-transients were actively evoked by a short pressure application 

of 50 µM adenosine 5'-triphosphate (ATP, Sigma-Aldrich, USA) or 100 µM 

Uridine 5'-diphosphate (UDP, Sigma-Aldrich, USA) in standard pipette solution. The 

solution was injected in the direct vicinity of the cells. 

2.7 Microglial dynamics after local application of ATP 

To analyze the dynamics of the microglial process extension in response to a point 

source of ATP, an acute craniotomy was performed similar to the procedure 

described above (see 2.5.2). Then, a pipette with a tip diameter of < 1 µm was filled 

with 7 µl of a solution containing 5 mM ATP dissolved in standard pipette solution. 

For a better visualization of the pipette, 100 µM Alexa 594 (Invitrogen, USA) was 

added to the solution. The pipette was directed in the extracellular space of the layer 

2/3 motor cortex. A short pressure injection for 50 ms with 30-35 kPa was applied, to 

ensure an unblocked pipette tip and the microglial process extension was 

subsequently captured. 

2.8 Bulk electroporation of neurons 

For functional imaging of somatic Ca2+-signals in deeper cortical layers during 

inflammation, it was necessary to get a sparse labeling of neurons. Therefore, an 

acute craniotomy was cut out above the motor cortex (as described in 2.5.2). The 

Ca2+-sensor Oregon Green 488 BABTA-1 hexapotassium salt (OGB-1, Invitrogen, 

USA) was dissolved in an intracellular solution containing 175 mM potassium 

gluconate, 12.5 mM HEPES, 17.5 mM KCl and 5 mM NaCl. A pipette with a tip 
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diameter < 1 µm was filled with 10 mM of the OGB-1 solution and guided to a depth 

of 500-600 µm below the cortical surface. To perform the OGB-1 bulk electroporation 

of neurons, a current with an amplitude of 1 µA, a pulse duration of 25 ms and a 

frequency of 2 Hz was applied for 10 min (as described before by Nagayama et al., 

2007). The Ca2+-imaging of the OGB-1-labeled neurons started 1 h after the labeling 

procedure, during a time window between 4 and 6 h after injection of LPS or PBS. 

2.9 Virus injections 

For functional imaging of cortical Ca2+-signals, neurons of mice were labeled with the 

genetically encoded fluorescent Ca2+-indicator GCaMP6f. After performing a 

craniotomy (as described in 2.5.1), the neurons were transduced with a neuron-

specific viral construct enabling expression of the Ca2+-sensor GCaMP6f under 

control of the synapsin-promoter (AAV1.Syn.GCamp6f.WPRE.SV40 serotype 1, 

Penn Vector Core, USA). The viral construct was diluted 1:10 in sterile ringer solution 

(B. Braun, Germany) and shortly resuspended in an ultrasonic bath. Then, 1 µl of the 

virus solution was pipetted on a piece of parafilm (Bemis, USA) and sucked into a 

thin glass pipette (tip diameter of < 15 µm) with a syringe. The pipette was attached 

to a stereotaxic device, so that the virus-containing pipette could be directed to the 

craniotomy and placed on a blood vessel-free area of the brain. 

2.9.1 Virally-induced GCaMP6f-expression in layer 2/3 neurons 

To label neurons of layer 2/3, the pipette was vertically inserted to a depth of 600 µm 

and the virus solution was slowly injected into the brain tissue (< 0.2 µl in 3 min). 

Then, the pipette was retracted to a depth of 300 µm and an additional volume of 

0.1 µl of the virus solution was injected. After retracting the pipette completely from 

the brain, a fresh drop of ringer solution was applied and the chronic window 

implanted (see 2.5.1). This injection protocol led to a broadly stained area of neurons 

in layer 2/3 of the motor cortex. 

2.9.2 GCaMP6f-labeling of axons from the motor cortex 

To label ascending axons from neurons of layer 5 in the motor cortex, the pipette was 

inserted into the brain with an angle of 45 °. Then, a smaller volume of virus solution 

was slowly injected (< 0.1 µl in 5 min) at a depth of 500-600 µm below the cortical 
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surface. After injection, the pipette was carefully removed and the chronic cranial 

window implanted (see 2.5.1). 

2.9.3 GCaMP6f-labeling of axons from the somatosensory cortex 

To label axons of neurons originating in the somatosensory cortex, a craniotomy 

above the motor cortex was performed as described above and the chronic cranial 

window implanted, without adding dental cement. Then, a small hole (0.5 mm2) was 

drilled above the somatosensory cortex (-1.5 mm anterior and 3.5 mm lateral of the 

bregma). The pipette containing the GCaMP6f viral solution was inserted vertically 

into the opening and carefully injected (< 0.2 µl in 3 min) at a depth of 600 µm below 

the cortical surface. An additional volume of the virus solution was injected at depth 

of 300 µm (< 0.1 µl in 2 min). After removing the pipette, the skull was covered with 

dental cement and the chronic window implantation finalized as described in 2.5.1. 

2.10 Two-photon imaging procedures and data analysis 

A custom build two-photon laser scanning setup based on a mode-locked 

Ti:sapphire laser (Mai Tai, Spectra Physics, USA), generating pulsed light with a 

wavelength ranging between 710-990 nm was used. The laser scanning system 

(Olympus Fluoview, Olympus, Japan) was connected to an upright microscope 

(BX51WI, Olympus, Japan) and all images were acquired with a 40 x water-

immersion objective (0.8 NA, Nikon, Japan). If not otherwise indicated, a dichroic 

mirror separated the emission light at 580 nm wavelength. To excite microglial eGFP 

a 900 nm wavelength was used. For simultaneous imaging of eGFP-labeled 

microglia and sulforhodamine B (SR-B)-labeled blood vessels, an excitation 

wavelength of 870 nm was used. DyLight 594, Alexa Fluor 488 or Alexa Fluor 594 

were visualized with an excitation wavelength of 800 nm. GCaMP6f was excited at 

the wavelength of 920 nm (see overview of experimental settings in Table 1). 
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Table 1 Overview of experimental imaging settings 

 

Experiment Dye Dimensions Excitation Size Depth Zoom Steps Kalman Time Frames

A Immunofluorescence Alexa Fluor 488 or 594 x-y-z 800 nm 512x512 pixels 25 µm 2.5x 1 µm 3 - 1 frame/s

B Microglial morphology eGFP, SR-B x-y-z 870 nm 512x512 pixels 150 µm 2.5x 1 µm 2 - 1 frame/s

C Microglial Ca2+ -signals OGB-1 x-y-t 800 nm 360x256 pixels - 4.0x - - 15 min 1 frame/s
eGFP x-y-z 900 nm 512x512 pixels ~30 µm 4.0x 1 µm 2 - 1 frame/s
DyLight 594 x-y-z 800 nm 512x512 pixels ~30 µm 4.0x 1 µm 2 - 1 frame/s

D Microglial process extension eGFP, Alexa Fluor 594 x-y-z-t 900 nm 512x512 pixels 20 µm 4.0x 2 µm 2 15 min 1 frame/s
x-y-z 900 nm 512x512 pixels 20 µm 2.5x 2 µm 2 - 1 frame/s

E Neuronal Ca2+-signals GCaMP6 x-y-t 920 nm 512x200 pixels - 4.0x - - 5 min 10 frames/s
x-y-z 920 nm 512x512 pixels 10 µm 2.5x 1 µm 2 - 1 frame/s

F Microglial depletion eGFP, SR-B x-y-z 870 nm 512x512 pixels 200 µm 2.0x 2 µm 2 - 1 frame/s
GCaMP6 x-y-t 920 nm 512x200 pixels - 4.0x - - 5 min 10 frames/s

x-y-z 920 nm 512x512 pixels 10 µm 2.5x 1 µm 2 - 1 frame/s

G Neuronal Ca2+-signals OGB-1 x-y-t 800 nm 512x200 pixels - 4.0x - - 5 min 10 frames/s
x-y-z 800 nm 512x512 pixels 10 µm 2.5x 1 µm 2 - 1 frame/s

 

 

The data were analyzed and quantified with software from ElisaAnalysis 

(http://www.elisaanalysis.com/), ImageJ (http://imagej.nih.gov/ij/), Fiji (http://fiji.sc/Fiji), 

Igor Pro 6.22A (http://www.wavemetrics.com), Matlab R2015b 

(https://de.mathworks.com), GraphPad Prism 7 (https://www.graphpad.com) and 

Microsoft Excel 2007 (https://www.microsoft.com). If not indicated otherwise, the data 

are reported as median ± interquartile range (IQR). 

2.10.1 ELISA analysis 

Protein analysis was performed with the help of the online-software 

ElisaAnalysis.com (Leading Technology Group, Australia). The mean optical density 

from two sample duplicates was used to calculate the cytokine concentrations of the 

specific sample. The concentrations were calculated by generating a cytokine 

calibration curve with a 4-parameter logistic curve fitting. For brain samples, the 

obtained concentrations were normalized to the total protein concentration, 

determined before by the BCA assays. The concentrations were expressed as pg/ml 

for blood serum samples or pg/mg protein for brain homogenates. Outliers were 

identified with the Grubb`s test for outliers and excluded. 

2.10.2 Imaging and analysis of immunofluorescence staining 

For imaging, the immunofluorescence staining, the microscopic slides with the brain 

sections were located under the two-photon microscope and the fluorophores excited 

with 800 nm. The emitted light was hereby separated with a dichroic mirror 
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at 570 nm. A 470/100 nm band-pass filter, as well as a 586 long-pass filter, were 

used. All images were acquired as z-stack images (x-y-z) of 25 µm depth. For further 

imaging settings, see Table 1A. 

The volume of microglial somata was calculated based on Iba1 immunofluorescence 

using the ImageJ “3 D object counter” macro. A threshold value was adjusted such 

that the microglial soma volumes were fully detected by the macro. The threshold 

was hereby kept the same for each mouse. Depending on the intensity of the images, 

it was determined as 3-6 times the standard deviation of the mean gray values plus 

the mean gray value of the images. 

The CD68 immunofluorescence signal in Iba1-positive microglia was evaluated with 

the help of the “GECIquant" macro in ImageJ. After subtraction of the background 

signal, the Iba1-stained cells were detected as regions of interest (ROIs) with the 

"ROI detection" module. Cells on borders of the z-stacks, without the full cell soma 

morphology, were excluded from the analysis. To evaluate the intensity of the 

CD68-staining, the mean gray value per each ROI area was measured. 

To determine the fraction of IL-1β-positive cells, the "cell counter" macro in ImageJ 

was used to count IL-1β-positive cells and the overall number of microglia. Microglia 

were considered IL-1β-positive if after background subtraction the antibody staining 

against IL-1β showed a clear cell morphology of the microglial shape. Cells on 

borders without the full cell soma morphology were discarded. 

2.10.3 In vivo imaging and analysis of microglial morphology 

Mice with an implanted chronic cranial window were anesthetized with an initial dose 

of 2.5 % isoflurane in pure O2, placed on a warming plate and head-fixed with the 

titanium bar in the microscopic setup. The body temperature of mice was constantly 

kept at 36-37 °C and their respiratory rate was kept between 90-120 breaths per 

minute. This was achieved by regulating the concentration of supplied isoflurane 

between 0.8-1.5 %. To stain the blood vessels before an imaging session, the mice 

received an i.p. injection of 1 mM sulforhodamine B (SR-B) (Sigma-Aldrich, USA), 

diluted in sterile PBS at a dose of 10 µg/kg BW. The morphological changes of 

microglia during peripheral inflammation were assessed over time by imaging 

z-stacks of the motor cortex at a depth of 50-200 µm below the cortical surface 

(find imaging settings in Table 1B). The same stacks were measured before and at 

different time points after the LPS or PBS injections (see Figure 2). 
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Figure 2 In vivo imaging protocol for longitudinal imaging 

 

The numbers of microglial cells in the imaged z-stacks were counted with the help of 

the “cell counter” macro in ImageJ, whereby cells on borders without the full cell 

soma were not included. The microglial cell soma volumes and distances between 

the cells were analyzed with the ImageJ “3 D object counter” macro. To do so, a 

threshold value was adjusted such that the microglial soma volumes are fully 

detected by the macro. The threshold was kept the same for the specific z-stacks, 

imaged at the different time points. Depending on the intensity of the images, it was 

set at 3-6 times the standard deviation of the mean gray values of the images plus 

the mean gray value of the images. The distance between the cells was measured 

between the soma centers. 

2.10.4 In vivo Ca2+-imaging and analysis of microglia 

Spontaneous Ca2+-signaling of OGB-1-electroporated microglia was measured in 

acute experiments 5 h or 30 h after the LPS or PBS injections (see Figure 3). 

Thereby, the Ca2+-signals were captured for 15 min by time-lapse imaging (x-y-t). 

Afterward, z-stack images of the electroporated cells were captured 

(see Table 1C for further settings). 

 

 

 

Figure 3 In vivo imaging protocol for acute experiments 
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For the analysis of the spontaneous Ca2+-transients, microglial somata were 

manually selected as ROIs in ImageJ. Then, the mean intensity values of the ROIs 

were measured over time. The intensity results were transferred to the 

Igor Pro software and the relative change in fluorescence (∆F/F) was calculated after 

background subtraction with a custom-written macro. The fractions of active cells, 

showing at least one Ca2+-transient during the 15-min-long recording period were 

determined. Cells, which did not respond with a Ca2+-transient to the subsequent 

application of ATP or UDP were excluded. 

2.10.5 In vivo imaging and analysis of microglial process extension 

To measure the microglial process extension towards an ATP-containing pipette, 

mice were injected with PBS or LPS. 5 h or 30 h after the injections, the microglial 

process dynamics were captured with 4D-stacks (x-y-z-t) for a total time of 15 min 

(see imaging protocol in Figure 3). Afterward, z-stacks of the cells were imaged 

(find more details in Table 1D). 

The microglial process velocity towards the pipette was quantified with the “MTrackJ” 

macro in ImageJ. The movements of clearly visible eGFP-labeled microglial 

processes were tracked and the corresponding mean velocities per mouse were 

analyzed.  

2.10.6 In vivo Ca2+-imaging and analysis of layer 2/3 neurons 

Mice with implanted chronic cranial windows were anesthetized and fixed in the 

imaging setup as described above (see 2.10.3). Spontaneous Ca2+-transients in the 

GCaMP6f-labeled layer 2/3 neurons were captured by time-lapse measurements 

(x-y-t). After this, z-stack images of the cells were collected (see details in Table 1E). 

An initial control measurement was performed before injecting the mice with either 

LPS or PBS. Subsequent Ca2+-imaging of the same neurons was performed at 

different time points after the injection (see Figure 2). 

A custom-written Igor Pro macro was used to analyze the spontaneous 

Ca2+-transients in the neuronal somata and in the corresponding neuropil region. For 

evaluation of the somatic signals, the ROIs containing GCaMP6f-labeled neuronal 

cell bodies were selected manually.  To measure the Ca2+-signals in the neuropil, 

another ROI covering the surrounding of the neurons was included. Big blood vessels 

and neuronal dendrites were excluded from this neuropil ROI. Afterward, the mean 
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fluorescent intensities of all ROIs were measured in ImageJ, background subtracted 

and transformed into ∆F/F form. A change in the ∆F/F signal was counted as a 

Ca2+-transient if its peak amplitude exceeded values of 3 times the standard 

deviation of the baseline noise. 

To obtain additional information about the exact origin of the Ca2+-signals in our data, 

a custom-written Matlab algorithm for an independent component analysis (ICA) was 

used (for a detailed description, see Hyvärinen et al. 2001). This method extracted 

statistically independent components, by decomposing the Ca2+-transients of each 

ROI into a set of independent signals. This technique allowed to separate 

asynchronously occurring somatic Ca2+-signals from the neuropil signal but 

eliminated all somatic Ca2+-transients occurring synchronously with Ca2+-signals in 

the neuropil. As a relatively high percentage of non-active cells were detected by this 

technique, the 75th percentiles per mouse were used instead of the median frequency 

to test for statistical significance. 

2.10.7 In vivo Ca2+-imaging and analysis of layer 2/3 neurons after 

microglial depletion 

Mice with a chronic cranial window and GCaMP6f-labeled neurons were transferred 

to the imaging setup and the neuronal signaling was measured as described above 

(2.10.6). After the end of each measurement, the blood vessels were stained with 

SR-B (as described in 2.10.3) and z-stack images of the microglia at 0-200 µm depth 

were obtained (see settings in Table 1F). After the initial control measurements, the 

mice were fed with 1200 mg/kg BW of the CSF1R inhibitor PLX 5622, formulated in 

standard chow (Plexxikon Inc., USA). This treatment led to a nearly complete 

depletion of microglia in the brain. After 7 days, the neuronal Ca2+-signaling was 

measured before and 5 h after the PBS or LPS injection (see imaging protocol 

in Figure 4). To estimate the degree of microglial depletion, the blood vessels of the 

mice were stained with SR-B and the z-stacks were reimaged. 
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Figure 4 In vivo imaging protocol for microglial depletion experiments 

 

The spontaneous neuronal signaling was analyzed as described above (2.10.6). 

To evaluate the depletion of microglial cells, we counted the eGFP-labeled microglia 

per field of view (0-200 µm below the cortical surface, within a volume of 

0.0062 mm³) before and after feeding the mice with PLX 5622, with the help of the 

“cell counter” macro in ImageJ. 

2.10.8 In vivo Ca2+-imaging and analysis of cortical axons in layer 1 

Mice with a chronic cranial window and GCaMP6f-labeled axons were anesthetized 

and transferred to the imaging setup. Spontaneous Ca2+-signals from axons in 

layer 1 of the motor cortex were measured before injecting either LPS or PBS and 

5 h after the injections (see Figure 5). Time-lapse images (x-y-t) of the axons were 

acquired and z-stacks of the axons were obtained similarly as for the neuronal 

somata imaging (for settings, see Table 1E). 

 

 

 

Figure 5 In vivo imaging protocol for axonal imaging and imaging of inhibitory neurons 

 

The analysis of axonal spontaneous Ca2+-transients was performed as for the 

neuronal somata. After manually selecting the ROIs (GCaMP6f-labeled axons), the 

mean fluorescent intensities of the axons were measured in ImageJ and 
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background-subtracted fluorescence changes (∆F/F) were calculated in Igor Pro. A 

change in ∆F/F was counted as Ca2+-transient when its peak amplitude exceeded 5 

times the standard deviation of the baseline noise. 

2.10.9 In vivo Ca2+-imaging and analysis of layer 5 neurons 

Ca2+-imaging of OGB-1-labeled deep cortical layer 5 neurons was performed in mice 

with an acute craniotomy above the motor cortex, 4-6 h after the mice received either 

an LPS or PBS injection (see Figure 6). Time-lapse and z-stack images were 

acquired similar as described above (see 2.10.6 and Table 1G). 

 

 

 

Figure 6 In vivo imaging protocol for layer 5 neuronal imaging 

 

For evaluation of the spontaneous neuronal Ca2+-signaling in layer 5, the mean 

fluorescent intensities of the Ca2+-transients were measured in ImageJ and the 

fluorescence changes (∆F/F) after background subtraction were calculated in 

Igor Pro as described above (see 2.10.6). The signal was counted as a 

Ca2+-transient if its peak amplitude exceeded values of 3 times the standard 

deviation of the baseline noise. Note, that strongly labeled cells located in close 

proximity of the electroporation site were excluded from the analysis. 

2.10.10 In vivo Ca2+-imaging and analysis of inhibitory neurons 

The Ca2+-imaging of inhibitory neurons was performed in mice with a chronic cranial 

window above the motor cortex. The mice received either an LPS or PBS injection 

and the GCaMP6-labeled neurons were measured before and 5 h after the injections 

(see imaging protocol in Figure 5). Time-lapse images and z-stacks were acquired 

similar as described in 2.10.6 and shown in Table 1E. 
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For the analysis of the spontaneous Ca2+-transients in inhibitory neurons see 2.10.6. 

If the peak amplitude exceeded 6 times the standard deviation of the baseline noise, 

the signal was counted as Ca2+-transient. 

2.11 Statistical analysis 

The statistical analysis of the data was performed with the GraphPad Prism 7 

software (GraphPad, USA) or Matlab R2015b software (MathWorks, USA). Multiple 

comparisons of repeated measurements were tested with repeated measures 

ANOVAs (Friedman's test) and the post hoc Dunn’s multiple comparisons test. The 

Wilcoxon signed-rank test or a Paired t-test was used in order to compare two 

repeated measurements. For independent measurements, the Kruskal-Wallis test 

with a post hoc Dunn’s multiple comparisons test was used. Two independent 

datasets were compared with the Mann-Whitney U or the Kolmogorov-Smirnov test. 

For categorical data, the Fisher`s exact test was applied. The Grubb's test served to 

identify significant outliers. A statistical significance was accepted for p-values ≤ 0.05 

(two-tailed, if not otherwise indicated). 
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3. Results 

3.1. Characterization of the lipopolysaccharide-induced 

peripheral inflammation 

3.1.1 Lipopolysaccharide induces slight but significant weight loss in 

mice 

Injecting the bacterial cell wall component lipopolysaccharide (LPS) is commonly 

used as a model of inflammation and leads to classical symptoms of sickness 

(Hoogland et al. 2015). In our experimental model of inflammation, mice were 

injected intraperitoneally with a single LPS dose of 1.5 mg/kg body weight. The 

injections resulted in a moderate sickness behavior of the animals, consistent with 

the literature data (Terrando et al. 2010; Czapski et al. 2007; Dénes, Ferenczi, and 

Kovács 2011; Kozlowski and Weimer 2012; Henry et al. 2008). We evaluated the 

changes in the body weight of the mice 5 h (early phase of inflammation) and 30 h 

(late phase of inflammation) after LPS injection. Control animals were injected with 

similar volumes of sterile phosphate buffered saline (PBS). The body weight of the 

mice was clearly reduced after induction of inflammation. Figure 7Figure 7 illustrates 

the normalized body weight of the animals at different time points after the injections. 

In comparison to their weight before, the LPS-injected animals showed already 5 h 

after LPS injection a small but significant decrease of their weight, with a median 

value of 95.62 ± 3.30 % (p= 0.004, Wilcoxon signed-rank test). The body weight 30 h 

after the LPS injections decreased further to a median value of 87.88 ± 10.74 % 

(p= 0.004, Wilcoxon signed-rank test). In contrast, the body weight of the PBS-

injected animals remained constant, with a median value of 99.02 ± 1.48 % 5 h after 

PBS injection (p= 0.078, Wilcoxon signed-rank test) and 98.46 ± 3.67 % 

30 h after PBS (p= 0.461, Wilcoxon signed-rank test). 

 



Results 

38 

 

 

 

Figure 7 Slight but significant decrease of body weight in mice after induction of peripheral inflammation 

Injection of 1.5 mg/kg BW LPS from E. coli (Serotype O111:B4) induced weight loss in 4-6 months old WT mice. 

Box plots showing the medians (per mouse) of normalized mouse body weight after PBS or LPS injection. LPS 

resulted in a slight but significant decrease of the mouse body weight 5 h after the injection (n= 10 mice, p= 0.004, 

Wilcoxon signed-rank test) and a further decrease 30 h after the LPS injection (n= 10 mice, p= 0.004, Wilcoxon 

signed-rank test). Similar volume injections of PBS showed no effect on the mouse body weight (5 h PBS: 

n= 10 mice, p= 0.078, Wilcoxon signed-rank test; 30 h PBS: n= 9 mice, p= 0.461, Wilcoxon signed-rank test). 

 

3.1.2 Cytokine profile during a peripheral inflammation 

Changes in cytokine levels in response to systemic inflammation with LPS were 

described in previous studies, but results were quite variable (Hoogland et al. 2015; 

Nava Catorce and Gevorkian 2016). To understand the inflammatory reaction in our 

experimental model, we evaluated the profiles of different inflammatory cytokines 

during the early and the late phase after induction of inflammation. The mice received 

an injection of either PBS or LPS and the cytokine concentrations in blood sera and 

brain samples were analyzed by means of ELISA. 

3.1.2.1 Inflammation increases blood serum cytokine levels 

There was a clear increase of the inflammatory cytokines IL-1β, TNF-α, IL-6, CCL2 

and IL-10 in the blood serum 5 h after LPS injection when compared to PBS-injected 

controls (see Figure 8A and an overview of the concentrations in Table 2). 30 h after 

the LPS injection, all blood serum cytokine levels were lower. The levels of IL-1β and 

TNF-α reached a similar concentration as in the corresponding PBS-injected control 

animals. Only IL-6, CCL2 and IL-10 remained obviously higher compared to 

PBS controls. 
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Figure 8 Increase of cytokine concentrations during peripheral inflammation 

(A) Box plots illustrating the levels (medians per mouse) of inflammatory cytokines measured by ELISA in blood 

serum samples of 4-6 months old WT mice. Note, a significant increase of all cytokines (IL-1β, TNF-α, IL-6, CCL2 

and IL-10) in the blood serum 5 h after LPS injection. 30 h after LPS injection, only IL-6, CCL2, and IL-10 were 

significantly elevated. (B) Box plots illustrating the levels of inflammatory cytokines (medians per mouse) in 

cortical brain samples 5 h after LPS injection. There was a significant increase of IL-1β, IL-6 and CCL2, whereas 

the levels of TNF-α and IL-10 remained unchanged compared to PBS-injected controls. 30 h after the 

LPS injection only the level of CCL2 was significantly higher. The brain levels of IL-1β, TNF-α and IL-10 remained 

comparable to the PBS-injected controls. All significances were tested by Mann-Whitney test and accepted for 

p≤ 0.05. For exact p-values and numbers of experimental animals, see Table 2 and Table 3. (The experiments 

were performed with the help of Elizabeta Zirdum. Blood serum levels of CCL2, IL-6 and IL-10 were determined 

by the company microBIOMix GmbH). 

 

Table 2 Summary of the blood serum cytokine concentrations 

Cytokine concentrations (median ± IQR) in blood sera 5 h and 30 h after PBS or LPS injection.  

Serum (pg/ml) 5h PBS N° 5h LPS N° p-value 30h PBS N° 30h LPS N° p-value

IL-1β 0 ± 0 6 248.59 ± 61.28 6 0.002 * 0 ± 0 5 0 ± 0 5 -

TNF-α 0 ± 27.92 5 76.23 ±  80.01 6 0.028 * 0 ± 37.09 5 8.759 ± 28.14 6 > 0.999

IL-6 14.75 ± 50.82 5 13250 ± 4500 5 0.036 * 0 ± 0 5 227 ± 178 5 0.008 *

CCL2 75.75 ± 10.6 5 7850 ± 1762.5 3 0.008 * 28.2 ± 18.8 5 792.5 ± 408.5 5 0.008 *

IL-10 0 ± 0 5 293.5 ± 60.5 5 0.008 * 0 ± 0 5 78.9 ± 55.95 5 0.008 *
 

All comparisons between the data sets were performed with Mann-Whitney test, *p≤ 0.05.  

N°= number of experimental animals. 

 

3.1.2.2 Inflammation increases brain cytokine levels 

Similar to the blood serum samples, the cytokine concentrations in the brain 

increased during the early phase of inflammation (see Figure 8B and Table 3). 

5 h after LPS injection, the brain levels of IL-1β, IL-6 and CCL2 were significantly 

higher compared to PBS-injected controls. The concentrations of TNF-α and IL-10 

did not reach level of statistical significance and were probably too close to the 

detection limit. During the late phase of inflammation, most of the brain cytokine 

concentrations returned to their control levels. Only CCL2 remained elevated 

30 h after LPS injection compared to 30 h after PBS injection. 
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Table 3 Summary of the brain cytokine concentrations 

Cytokine concentrations (median ± IQR) in brain lysates 5 h and 30 h after PBS or LPS injection. 

Brain (pg/mg) 5h PBS N° 5h LPS N° p-value 30h PBS N° 30h LPS N° p-value

IL-1β 3.82 ± 0.6 8 10.5 ± 4.77 8 0.001 * 2.28 ± 1.02 8 2.09 ± 5.65 8 > 0.999

TNF-α 0 ± 1.17 15 0 ± 2.02 15 0.302 0 ± 0 8 0 ± 0 10 -

IL-6 0 ± 0 10 11.78 ± 6.87 10 0.001 * 0 ± 0 10 0 ± 0 10 -

CCL2 1.29 ± 0.11 5 108.08 ± 22.02 5 0.008 * 1.01 ± 0.14 5 16.41 ± 5.39 5 0.008 *

IL-10 0 ± 0 5 0 ± 0 5 - 0 ± 0 5 0 ± 0 5 -
 

All comparisons between the data sets were performed with Mann-Whitney test, *p≤ 0.05.  

N°= number of experimental animals. 

 

Taken together, the ELISA analyses revealed a clear increase of different 

inflammatory cytokines in the blood serum and in the brain. This increase was 

observed mainly during the early phase of inflammation, 5 h after LPS injection. 

3.2 Functional properties of microglia during a peripheral 

inflammation 

Microglia are essential for the maintenance of normal brain homeostasis. 

Inflammatory stimuli cause microglia to switch to a reactive state. This switch is 

accompanied by cell changes, like an altered morphology (Kozlowski and 

Weimer 2012). The results described below show the reactions of microglia to a 

peripheral inflammation. 

3.2.1 Inflammation changes microglial morphology 

To investigate the in vivo reaction of microglia over time in response to the peripheral 

inflammatory stimulus, microglia from CX3CR1GFP/+ mice were imaged longitudinally 

through a chronic cranial window. The mice were anesthetized and the same brain 

areas were repeatedly imaged over a total period of 72 h.  

The induction of a peripheral inflammation with LPS resulted in obvious 

morphological changes of the cells, like retracted processes and altered soma size 

(compare Figure 9A PBS with Figure 9B LPS). 
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Figure 9 In vivo imaging of the microglial morphology over time during peripheral inflammation 

Maximum intensity projection (MIP) images (50-100 µm below the cortical surface) from the motor cortex of 

5 months old CX3CR1GFP/+ mice. Microglial eGFP is visualized in green and blood vessels (in red) are stained by 

i.p. injections of sulforhodamine B (A) Microglial morphology during control condition and at different time points 

after PBS injection. (B) Microglial morphology before and at different time points after LPS injection. 
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To evaluate the changes of microglia over time, the microglial soma volumes were 

determined at each time point and normalized to the initial control measurement 

(Figure 10). Figure 10A shows the normalized microglial soma volume at different 

time points after PBS injection. PBS-injected animals showed no visible alteration in 

soma volumes compared to their control measurement, tested with repeated 

measures ANOVA (p= 0.229, Friedman`s test). The comparison of the soma volumes 

before and 30 h after PBS injection in cumulative histograms supported this 

conclusion (Figure 10C). In contrast, a repeated measures ANOVA in the 

LPS-injected animals revealed significant volume changes in microglia after LPS 

injection if compared to control measurement (Figure 10B, p= 0.003, Friedman`s 

test), but no significance after the post-hoc Dunn’s multiple comparisons test 

(p> 0.05). Nevertheless, 30-55 h after LPS injection, there was a clear trend towards 

an increased cell body volume. This result was supported by the cumulative 

histograms in Figure 10D, showing the comparison of the soma volumes before and 

30 h after LPS injection. During the initial phase of inflammation 5-10 h after LPS 

injection, we observed a tendency to a soma volume decrease in microglia. 

This, however, might be an analysis artifact caused by a regularly observed reduction 

of cell visibility at these time points. 
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Figure 10 Trend towards increased microglial soma volumes during peripheral inflammation in vivo 

Quantification of the soma volumes of microglia in the motor cortex of 4-6 months old CX3CR1GFP/+ mice 

(n= 2-6 areas per mouse in 5 mice per group). (A) and (B) Box plots illustrating the medians (per mouse) of 

normalized microglial soma volumes plotted as a function of time after PBS (A) or LPS (B) injection. In 

PBS-injected mice, there was no significant change of the soma volumes after testing with repeated measures 

ANOVA (p= 0.229, Friedman`s test). LPS injection resulted in a significant volume change of microglia (p= 0.003, 

Friedman`s test), whereas the post-hoc Dunn’s multiple comparisons test revealed no statistical significance 

(p> 0.05). (C) and (D) Cumulative histograms of microglial soma volumes before and 30 h after either PBS (C) or 

LPS (D) injection. Note, no visible changes after PBS injection, however, clearly increased soma volumes 30 h 

after LPS injection. 

 

In addition to the evaluation of the time course of the morphological changes in vivo, 

we analyzed the morphology of microglia in brain slices in vitro. To this end, 

4-6 months old WT mice were injected either with PBS or LPS and decapitated 5 h or 

30 h after the injections. Then, the brains were fixed and slices of the brains stained 

with the microglia-specific Iba1 antibody. Figure 11A shows examples of Iba1-stained 
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microglia from brains fixed 5 h and 30 h after the PBS and LPS injections. In 

accordance with the in vivo results, microglial morphologies in brains fixed 30 h after 

LPS injection were clearly different compared to brains fixed 30 h after PBS injection. 

The box plots in Figure 11B display the microglial soma volume change 5 h and 30 h 

after PBS or LPS injection. The analysis revealed a significant change of the soma 

volumes (p= 0.006, Kruskal-Wallis test). The post-hoc Dunn’s multiple comparisons 

test indicated no significant increase of the volumes 5 h after LPS injection compared 

to 5 h after PBS injection and 30 h after LPS compared to 30 h after PBS (p> 0.05). 

However, in comparison to the early phase, the soma volumes changed during the 

late phase significantly (5 h PBS versus 30 h LPS, p< 0.05 and 5 h LPS versus 

30 h LPS, p< 0.05, Dunn’s multiple comparisons test). Cumulative histograms of the 

cell volumes either 5 h (C) or 30 h (D) after PBS and LPS injection are shown in 

Figure 11C and D. As indicated in the figure, we encountered a significant increase of 

the cell volumes 30 h after LPS injection (30 h PBS versus 30 h LPS, p< 0.001, 

Kolmogorov-Smirnov test). 
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Figure 11 In vitro analyses reveal a significant increase in the microglial soma volumes during peripheral 

inflammation 

Immunohistochemical analyses of microglial soma volumes in fixed cortical slices obtained from 4-6 months old 

WT mice at different time points after PBS or LPS injection. (A) Representative MIP images (25 µm depth) of 

Iba1-stained microglia 5 h and 30 h after PBS or LPS injection. (B) Box plots showing the medians (per mouse) of 

microglial soma volumes 5 h and 30 h after PBS or LPS injection (n= 6-10 areas per mouse in 5 mice per group). 

Note, a significant difference in the microglial soma volumes between the groups (p= 0.006, Kruskal-Wallis test). 

There was a significant volume increase 30 h after the LPS injection when compared to 5 h after PBS or LPS 

injection (p< 0.05, Dunn’s multiple comparisons test). Comparison of the volumes between the early time points 

(5 h PBS and 5 h LPS) and between the late time points (30 h PBS and 30 h LPS) revealed no significant 

changes (p> 0.05 Dunn’s multiple comparisons test). (C) and (D) Cumulative histograms of microglial soma 

volumes in brains fixed 5 h (C) or 30 h (D) after PBS and LPS injection. Note, a significant soma volume increase 

in microglia 30 h after LPS injection when compared to 30 h after PBS injection (p< 0.001, Kolmogorov-Smirnov 

test), but not 5 h after LPS injection when compared to 5 h PBS control (p= 0.198, Kolmogorov-Smirnov test). 

 

3.2.2 Inflammation affects microglial proliferation 

Under normal, healthy conditions, each microglial cell occupies an individual brain 

domain, with a mean soma-to-soma distance of 40 µm. With 0.05 %-0.69 % of 

dividing cells per day, the proliferation rate of “resting” microglia is low 

(Askew et al. 2017). However, pathological circumstances can induce proliferation of 

the cells. A typical cell cycle length of dividing cells takes around 24-32 h. 

Accordingly, during the first 24 h after proliferation, two sister microglial cells are 

located close to each other (Askew et al. 2017). Thus, the distance between the two 

cells can serve as an indicator of the proliferative state of microglia, whereby cells in 

close proximity to each other are likely to have recently passed the process of cell 

division.  

To investigate the microglial proliferation during inflammation, we counted the 

number of cell doublets (cells with a soma-to-soma distance < 20 µm) per volume of 

imaged brain area at different time points after PBS and LPS injection. 

Figure 12A shows a representative image of two microglial cell doublets (indicated by 

arrowheads). The box plots in Figure 12B and C illustrate the normalized microglial 

doublet numbers at different time points after PBS or LPS injection (normalized to the 

initial control measurement). Whereas the doublet numbers under PBS remained 

constant (Figure 12B, p= 0.299, Friedman`s test), there was an obvious increase 

under LPS, which, however, did not reach statistical significance (Figure 12C, 
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p= 0.065, Friedman`s test). This might be due to the high variability of the doublet 

numbers in the individual mice. Nevertheless, this indicates an at least moderate 

increase of microglial proliferation. In accordance with the trend towards increased 

cell doublets after LPS injection, there was a significant change in the density of 

microglia after LPS injection (Figure 12E, p= 0.020, Friedman`s test). 55 h after LPS 

injection, there seemed to be a trend towards increased numbers, however, it did not 

reach statistical significance (p> 0.05, Dunn`s multiple comparisons test). In contrast, 

testing the microglial density in the PBS-injected mice resulted in no significant 

change of the microglial density (Figure 12D, p= 0.070, Friedman`s test). 
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Figure 12 Trend towards increased microglial proliferation during peripheral inflammation 

Quantifications of the number of microglial doublets and cell densities in the motor cortex of 4-6 months old 

CX3CR1GFP/+ mice (n= 2-6 areas per mouse in 5 mice per group). (A) Representative MIP image (60-110 µm 

below the cortical surface) of two microglial cell doublets (indicated by white arrowheads). (B) and (C) Box plots 

illustrating the medians (per mouse) of normalized microglial soma volumes plotted as a function of time after 

PBS (B) or LPS (C) injection. Number of doublets at the given time points were normalized to the number of 

doublets before PBS or LPS injection. There was no significant change in the number of microglial doublets after 

PBS injection (p= 0.299, Friedman`s test). However, note, a clear trend towards increased doublet numbers after 
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LPS injection (p= 0.065, Friedman`s test). (D) and (E) Box plots showing the medians (per mouse) of normalized 

microglial cell density plotted against the time after PBS (D) and LPS (E) injection. Densities at the given time 

points were normalized to the cell density before PBS or LPS injection. There was no change in microglial density 

after injection of PBS (p= 0.070, Friedman`s test). LPS injection resulted in a significant change of microglial cell 

density (p= 0.029, Friedman`s test), however, with no significant effect after the post-hoc Dunn`s multiple 

comparisons test (p> 0.05). 

 

In summary, we observed changes in the morphology of microglia with an increase in 

the cell somata, a clear trend towards an increased microglial proliferation rate and a 

higher overall cell density. These changes occurred mainly during the late phase of 

the peripheral inflammation, starting from 30-55 h after the LPS injection. 

3.2.3 Inflammation leads to microglial hyperactivity 

Apart from morphological changes, microglia can react to pathological conditions with 

a change in their Ca2+-signaling (Brawek and Garaschuk 2013). The following set of 

experiments was performed to investigate, if and how the microglial Ca2+-signaling is 

altered during peripheral inflammation. After electroporation of the cells with the 

Ca2+-sensitive dye Oregon Green BAPTA-1(OGB-1), we determined the fraction of 

active microglia, showing spontaneous Ca2+-transients in the course of a 15 min long 

recording period. We measured cells under control conditions (5 h after 

PBS injection) as well as during the early (5 h after LPS injection) and the late phase 

(30 h after LPS injection) of inflammation. 

Figure 13 shows a representative electroporated microglia (A) with its corresponding 

spontaneous Ca2+-transients (B). Peripheral inflammation induced a clear increase of 

the Ca2+-signaling in microglia. In PBS-injected control mice, only a small fraction of 

14 % of cells showed spontaneous Ca2+-transients. In contrast, 5 h after LPS 

injection, the incidence of Ca2+-transients increased significantly and reached a 

fraction of 79 % of active cells (Figure 13C, 5 h PBS versus 5 h LPS, p= 0.001, 

Fisher`s exact test). 30 h after LPS injection, the fraction of active cells was 43 %, 

thus, reaching an intermediate level between the active cell fractions 5 h after PBS 

(14 %) and 5 h after LPS (79 %) (Figure 13C, 5 h PBS versus 30 h LPS, p= 0.111 

and 5 h LPS versus 30 h LPS, p= 0.120, Fisher`s exact test). 
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Figure 13 Increase in microglial Ca2+-signaling during peripheral inflammation 

(A) MIP image (112-139 µm below the cortical surface) of a microglia in the motor cortex of a 5 months old 

Iba1GFP/+ mouse, filled with the Ca2+-sensitive dye OGB-1 by means of single cell electroporation. (B) 

Spontaneous Ca2+-transients recorded from the cell shown in (A). ΔF/F represents the normalized change in 

fluorescence. (C) Pie charts illustrating the fraction of spontaneously active (red) and inactive (green) microglia 

after PBS injection and at different time points after LPS injection. The fractions of active/inactive cells were 

measured in 5 mice per group: with n= 22 cells for 5 h PBS, n= 14 cells for 5 h LPS and n= 14 cells for 30 h LPS. 

Note, a significant difference in the fractions of active/inactive cells 5 h after LPS injection compared to that 5 h 

after PBS injection (p= 0.001, Fisher's exact test), with a higher fraction of active cells. Comparing the fractions 

30 h after LPS injection with the fraction 5 h after PBS or LPS injection revealed no significant difference 

(30 h LPS vs. 5 h PBS: p = 0.120; 30 h LPS vs. 5 h LPS: p = 0.111; Fisher’s exact test). (This set of experiments 

was performed by Dr. Bianca Brawek). 

 

3.2.4 Cytokine profiles of NLRP3-/- and TNF-α-/- mice during a peripheral 

inflammation 

To decipher mechanisms that contribute to the increase of the spontaneous 

Ca2+-signaling during inflammation, we investigated the role of the proinflammatory 

cytokines IL-1β and TNF-α. To this end, we took advantage of NLRP3 (NLRP3-/-) and 

TNF-α (TNF-α-/-) knock-out mice. 
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First, we evaluated the changes in cytokine profiles of these mice in response to 

either PBS or LPS injections. We determined the cytokine profiles in the blood serum 

and in the brain via ELISA and observed in both knock-out stains (NLRP3-/- and 

TNF-α-/-) a similar time course of the cytokine expression during inflammation as in 

WT animals. The concentration of inflammatory cytokines was high during the early 

phase of inflammation and lower during the late phase (time course data not shown). 

3.2.4.1 Cytokine profile of NLRP3-/- mice during the early phase of peripheral 

inflammation 

Next, we directly compared the cytokine expression of NLRP3-/- mice with the 

respective data obtained in WT animals 5 h after LPS injection (see Figure 14 and an 

overview of the concentrations in Table 4). 

Compared to WT mice, the NLRP3-/- mice showed significantly reduced levels of 

IL-1β in the blood serum (p= 0.01, Mann-Whitney test). Further, we observed a clear 

trend towards lower IL-1β levels in the brain homogenates of these mice (p= 0.065, 

Mann Whitney test) (Figure 14A, Table 4). Interestingly, compared to WT animals the 

NLRP3-/- mice showed significantly increased blood serum levels of TNF-α protein 

(p= 0.03, Mann-Whitney test) (Figure 14B, Table 4). However, the brain levels of 

TNF-α were not detectable in NLRP3-/- mice and comparably low in WT animals 

(p= 0.123, Mann-Whitney test). The brain levels of IL-6 were significantly lower in the 

NLRP3-/- mice (p= 0.008, Mann-Whitney test). The brain levels of CCL2 showed a 

visible tendency to lower levels (p= 0.31, Mann-Whitney test), but this tendency 

remained below statistical significance when compared to WT animals (Figure 14B, 

Table 4). The cytokine IL-10 could neither be detected in brains of NLRP3-/- mice, nor 

in brains of WT mice (plot not shown, see Table 4). 
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Figure 14 NLRP3-/- mice show a different cytokine profile during early phase of peripheral inflammation 

Comparison of inflammatory cytokines levels 5 h after LPS injection in blood serum and brain samples of 

4-6 months old WT and NLRP3-/- mice. (A) Box plots showing the comparison of IL-1β levels (medians per 

mouse) in the blood serum and the brain. Note, a significant decrease of IL-1β expression in the blood serum of 

NLRP3-/- mice and a trend towards reduced IL-1β levels in the brain. (B) Box plots showing the comparison of 

different cytokine levels (medians per mouse) in the blood serum (TNF-α) and in the brain (TNF-α, IL-6, and 

CCL2) of WT and NLRP3-/- mice. NLRP3-/- mice showed significantly increased blood serum levels of TNF-α when 

compared to WT mice. There were no detectable levels of TNF-α in the brain of NLRP3-/- mice and the levels in 

WT mice were comparably low. The brain levels of IL-6 in NLRP3-/- mice were significantly lower than in WT mice 

and there was a visible, but not significant tendency to lower levels of CCL2. The cytokine IL-10 was in both 

mouse strains not detectable in the brain (plot not shown). Statistic analyses were performed using Mann-Whitney 

test. Data were considered significantly different when p≤ 0.05. For exact p-values and numbers of experimental 

animals, see Table 4. (The experiments were performed with the help of Elizabeta Zirdum). 
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Table 4 Summary of the cytokine concentrations in WT and NLRP3-/- mice 

Comparison of cytokine concentrations (median ± IQR) in the blood serum and in the brain of WT and 

NLRP3-/- mice 5 h after LPS injection. 

Serum  (pg/ml) WT 5h LPS N° NLRP3 -/-  5h LPS N° p-value Brain  (pg/mg) WT 5h LPS N° NLRP3 -/-  5h LPS N° p-value

IL-1β 248.59 ± 61.28 6 50.17 ± 18.76 4 0.01 * IL-1β 10.5 ± 4.77 8 5.89 ± 3.08 5 0.065

TNF-α 76.23 ± 80.01 6 218.03 ± 134.26 5 0.03 * TNF-α 0 ± 2.02 15 0 ± 0 5 0.123

IL-6 11.78 ± 6.87 5 6.12 ± 1.57 5 0.008 *

CCL2 108.08 ± 22.02 5 60.47 ± 26.75 5 0.31

IL-10 0 ± 0 5 0 ± 0 5 -  

All comparisons between the data sets were performed with Mann-Whitney test, *p≤ 0.05.  

N°= number of experimental animals. 

 

3.2.4.2 Cytokine profile of TNF-α-/- mice during the early phase of peripheral 

inflammation 

In Figure 15 and Table 5, we compared the cytokine levels in TNF-α-/- mice with that 

observed in WT mice. Figure 15A shows box plots the TNF-α protein concentrations 

in blood serum and brain samples 5 h after LPS injection. In the brain of 

TNF-α-/- mice, no TNF-α protein was detected and thus, the TNF-α expression was 

significantly lower than in WT animals (p= 0.045, Mann-Whitney test). However, in 

four out of eight tested TNF-α-/- animals, the ELISA analysis reported measurable, 

although compared to WT animals clearly reduced levels of TNF-α protein in the 

blood serum (see Figure 15A and Table 5). Further, we found a significant reduction 

of IL-1β protein in the blood serum samples of TNF-α-/- mice compared to blood 

serum samples of WT animals (p= 0.014, Mann-Whitney test). Evaluation of the brain 

levels revealed a significant reduction of CCL2 in TNF-α-/- mice (p= 0.016, 

Mann-Whitney test) and apparently reduced levels of IL-1β and IL-6. Similar to the 

WT and NLRP3-/- mice, IL-10 was not detectable in the brains of TNF-α-/- mice 

(plot not shown, see Table 5). 
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Figure 15 TNF-α-/- mice show a different cytokine profile during early phase of peripheral inflammation 

Comparison of inflammatory cytokines levels 5 h after LPS injection in blood serum and brain samples of 

4-6 months old WT and TNF-α-/- mice. (A) Box plots showing the comparison of TNF-α levels (medians per 

mouse) in blood serum and brain samples. The blood serum levels of TNF-α protein in TNF-α-/- mice appeared 

reduced compared to WT mice, but the effect was below statistical significance. In the brain, however, the TNF-α 

expression was significantly lower, compared to the expression in WT mice. (B) Box plots illustrating the blood 

serum levels of IL-1β and different brain cytokine levels (IL-1β, IL-6, and CCL2) in WT and TNF-α-/- mice. Note,  

significantly lower IL-1β levels in the blood serum of TNF-α-/- mice when compared to blood serum of WT animals. 

There was a slight but not significant reduction of IL-1β and IL-6 in the brain of TNF-α-/- mice and a significantly 

lower level of CCL2. The cytokine IL-10 was not detectable in the brain of both mouse strains (plot not shown). 

Statistic analyses were performed using Mann-Whitney test, data were considered significantly different when 

p≤ 0.05. For exact p-values and numbers of experimental animals, see Table 5. (Experiments were performed 

together with Elizabeta Zirdum). 
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Table 5 Summary of the cytokine concentrations in WT and TNF-α-/- mice 

Comparison of cytokine concentrations (median ± IQR) in the blood serum and in the brain of WT and 

TNF-α-/- mice 5 h after LPS injection. 

Serum  (pg/ml) WT 5h LPS N° TNF-α -/-  5h LPS N° p-value Brain  (pg/mg) WT 5h LPS N° TNF-α -/-  5h LPS N° p-value

TNF-α 76.23 ± 80.01 6 13.42 ± 101.07 8 0.162 TNF-α 0 ± 2.02 15 0 ± 0 8 0.045*

IL-1β 248.59 ± 61.28 6 22.27 ± 113.69 7 0.014 * IL-1β 10.5 ± 4.77 8 5.97 ± 2.19 7 0.142

IL-6 11.78 ± 6.87 5 4.75 ± 3.86 5 0.129

CCL2 108.08 ± 22.02 5 15.46 ± 2.86 4 0.016 *

IL-10 0 ± 0 4 0 ± 0 4 -  

All comparisons between the data sets were performed with Mann-Whitney test, *p≤ 0.05.  

N°= number of experimental animals. 

 

3.2.5 Effects of inflammation on microglial Ca2+-signaling in NLRP3-/- and 

TNF-α-/- mice 

After determination of the cytokine levels, we asked how the hyperactivity of microglia 

is influenced by the NLRP3 inflammasome and TNF-α. To address this question, we 

injected NLRP3-/- and TNF-α-/- mice with LPS, filled the microglial cells of these mice 

with the Ca2+-sensor OGB-1 by means of electroporation, and evaluated the fractions 

of active and inactive cells 5 h after induction of inflammation (Figure 16). 

The fraction of cells with spontaneous Ca2+-transients in NLRP3-/- mice was strongly 

reduced compared to the fraction in control Iba1GFP/+ mice. We measured a 

significant reduction from 79 % of active cells in Iba1GFP/+ mice to only 25 % of active 

cells in the NLRP3-/- mice (p= 0.005, Fisher`s exact test). Further, the fraction of 

active and inactive cells in NLRP3-/- mice did not differ from the fractions of 

PBS-injected Iba1GFP/+ mice (p= 0.445, Fisher`s exact test). 

The influence of TNF-α on the microglial hyperactivity during inflammation was 

evaluated in TNF-α-/- mice. The fraction of active and inactive cells in LPS-injected 

TNF-α-/- mice was hereby significantly different from the fractions in PBS-injected 

Iba1GFP/+ mice, with a higher fraction of active cells (p= 0.018, Fisher`s exact test). 

The fraction of spontaneously active cells decreased from 79 % in LPS-injected 

Iba1GFP/+ mice to only 47 % in the TNF-α-/- mice. However, this effect did not reach 

the level of statistical significance (p= 0.147, Fisher`s exact test). 
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Figure 16 Influence of the NLRP3 inflammasome and TNF-α on inflammation-induced microglial 

Ca2+-signaling  

Bar graphs comparing the fraction of spontaneously active microglia in 4-6 months old Iba1GFP/+, NLRP3-/-, and 

TNF-α-/- mice 5 h after PBS or LPS injection. The fractions of active and inactive cells in Iba1GFP/+ mice were 

significantly different 5 h after LPS injection when compared to the fractions 5 h after PBS injection (p= 0.001, 

Fisher`s exact test, same data set as in Figure 13). When comparing NLRP3-/- mice with Iba1GFP/+ mice 5 h after 

LPS injection, there was a significant difference in the cell fractions (p= 0.005, Fisher`s exact test) with a clear 

decrease in the fraction of active cells in the NLRP3-/- mice. The signaling of microglia from NLRP3-/- mice 

resembled the signaling of PBS-injected mice (p= 0.445, Fisher`s exact test). Comparing the cell fractions of 

TNF-α-/- mice and Iba1GFP/+ mice 5 h after LPS injection, revealed a decrease of the active cell fraction in TNF-α-/-

 mice, however, this effect was below the level of statistical significance (p= 0.147, Fisher’s exact test). In 

comparison to PBS-injected Iba1GFP/+ mice, the fractions of active cells in LPS-injected TNF-α-/- mice were 

significantly increased (p= 0.018, Fisher’s exact test). We measured the cell fractions of Iba1GFP/+ mice in 5 mice 

per group: with n= 22 cells for 5 h PBS and n= 14 cells for 5 h LPS. The fractions of NLRP3-/- mice were 

measured in 5 mice with n= 20 cells and the fractions of TNF-α-/- mice in 6 mice and n= 18 cells. (These 

experiments were performed by Dr. Bianca Brawek). 

 

Taken together, these data identified a clear role of the NLRP3 inflammasome for the 

inflammation-induced microglial Ca2+-signaling. 

3.2.6 Expression of activation markers in microglia during a peripheral 

inflammation 

3.2.6.1 Inflammation increases expression of microglial IL-1β 

IL-1β is considered as one of the major inflammatory proteins. Within the brain, it is 

mainly produced by microglial cells (Pinteaux et al. 2002). To investigate the time 

course of the cortical IL-1β production under inflammatory conditions, we analyzed 
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the cortical expression of microglial marker Iba1 and the cytokine IL-1β at different 

time points after PBS or LPS injection by means of immunohistochemistry.  

Figure 17A shows representative images of microglia and their IL-1β expression in 

control (PBS injections), during the early, and during the late phase of peripheral 

inflammation (LPS injections). In contrast to PBS controls, which were completely 

devoid of IL-1β positive cells, many IL-1β-positive microglial cells were found in 

LPS-injected animals, both 5 h, and 30 h after the LPS injection. To evaluate the 

cytokine production, we calculated the fractions of positive cells at the different time 

points after the injections (Figure 17B). A comparison of the 4 fractions revealed a 

significant difference in the expression of IL-1β (p= 0.001, Kruskal-Wallis test). When 

compared pair-wise in a post-hoc test, 5 h after LPS injection, microglia showed a 

visible increase in production of IL-1β, whereby the fraction of positive cells stayed 

below statistical significance when compared to PBS-injected controls (p= 0.144, 

Dunn`s multiple comparisons test). However, 30 h after LPS injection, the fraction of 

IL-1β positive cells was significantly increased when compared to 30 h after PBS 

injection (p= 0.008, Dunn`s multiple comparisons test). Notably, the fraction of IL-1β 

positive cells was not significantly different 5 h after LPS compared to 30 h after LPS 

injection (p= 1, Dunn`s multiple comparisons test). 

 

 

 

Figure 17 Increase in microglial IL-1β expression during peripheral inflammation 

(A) MIP images (25 µm depths) of microglial cells labeled with anti-Iba1 and anti-IL-1β antibodies in the cortex of 

4-6 months old WT mice at different time points after PBS or LPS injection. Arrowheads point to IL-1β positive 

microglia, which were only detected in LPS-injected mice (B) Box plots showing the medians 
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(per mouse) fractions of IL-1β positive cells 5 h and 30 h after PBS or LPS injection (n= 15 analyzed areas per 

mouse in 5 mice per group). Note, a significant change in the fraction of IL-1β positive cells during peripheral 

inflammation (p= 0.001, Kruskal-Wallis test). The Dunn`s multiple comparisons test revealed no significant 

difference in the IL-1β expression between 5 h PBS and 5 h LPS (p= 0.144) and a significant increase in the 

fraction of IL-1β positive microglia 30 h after LPS compared to 30 h after PBS (p= 0.008, Dunn`s multiple 

comparisons test). Comparing 5 h and 30 h after LPS injection revealed no significant difference of the 

IL-1β positive cell fraction (p= 1, Dunn`s multiple comparisons test). (The experiments were performed with the 

help of Daria Savitska). 

 

3.2.6.2 Microglial CD68 expression is not influenced by the peripheral inflammation 

Macrosialin, also known as cluster of differentiation 68 (CD68) is a macrophage-

specific intracellular glycoprotein. In the CNS, it is mainly expressed by microglia. 

CD68 is localized within the lysosomes and endosomes of the cells and is associated 

with the clearance of cell debris, phagocytosis, as well as the recruitment of 

macrophages (Silva and Gordon 1999; Holness et al. 1993). As it is up-regulated 

under inflammatory conditions, it is commonly used as a microglial activation marker. 

To investigate the CD68 expression in our experimental model, we injected WT mice 

with PBS or LPS and stained fixed cortical slices with antibodies against Iba1 and 

CD68. Subsequently, we measured the intensities of the CD68 expression in 

microglia 5 h and 30 h after the injections. 

Figure 18A shows typical staining patterns of Iba1 and CD68 in microglia. The 

evaluation of the intensities of the CD68 expression (Figure 18B) revealed no 

alteration in the CD68 expression between the different time points after PBS or LPS 

injection (p= 0.105, Kruskal-Wallis test). 
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Figure 18 No change in microglial CD68 expression during peripheral inflammation 

(A) MIP images (25 µm depths) of microglia labeled with anti-Iba1 and anti-CD68 antibodies in the cortex of 

4-6 months old WT mice 5 h and 30 h after PBS or LPS injection. (B) Box plots showing the medians (per mouse) 

of the CD68 signal intensity in microglia at different time points after PBS or LPS injection (n= 6-10 analyzed 

areas per mouse, 5 mice per group). Note, no significant change in the CD68 signal intensity between these 

groups (p= 0.105, Kruskal-Wallis test). (These experiments were performed by Daria Savitska). 

 

3.2.7 Inflammation leads to accelerated microglial process extension 

Microglia have the ability to protect the brain tissue by sending their processes to a 

site of injury and to shield the surrounding brain parenchyma from toxic stimuli. 

Damaged cells release ATP and thereby attract microglial processes. An 

ATP-containing pipette can mimic a damaged cell and leads to microglial process 

extension towards the pipette (Davalos et al. 2005; Nimmerjahn, Kirchhoff, and 

Helmchen 2005; Schwendele et al. 2012). It is known that this property of microglia 

might be altered under pathological conditions like during neuroinflammation 

observed in a mouse model of Alzheimer`s disease (Brawek et al. 2014). To further 

characterize the functional properties of microglia in our model of peripheral 

inflammation, we measured the velocity of the process extensions towards an 

ATP-filled pipette at different time points during inflammation. 

Figure 19A shows representative images of the microglial process movement 

towards the ATP-containing pipette over time. The experiments revealed a significant 

change in the process velocities (Figure 19B, p= 0.002, Kruskal-Wallis test). 
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Under inflammatory conditions, already 5 h after LPS injection, the cells showed a 

visible increase in the velocity of process extension towards the ATP-containing 

pipette. The velocity of the processes changed hereby from a mean value of 

3.36 µm/min in PBS-injected mice to a value of 4.09 µm/min in the LPS-injected 

mice, whereby the increase stayed below statistical significance (p= 0.171, Dunn`s 

multiple comparisons test). Analyzing the process movements during the late phase 

of inflammation resulted in a further acceleration in the microglial process velocity. 

30 h after LPS injection, the speed of the cell processes increased significantly from 

3.48 µm/min 30 h after PBS injection to 4.67 µm/min 30 h after LPS injection 

(p= 0.039, Dunn`s multiple comparisons test). 

 

 

 

Figure 19 Increase of microglial process velocity during peripheral inflammation 

(A) MIP images (70-90 µm below the cortical surface) of microglia in the motor cortex of a 5 months old 

Iba1GFP/+ mouse 30 h after LPS injection. Images illustrate the process extension towards a pipette filled with ATP 

and Alexa Fluor 594 (red). (B) Comparison of the means (per mouse) of the microglial process velocity (µm/min) 
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between 5 h after LPS, 30 h after LPS and their corresponding PBS-controls (n= 2-7 areas per mouse in 5 mice 

per group). The process velocity during inflammation was significantly changed (p= 0.002, Kruskal-Wallis test). 

There was a visible but not significant increase in the velocity 5 h after LPS compared to 5 h after PBS injection 

(p= 0.171, Dunn`s multiple comparisons test). However, the process velocity increase reached the level of 

statistical significance 30 h after LPS injection when compared to 30 h after PBS injection (p= 0.039, Dunn`s 

multiple comparisons test). 

 

Taken together, a peripheral inflammation can be divided into two phases. During the 

early phase, the cytokine levels are high and microglia react with strong Ca2+-signals. 

During the late phase, when the cytokine levels are lowered, morphological changes 

start to take place, the IL-1β expression in microglia is up-regulated and the process 

velocity of the cells is markedly increased. 

3.3 Neuronal functional properties during a peripheral 

inflammation 

As microglia, also neurons have the capacity to react quickly to changes in their 

environment. In the following, we shifted the focus from the immune cells of the brain 

towards the neuronal network, to characterize the reactions of neurons to a 

peripheral inflammation. 

3.3.1 Inflammation leads to hyperactivity of layer 2/3 neurons 

The Ca2+-sensor GCaMP6f provides a reliable reflection of the action potential firing 

in neurons (Chen et al. 2013). Inflammation was reported to affect neuronal activity. 

Injections of LPS, for example, were shown to alter the neuronal excitability in rats 

and increase their susceptibility to seizures (M. a Galic et al. 2008). Further, neurons 

in organotypic brain slices excited by topical application of LPS showed an increased 

frequency of spontaneous excitatory postsynaptic currents (EPSCs) 

(Pascual et al. 2012). However, how neurons react to peripheral inflammation in 

terms of their in vivo Ca2+-signaling, and how their activity changes in the course of 

inflammation remains unclear. To answer the above questions, we injected a 

neuron-specific GCaMP6f-encoding viral construct into the motor cortex of WT mice 

and implanted a chronic cranial window above the injected area. Afterward, the 

frequency of spontaneously occurring neuronal Ca2+-transients was measured in 
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neurons of layer 2/3 before (control) and at different time points after intraperitoneal 

PBS or LPS injections. 

Representative images of GCaMP6f-labeled neurons are shown in Figure 20A and B. 

The spontaneous Ca2+-transients of the imaged neurons (labeled with respective 

numbers) and the surrounding neuropil region (green dotted line) are illustrated in 

Figure 20C (PBS) and D (LPS).  

Comparing the frequency of spontaneous Ca2+-transients (transients/min) before and 

5 h after LPS injection, with help of cumulative histograms of the frequencies, in all 

analyzed cells, revealed a clear rightward shift of the frequency after LPS injection 

(Figure 20F). This effect was absent in mice injected with PBS (Figure 20E).  

The box plots in Figure 20G and H show the frequency of neuronal Ca2+-transients of 

PBS- and LPS-injected mice as a function of time after the induction of the peripheral 

inflammation. The frequencies were normalized to the initial control measurements 

before the injections. Comparing the normalized frequencies of spontaneous 

Ca2+-transients at different time points after PBS injection to the control 

measurement, carried out before the injection, with a repeated measures ANOVA, 

revealed no significant difference (Figure 20G, p= 0.304, Friedman`s test). In 

contrast, induction of a peripheral inflammation with LPS resulted in a significant 

increase in the neuronal frequency of the Ca2+-transients (Figure 20H, p= 0.001, 

Friedman`s test). This effect was observed during the early phase of inflammation 

(control versus 5 h LPS, p= 0.016, Dunn`s multiple comparisons test). The frequency 

of Ca2+-transients reached hereby a median value of 164 % of the initial frequency. 
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Figure 20 GCaMP6f-labeled neurons and increase in neuronal Ca2+-signaling during peripheral 

inflammation 

(A) and (B) MIP images (164 µm (A) and 186 µm (B) below the cortical surface) of GCaMP6f-labeled neurons in 

the motor cortex of 5 months old WT mice. (C) and (D) Spontaneous Ca2+-transients recorded from neurons 
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(black traces) and neuropil (green trace), before (control), 5 h, and 72 h after PBS or LPS injection. The 

corresponding cells are marked with the respective numbers in panel (A) and (B). ΔF/F shows the normalized 

change in fluorescence. (E) and (F) Cumulative histograms of the frequency of neuronal Ca2+-transients before 

and 5 h after PBS or LPS injection. Note, higher frequencies 5 h after LPS injection. (G) Box plots showing the 

medians (per mouse) of normalized neuronal frequency of Ca2+-transients at different time points after 

PBS injection (n= 5 mice). PBS injections did not cause any significant change in the frequency of Ca2+-transients 

(p= 0.304, Friedman`s test). (H) Box plots showing the medians (per mouse) of normalized frequency of 

Ca2+-transients in neurons at different time points after LPS injection (n= 6 mice). Note a significant change in the 

frequency of Ca2+-transients after LPS injection (p= 0.001, Friedman`s test). When compared to control condition, 

there was a significant frequency increase 5 h after LPS injection (p= 0.016, Dunn’s multiple comparisons test). 

 

3.3.2 Separation of somatic and neuropil Ca2+-signals by independent 

component analysis 

Labeling of neurons with GCaMP6f results in a broad staining of neuronal somata, 

dendrites, and axons (see Figure 20A and B). Ca2+-signals can either occur either in 

neuronal cell bodies or in their processes located in the surrounding neuropil. 

Because the size of the brain area excited by a two-photon laser beam increases 

with an increase in the intensity of excitation light, signals collected from a given 

somatic region of interest, in reality, might originate from the surrounding neuropil. To 

discriminate between somatic and neuropil Ca2+-signals, we reanalyzed the data 

obtained from the Ca2+-measurements 5 h after PBS and LPS injection with 

“independent component analysis” (ICA). This method allows the identification of 

signals in cell somata occurring asynchronously (independently) with cytosol signals. 

At the same time, this mathematical approach eliminates somatic Ca2+-signals 

occurring synchronously with that originating in the neuropil area. 

3.3.2.1 Inflammation increases Ca2+-signaling in neuronal somata 

The frequency distributions of the asynchronous somatic Ca2+-transients, before and 

after PBS (A) or LPS (B) injection, are shown in Figure 21A and B. It has to be 

noticed, however, that ICA revealed a high percentage of silent cells (i.e. either 

genuinely inactive cells or cells without independent Ca2+-signals). In PBS-injected 

mice, around 15 % of the cells were silent. This number increased to 32 % in the 

LPS-injected mice. Also, after separation of independent somatic Ca2+-signals by 

ICA, we observed no change of the frequency of Ca2+-transients 5 h after PBS 

injection when compared to the control measurement (see cumulative histograms in 

Figure 21A). However, 5 h after LPS injection, there was a clear increase in the 
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frequency of independent somatic Ca2+-transients when compared to the control 

condition (see Figure 21B). 

The frequencies of the somatic Ca2+-transients, normalized to the respective 

frequencies before PBS or LPS injection, are displayed in Figure 21C. Due to the 

high percentage of silent cells, we compared the 75th percentiles of the frequency 

distributions (per mouse) instead of the medians. 5 h after PBS injection 

(Figure 21C), there was no significant frequency change of the independently active 

neurons (p> 0.999, Wilcoxon signed rank test). In contrast, the frequency of somatic 

Ca2+-transients 5 h after LPS injection increased significantly, compared to the initial 

control measurement (p= 0.031, Wilcoxon signed rank test). This supports the 

previous results (see 3.3.1 and Figure 20G and H) and substantiates the excitatory 

effect of peripheral inflammation on cortical layer 2/3 neurons. To elucidate further 

properties of the somatic Ca2+-signals, we analyzed the amplitudes of the 

Ca2+-transients 5 h after LPS injection. We observed hereby a significant increase in 

the amplitudes of the somatic Ca2+-transients during inflammation (Figure 21D, 

p= 0.031, Wilcoxon signed rank test). 
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Figure 21 ICA reveals increase in frequency and amplitude of somatic Ca2+-transients of layer 2/3 neurons 

during peripheral inflammation 

(A) and (B) Cumulative histograms of the frequencies of the somatic Ca2+-transients before and 5 h after PBS or 

LPS injection (results obtained from same datasets as the one shown in Figure 20). (C) Box plots showing the 

75th percentiles (per mouse) of normalized frequencies of somatic Ca2+-transients 5 h after PBS and 

LPS injection. Note, a significant increase in frequency of Ca2+-transients 5 h after LPS injection (p= 0.031, 

Wilcoxon signed-rank test) and no frequency change after PBS injection (p> 0.999, Wilcoxon signed-rank test). 

(D) Box plots showing the 75th percentiles (per mouse) of normalized amplitudes of somatic Ca2+-transients 5 h 

after LPS injection. Note, a significant increase in the amplitude of Ca2+-transients 5 h after LPS injection 

(p= 0.031, Wilcoxon signed-rank test). 
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3.3.2.2 Inflammation increases the amplitude of Ca2+-transients in the neuropil 

After investigation of the somatic Ca2+-signals of layer 2/3 neurons, we focused on 

the Ca2+-signals originating in the neuropil (Figure 22). When compared to control 

conditions before the injections, we found that neither PBS nor LPS injections 

affected the frequency of the Ca2+-transients in the neuropil (Figure 22A, control 

versus 5 h PBS, p> 0.999 and control versus 5 h LPS, p> 0.999, Wilcoxon signed 

rank test). However, there was a clear increase in the amplitude of the neuropil 

Ca2+-transients 5 h after LPS injection when compared to control (Figure 22B, 

p= 0.031, Wilcoxon signed rank test). In contrast, the signal amplitudes of 

PBS-injected mice did not change (Figure 22B, p= 0.188, Wilcoxon signed rank test). 

 

 

 

Figure 22 ICA reveals an increase in the amplitude of neuropil Ca2+-transients during peripheral 

inflammation 

(A) Box plots showing the medians (per mouse) of the normalized frequencies of Ca2+-transients in the neuropil 

5 h after PBS and LPS injection (results obtained from same datasets as the one shown in Figure 20). There was 

no change in the frequency of Ca2+-transients in PBS- and LPS-injected mice (p> 0.999, Wilcoxon signed-rank 

test). (B) Box plots showing the medians (per mouse) of the normalized amplitude of Ca2+-transients in the 

neuropil 5 h after PBS and LPS injection. Note, a significant increase in the amplitude of neuropil Ca2+-transients 

5 h after LPS injection (p= 0.031, Wilcoxon signed-rank test) but not after PBS injection (p= 0.188, Wilcoxon 

signed-rank test). 

 

Taken together, neurons react to a peripheral inflammation with a pronounced 

increase in their Ca2+-signaling. This effect was observed during the early phase of 
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inflammation, 5 h after the LPS challenge. An increased Ca2+-signaling was hereby 

observed in both, the somata of the layer 2/3 neurons, where the frequency and the 

amplitude were increased and, in the neuropil, where solely the amplitude of the 

Ca2+-signals was increased. 

3.3.3 Effects of inflammation on presynaptic axonal Ca2+-signals  

Cortical layer 2/3 neurons receive excitatory input from pyramidal neurons of deeper 

layers (Shepherd et al. 2005). The described above experiments already indicated an 

excitatory effect of LPS in the neuronal somata (postsynapse). Therefore, in the next 

step, we analyzed how peripheral inflammation impacts presynaptic Ca2+-signaling. 

To this end, we labeled neurons in layer 5 of the motor cortex with GCaMP6f. We 

then measured spontaneous Ca2+-signals in their ascending axons in layer 1 before 

and after PBS or LPS injection through a chronic window.  

3.3.3.1 Inflammation increases frequency of Ca2+-transients in axons from the motor 

cortex 

Figure 23A shows a typical axonal staining in layer 1 of the mouse motor cortex 

(individual axons marked by white arrowheads). The corresponding axonal 

Ca2+-transients measured before (control) and after LPS injection (5 h LPS) are 

displayed in Figure 23B. 

Cumulative histograms of the frequencies of axonal Ca2+-transients (Figure 23C) 

indicated no influence of the PBS injection (left panel) and a somewhat higher 

frequency of axonal Ca2+-transients after the LPS injection (right panel). 

A comparison of the amplitudes of the axonal Ca2+-transients before and after LPS 

injection revealed a slight increase in the signal amplitude after LPS injection, with a 

median value reaching 117 % of the initial amplitude (Figure 23D). Nevertheless, this 

effect was below the level of statistical significance (p= 0.156, Wilcoxon signed rank 

test (one-tailed)). Figure 23E illustrates the normalized frequencies of axonal 

Ca2+-transients after PBS or LPS injection. The LPS injection resulted hereby in a 

significant increase in the frequency of Ca2+-transients with a median value reaching 

133 % of the initial frequency (p= 0.031, Wilcoxon signed rank test (one-tailed)). The 

PBS injection did not alter the frequency of axonal Ca2+-transients (p= 0.250, 

Wilcoxon signed rank test (one-tailed)). 
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3.3.3.2 Inflammation does not influence the frequency of Ca2+-transients in axons 

from the somatosensory cortex 

In addition to the inputs from deeper layers of the motor cortex, there are strong 

reciprocal connections between the somatosensory and the motor cortex (Suter and 

Shepherd 2015). To investigate the input from the somatosensory cortex, we labeled 

neurons in the somatosensory area with GCaMP6f and measured Ca2+-signals in 

their axonal projections to layer 1 of the motor cortex before and after LPS injection. 

In contrast to the axons originating in the motor cortex, we did not observe any 

inflammation-induced increase in frequency of Ca2+-transients in the axons from the 

somatosensory cortex (Figure 23F, p= 0.125, Wilcoxon signed rank test (one-tailed)). 
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Figure 23 Increase in frequency of presynaptic Ca2+-transients in axons from the motor but not the 

somatosensory cortex during peripheral inflammation  

(A) Representative average intensity projection image (20 µm below the cortical surface) of GCaMP6f-labeled 

axons in layer 1 in the motor cortex of a 5 months old WT mouse. Individual axons are marked by white 

arrowheads. (B) Spontaneous Ca2+-transients from axons recorded before (control) and 5 h after LPS injection. 

The corresponding axons are marked with the respective numbers in (A). ΔF/F shows the normalized change in 

fluorescence. (C) Cumulative histograms of the frequency of Ca2+-transients in axons of layer 5 neurons in the 

motor cortex, before and 5 h after PBS or LPS injection (n= 5 mice per group). (D) Box plot showing the median 

(per mouse) of the normalized amplitude of Ca2+-transients in axons from the motor cortex, 5 h after LPS injection 
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(p= 0.156, Wilcoxon signed-rank test (one-tailed)). (E) Box plots showing the medians (per mouse) of normalized 

frequencies of Ca2+-transients in axons from the motor cortex 5 h after PBS and LPS injection. Note, a significant 

increase in the frequency of Ca2+-transients 5 h after LPS injection (p= 0.031, Wilcoxon signed-rank test (one-

tailed)), but not 5 h after PBS injection (p= 0.250, Wilcoxon signed-rank test (one-tailed)). (F) Box plot showing the 

medians (per mouse) of the normalized frequency of Ca2+-transients in axons from the somatosensory cortex 

5 h after LPS injection. LPS injection induced no increase in the frequency in axons from the somatosensory 

cortex (p= 0.125, Wilcoxon signed-rank test (one-tailed)). 

 

3.3.4 Inflammation increases Ca2+-signaling in layer 5 neurons of the 

motor cortex 

Next, we measured Ca2+-signals in the somata of layer 5 neurons in the motor cortex 

(at 450 to 600 µm depths). We injected mice with PBS or LPS before we 

“bulk-electroporated” neurons (Nagayama et al. 2007) in layer 5 with the small 

molecule Ca2+-sensor Oregon Green BAPTA-1 (OGB-1). This method allowed to 

sparsely label neurons surrounding the tip of the labeling pipette and enabled 

sufficient visibility to image the Ca2+-signals of the deep cortical neurons. The 

frequency of somatic Ca2+-transients was measured 4-6 h after the LPS or PBS 

injection.  

Representative images of cells electroporated after PBS (A) or LPS (B) injection with 

the corresponding somatic Ca2+-transients (C and D) are shown in Figure 24. 

Cumulative histograms of the frequency of the Ca2+-transients (Figure 24E) revealed 

a significant increase in frequency in mice injected with LPS when compared to 

PBS-injected mice (p= 0.045, Kolmogorov–Smirnov test). Comparing the medians 

(per mouse) of the frequency of Ca2+-transients 5 h after PBS and LPS injection 

supported these results and revealed a significantly higher frequency of 

Ca2+-transients in the layer 5 neurons after LPS injection (Figure 24F, p= 0.041, 

Mann-Whitney test (one-tailed)). 
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Figure 24 Increase in frequency of somatic Ca2+-transients in layer 5 neurons of the motor cortex during 

peripheral inflammation 

(A) and (B) Representative average intensity projection images (496 µm (A) and 538 µm (B) below the cortical 

surface) of OGB-1-labeled neurons in the motor cortex of 5 months old WT mice. Mice were injected either with 

PBS or with LPS. (C) and (D) Spontaneous Ca2+-transients from electroporated neurons recorded 5 h after PBS 

or LPS injection, respectively. The corresponding neurons are marked with the respective numbers in (A and B). 

(E) Cumulative histograms of the frequency of somatic Ca2+-transients ~5 h after the PBS and LPS injections. 

Note, a significant increase in frequency of the Ca2+-transients in LPS-injected mice (p= 0.045, 

Kolmogorov-Smirnov test) (F) Box plots illustrating the medians (per mouse) of the frequency of Ca2+-transients 

5 h after PBS and LPS injection. Compared to PBS injections, there was a significant increase in frequency of the 

Ca2+-transients after injection of LPS (p= 0.041, Mann-Whitney test (one-tailed)). 
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As the previous data have shown, the inflammation-induced Ca2+-signaling increase 

is not only a feature of cortical neurons in layer 2/3. It can be also found in their 

presynaptic partners. Thus, in addition to observing increased frequency of 

Ca2+-signals in axons originating in deeper layers of the motor cortex, similar results 

were also obtained when recording from somata of neurons in layer 5. 

3.3.5 Inflammation decreases Ca2+-signaling in inhibitory neurons 

Around 20-30 % of the cortical neurons are inhibitory neurons (Markram et al. 2004). 

With the GCaMP6f-encoding viral construct, it was not possible to distinguish 

between neurons with excitatory or inhibitory properties. However, we aimed to know 

which cell type, in particular, is affected. To address this question, we used a 

VIAAT-Cre-GCaMP6 transgenic mouse line. These mice express the 

Cre recombinase under control of the VIAAT-promoter, which is exclusively active in 

inhibitory GABAergic neurons. We implanted a chronic window above the motor 

cortex of these mice and evaluated the spontaneous somatic Ca2+-signaling of 

GCaMP6-labeled GABAergic neurons 5 h after PBS and LPS injection. 

Figure 25A shows a representative image of two GABAergic cells. The corresponding 

spontaneous Ca2+-transients of the imaged neurons before (control) and after LPS 

injection, are shown in Figure 25B. Cumulative histograms of the frequency of 

Ca2+-transients before and 5 h after PBS injection indicated no change in the 

frequency of the Ca2+-transients (Figure 25C). However, comparison of the frequency 

of Ca2+-transients before and after LPS injection revealed a clear decrease in the 

frequency of the Ca2+-transients during peripheral inflammation (Figure 25D). 

The box plots in Figure 25E illustrate the normalized frequency of Ca2+-transients 

after PBS and LPS injection. We found no significant difference in the frequency of 

the Ca2+-transients in inhibitory neurons after injection of PBS (p= 0.125, Wilcoxon 

signed-rank test), whereas LPS injection resulted in a significant decrease in the 

frequency of Ca2+-transients (Figure 25E, p= 0.031, Wilcoxon signed-rank test). 
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Figure 25 Decrease in frequency of Ca2+-transients in inhibitory neurons during peripheral inflammation 

(A) Representative MIP image (76-86 µm below the cortical surface) of GCaMP6-expressing GABAergic neurons 

in the motor cortex of a 5 months old VIAAT-Cre-GCaMP6 mouse. (B) Spontaneous Ca2+-transients recorded 

from the neurons in (A), before (control) and 5 h after LPS injection. (C) and (D) Cumulative histograms of the 

frequency of somatic Ca2+-transients before and 5 h after PBS or LPS injection. Data obtained from 4-6 months 

old VIAAT-Cre-GCaMP6 mice (n= 6 mice per group). (E) Box plots showing the medians (per mouse) of 

normalized frequency of somatic Ca2+-transients 5 h after PBS and LPS injection. Note, a significant decrease in 

the frequency of somatic Ca2+-transients in inhibitory neurons 5 h after LPS injection (p= 0.031, Wilcoxon signed-

rank test), and no significant change in the frequency 5 h after PBS injection (p= 0.125, Wilcoxon signed-rank 

test). 

 

3.3.6 Ca2+-signaling in neurons of NLRP3-/- and TNF-α-/- mice 

The Ca2+-signaling of microglia was influenced by the NLRP3 inflammasome and to a 

minor extent by the cytokine TNF-α. However, the way how neurons react in absence 

of these inflammatory mediators remained elusive. To address this question, we 

labeled neurons of layer 2/3 in NLRP3-/- and TNF-α-/- mice with GCaMP6f and 

measured their spontaneous somatic Ca2+-signaling through a chronic window before 

and after injection of LPS. 
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3.3.6.1 Basal spontaneous Ca2+-signaling in neurons of NLRP3-/- and TNF-α-/- mice  

First, we examined, whether the basal spontaneous Ca2+-signaling in neurons of 

NLRP3-/- and TNF-α-/- animals differed from the signaling in WT animals. To this end, 

we compared the frequency of somatic Ca2+-transients in neurons of NLRP3-/- and 

TNF-α-/- mice with the frequency of the Ca2+-transients in neurons of WT mice.  

The basal spontaneous Ca2+-signaling in neurons of NLRP3-/- mice was clearly 

increased compared to WT mice. The NLRP3-/- mice showed a significantly higher 

frequency of Ca2+-transients than WT animals (Figure 26A, p= 0.03, Mann-Whitney 

test).  

In contrast, the basal spontaneous Ca2+-signaling in neurons of TNF-α-/- mice did not 

differ from the signaling in neurons of WT animals. TNF-α-/- and WT mice showed 

comparable frequencies of spontaneous Ca2+-transients (Figure 26B, p= 0.537, 

Mann-Whitney test). 

 

 

 

Figure 26 Influence of the deletion of NLRP3 inflammasome and TNF-α on basal spontaneous 

Ca2+-signaling in layer 2/3 neurons of the motor cortex 

Comparison of basal spontaneous Ca2+-signaling in neurons of WT, NLRP3-/- and TNF-α-/- mice (n= 5 mice per 

group). (A) Box plots illustrating the medians (per mouse) of the frequency of Ca2+-transients in neurons of WT 

and NLRP3-/- mice. Note, a significant increase in the frequency of the Ca2+-transients in NLRP3-/- mice compared 

to WT animals (p= 0.03, Mann-Whitney test). (B) Box plots showing the medians (per mouse) of the frequency of 

Ca2+-transients in neurons of WT and TNF-α-/- mice. There was no significant difference between the frequencies 

of spontaneous Ca2+-transients in WT and TNF-α-/- animals (p= 0.537, Mann-Whitney test). 
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3.3.6.1 Effects of inflammation on Ca2+-signaling in neurons of NLRP3-/- and 

TNF-α-/- mice 

In a next step, we investigated whether the NLRP3 inflammasome and the cytokine 

TNF-α play a role for the neuronal Ca2+-signaling during a peripheral inflammation. 

Therefore, we measured the spontaneous somatic Ca2+-signaling in neurons of 

NLRP3-/- and TNF-α-/- mice, before and at different time points after LPS injection. 

Figure 27A illustrates the normalized frequency of neuronal Ca2+-transients in 

NLRP3-/- mice as a function of time after the induction of peripheral inflammation. 

Comparing the frequencies of the Ca2+-transients to the initial control frequency with 

a repeated measures ANOVA, revealed no significant effect of LPS on the frequency 

of the Ca2+-transients in NLRP3-/- mice (p= 0.169, Friedman`s test). The normalized 

frequencies of neuronal Ca2+-transients in LPS-treated TNF-α-/- mice are shown in 

Figure 27B. A repeated measures ANOVA revealed a significant change in the 

frequency of Ca2+-transients in the LPS-treated TNF-α-/- mice (p= 0.026, Friedman`s 

test), however, a post hoc comparison with the Dunn’s multiple comparisons test 

stayed below statistical significance (p> 0.05). Cumulative histograms of the 

frequencies of the neuronal Ca2+-transients in NLRP3-/- and TNF-α-/- mice before and 

5 h after LPS injection are shown in Figure 27C and D. It is worth to note that 5 h 

after LPS injection, the NLRP3-/- mice showed a clear, although not significant 

(Figure 27A) increase in the frequency of Ca2+-transients when compared to the 

initial control frequency (Figure 27C). Such frequency increase during the early 

phase of inflammation was not observed in the TNF-α-/- mice (Figure 27D). 
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Figure 27 Influence of the deletion of NLRP3 inflammasome and TNF-α on the neuronal Ca2+-signaling 

during peripheral inflammation 

Spontaneous Ca2+-signaling in neurons of 4-6 months old NLRP3-/- and TNF-α-/- animals at different time points 

during inflammation (n= 5 mice per group). (A) Box plots showing the medians (per mouse) of the normalized 

frequency of Ca2+-transients in NLRP3-/- mice plotted as a function of time after injection of LPS. There was no 

significant change in the frequency of Ca2+-transients in NLRP3-/- mice after LPS injection (p= 0.169, Friedman`s 

test). (B) Box plots illustrating the medians (per mouse) of the normalized frequency of Ca2+-transients in 

TNF-α-/- mice. Frequencies plotted as a function of time after injection of LPS. The frequency of spontaneous 

Ca2+-transients in TNF-α-/- mice was significantly changed after LPS injection (p= 0.024, Friedman`s test), but a 

post hoc Dunn’s multiple comparisons test revealed no significant difference (p> 0.05). (C) and (D) Cumulative 

histograms of the frequencies of Ca2+-transients before and 5 h after LPS injection in NLRP3-/- (C) and 

TNF-α-/- mice (D). Note, a higher frequency of Ca2+-transients in NLRP3-/- mice 5 h after LPS injection, when 

compared to the frequency before injection. In contrast, injection of LPS seemed to have no excitatory influence 

on the frequency of Ca2+-transients in TNF-α-/- mice. 
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To directly compare the effect of LPS in NLRP3-/- and WT mice, we plotted the 

frequencies of the Ca2+-transients 5 h after LPS injection in a cumulative histogram 

(Figure 28A). Interestingly, there was no significant difference in the frequency of 

Ca2+-transients between NLRP3-/- mice and WT animals (Figure 28A, p= 0.933, 

Kolmogorov-Smirnov test). Thus, the NLRP3-/- mice were able to reach a similar 

frequency of Ca2+-transients during inflammation as WT animal. The lack of effect 

observed in Figure 27A was most probably due to the increased frequency of 

Ca2+-transients found in these mice under control conditions. 

In contrast, comparing the frequencies of Ca2+-transients (5 h after LPS) between 

TNF-α-/- mice and WT mice (Figure 28B) revealed a significantly lower frequency of 

Ca2+-transients in TNF-α-/- mice than in the WT animals (p< 0.001, Kolmogorov-

Smirnov test). 

 

 

 

Figure 28 Comparison of the neuronal Ca2+-signaling during peripheral inflammation in WT, NLRP3-/- and 

TNF-α-/- mice 

(A) Cumulative histograms of the frequency of spontaneous neuronal Ca2+-signals 5 h after LPS injection in WT 

and NLRP3-/- mice. Note, a comparable frequency of Ca2+-transients in NLRP3-/- and WT mice (p= 0.933, 

Kolmogorov-Smirnov test). (B) Cumulative histograms of the frequency of spontaneous neuronal Ca2+-signals 5 h 

after LPS injection in WT and TNF-α-/- mice. TNF-α-/- mice showed a significantly lower frequency of 

Ca2+-transients after LPS injection than WT animals (p< 0.001, Kolmogorov-Smirnov test). 
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Taken together, inhibitory neurons react to a peripheral inflammation with a reduced 

frequency of spontaneous Ca2+-transients. Further, a proper function of the 

NLRP3 inflammasome and the cytokine TNF-α seem to be important for the 

modulation of neuronal Ca2+-signaling. We found that the NLRP3 inflammasome has 

an impact on the basal spontaneous Ca2+-signaling in neurons but is apparently not 

responsible for the excitatory effect of LPS during inflammation. In contrast, the 

presence of TNF-α is not required for the spontaneous Ca2+-signaling under control 

conditions. However, TNF-α seems to be important for the LPS-induced increase of 

spontaneous neuronal Ca2+-signaling in the course of peripheral inflammation.  

3.3.7 Effects of microglial depletion on the neuronal network 

In the brain, the colony stimulating factor-1 (CSF-1) receptor is exclusively expressed 

on microglia. A blockade of this receptor yields a robust depletion of the cells 

(Elmore et al. 2014; Dagher et al. 2015). In the following experiments, we blocked 

microglial CSF-1 receptors in Iba1GFP/+ mice to investigate whether the spontaneous 

neuronal Ca2+-signaling depends on the presence of microglia.  

3.3.7.1 CSF-1-receptor inhibition leads to microglial depletion 

To confirm microglial depletion after CSF-1 receptor inhibition, we implanted a 

chronic window above the motor cortex of Iba1GFP/+ mice and counted the numbers of 

microglia before and after feeding the animals with the CSF-1 receptor inhibitor 

PLX 5622 (Plexxikon Inc., USA) for 7 days. 

Figure 29A shows images of the motor cortex of an Iba1GFP/+ mouse before and after 

CSF-1 receptor inhibition. The quantifications of the microglial cell numbers before 

and after feeding with PLX 5622 are displayed in Figure 29B. PLX 5622 led to a 

significant reduction of microglial cells from a total number of 47.38 cells per imaging 

field (0-200 µm below the cortical surface) to a value of 6.58 cells per field (p< 0.001, 

Paired t-test). 
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Figure 29 CSF-1 receptor inhibition leads to microglial depletion 

(A) MIP images (50-100 µm below the cortical surface) in the motor cortex of a 5 months old Iba1GFP/+ mouse 

before (left panel) and during (right panel, 7 day-long feeding period) feeding with the CSF-1 receptor inhibitor 

PLX 5622. Microglial eGFP is shown in green and blood vessels (in red) are stained by i.p. injections of 

sulforhodamine B. (B) Microglial number per imaging field (0-200 µm below the cortical surface, 

total volume 0.0062 mm³) before and after microglial depletion via PLX 5622. Note, a significant reduction of the 

microglial number after feeding with PLX 5622 (p< 0.001, Paired t-test). 

 

3.3.7.2 Microglial depletion decreases basal spontaneous Ca2+-signaling in layer 2/3 

neurons 

Next, we wanted to investigate if the absence of microglia had an influence on the 

basal spontaneous Ca2+-signaling in neurons. To this end, we labeled layer 2/3 motor 

cortical neurons of Iba1GFP/+ mice with GCaMP6f and implanted a chronic window. 

Then, we imaged spontaneous Ca2+-transients in these cells before and after feeding 

the mice for 7 days with the Plexxikon compound PLX 5622. 

The distributions of the frequency of neuronal Ca2+-transients before and after 

microglial depletion are shown in Figure 30A. We observed a clear increase in the 

number of silent neurons after microglial depletion, from 15 % of silent cells prior to 

depletion to 30 % of silent cells after feeding with PLX 5622. Further, our data 

revealed a decrease in the frequency of Ca2+-transients after microglial depletion. 

Figure 30B shows the frequency of Ca2+-transients in neurons after microglial 

depletion, normalized to the frequency of the Ca2+-transients before depletion. 

Without microglia, neurons showed a significantly reduced frequency of 

Ca2+-transients (p= 0.042, Wilcoxon signed-rank test), with a median value reaching 

only 64 % of the initial frequency. 



Results 

81 

 

 

 

Figure 30 Microglial depletion decreases basal spontaneous Ca2+-signaling in neurons 

Effect of microglial depletion on spontaneous neuronal Ca2+-signaling in the motor cortex of 4-6 months old 

Iba1GFP/+ mice (n= 12 mice). (A) Cumulative histograms of the frequency of spontaneous Ca2+-transients before 

and 7 days after CSF-1 receptor inhibition with PLX 5622. Note, a reduced frequency of Ca2+-transients and a 

higher fraction of silent neurons after microglial depletion. (B) Box plot illustrating the medians (per mouse) of the 

normalized frequency of Ca2+-transients 7 days after feeding PLX 5622. There was a significant decrease in the 

frequency of Ca2+-transients under PLX 5622 treatment (p= 0.042, Wilcoxon signed-rank test). 

 

3.3.7.3 Microglial depletion does not influence the inflammation-induced increase in 

Ca2+-signaling in layer 2/3 neurons 

To test the effect of microglial depletion on the inflammation-induced increase in 

neuronal Ca2+-signaling, we measured the frequency of spontaneous Ca2+-transients 

in GCaMP6f-labeled neurons of microglia-depleted mice before and 5 h after PBS or 

LPS injection.  

The cumulative histograms in Figure 31A show the frequencies of Ca2+-transients 

before microglial depletion with PLX 5622 (blue), before injecting PBS (green) and 

5 h after PBS injection (red). The corresponding frequencies of Ca2+-transients in the 

LPS-treated group of mice are illustrated in Figure 31B.  As already shown above 

(see 3.3.7.2, Figure 30), microglial depletion led to a general decrease in the 

frequency of spontaneous Ca2+-transients in neurons (Figure 31A and B, compare 

blue lines with green lines). However, injecting microglia-depleted mice with PBS had 

no effect on the frequency of the spontaneous neuronal Ca2+-transients 

(Figure 31A, green line versus red line). In contrast, even in the absence of microglia, 
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the injection of LPS led to a remarkable increase in the frequency of Ca2+-transients 

in neurons (Figure 31B, compare green line with red line). Figure 31C illustrates the 

normalized neuronal frequency of Ca2+-transients 5 h after PBS and LPS injection, 

normalized to the frequencies measured in the same cells directly before the 

respective treatment. The LPS injection resulted in a significant increase in the 

frequency of the Ca2+-transients, with a median value reaching 168 % of the initial 

frequency (p= 0.016, Wilcoxon signed-rank test). Injections of PBS had no effect on 

the spontaneous neuronal Ca2+-signaling (p> 0.999, Wilcoxon signed-rank test).  

 

 

 

Figure 31 Microglial depletion does not influence the frequency of neuronal Ca2+-transients during 

peripheral inflammation 

Effects of microglial depletion on spontaneous neuronal Ca2+-signaling in 4-6 months old Iba1GFP/+ mice 5 h after 

PBS or LPS injection. (A) Cumulative histograms of the frequencies of Ca2+-transients before feeding PLX 5622 
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(blue), 7 days after feeding PLX 5622/before PBS injection (green), and 5 h after PBS injection (red). Data from 

n= 5 mice. Note, a general decrease in the frequency of Ca2+-transients after microglial depletion with PLX 5622. 

(B) Cumulative histograms of the frequencies of Ca2+-transients before feeding PLX 5622 (blue), 7 days after 

PLX 5622/before LPS injection (green), and 5 h after LPS injection (red). Data obtained from n= 7 mice. LPS 

injection yielded a clear increase in the frequency of neuronal Ca2+-transients in microglia-depleted mice. (C) 

Box plots illustrating medians (per mouse) of normalized frequency of Ca2+-transients in neurons 5 h after PBS 

and LPS injection. Note that LPS injection induced a significant increase in the frequency of Ca2+-transients 

(p= 0.016, Wilcoxon signed-rank test), whereas the PBS injection had no effect on the Ca2+-signals (p> 0.999, 

Wilcoxon signed-rank test). 

 

In summary, a blockade of microglial CSF-1 receptors led to an almost complete 

depletion of microglia within the brain, as evidenced by the in vivo imaging of 

layers 1-3 of the motor cortex. This depletion was accompanied by a general 

decrease in the basal spontaneous Ca2+-signaling in cortical neurons. Nevertheless, 

microglial depletion did not affect the increase in neuronal Ca2+-signaling during the 

early phase of peripheral inflammation. 
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4. Discussion 

4.1 Inflammation-mediated increase of spontaneous network 

activity 

Taken together, this work shows that under inflammatory conditions, the properties of 

the local cortical network in the intact in vivo brain are shifted towards a hyperactive 

state. Microglia, as well as neurons, react to peripheral inflammation, induced by LPS 

injections, with a clear increase of their spontaneous Ca2+-signaling. By using in vivo 

two-photon Ca2+-imaging, we characterized the behavior of these two cell types over 

time and provided insights into the mechanisms involved.  

4.2. Microglia react to inflammation with up-regulation of their 

Ca2+-signaling 

After the systemic administration of LPS in mice, ELISA-based protein analysis 

confirmed that the inflammatory signal was transmitted from the periphery to the 

brain. We found a considerable increase in the brain cytokine concentration 5 h after 

LPS injection. During the initial phase of inflammation, this up-regulation was visible 

for most of the tested cytokines (IL-1β, TNF-α, IL-6, CCL2 and IL-10) in the 

periphery, as well as in the brain. Only the brain level of TNF-α did not increase to 

the statistically significant level and the brain level of IL-10 was below our detection 

threshold. Later during inflammation (30 h after LPS injection), the majority of 

cytokines returned to their control levels and did not differ any more from the 

corresponding PBS controls, pointing out the transient character of this acute 

cytokine response. 

During the early phase of inflammation, microglia reacted with a pronounced 

up-regulation of their spontaneous Ca2+-signaling. As was shown by our group 

previously, during physiological conditions, the spontaneous microglial Ca2+-signaling 

is low (Eichhoff et al. 2011; see also Pozner et al. 2015). Consistently, after PBS 

injections the observed fraction of spontaneously active cells was low. In contrast, 

under pathological conditions (i.e. after LPS injection), we observed an early (already 

5 h after LPS injection) and dramatic increase in the fraction of spontaneously active 

microglia. These results are consistent with the study of Pozner et al. 2015, who 
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showed that a moderate subcutaneous dose of LPS in the lower lip of 

GCaMP5-expressing mice provoked increased microglial Ca2+-signals 12 h after the 

injection (Pozner et al. 2015). Notably, the pronounced increase in microglial 

Ca2+-signaling occurred before the morphological activation of these cells. During the 

later phase of inflammation, when the brain concentrations of proinflammatory 

cytokines largely returned to control levels, the microglial hyperactivity decreased as 

well. These data suggest that microglia might sense the increase in the level of the 

proinflammatory cytokines and signal this change in brain homeostasis to other cells 

via up-regulation of their Ca2+-signaling and initiation of Ca2+-mediated signal 

cascades.  

4.3 Ca2+ mediates effector functions of microglia 

In general, a rise in the intracellular Ca2+-concentration can be associated with 

different effector functions. These functions, for example, include cytoskeletal 

rearrangements that are underlying changes of cell’s structure like altered 

morphology, process extension, migration towards an injury, engulfment of particles 

by phagocytosis or cell proliferation (Färber and Kettenmann 2006b; 

Bader et al. 1994; Korvers et al. 2016; Brawek et al. 2017; Koizumi et al. 2007). In 

this work, we investigated in vivo the inflammation-mediated changes in morphology 

of individual microglial cells over time. Consistent with previous data (Kozlowski and 

Weimer 2012; Kondo, Kohsaka, and Okabe 2011), this evaluation unveiled obvious 

inflammation-induced alterations of the cell’s morphology, occurring, however, during 

the later phase of inflammation. Microglia showed a gradual change of the soma 

volume, with a clear tendency towards increased volume, beginning 30 h after 

LPS injection. Ex vivo analysis in brain slices supported this result and affirmed the 

switch to a “morphologically reactive state”, 30 h after the induction of inflammation. 

In addition to morphological changes, the presence of Ca2+ was shown to be linked 

with cell proliferation (Korvers et al. 2016). Accordingly, we observed a trend towards 

an increased microglial density and an obviously higher number of cell doublets 

during the late stage of peripheral inflammation. The literature about microglial 

proliferation in response to a peripheral LPS stimulation is controversial. In a study 

using four daily i.p. injections of LPS (1.0 mg/kg), there were no signs of proliferation 

of cortical microglia labeled with the thymidine analog BrdU (Z. Chen et al. 2012). 
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However, in another study, single i.p. injections of LPS (0.5 mg, 1mg or 2.5 mg/kg) 

led to a dose-dependent increase of microglial proliferation in the mouse brain 5 days 

after the injections (Shankaran et al. 2007). Moreover, it was shown that there might 

be regional differences in the proliferation of microglia after one single i.p. injection of 

1.0 mg/kg LPS. 36-48 h after LPS injection, BrdU labeling revealed, an increased 

proliferation of microglia in the fornix and dentate gyrus, but not in the cortex and 

corpus callosum of mice (Fukushima et al. 2015). Thus, proliferation likely depends 

on the stimulus strength, the injection protocol, the time point after infection and the 

analyzed brain region. Nevertheless, in this work, the late stage of inflammation was 

characterized by increased microglial numbers and microglial cells were found in 

close proximity to each other. This suggests that at least a subset of cortical microglia 

reacted to the inflammation-induced potentiation of the intracellular Ca2+-signaling 

with an increase in cell division. 

In vitro, activation of microglia with LPS was shown to correlate with a rise in the 

basal intracellular Ca2+-levels and the release of inflammatory mediators such as 

nitric oxide, IL-12, IL-6, TNF-α, or IL-1β is dependent on Ca2+ (Hoffmann et al. 2003; 

Färber and Kettenmann 2006a). Here, we observed a clear inflammation-induced up-

regulation of IL-1β. The fraction of IL-1β-expressing cells started to increase already 

5 h after LPS injection and reached the level of statistical significance 30 h after 

LPS injection. This finding suggests that IL-1β represents one of the early signals 

involved in the microglia-mediated brain’s reaction to peripheral inflammation. 

In the healthy brain, endogenous levels of inflammatory cytokines are generally low. 

Consistently, we did not find any IL-1β-positive cells in PBS-injected control mice. 

Activation of the NLRP3 inflammasome represents a common pathway leading to 

production of IL-1β. It is known that the formation of the NLRP3 inflammasome is 

regulated by intracellular Ca2+-levels (Murakami et al. 2012; Lee et al. 2012). Hence, 

the inflammation-induced microglial Ca2+-signaling reported in this study might initiate 

the production of microglial IL-1β through activation of the NLRP3 inflammasome. 

Strikingly, the LPS-mediated expression of IL-1β was restricted to Iba1-expressing 

cells. This suggests that microglia are the only brain cells producing significant 

amounts of IL-1β in response to peripheral inflammation. 

Like IL-1β, CD68 is a known marker of macrophage activation. The explicit role of 

CD68 is under debate, but it was associated with antigen processing and 
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presentation as well as phagocytic function of cells (Silva and Gordon 1999; Zotova 

et al. 2013; Rabinowitz and Gordon 1989). Therefore, we analyzed the expression of 

microglial CD68 before and during peripheral inflammation. However, in our model of 

inflammation, we did not observe any change in the expression of CD68. 

Microglia have a surveillance function within the brain and can actively shield dying 

cells or lesion sites with their motile processes, to protect the brain from spreading of 

the damage (Davalos et al. 2005; Nimmerjahn, Kirchhoff, and Helmchen 2005). This 

requires fast directed process movements towards the side of injury 

(Davalos et al. 2005; Nimmerjahn, Kirchhoff, and Helmchen 2005). Similar effects 

can be observed in response to a point source of ATP (Davalos et al. 2005). Here, 

Ca2+-ions are implicated in the modulation of cytoskeletal actin dynamics, that is 

required for the motility of cellular processes (Bader et al. 1994, Nimmerjahn, 

Kirchhoff, and Helmchen 2005; Hines et al. 2009). To evaluate how a peripheral 

LPS injection affects this microglial surveillance function, we determined the 

microglial process motility towards an ATP-containing pipette. Microglia showed a 

clear increase of their process velocity after LPS injection. Already during the early 

phase of inflammation, in the absence of any obvious morphological changes of the 

cells, the velocity of microglial processes was increased. During the later phase, 

when the morphological changes started to take place, this increase became even 

larger and reached the level of statistical significance. These results stand in contrast 

to other findings, reporting impaired process movements towards a laser-induced 

injury in LPS-injected mice (Gyoneva et al. 2014; Pozner et al. 2015). It is known that 

the activation of purinergic P2Y12 receptors on the microglial surface plays an 

important role in this type of process motility. Experiments with P2Y12 knock-out mice 

or blockers of the P2Y12 receptors revealed clearly reduced velocity of directional 

process movements (Haynes et al. 2006; Davalos et al. 2005). Interestingly, 

P2Y12 receptors were also reported to be down-regulated in microglia after direct 

stimulation with LPS. This down-regulation was shown in cells that transformed from 

a ramified state to a highly morphologically activated state (Haynes et al. 2006). 

A down-regulation of P2Y12 receptors would generally suggest a decrease of the 

microglial process dynamics. However, as this work revealed an obvious increase in 

the process velocity after LPS injection, the underlying mechanism seems to be more 

complex. The inconsistency in the literature about LPS-treated mice is presumably 
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due to differences in the experimental procedures. Microglial dynamics might change, 

for example, with the strength of the stimulus and the time of investigation, in respect 

to the time of LPS injection. In our study, for example, higher process velocity was 

observed 30 h after LPS injection as compared to 5 h after LPS injection. Such 

experimental differences can influence the activation state of microglia and thus 

affect their properties. Further, also the nature of the activation stimulus can explain 

the disparity in the results. A focal laser injury (with a lesion area of 10-15 µm) likely 

results in the release of different inflammatory mediators, probably activating many 

more different receptors than a single point source of ATP (Davalos et al., 2005). 

However, consistent with our data, microglia in a mouse model of epilepsy were 

reported to react to a pipette filled with the purinergic receptor agonist 

2-methylthio-ADP with a markedly higher velocity of process movements. 

Furthermore, this study showed that the microglial expression of P2Y12 receptors was 

up-regulated in their mice (Avignone, Ulmann, and Inserm 2008). Comparable results 

were also observed in mouse models with AD-related pathology. Highly activated 

cells close to amyloid-β plaques did not participate in the directed process 

movements towards an ATP-containing pipette, whereas morphologically less 

activated microglia, in a greater distance to the plaques, showed significantly 

increased process velocities (Brawek et al. 2014; Krabbe et al. 2013). Either way, all 

these findings suggest that the velocity of directed microglial process movement 

strongly depends on the activation state of the cells. The more the cells adopt a 

morphologically activated/amoeboid state, the less efficiently they can react to 

danger signals like ATP. This loss of process motility appears to require a given level 

of activation. We measured the highest process velocity 30 h after LPS injection, the 

time when first morphological changes were observed. Therefore, the switch of the 

cells towards a less dynamic state with reduced process motilities seems to be 

preceded by an initial phase of increased cell process motility. To our knowledge, this 

work is the first to report an acceleration of directed process movements during the 

LPS-induced peripheral inflammation. Inflammatory processes are regulated by a 

balance of pro and anti-inflammatory factors. During pathological conditions, as well 

as during the normal process of aging, microglia can adapt to the conditions and 

show a more reactive, so-called “primed state” (Dilger and Johnson 2008; 

Norden and Godbout 2013). However, during prolonged or chronic inflammatory 
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influences like, for example, Alzheimer`s disease, microglia can get “frustrated”, 

a condition characterized by, for example, a decreased phagocytic ability, altered 

surveillance functions with a reduced reactivity of the cells (Brawek et al. 2014; 

Hickman, Allison, and Khoury 2009). Thus, a reduced velocity of cell processes after 

LPS injection might mark the switch of microglia towards a frustrated state. As we did 

observe an increase in reactivity in our model of inflammation, our cells probably 

remained in a “primed state”. 

In summary, peripheral inflammation can initiate several different effector functions of 

microglia in the brain. These include morphological adaptations, proliferation, 

cytokine expression, and altered process dynamics. All these alterations might be 

triggered by exaggerated microglial Ca2+-signaling, taking place as early as 5 h after 

LPS injection. 

4.4 Microglial hyperactivity requires activation of NLRP3 

inflammasome  

Microglia exposed to cell- or tissue injuries, as well as activated microglial cells in the 

vicinity of amyloid beta plaques in the brain of mice with AD-pathology, were reported 

to show an increased frequency of intracellular Ca2+-transients (Eichhoff, Brawek, 

and Garaschuk 2011; Brawek et al. 2014; Pozner et al. 2015). These Ca2+-signals 

were associated with a disturbed tissue homeostasis and minor cell or tissue 

damages in the microenvironment of the cells. Factors, released by damaged 

tissues, such as ATP, might activate metabotropic and ionotropic purinergic 

P2 receptors on the microglial surface and mediate either Ca2+-release from 

intracellular stores or Ca2+-influx from the extracellular space (Eichhoff, Brawek, and 

Garaschuk 2011; Brawek et al. 2014).  

Microglia express several surface receptors for potential danger signals that enable 

them to sense inflammation or changes in their environment. In addition to the 

purinergic receptors, the latter include receptors for prostaglandins, 

complement factors, chemokines and proinflammatory cytokines, like TNF-α or IL-1β 

(Färber and Kettenmann 2006b; Färber and Kettenmann 2006a). Inflammatory 

conditions can lead to an up-regulation of such receptors (Choi et al. 2007; 

Bemelmans, Gouma, and Buurman 1993; Reinisch et al. 1994) and the activation of 

all of these receptors can be linked to elevated levels of [Ca2+]i (T Möller et al. 1997; 
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Thomas Möller 2002; Färber and Kettenmann 2006b). Therefore, it is likely that the 

rapid increase of inflammatory mediators during the early phase of inflammation was 

sensed by microglia through activation of such surface receptors, and thus triggered 

the exaggerated Ca2+-signaling of these cells.  

In vitro data have shown that stimulation of murine microglial cells and astrocytes, as 

well as human epithelial cells and macrophages, with LPS, leads to increased levels 

of extracellular ATP (Ferrari et al. 1997; Pascual et al. 2012; Bodin and 

Burnstock 1998). Additionally, there are evidences from in vivo experiments that LPS 

stimulation promotes increased levels of extracellular ATP in the periphery and in the 

brain (Cauwels et al. 2014; Gourine et al. 2007). Hence, one possible mechanism 

leading to increased Ca2+-signaling is LPS-mediated release of ATP from endothelial 

cells or resident cells of brain parenchyma like microglia or astrocytes. The released 

ATP, in turn, might be sensed by microglia through activation of P2 receptors, 

thereby promoting the exaggerated Ca2+-signaling of microglia.  

Other in vitro studies have shown that stimulation of microglial cell cultures with the 

proinflammatory cytokine TNF-α leads to increased [Ca2+]i. As this increase was also 

present in cells in a Ca2+-free solution, an intracellular source of Ca2+ was suggested 

to be responsible for this cytokine-mediated increase of [Ca2+]i 

(McLarnon et al. 2001). Similarly, application of IL-1β was reported to trigger an 

increase of [Ca2+]i in microglial cell cultures through release of Ca2+ from intracellular 

sources (Goghari et al. 2000). Further, for IL-1β it is known that it can lead to 

increased [Ca2+]i through activation of “alternative” signaling pathways. The 

“classical” pathway includes the activation of the IL-1 Type-I receptors (IL-1RI). After 

binding of IL-1β to IL-1RI, the IL-1RAcP receptor subunit is recruited, leading to the 

association of the adapter protein myeloid differentiation primary response 88 

(MyD88) and the activation of the IL-1 receptor-associated protein kinase (IRAK). 

The formation of this protein complex finally results in the activation of the 

transcription factor NF-κB. In further “alternative” pathways, however, IL-1β can lead 

to the recruitment of the phosphatidylinositol-4,5-bisphosphate 3-kinase (IP3K) or the 

activation of mitogen-activated protein kinases (MAPK) and protein kinase C (PKC), 

leading to increased [Ca2+]i (Auron 1998; Spörri et al. 2001).  
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Taken together, these data suggest that also cytokines and the activation of 

microglial cytokine receptors can be involved in the increased Ca2+-signaling during 

the early phase of inflammation.  

However, because the current knowledge about microglial Ca2+-signaling emerged 

predominantly from cell culture experiments and data from microglia in the intact 

living brain are still rare, the mechanisms that trigger microglial Ca2+-signals in vivo 

are largely elusive. With this work, we were able to add another facet to the 

understanding of microglial Ca2+-signaling in the living brain. We demonstrated for 

the first time a clear link between the incidence of spontaneous microglial 

Ca2+-signals during peripheral LPS-induced inflammation and the 

NLRP3 inflammasome.  

We found that in comparison to cells of WT mice, microglia from NLRP3-/- mice 

showed no microglial hyperactivity during the early phase of LPS-induced 

inflammation. This suggests that an intact NLRP3 inflammasome and likely also the 

concomitant production of inflammatory cytokines, like IL-1β or IL-18, seem to be 

essential for the inflammation-induced Ca2+-signaling in microglia.  

As many different stimuli are leading to inflammasome activation, the NLRP3 

inflammasome is known as a sensor of cellular damage or stress (Walsh, Muruve, 

and Power 2014). It can get activated by harmful stimuli, such as amyloid beta, viral, 

fungal and bacterial components, by K+ -efflux from microglia, induced, for example, 

by extracellular stimulation with ATP, by reactive oxygen species (ROS), lysosomal 

destabilization or mitochondrial damage (Walsh, Muruve, and Power 2014; Murakami 

et al. 2012). Activation of NLRP3 inflammasome is usually preceded by a priming 

stimulus (e.g. bacterial LPS), leading to the activation of PAMPs and the subsequent 

transcription of NLRP3 protein complex subunits and cytokine precursors. Then, a 

second stimulus such as extracellular ATP or Ca2+ triggers the NLRP3 protein 

complex formation and the maturation and release of the proinflammatory cytokines. 

Due to the large variability of the stimuli leading to NLRP3 inflammasome activation, 

there is no general mechanism underlying the activation of NLRP3 inflammasomes.  

However, a study analyzing ATP-stimulated macrophages in vitro suggested that 

activation of the NLRP3 inflammasome is mediated by P2 receptors and involves 

Ca2+-mobilization from intracellular as well as from extracellular sources 

(Murakami et al. 2012). The study revealed by application of pharmaceutical blockers 
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that the NLRP3 inflammasome activation is regulated by pathways including the 

activation of phospholipase C (PLC) and inositol trisphosphate (IP3), leading to 

Ca2+-release from the endoplasmic reticulum (ER), as well as by a pathway activating 

store-operated calcium channels (SOC). The increased levels of Ca2+ were hereby 

further linked to damages of mitochondria and a concomitant activation of the NLRP3 

inflammasome (Murakami et al. 2012). That NLRP3 inflammasome activation is 

mediated by Ca2+-release from the ER was substantiated by another study. The 

authors proposed that ATP or extracellular Ca2+ bind to calcium-sensing receptors 

(CASR) on the surface of microglia. This binding activates PLC through 

G-protein-coupled receptors, with the result of an IP3-mediated Ca2+-release from the 

ER. The increased level of Ca2+, then, activates the NLRP3 complex and triggers the 

caspase 1 dependent maturation of IL-1β (Lee et al. 2012). According to this, it 

seems clear that the inflammasome activation is regulated by intracellular 

Ca2+-signals. However, to our knowledge, the idea that a depletion of the 

NLRP3 inflammasome is inhibiting microglial Ca2+-signaling has not been reported 

before.  

Due to the fact that systemic injection of LPS led to a strong up-regulation of 

inflammatory cytokines in our mice, it is reasonable to speculate that LPS injection 

also might have triggered the up-regulation of potential inflammasome activators, like 

extracellular ATP or Ca2+. Such activators could have stimulated CASRs or 

P2 receptors on the microglial surface, resulting in a Ca2+-dependent activation of the 

NLRP3 inflammasome. The initiated maturation and release of IL-1β might have 

triggered an autocrine feedback loop, activating microglial IL-1β receptors and 

thereby further increasing the Ca2+-signaling of microglia during inflammation.  

Interestingly, and in contrast to the NLRP3-/- mice, the inflammatory Ca2+-signals of 

microglia in TNF-α-/- mice did not differ from the respective Ca2+-signals in WT mice. 

This leads to the conclusion, that even if application of TNF-α in microglial cell 

cultures leads to increased levels of intracellular Ca2+ in vitro (McLarnon et al. 2001), 

microglia in vivo behave differently and the cytokine TNF-α seems to play a less 

important role for microglial hyperactivity during inflammation. 

However, to further analyze the origin of microglial Ca2+-signals we measured the 

serum and brain cytokine levels of the respective the knock-out mice. Compared to 

WT mice, 5 h after LPS injection NLRP3-/- mice showed significantly lower 
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IL-1β levels in the periphery, but just a trend towards lower levels in the brain. The 

presence of measurable IL-1β levels in these mice suggests that there must be 

additional NLRP3-independent mechanisms of IL-1β production. Even if in our 

experiments, 100 % of the IL-1β-expressing cells in WT mice were Iba1-positive 

(i.e. microglia), we cannot rule out different sources or pathways of IL-1β production 

in the NLRP3-/- mice. Such pathways might include the cleavage of pro-IL-1β into its 

active form by the action of serine- or metalloproteases derived from neutrophils and 

macrophages (Cassel et al. 2014; Lukens et al. 2014; Netea et al. 2015). Another 

option would be the activation of different inflammasome complexes. A relatively 

strong LPS stimulus in mice was, for example, shown to up-regulate the 

NLRP1 inflammasome expression in neurons, leading to caspase 1 activation and 

the production of IL-1β (Kaushal et al. 2015). Moreover, in addition to the reduced 

levels of IL-1β, the NLRP3-/- mice were characterized by a general trend towards 

decreased cytokine levels during the early phase of inflammation. Solely the level of 

TNF-α in the blood of these mice was significantly higher than in WT mice, 

suggesting a compensatory increase of this cytokine. However, as we did not 

observe significant differences in the LPS-induced Ca2+-signals between WT and 

TNF-α-/- mice, this compensatory increase of TNF-α protein seems to be irrelevant for 

microglial Ca2+-signaling. 

A similar tendency to lower cytokine levels was observed in the TNF-α-/- mice. This 

fact is not surprising, taking into account that the cytokine production is often 

regulated by complex cascades of reciprocal interactions (Amiot et al. 1997). 

Surprisingly, some of the TNF-α-/- mice had measurable levels of TNF-α protein in the 

blood serum after injection of LPS. One possible explanation might be a strong 

LPS-induced up-regulation of soluble TNF-α receptors in these mice, interfering with 

the ELISA-antibodies, as it was already shown for WT mice (Bemelmans et al., 

1993). The brains of TNF-α-/- mice, as expected, did not contain any measurable 

amounts of TNF-α protein. Although the inflammatory cytokines were elevated under 

inflammatory conditions compared to PBS controls, the cytokine responses were 

generally reduced in both knock-out strains. Since we observed an inflammation-

induced microglial hyperactivity in the TNF-α-/- mice, but not in the NLRP3-/- mice, it 

seems rather unlikely, that the general reduction in the level of cytokines (present in 

both knock-out strains) is responsible for the absence of microglial Ca2+-signals in the 
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NLRP3-/- mice. This suggests that microglial hyperactivity is mediated to a large 

extent by activation of the NLRP3 inflammasome. However, as the fraction of active 

cells in TNF-α-/- mice during inflammation seemed to be slightly decreased compared 

to WT mice, it is probably a combination of both, the NLRP3 inflammasome activation 

and the action of inflammatory cytokines contributing to the microglial hyperactivity 

during systemic LPS infection. 

Taken together, in the periphery as well as in the brain, cytokines had their highest 

expression during the early phase of inflammation. At this time point, the 

spontaneous activity in microglia was the highest. Thus, microglial Ca2+-signals can 

serve as a sensor or an early marker of inflammation. In mice without functional 

NLRP3 inflammasome, microglia were not able to increase their Ca2+-signaling after 

stimulation with LPS. In WT mice, the late stage of peripheral inflammation was 

accompanied by morphological changes of microglia, higher process motilities and 

microglial IL-1β production, all representing the effector functions of these immune 

cells. We hypothesize that the NLRP3 inflammasome operates as a Ca2+-dependent 

sensor of inflammation-induced stress factors, promoting microglial hyperactivity. The 

heightened Ca2+-signaling, in turn, might trigger the metamorphosis of microglia from 

the initial “surveillance” state towards the late “effector” state during peripheral 

inflammation. 

4.5 Inflammation induces neuronal hyperactivity in different 

parts of the cortical network 

Like microglia, neurons showed a clear response to peripheral inflammation. LPS 

induced a pronounced hyperactivity of Ca2+-signaling in cortical neurons. Similar to 

microglial cells, the neurons showed their strongest response to LPS during the early 

phase of inflammation (5 h after LPS injection). At later time points, the frequency of 

Ca2+-signals started to decrease and finally returned to the baseline. This implicates, 

that also neurons have a certain sensor function, recognizing changes in the 

concentration of stress factors like ATP or a strong up-regulation of inflammatory 

mediators in the organism. 

We observed increased spontaneous neuronal Ca2+-signaling in different parts of the 

neural network in the motor cortex. Thus, increases in Ca2+-signaling were present 

postsynaptically, in the somata of layer 2/3 pyramidal neurons. Using independent 
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component analysis (ICA), we separated a subpopulation of these neurons with 

asynchronous Ca2+-signals. Also, this subpopulation showed a reliable increase in 

frequency of somatic Ca2+-transients 5 h after LPS injection when compared to PBS-

injected controls. Stimulation of GCaMP6f-labeled murine neuronal cell cultures with 

different cytokines such as TNF-α, IFN-y or IL-1β was recently reported to increase 

the synchronicity of Ca2+-signals in neurons (Clarkson et al. 2017). Because a 

peripheral LPS injection studied here leads to the up-regulation of such 

proinflammatory mediators in the brain, it is likely that this treatment increased the 

synchronicity of the neuronal network activity. As ICA removes all cells active 

synchronously with the neuropil (and usually also with each other), this can explain a 

strong LPS-induced increase in the fraction of silent cells, as observed in our 

experiments. In contrast to increased frequency of somatic Ca2+-transients, we did 

not observe an increase in frequency of Ca2+-transients in the neuropil. Instead, we 

observed a significant increase in the amplitude of the neuropil Ca2+-signals after 

LPS injection. The cortical neuropil was reported to consist to > 50 % of axons and 

presynaptic boutons, to around 30 % of dendrites and dendritic spines, to 10 % of 

glial processes, and to another 10 % of other structures like extracellular space 

(Chklovskii, Schikorski, and Stevens 2002). As we used a neuron-specific viral vector 

to deliver GCaMP6f into the cells, a glial contribution to the neuropil Ca2+-signal can 

be neglected. Nevertheless, as GCaMP6f labels both, axonal and dendritic 

structures, a clear discrimination of the source of the neuropil Ca2+-signal was not 

possible. 

Among others, apical dendrites of layer 2/3 cortical neurons in the motor cortex get 

inputs from cells of deeper cortical layers (Shepherd et al. 2005). To gain insights into 

the local circuitry, we proved in another set of experiments that the inflammation-

induced increase in Ca2+-signaling was also present in the presynaptic partners of 

the layer 2/3 cells. Axons arising from motor cortical neurons of layer 5, revealed a 

clearly increased frequency of Ca2+-transients 5 h after LPS injection. Further, as we 

observed a tendency to increased amplitudes in these axonal projections, it is likely 

that the increased amplitudes of Ca2+-transients observed in the neuropil, can be 

attributed to the signaling in presynaptic axonal structures. Interestingly, although the 

somatosensory cortex and the motor cortex are strongly interconnected 

(Donoghue and Parham 1983; Kaneko, Caria, and Asanuma 1994; B. M. 
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Hooks et al. 2011; Mao et al. 2011), we did not observe any increase in the 

frequency of Ca2+-transients in axons from the somatosensory cortex. As the 

somatosensory cortex is relevant for the signal transmission during pain 

(Backonja 1996; Bushnell et al. 1999), it is rather unlikely that inflammation-induced 

pain was modifying the neuronal Ca2+-signaling in our experiments.  

However, the results imply that there is a specific pathway modulating the neuronal 

activity during inflammation. It could be either a rather local inflammatory signal 

transfer or a signal transmission arising from deeper regions of the brain, like the 

thalamus. The motor cortex lacks a distinctly visible cortical layer 4. However, a 

laminar zone on the border of layer 5 was reported to provide similar functions, with 

excitatory inputs from the thalamus and excitatory outputs to layer 2/3 neurons 

(Yamawaki et al. 2014; Bryan M. Hooks et al. 2013). The fact that we measured a 

significant increase in Ca2+-signaling in neurons of the motor cortical layer 5 would 

support the hypothesis that our inflammatory signal might have its origin in thalamic 

regions. In contrast, signal transmission through lateral long-range connections, at 

least from the somatosensory areas, seems rather unlikely.  

4.6 Neuronal hyperactivity critically depends on TNF-α 

So far, the mechanisms underlying inflammation-induced neuronal network 

hyperactivity are not clear. Several studies have provided evidence that the release 

of inflammatory mediators, as the one initiated by stimulation with LPS in this study, 

is linked to the increased excitability of neurons. Increased levels of CCL2, IL-1β or 

TNF-α, for example, were linked to greater susceptibility of rodents to seizures 

(Samland et al. 2003; Cerri et al. 2016; Vezzani et al. 2002; Riazi et al. 2008). 

Furthermore, for example, the action of IL-6 was reported to increase the neuronal 

activity in rats, as measured by in vivo electrophysiological recordings after i.p. 

injection of LPS (Palin et al. 2009). And CCL2, IL-1β, and TNF-α were also shown to 

enhance the function of NMDA receptors, leading to higher neuronal activities 

(Zhou et al. 2011; Wheeler et al. 2009; Viviani et al. 2003). Especially the 

proinflammatory cytokine TNF-α appears to play a major role in the heightened 

neuronal signaling during inflammation. It was reported that application of TNF-α to 

hippocampal slices results in an increase of excitatory and a decrease of inhibitory 
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synaptic transmission. This process was assumed to be regulated by trafficking of 

AMPA and GABAA receptors (Stellwagen et al., 2005).  

Our data show that compared to WT mice, basal spontaneous Ca2+-signaling of 

TNF-α-/- mice remained unchanged. Moreover, TNF-α-/- mice did not react with 

neuronal hyperactivity to induction of peripheral inflammation. Thus, TNF-α seems to 

be an important modulator of neuronal Ca2+-signaling under inflammatory conditions. 

This stands in contrast to the results obtained from microglial cells. Also, the 

dysfunction of the NLRP3 inflammasome had less impact on the spontaneous 

neuronal Ca2+-signaling during inflammation than in microglia. Peripheral injections of 

LPS did not result in a significant increase in Ca2+-signaling in neurons of 

NLRP3-/- mice. However, the lack of inflammation-induced increase in the frequency 

of Ca2+-transients in NLRP3-/- mice was probably due to a higher basal spontaneous 

Ca2+-signaling in these mice. This higher basal spontaneous Ca2+-signaling might 

have led to an occlusion effect so that the relative change in frequency did not reach 

the level of statistical significance. The reason for higher basal spontaneous 

Ca2+-signaling in neurons of these mice remains unknown. As the 

NLRP3 inflammasome is mainly expressed in microglia, a malfunction of these cells 

with a disrupted communication between microglia and neurons might be involved. 

4.7 LPS-induced inhibition of GABAergic neurons promotes 

neuronal hyperactivity 

Usually, the brain activity is balanced by the activation of excitatory glutamatergic and 

inhibitory GABAergic neurons. Focusing on GABAergic cells during inflammation, 

revealed that the excitatory effect of LPS was absent in this cell type. Moreover, 

inhibitory cells responded with a clear reduction in the frequency of their 

Ca2+-transients 5 h after LPS injection. This indicates that the overall increase in 

spontaneous Ca2+-signaling observed in the GCaMP6-labeled neurons of layer 2/3 

can be attributed to a reduced GABAergic inhibition of the local network. In addition 

to the already mentioned potential TNF-α-mediated change in GABAA receptor 

trafficking (Stellwagen et al., 2005), LPS-activated microglia were reported to 

specifically displace inhibitory GABAergic synapses in the rodent motor cortex 

thereby leading to an increased neuronal activity (Z. Chen et al. 2014a). Further, in 

GCaMP6-labeled neuronal cell cultures, the presence of Interferon-γ (IFN-γ), IL-1β 
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and TNF-α was shown to induce synchronous firing of neurons. Especially the action 

of IL-1β was hereby assumed to mediate this synchronicity, probably through 

inhibition of inhibitory GABAergic cells (Clarkson, et al., 2017).  

Hence, the activation of cytokine-producing cells in combination with the presence of 

inflammatory cytokines like TNF-α might have changed the balance of excitation and 

inhibition in the network, resulting in increased Ca2+-signaling of excitatory neurons. 

Taken together, neurons are able to sense peripheral inflammation. A malfunction of 

the NLRP3 inflammasome in microglia, with a concomitant hampered production of 

IL-1β and IL-18, mainly leads to an increased basal spontaneous Ca2+-signaling in 

neurons. A deficiency of TNF-α production, instead, clearly impairs neuronal 

hyperactivity during inflammation. This suggests a TNF-α-mediated mechanism 

underlying the excitatory LPS effect in neurons. Additionally, inhibitory GABAergic 

cells show a reduced frequency of spontaneous Ca2+-transients after LPS injection, 

presumably promoting the overall excitatory effect of LPS. 

4.8 Neuronal hyperactivity is independent of microglia 

Our results revealed how microglia and neurons react individually to a moderate 

peripheral inflammatory stimulus. The question that remained was how these cells 

interact with each other. The view that microglia are important partners of neurons in 

the at least “quad-partite synapse” is meanwhile accepted (Schafer, Lehrman, and 

Stevens 2013). Microglia can release various factors to actively shape the neuronal 

activity and several publications emphasized the great importance of microglia during 

different inflammatory conditions like epilepsy, ischemia, Alzheimer`s or Parkinson`s 

disease etc. (Streit, Mrak, and Griffin 2004; Hanisch and Kettenmann 2007). In this 

respect, it is very surprising that the inflammation-induced neuronal hyperactivity 

seems to be independent of microglial cells. So far, how the presence of microglia 

shapes the neuronal activity is not entirely clear. Strikingly, previous studies reported, 

that a complete depletion of microglia from the brain, namely the removal of 5-12 % 

of all brain cells (Lawson et al., 1990), resulted in no obvious signs of cognitive 

impairments in mice (Elmore et al. 2014; Acharya et al. 2016). Further studies 

demonstrated that the depletion of microglia is correlated with a reduced loss of 

dendritic spines and neurons in mouse models of Alzheimer`s disease. Thus, the lack 

of microglia might even result in an improved memory and increased cognitive 
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abilities of mice with AD pathology (Spangenberg et al. 2016). This implicates a 

rather detrimental role of microglia under chronic inflammatory circumstances like 

during Alzheimer's disease.  

Another work, in contrast, emphasized the protective role of microglial cells. 

It revealed that microglial depletion increased the severity of acute brain injury in 

mice after cerebral ischemia (Szalay et al. 2016). Interestingly, this study also 

revealed that the absence of microglia prevented KCl-induced occurrence of 

“spreading depolarizations” in ischemic as well as in non-ischemic brains. These 

results are rather surprising and somehow contradictive to the protective role of 

microglia, because “spreading depolarizations” are generally known to occur under 

pathological conditions, like after ischemia and are associated with the facilitation of 

neuronal cell death. The authors claimed that the absence of microglia resulted 

hereby in a somehow dysregulated Ca2+-response in neurons leading to an 

increased neuronal death under the ischemic conditions.  

How microglia influence the neuronal Ca2+-signaling is generally not well understood. 

However, we can confirm with our in vivo results, that absence of microglia is 

associated with a changed neuronal activity. Furthermore, we provided different 

insights how the removal of microglia affects the murine brain. First, we showed, that 

microglial depletion leads to a general reduction of the basal spontaneous 

Ca2+-signaling in neurons. Even if we did not observe obvious behavioral changes in 

microglia-depleted mice, there was a clear “silencing effect” on the neuronal network 

activity. Second, we found that depletion of microglia played no role in the neuronal 

hyperactivity during peripheral inflammation. Hence, despite the absence of the main 

immune cells of the brain, the neuronal network was able to react to a peripheral 

inflammation with an increased Ca2+-signaling. This leads to the assumption, that at 

least the inflammation-induced neuronal Ca2+-signaling is regulated through a yet 

unknown microglia-independent mechanism. During inflammation, microglia 

classically have been considered to be the main source of proinflammatory cytokines 

like TNF-α  in the CNS (Olmos and Lladó 2014). However, the fact that we observed 

no LPS-induced Ca2+-signaling increase in neurons of TNF-α-/- mice, but a clear 

hyperactivity in microglia-depleted mice, hints that TNF-α or other inflammatory 

factors from different sources might have mediated this effect. The presence of 

astrocytes, for example, was reported not to be affected after CSF-1 receptor 
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inhibition. Thus, one possible mechanism is that astrocytes produced 

proinflammatory mediators. This, in turn, might have led to the increased 

spontaneous neuronal Ca2+-signaling in excitatory neurons after LPS injection. 

Even though, this work provided multiple pieces of evidence how particular in vivo 

brain cells react to a moderate inflammatory insult, more experiments would be 

needed to get a complete picture of the underlying mechanisms of the complex 

interactions between the brain cells and their hyperactivity during peripheral 

inflammation. 

4.9 Conclusion 

Based on the findings of this work, I propose following mechanisms how peripheral 

inflammation affects the in vivo functional properties of the cortical neural 

network (see Figure 32): 

Early after a moderate bacterial infection in the periphery, the cytokine levels in the 

blood increase dramatically. This increase is paralleled by a concomitant rise of 

cytokines within the brain. Microglia and neurons individually sense the up-regulation 

of the inflammatory mediators and possible changes in the tissue homeostasis. Both 

cell types have hereby in common, that they react with a pronounced hyperactivity.  

In neurons, it is especially the proinflammatory cytokine TNF-α, which is responsible 

for the inflammation-induced increase in Ca2+-signaling. Further, the hyperactivity 

appears mainly to be a feature of excitatory neurons. TNF-α, probably in combination 

with other inflammatory factors might promote the increased neuronal excitation 

through inhibiting GABAergic interneurons. 

In contrast to neurons, the microglial Ca2+-signals seem to be less dependent on the 

action of TNF-α. The hyperactivity of microglia is rather regulated through the 

activation of the NLRP3 inflammasome complex and an increase in the level of 

proinflammatory cytokines. The NLRP3 inflammasome might function hereby as a 

Ca2+-dependent sensor of inflammation-induced stress factors (i.e. ATP). 

After sensing these factors, it might promote microglial Ca2+-signaling in an autocrine 

loop, by initiating the secretion of further inflammatory factors as IL-1β or IL-18. 

Different effector functions of microglia can be linked to intracellular Ca2+-signals. 

Therefore, the pronounced Ca2+-signaling in microglia during inflammation might 

trigger the microglial switch from an early “sensor state” to a late “effector state” of 
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the cells. In this late state, microglia react with cytoskeletal rearrangements, leading 

to an activated morphology, an increase of cell proliferation or higher process 

reactivity, to actively fight the danger of inflammation. 

Interestingly, basal spontaneous Ca2+-signaling in neurons is dependent on the 

activation of the NLRP3 inflammasome complex, which is mainly expressed in 

microglial cells. A malfunction of the NLPR3 inflammasome complex results in a 

pronounced increase in Ca2+-signaling of neurons. 

In contrast, blocking the communication of microglia and neurons by complete 

removal of microglial cells from the brain results in silencing of the neuronal 

Ca2+-signaling. Remarkably, the inflammation-induced hyperactivity seems to be 

independent of the presence of microglia. 
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Figure 32 Effects of peripheral inflammation on in vivo functional properties of cortical networks 

A peripheral inflammation in mice, induced by i.p. injections of bacterial LPS has different effects on the in vivo 

functional properties of different elements of cortical networks. The inflammation can be classified into two 

phases. During the early phase, there is a prominent increase in the level of different cytokines (IL-1β, TNF-α, 

IL-6, CCL-2 or IL-10) in the periphery. This inflammatory cytokine signal from the periphery is transmitted over the 

blood-brain barrier (BBB) and leads to a mirrored cytokine response within the central nervous system (CNS). 

During this phase, neurons and microglia act as sensors, sensing the increased level of cytokines or other 

released inflammatory mediators as, for example, adenosine triphosphate (ATP). Subsequently, both cell types 

show markedly increased Ca2+-signaling (hyperactivity). The hyperactivity of neurons is hereby a feature of 

glutamatergic neurons. They are able to sense and react to the inflammation in a TNF-α-dependent mechanism. 

In contrast, inhibitory neurons show reduced Ca2+-signaling, and the reduced inhibition is probably promoting the 

excitation of glutamatergic neurons.  

The hyperactivity of microglia is dependent on the NLRP3 inflammasome. The activation of the NLRP3 

inflammasome is Ca2+-dependent. It is responsible for the maturation of IL-1β and IL-18, which, in turn, might 

promote the strong Ca2+-signaling in microglia. Microglia can shape the activity of neurons in different ways. 

Neurons react to the absence of the microglial NLRP3 inflammasome and the presumed concomitant reduction of 

IL-1β and IL-18 with an increased basal Ca2+-signaling. A complete depletion of microglia, in turn, results in a 

reduced basal Ca2+-signaling in neurons. Remarkably, despite the lack of microglia, neurons still sense the 

inflammation and react with hyperactivity. 

The late phase of inflammation is characterized by reduced levels of inflammatory mediators in the periphery and 

in the CNS. Ca2+ in microglia is associated with different effector functions of cells. Their increased Ca2+-signaling 

during the early phase leads to a switch from the “sensor function” to the “effector function”. During the late 

phase, microglia show cytoskeletal rearrangements, an activated morphology, a higher rate of proliferation, 

enhanced IL-1β-expression and accelerated process velocity. 
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